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Common transversals for coset spaces of compact groups

Hiroshi Ando and Andreas Thom

Abstract. Let G be a Polish group and let H � G be a compact subgroup. We prove that there
exists a Borel set T � G which is simultaneously a complete set of coset representatives of left and
right cosets, provided that a certain index condition is satisfied. Moreover, we prove that this index
condition holds provided that G is locally compact and G=Gı is compact or H is a compact Lie
group. This generalizes a result which is known for discrete groups under various finiteness assump-
tions, but is known to fail for general inclusions of infinite groups. As an application, we prove that
Bohr closed subgroups of countable, discrete groups admit common transversals.

Dedicated to Slava on the occasion of his 70th birthday

1. Introduction

Let G be a group andH be a subgroup. A set T � G is said to be a left transversal forH
or a complete set of left coset representatives if G D

F
t2T tH . Similarly, S � G is said

to be a right transversal or a complete set of right coset representatives if G D
F
s2S Hs.

It is well known that left transversals need not be right transversals unless H is a normal
subgroup. Note, however, that if T is a left transversal, then T �1 is a right transversal
and vice versa. It has been known for a long time that there exist subsets of G which are
simultaneously left and right transversals under various finiteness assumptions, for exam-
ple, when H is finite or ŒG W H� is finite. We call a set which is simultaneously a left and
right transversal a common transversal for H .

The problem of finding common transversals in groups has a long history dating back
more than a hundred years (see [3] for more information). However, very little has been
known regarding the regularity properties of common transversals for topological groups.
One exception is the study by Appelgate–Onishi [1], where it is shown that a closed
common transversal exists for pro-finite groups.

Various classical matrix decomposition theorems can be interpreted as results about
the existence of a particularly nice common transversal of a compact subgroup. Indeed,
for example, every matrix g 2 GL.n;C/ can be written uniquely as a product of a unitary
matrix u 2 U.n/ and a positive definite matrix p 2 P.n;C/, that is, g D up. Similarly,
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taking inverses, we obtain another decomposition g D p0u0. Thus, the set of positive def-
inite matrices is a common transversal of U.n/ in GL.n;C/. The Iwasawa decomposition
(or QR-decomposition in the case of GL.n;C/) provides a similar common transversal,
provided by the set of upper triangular matrices whose diagonal entries are positive. These
decompositions are particularly nice in the sense that the common transversal is closed
and satisfies T �1 D T . This will not necessarily be true for the common transversals
that we construct in this paper and cannot be expected in general (see Example 4.5 and
Remark 4.6).

We prove a corresponding result for G Polish and H a compact subgroup, where the
natural requirement on the common transversal also includes a certain regularity. In fact,
we will prove that we can take T always to be a Borel subset of G. We say that a closed
subgroup H of a topological group G satisfies the index condition, if

ŒH WH \ xHx�1� D ŒH WH \ x�1Hx�; 8x 2 G:

It was shown by Ore [11, Theorem 2.1] that a subgroupH � G admits a common (set
theoretic) transversal if and only if the index condition is satisfied. The index condition (in
case of finite indices) comes up naturally as a criterion for relative unimodularity of Hecke
pairs .G;H/ or unimodularity of the corresponding Schlichting completion (see [6,8] for
more details).

The main results of this paper are the following theorems.

Theorem 1.1. Let G be a Polish group and H be a compact subgroup. Assume that the
index condition is satisfied for H � G. Then there exists a Borel subset of G, which is a
common transversal for cosets of H .

The index condition is satisfied in a variety of situations. Our results on this question
are summarized in the following theorem.

Theorem 1.2. Let H � G be as in Theorem 1.1. Then, the index condition for H � G
holds whenever one of the following conditions is satisfied:

(1) G is an inverse limit of Lie groups, or

(2) H is a compact Lie group.

Corollary 1.3. The index condition for H � G is satisfied for an arbitrary compact
subgroupH , wheneverG is a locally compact group andG=Gı is compact. In particular,
this holds when G is compact or when G is connected and locally compact.

We record that the result is sharp in the sense that the results in Theorem 1.2 fail in
general if G is locally compact, but not an inverse limit of Lie groups, or H is compact,
but not a compact Lie group (see Examples 4.4 and 4.5).

Finally, in Section 4, we return to results about discrete groups. As a consequence of
our results on topological groups, we conclude the existence of common transversals for
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subgroups of countable, discrete groups as long as they are closed in the Bohr topology
(see Theorem 4.2). In particular, this applies to pro-finitely closed subgroups.

2. The index condition

In this section, we show that the index condition is satisfied in the situations described
by Theorem 1.2. Moreover, we explain how the index condition is used in order to find
a common transversal of left and right cosets contained in a fixed double coset. This will
give a motivation for the proof of the other main theorem.

Proposition 2.1. Let G be a Polish group, which is also an inverse limit of Lie groups,
and let H be a compact subgroup of G. Moreover, let x 2 G be arbitrary. Then,
ŒH WH \ xHx�1� D ŒH WH \ x�1Hx� 2 N�1 [ ¹2!º.

Let K � H be a closed subgroup. Note that since ŒH WK� is the cardinality of the
compact metrizable space H=K, it is either finite or continuum.

The following result is a consequence of the famous Gleason–Yamabe theorem [14]
and [5, Lemma 4.5].

Theorem 2.2 (Gleason–Yamabe). Every locally compact groupG withG=Gı compact is
an inverse limit of Lie groups.

Lemma 2.3. Let G be an inverse limit of Lie groups G D limiGi , with projections
�i WG ! Gi , and K � H be compact subgroups of G. The following formula holds:

ŒH W K� D lim
i!1

Œ�i .H/ W �i .K/�:

Proof. Let c D ŒH WK�; ci D Œ�i .H/ W �i .K/� .i 2N/. SinceGi is a quotient ofG and of
GiC1, we have ci � ciC1 � c. In particular, the limit c0 D limi!1ci exists and satisfies
c0 � c.

Assume by contradiction that c0 < c. Because each ci is then an integer, there exists
j 2 N such that ci D c0 .i � j /. Then let ¹s1; : : : ; sc0º � H be such that its image in
�j .H/ is the representatives for the left cosets of �j .K/ in �j .H/. Then we have

�i .H/ D

c0G
kD1

�i .sk/�i .K/ .i � j /:

By c0 < c, there exists s0 2 G such that s0 …
Sc0

kD1 skK. On the other hand, for each
i � j , we have �i .s0/ 2

Sc0

kD1�i .skK/. Passing to a subsequence if necessary, we may
find k0 2 ¹1; : : : ; c0º and ki 2 K such that �i .s0/ D �i .sk0ki / for all i � j , and by using
the sequential compactness of K, we may further pass to a subsequence to assume that
ki converges to some k 2 K as i !1. Then s0 D sk0k, contradicting our choice of s0.
Thus, c0 D c holds.
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For a topological space, we denote by �0.X/ the set of path connected components
of X . If H is a topological group, we denote by H ı the path connected component of
the identity element and note that H ı is a normal subgroup of H . If H is a compact Lie
group, then H ı is an open subgroup of H . The set �0.H/ is naturally identified with
H=H ı. In particular, in this case �0.H/ is a group in a natural way.

Lemma 2.4. Let G be a Polish group, K � H be a compact Lie subgroups of G. Then,

(1) ŒH WK� is finite if and only if dim.H/ D dim.K/ holds.

(2) If the latter condition holds, then H ı D Kı and the equation

ŒH WK� D Œ�0.H/W�0.K/�

is satisfied.

Proof. Note that dim.H/ D dim.K/ if and only if the Lie algebras of H and K agree –
and this is equivalent to H ı D Kı, since the path connected components are generated
via the exponential map from the Lie algebra. This implies that H=K is in bijection with
.H=Kı/=.K=Kı/ D �0.H/=�0.K/ proving that ŒH W K� is finite and equal to the index
of �0.K/ in �0.H/ in this case. Conversely, if the index of K in H is finite, then clearly
dim.H/ D dim.K/.

Proof of Proposition 2.1. By Lemma 2.3 applied to K D H \ xHx�1 and K D H \

x�1Hx, we may assume that G is a Lie group.
Note that the groups H \ xHx�1 and H \ x�1Hx are topologically isomorphic

since they are conjugate by x 2 G. In particular, their dimensions agree, and Lemma 2.4
applied to K D H \ xHx�1 and K D H \ x�1Hx implies that the indices of these
groups in H are either both finite or both infinite. In the first case, by the second
part of Lemma 2.4, the indices are identical with Œ�0.H/ W �0.H \ xHx

�1/� and
Œ�0.H/ W �0.H \ x

�1Hx/�, respectively. However, �0 of a compact Lie group is finite
and �0.H \ xHx�1/ is isomorphic to �0.H \ x�1Hx/. Thus, the indices agree and are
equal to ]�0.H/=]�0.H \ x�1Hx/. This completes the proof.

Proposition 2.5. Let G be a Polish group and H be a closed subgroup of G which is
a compact Lie group. Then the inclusion H � G satisfies the index condition: for every
x 2 G, the equality ŒH W H \ xHx�1� D ŒH W H \ x�1Hx� holds.

Proof. In this case, we can apply Lemma 2.4 directly to K D H \ xHx�1 � H and
x�1Kx D H \ x�1Hx � H as subgroups of G.

Note that a left coset and a right coset of H in G have a common representative if
and only if they lie in the same double coset. Indeed, we recall the following well-known
lemma.

Lemma 2.6. Let x; x0 2 G. The following conditions are equivalent:



Common transversals for coset spaces of compact groups 401

(1) The cosets xH and Hx0 intersect.

(2) The cosets xH andHx0 have a common representative, that is, there exists x00 2G
such that xH D x00H and Hx0 D Hx00.

(3) The cosets xH and Hx0 lie in one double coset, that is, there exists x00 2 H such
that xH [Hx0 � Hx00H .

Proof. (1)) (2): Take x00 2 xH \Hx0. (2)) (3): The x00 that worked for (2) also works
for (3). (3)) (1): There exists h1; h2; h01; h

0
2 such that h1x00h2 D x and h01x

00h02 D x
0.

This implies that h�11 xh
�1
2 D x

00 D h0�11 x0h0�12 and hence xh�12 h
0
2 D h1h

0�1
1 x0. Thus, xH

and Hx0 intersect.

Let us illustrate the use of the index condition by constructing a common Borel
transversal for a single double coset. This is done in the following lemma. The index
condition ensures that the number of left and right cosets contained in one double coset
coincides. The proof of the main theorem will deal with the problem of doing the same
construction in a Borel way for all double cosets at the same time. The argument below
modulo the measurability issue is essentially contained in Ore’s work [11].

Lemma 2.7. Let G be a Polish group and H be a compact subgroup satisfying the index
condition. For each x 2 G, there exists a Borel set Q � HxH which is simultaneously a
set of left and right coset representatives with respect to H , that is,

HxH D
G
a2Q

Ha D
G
a2Q

aH:

Proof. Let x 2 G be fixed and consider the double coset HxH � G. Note that each left
coset t 0H contained in HxH is of the form txH for some t 2 H . Similarly, right cosets
contained in Hx are of the form Hxs for s 2 H .

Two cosets txH and xH coincide with t 2 H if and only if t 2 H \ xHx�1.
Let T � H be a Borel section of the quotient map H ! H=.H \ xHx�1/. This
yields a decomposition H D

F
t2T t .H \ xHx

�1/. It follows that T � H also yields
a decomposition of HxH in the sense that we have HxH D

F
t2T txH .

Similarly, two cosetsHxs andHx coincide if and only if s 2H \ x�1Hx. We take S
a Borel section of the mapH ! .H \ x�1Hx/nH and observe thatHxH D

F
s2SHxs.

Note that both S and T are standard Borel spaces, that is, they are either finite or
Borel isomorphic to Œ0; 1�. By Proposition 2.1, ŒH WH \ xHx�1� D ŒH WH \ x�1Hx� 2
N�1 [ ¹2!º and hence the cardinalities of S and T agree. Thus, we may pick a Borel
isomorphism 'W T ! S and set Q WD ¹tx'.t/ j t 2 T º � HxH . It is straightforward to
check that Q is a Borel subset of HxH which is simultaneously a set of left and right
coset representatives, that is, we have

HxH D
G
a2Q

Ha D
G
a2Q

aH:

This finishes the proof.
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Remark 2.8. Sometimes, the index condition is automatically true provided both indices
are known to be finite. Consider, for example, H � G, when H is a free group. Then, the
Nielsen–Schreier formula implies that

ŒH W K� D
rk.K/ � 1
rk.H/ � 1

;

provided the index is finite. In particular, the index does only depend on K up to isomor-
phism and does not change, when K is replaced by an isomorphic finite index subgroup
ofH . A similar phenomenon occurs, when the groupH has a finite and non-zero `2-Betti
number, since

ŒH W K� D
ˇ
.2/

k
.K/

ˇ
.2/

k
.H/

:

This applies, for example, to the inclusion SL.2; Z/ � SL.2;Q/. Since SL.2;Q/
commensurates SL.2;Z/, all inclusions SL.2;Z/ \ g SL.2;Z/g�1 � SL.2;Z/ for g 2
SL.2;Q/ are of finite index. Since ˇ.2/1 .SL.2;Z// D 1

12
, the index condition is satisfied

by the previous observation.
Note, however, that this observation does not in general prevent the existence of

isomorphic subgroup of infinite index.

Remark 2.9. The index condition is satisfied if G is a locally compact, unimodular,
totally disconnected group and H � G is a compact open subgroup. Indeed,

ŒH W H \ gHg�1� D
�.H/

�.H \ gHg�1/

in this case. Now, since G is unimodular, the measure of H \ gHg�1 agrees with the
measure of H \ g�1Hg, since these groups are conjugate. In particular, this applies to
SL.n;Zp/ � SLn.Qp/.

3. Proof of Theorem 1.1

We are now heading towards the proof of Theorem 1.1. As a first step, we need to find a
Borel set of representatives of double cosets of H in G.

Lemma 3.1. Let G be a Polish group, H be a compact subgroup of G. Then there
exists a Borel subset A � G which is a set of representatives for the double H -cosets:
G D

F
a2AHaH .

Proof. Let � WG ! HnG=H be the quotient map. Since G is a Polish group and H is
compact, the space HnG=H is also Polish. For each g 2 G, we may view �.g/ D HgH

as a closed subset of G, whence we may view HnG=H � F �.G/. Note that the inclu-
sion map j WHnG=H ! F �.G/ is Borel. To see this, recall that A � HnG=H is



Common transversals for coset spaces of compact groups 403

Borel if and only if ��1.A/ is a Borel subset of G. This follows from the fact that
zB D ¹A � HnG=H j ��1.A/ is Borel º is a � -algebra containing all open subsets of
HnG=H , thus containing all of its Borel subsets. Then if U is any open subset of G and
V D ¹F 2F .G/ j F \U ¤;º, then ��1.j�1.A//D ¹g 2G jHgH \U ¤;ºDHUH
is open inG, whence it is Borel. The above remark then shows that j�1.V / is Borel. Thus,
j is a Borel map. By Theorem A.2, there exists a Borel map � WF �.G/! G such that
�.F /2F for every F 2F �.G/. Define sD� ı j ı� WG!G andAD¹g 2G j s.g/Dgº,
which is a Borel subset of G. Note that s.g/ D �.HgH/ for every g 2 G, and because
�.HgH/ 2HgH , we have �.s.g//D �.�.HgH//DHgH and s.s.g//D s.g/. In par-
ticular, s.g/ 2 A for every g 2 G. Thus, G D

S
a2AHaH holds. If a; a0 2 A, satisfying

HaH \Ha0H ¤ ;, then �.a/ D HaH D Ha0H D �.a0/, and thus

a0 D s.a0/ D � ı j ı �.a0/ D � ı j ı �.a/ D s.a/ D a:

Thus, G D
F
a2AHaH is the decomposition for the double H -cosets.

Lemma 3.2. LetX;Y be Polish spaces, f WX! Y be a continuous open surjection. Then
the map �f WY 3 y 7! f �1.¹yº/ 2 F �.X/ is Borel.

Proof. Since f is a continuous surjection, f �1.¹yº/ 2 F �.X/ holds for every y 2 Y .
It suffices to show that for each open set U in X , the set ��1

f
.B/ is Borel in Y , where

B D ¹F 2 F �.X/ j F \ U ¤ ;º. But

��1f .B/ D ¹y 2 Y j f �1.¹yº/ \ U ¤ ;º D f .U /;

which is open because f is an open mapping. Therefore, �f is Borel.

Remark 3.3. It is unclear if �f can be continuous for an open continuous surjection
f WX ! Y . Note that if f is not assumed to be open, then �f is often discontinuous.

For example, take X D Œ0; 1� [ Œ2; 3� and Y D Œ0; 2�. Define a continuous function
f WX! Y by f .t/D t for t 2 Œ0;1� and f .t/D t � 1 for t 2 Œ2;3�. Let ynD 1� 1

n
.n2N/

and yD 1. Then yn
n!1
����!y, but �f .yn/D ¹1� 1

n
º, �f .y/D ¹1;2º. Since the set F ��1.X/ is

closed, �f .yn/ 6
n!1
����! �f .y/. Actually, we obtain �f .yn/

n!1
����! ¹1º ¨ �f .y/. Thus, �f .Y /

is in general not closed in F �.X/, and the set ¹y 2 Y j ]f �1.¹yº/ � nº is not closed
either.

Lemma 3.4. LetX be a Polish space, and n 2N. Then with respect to the Wijsman topol-
ogy, the set F ��n.X/ D ¹F 2 F �.X/ j ]F � nº is closed. In particular, F �n .X/ D ¹F 2

F �.X/ j ]F D nº is Borel.

Proof. Let .Fk/1kD1 be a sequence in F ��n.X/ converging to F 2 F �.X/. Write Fk D
¹x
.k/
1 ; : : : ; x

.k/
n º (we do not assume that x.k/i ’s are different for different i ). Assume

by contradiction that there exist n C 1 distinct points x1; : : : ; xnC1 2 F . By defini-
tion, we have d.xi ; Fk/

k!1
����! d.xi ; F / D 0. Fix i 2 ¹1; : : : ; n C 1º. For each k 2 N,
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there exists j.k; i/ 2 ¹1; : : : ; nº such that d.xi ; x
.k/

j.k;i/
/ D d.xi ; Fk/. Thus, there exists

j.i/ 2 ¹1; : : : ; nº such that j.k; i/ D j.i/ for infinitely many k. By passing to a subse-
quence up to nC 1 times, we may assume that j.k; i/ D j.i/ for each i 2 ¹1; : : : ; nC 1º
and k 2 N. Thus, limk!1 d.xi ; x

.k/

j.i/
/ D 0 for every i 2 ¹1; : : : ; nC 1º. There exist at

least two elements i; i 0 2 ¹1; : : : ; nC 1º; i < i 0, such that j.i/D j.i 0/. Then the sequence
.x
.k/

j.i/
/1
kD1

converges to two points xi ; xi 0 , a contradiction. Therefore ]F � n.

Remark 3.5. The set F �n .X/D ¹F 2 F �.X/ j ]F D nº is not closed. For example, con-
sider X D Œ�1; 1� with the Euclidean metric d , and set Fn D ¹˙ 1

n
º.n 2 N/; F D ¹0º.

Then for each t 2 Œ�1; 1�, we have

d.t; Fn/ D min¹jt �
1

n
j; jt C

1

n
jº

n!1
����! jt j D d.t; F /:

Thus, Fn
n!1
����! F , ]Fn D 2 .n 2 N/ and ]F D 1.

Proposition 3.6. Let H be a compact metrizable group acting continuously on a Polish
space X . Let f WX ! Y D HnX be the quotient map. Consider the map �f W Y 3 y 7!
f �1.¹yº/ 2 F �.X/. Then the following statements hold:

(i) For each y 2 Y , �f .y/ is either finite or perfect.

(ii) �f is continuous. Consequently, the set ¹y 2 Y j ]�f .y/ � nº is closed for every
n 2 N. In particular, each Yn D ¹y 2 Y j ]�f .y/ D nº is Borel and the subspace
¹y 2 Y j ]�f .y/ D1º is Gı , whence Polish.

We will use the following well-known result. Suppose G is a compact metrizable
group acting on a Polish space X . Let d g be the normalized Haar measure on G. Let d0
be a compatible complete metric on X with diameter 1. Define d WX �X ! Œ0; 1� by

d.x; y/ WD

Z
G

d0.gx; gy/ dg; x; y 2 X:

Then by standard arguments, one can show that d is a compatible complete metric on X
which is G-invariant. We summarize this observation.

Lemma 3.7. Let ˛WG Õ X be a continuous action of a compact Polish group G on a
Polish space X . Then there exists a complete metric d on X compatible with the topology
which is G-invariant, that is, d.gx; gy/ D d.x; y/ holds for every x; y 2 X and g 2 G.

Proof of Proposition 3.6. (i) Take y 2 Y . �f .y/ is compact, hence a Polish space. Assume
first that �f .y/ is countable. Then, by the Baire category theorem, there is an isolated
point x in �f .y/. On the other hand, H acts transitively on �f .y/, which implies that each
point in �f .y/ is isolated, that is, �f .y/ is discrete. Since �f .y/ is compact, this shows that
�f .y/ is finite. Assume next that �f .y/ is uncountable. If there is an isolated point in �f .y/,
then by the same argument as before �f .y/ is discrete, which contradicts the separability
of the Polish space �f .y/. Thus, �f .y/ is perfect.
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(ii) Let d be a metric on X compatible with the topology which is H -invariant
(Lemma 3.7). Let .yn/1nD1 be a sequence in Y converging to y 2 Y . Then there exists a
sequence .xn/1nD1 inX converging to x 2X such that f .xn/D yn .n 2N/ and f .x/D y.
Indeed, take any x 2X such that f .x/D y. SinceX is metrizable, there exists a neighbor-
hood basis ¹Ukº1kD1 of x satisfying Uk � UkC1 .k 2 N/. Since f .Uk/ is an open neigh-
borhood of y, we may find an increasing sequenceN1 <N2 < � � � of natural numbers such
that yn 2 f .Uk/ for every n � Nk . Therefore, for each n 2 N, there exists xn 2 X such
that f .xn/D yn and xn 2 Uk hold for every n � Nk . It is then clear that limn!1 xn D x.
We show that limn!1 �f .yn/ D �f .y/ in the Wijsman topology. Since �f .yn/ D Hxn
and �f .y/ D Hx, this amounts to show that limn!1 d.x

0; Hxn/ D d.x
0; Hx/ for every

x0 2 X . Fix x0 2 X . Since d is H -invariant, we have

d.x0;Hxn/ D min
h2H

d.x0; hxn/ D min
h2H

d.h�1x0; xn/

D d.xn;Hx
0/

n!1
����! d.x;Hx0/ D d.x0;Hx/;

where we used the fact that the map d.�; Hx0/ is continuous on X . This shows that �f is
continuous. Then for each n 2 N, the set ¹y 2 Y j ]�f .y/ � nº is the inverse image of
the set F ��n.X/ (which is closed by Lemma 3.4) by the continuous map �f , whence it is
also closed. Therefore, ¹y 2 Y j ]�f .y/ <1º D

S
n2N¹y 2 Y j ]�f .y/ � nº is F� and

its complement ¹y 2 Y j ]�f .y/ D1º is a Gı subset of Y , whence Polish.

We will use Mauldin’s Borel parametrization theorem [9, Theorem A].

Definition 3.8. Let X; Y be Polish spaces, B be a Borel subset of X � Y . A Borel
parametrization of B is a Borel isomorphism gWX � E ! B such that g.x; �/ is a Borel
isomorphism of E onto Bx , where E is a Borel subset of Y .

If all Bx are uncountable, then because any uncountable standard Borel spaces are
Borel isomorphic, we may replace E by 2! in the definition of the Borel parametrization.

Theorem 3.9 (Mauldin [9]). Let X; Y be Polish spaces, B be a Borel subset of X � Y
such that Bx is uncountable for every x 2 X . Then B admits a Borel parametrization
if and only if there exists a Borel subset M of B such that for every x 2 X , Mx is a
non-empty compact perfect set.

Proposition 3.10. Let H be a compact metrizable group acting continuously on a Polish
space X . Denote by f W X ! Y D HnX the quotient map. Define Borel sets Xn D
f �1.Yn/; X1 D f

�1.Y1/, where Yn D ¹y 2 Y j ]�f .y/ D nº .n 2 N/ and Y1 D ¹y 2
Y j ]�f .y/D1º. Then there exist Borel isomorphisms gnWYn � ¹1; : : : ; nº !Xn .n 2N/
and g1WY1 � 2!!X1 such that for each n 2N and y 2 Yn, gn.y; �/ is a Borel isomor-
phism of ¹1; : : : ; nº onto f �1.¹yº/, and for each y 2 Y1, g1.y; �/ is a Borel isomorphism
of 2! onto f �1.¹yº/.
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Proof. By Proposition 3.6, the sets Xn; Yn .n 2 N/ are Borel, X1 (resp. Y1) are Gı
hence a Polish subspace of X (resp. Y ). We may assume that all Xn; Yn; X1; Y1 are all
non-empty. First, we construct a Borel isomorphism gnWYn � ¹1; : : : ; nº!Xn. For nD 1,
g1.y; 1/ is the unique point in f �1.¹yº/, and it is Borel because the map f jX1 is a Borel
isomorphism with inverse g1.�; 1/. Assume n � 2. Choose a Polish topology on Yn whose
Borel structure coincides with the subspace Borel structure on Yn. By [7, Theorem 13.11],
there exists a Polish topology on Xn with the same Borel structure as its subspace Borel
structure, such that fn D f jXn WXn ! Yn is continuous. By Theorem A.2, there exists
a Borel map �nWF �.Xn/! Xn such that �n.F / 2 F for every F 2 F �.Xn/. Since fn
is continuous and countable-to-1, �fn is Borel. Indeed, this is a standard corollary of the
Lusin–Novikov uniformization theorem (see [7, Theorem 18.10]).

Note that the composition �n ı �fn W Yn ! Xn is an injective Borel map. Indeed, if
y; y0 2 Yn satisfies �n.�fn.y// D �n.�fn.y

0//, then this element belongs to f �1.¹yº/ \
f �1.¹y0º/, which implies that y D y0. Therefore, �n.�fn.Yn// is Borel in Xn. Then the
map Yn 3 y 7! �n.�fn.y// 2 Xn;n D �n.�fn.Yn// is a Borel isomorphism, which we call
gn.�; n/. Set X 0n D Xn n Xn;n and f 0n D fnjX 0n WX

0
n ! Yn. Then f 0n is a Borel surjec-

tion with ]�f 0n.y/ D n � 1 for every y 2 Yn. By applying the same argument repeatedly
n � 1 times, we obtain a Borel partition Xn;1 t Xn;2 t � � � t Xn;n�1 D X 0n and Borel
isomorphisms gn.�; k/WYn ! Xn;k .k D 1; : : : ; n � 1/. Thus, we may define a Borel iso-
morphism gnWYn � ¹1; : : : ; nº ! Xn such that gn.y; �/W ¹1; : : : ; nº is a Borel isomorphism
of ¹1; : : : ; nº onto f �1.¹yº/.

Next, we view X1 and Y1 as Polish in their subspace topologies. Let B1 D
¹.f .x/; x/ j x 2 X1º, which is the image of the injective Borel map X1 3 x 7!

.f .x/; x/ 2 Y1 � X1, whence a Borel subset of Y1 � X1. Let y 2 Y1. By Propo-
sition 3.6 (i), .B1/y D f �1.¹yº/ � X1 is perfect and compact in X , whence it is
perfect and compact in X1 as well. By Theorem 3.9, there exists a Borel isomor-
phism g1W Y1 � 2

! ! B1 such that g1.y; �/ is a Borel isomorphism of 2! onto
.B1/y D f

�1.¹yº/ for every y 2 Y1.

Now we are ready to prove that a common Borel transversal for H � G exists.

Proof of Theorem 1.1. By Lemma 3.1, there exists a Borel subset A of G which is a
set of representatives for the double H -cosets. Thus, the restriction of the quotient map
� WG 3 x 7! HxH 2 HnG=H to A is a Borel isomorphism. Let X D G=H; Y D HnG
and Z D HnG=H , which are Polish because so is G and H is compact. Let f WX ! Z

and gW Y ! Z be the quotient maps. By the index condition for H � G, we have
]f �1.¹zº/ D ]g�1.¹zº/ for each z 2 Z. Thus, as in Proposition 3.10, We define Zn D
¹z 2 Z j ]�f .z/ D nº; Xn D f �1.Zn/; Yn D g�1.Zn/ for each n 2 N. We also define
Z1 D ¹z 2 Z j ]�f .z/ D 1º; X1 D f

�1.Z1/ and Y1 D g�1.Z1/. Let x 2 A. We
also define An D A \ ��1.Zn/ .n 2 N/ and A1 D A \ ��1.Z1/. All of these sets are
Borel. First, we consider the case x 2 A1. By Proposition 3.10, there exists a Borel iso-
morphism '1WZ1 � 2

! ! X1 (resp.  1WZ1 � 2! ! Y1) such that '1.z; �/W 2! !



Common transversals for coset spaces of compact groups 407

f �1.¹zº/ (resp.  1.z; �/W 2! ! g�1.¹zº/) is a Borel isomorphism for every z 2 Z1.
Choose zh.x; ˛/ 2 H (resp. zk.x; ˛/ 2 H ) such that '1.�.x/; ˛/ D zh.x; ˛/xH (resp.
 1.�.x/; ˛/ D Hx zk.x; ˛/). Observe that because there are ].H \ xHx�1/ (resp.
].H \ x�1Hx/) many choices for such zh.x; ˛/ (resp. zk.x; ˛/), it is unclear whether the
maps zh; zkWA1 � 2! ! H are Borel. We resolve this issue as follows. For each x 2 A1,
let yh.x; ˛/ be the image of zh.x; ˛/ in the quotient space H=.H \ xHx�1/. Then yh.x; ˛/
is independent of the choice of zh.x; ˛/. Since each point in H=.H \ xHx�1/ is a closed
subset of H , we view

yh.x; ˛/ D zh.x; ˛/.H \ xHx�1/ 2 F �.H/:

Then we show that the map yhWA1 � 2! ! F �.H/ is Borel. Let U be a non-empty open
subset ofH and let zU D¹F 2F �.H/ jF \U ¤;º. Then yh�1. zU/D¹.x;˛/2A1 � 2! j
yh.x; ˛/ \ U ¤ ;º, and

yh.x; ˛/ \ U ¤ ; ” zh.x; ˛/.H \ xHx�1/ \ U ¤ ;

” zh.x; ˛/ 2 U.H \ xHx�1/

.�/
” '1.�.x/; ˛/ 2 U ŒxH� WD ¹uxH j u 2 U º � F �.G/:

To see .�/, suppose zh.x; ˛/ 2 U.H \ xHx�1/. Then zh.x; ˛/ D u.x; ˛/s.x; ˛/ for
some u.x; ˛/ 2 U and s.x; ˛/ 2 H \ xHx�1. Thus, '1.�.x/; ˛/ D zh.x; ˛/xH D
u.x; ˛/s.x; ˛/xH D u.x; ˛/xH 2 U ŒxH� because

.u.x; ˛/s.x; ˛//�1u.x; ˛/ D s.x; ˛/�1 2 H \ xHx�1:

Conversely, given that '1.�.x/; ˛/ 2 U ŒxH�, then there exists u.x; ˛/ 2 U such that
zh.x; ˛/xH D u.x; ˛/xH , which implies that u.x; ˛/�1zh.x; ˛/ 2H \ xHx�1, or equiv-
alently zh.x; ˛/ 2 U.H \ xHx�1/. Thus, yh�1. zU/D ¹.x; ˛/ 2 A1 � 2! j '1.�.x/; ˛/ 2
U ŒxH�º, and we are going to show that it is Borel.

Fix a complete metric d on G compatible with the topology, with respect to which
we consider the Hausdorff metric ı on the space K�.G/ � F �.G/. By Lemma A.3, the
metric topology of ı is compatible with the restriction of the Effros Borel structure on
F �.G/ to K�.G/.

Note that yh�1. zU/ coincides with

yU WD ¹.x; ˛/ 2 A1 � 2
!
j H 2 x�1U�1Œ'1.�.x/; ˛/�º;

where x�1U�1Œ'1.�.x/; ˛/� WD ¹x�1u�1'1.�.x/; ˛/º � F �.G/. Since U is a non-
empty open set in a metrizable spaceH , it is F� , thusU D

S1
iD1Fi for some F1;F2; : : : 2

F �.H/. Then yU D
S1
iD1

bFi , whence it suffices to show that yh�1.F / is Borel for every
closed set F . Fix F 2 F �.H/. Then F is separable, so we may choose a countable dense
subset ¹kn j n 2 Nº of F . To show that yh�1.F / is Borel, we first observe that

H 2 x�1F �1Œ'1.�.x/; ˛/� ” inf
n2N

ı.H; x�1k�1n '1.�.x/; ˛// D 0:
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Indeed, ifH D x�1k�1'1.�.x/;˛/ for some k 2 F , there exists a sequence .kni /
1
iD1

such that d.kni ; k/
i!1
���! 0. Then ı.H;x�1k�1ni '1.�.x/;˛// is equal to the maximum of

max
g2'1.�.x/;˛/

d.x�1k�1g; x�1k�1ni '1.�.x/; ˛//

and

max
g2'1.�.x/;˛/

d.x�1k�1ni g; x
�1k�1'1.�.x/; ˛//:

The first part can be estimated from above by

max
g2'1.�.x/;˛/

d.x�1k�1g; x�1k�1ni g/
i!1
���! 0

because '1.�.x/; ˛/ is compact, whence x�1k�1ni g converges to x�1k�1g uniformly on
g 2 '1.�.x/; ˛/.

Likewise,

lim
i!1

max
g2'1.�.x/;˛/

d.x�1k�1ni g; x
�1k�1'1.�.x/; ˛// D 0:

Therefore, infn2N ı.H; x
�1k�1n '1.�.x/; ˛// D 0 holds.

Conversely, assume infn2N ı.H;x
�1k�1n '1.�.x/;˛//D 0. Then there exists .kni /

1
iD1

such that limi!1 ı.H; x
�1k�1ni '1.�.x/; ˛// D 0. Since F is compact, by passing to a

subsequence we may assume that the limit k D limi!1 kni 2 F exists. Then by the same
argument as above, the sequence

.x�1k�1ni '1.�.x/; ˛//
1
iD1

in K�.G/ is ı-convergent to both H and x�1k�1'1.�.x/; ˛/, whence by the Hausdorff
property, we obtain H D x�1k�1'1.�.x/; ˛/ 2 x

�1F �1Œ'1.�.x/; ˛/� holds. Since
'1.�.�/; �/WA1 � 2

! ! X1 � K�.G/ � F �.G/ is Borel and ı.H; �/WK�.G/ ! R
is Borel, it follows that yh�1.F / is Borel.

This shows that yhW A1 � 2! ! F �.H/ is Borel. By Theorem A.2, there exists
a Borel map �H W F �.H/ ! H such that �H .F / 2 F for every F 2 F �.H/. Then
define h D �H ı yhW A1 � 2

! ! H , which is Borel. Then by construction, for each
.x; ˛/ 2 A1 � 2

! , the class of h.x; ˛/ in H=.H \ xHx�1/ is yh.x; ˛/, which is also
the class of zh.x; ˛/ by definition. Therefore, it follows that

h.x; ˛/xH D zh.x; ˛/xH D '1.�.x/; ˛/:

By the same argument, we may find a Borel map kWA1 � 2! ! H such that

xHk.x; ˛/ D  1.�.x/; ˛/:

Then Tx D ¹h.x; ˛/ j ˛ 2 2
!º (resp. Sx D ¹k.x; ˛/ j ˛ 2 2!º) is a transversal for

H ! H=.H \ xHx�1/ (resp. H ! .H \ x�1Hx/nH ). Thus, the map A1 � 2! 3
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.x;˛/ 7! h.x;˛/xk.x;˛/ 2G is an injective Borel map, whence T1D ¹h.x;˛/xk.x;˛/ j
˛ 2 2! ; x 2 A1º is a Borel subset of G. Moreover, it is straightforward to see that

��1.Z1/ D
G
g2T1

Hg D
G
g2T1

gH:

Next, we consider the case x 2 An. Since the arguments are essentially identical to
the A1 case, we describe the argument briefly. By Proposition 3.10, there exists a Borel
isomorphism 'nWZn � ¹1; : : : ; nº ! Xn (resp.  nWZn � ¹1; : : : ; nº ! Yn) such that
'n.z; �/W ¹1; : : : ; nº ! f �1.¹zº/ (resp.  n.z; �/W ¹1; : : : ; nº ! g�1.¹zº/) is a Borel iso-
morphism for every z 2 Zn. Then, arguing as in the A1 case, we may find Borel maps
hi WAn ! H (resp. ki WAn ! H ), i D 1; : : : ; n, such that

'n.�.x/; i/ D hi .x/xH;  n.�.x/; i/ D Hxki .x/; x 2 An; i D 1; : : : ; n:

Then Tx D ¹h1.x/; : : : ; hn.x/º (resp. Sx D ¹k1.x/; : : : ; kn.x/º) is a transversal for
H!H=.H \ xHx�1/ (resp.H! .H \ x�1Hx/nH ). Thus, the mapAn � ¹1; : : : ;nº 3
.x; i/ 7! hi .x/xki .x/ 2 G is an injective Borel map, whence Tn D ¹hi .x/xki .x/ j i D
1; : : : ; n; x 2 Anº is a Borel subset of G. Moreover, it is straightforward to see that

��1.Zn/ D
G
g2Tn

Hg D
G
g2Tn

gH:

Therefore, T D T1 t
F
n2N Tn is a Borel set satisfyingG D

F
g2T HgD

F
g2T gH .

4. Examples and applications

Let now G be a countable, discrete group. We say that a group is maximally almost peri-
odic (MAP) if the natural homomorphism from G to its Bohr compactification bG is
injective, that is, if and only if we can embedG into a compact group. A subgroupH �G
is said to be Bohr closed if xH \G D H , where xH denotes the closure of H in bG. Note
that there is a continuous homomorphism from bG to the pro-finite completion of G. In
particular, every pro-finitely closed subgroup is also Bohr closed. Moreover, it is obvious
that the intersection of Bohr closed subgroups is again Bohr closed. Note that the Bohr
compactification is typically not metrizable. However, for the purposes of our arguments
in this section, we always need to separate only countably many elements at a time, so
that we may pass to a metrizable quotient of bG and apply our previous arguments there.

Lemma 4.1. Let G be a countable, discrete group and let K � H be Bohr closed sub-
groups. Then, ŒH WK�D Œ xH W xK� if ŒH WK� is finite and ŒH WK�D ! if and only if Œ xH W xL�
is infinite (necessarily uncountable).

Proof. We write H D
F
t2T tK. If tK ¤ t 0K, then t xK ¤ t 0 xK, since otherwise t�1t 0 2

xK \G D K as K is closed. We conclude that xH �
F
t2T t

xK with equality if T is finite
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since the right-hand side is already closed. This proves the first part of the claim. The
second part follows, since the value Œ xH W xK� is always uncountable whenever it is infinite.
This finishes the proof.

Theorem 4.2. Let G be a countable, discrete group and let H � G be a Bohr closed
subgroup. Then there exists a common transversal for H .

Proof. Without loss of generality, we may assume that G is MAP. Indeed, we may pass
to the largest Bohr quotient of G, since any Bohr closed subgroup is pulled back from
that quotient. Since G is countable, thanks to its MAP property and the Bohr closedness
ofH , we may find a compact Polish group yG and a dense embedding j WG! yG such that
H \G D H , where the closure is taken inside yG.

Now, for x 2G, it follows thatH \ xHx�1 andH \ x�1Hx are also Bohr closed. By
Lemma 4.1, the index of the inclusion of H \ xHx�1 in H does not change after taking
the closure if it is finite and it is ! if and only if it is 2! after taking the closure since the
closure is taken inside the metrizable compact group yG. Now, Proposition 2.1 implies that
the crucial equality ŒH W H \ xHx�1� D ŒH W H \ x�1Hx� is always satisfied. Hence,
there exists a common transversal for H in G using the decomposition G D

F
a HaH

and the identificationsHnHaH DH=.H \ aHa�1/ andHaH=H D .H \ a�1Ha/nH
as before.

Remark 4.3. In the arguments above, it was sufficient to consider metrizable quotients
of bG. Let us emphasize that not all problems can be reduced to metrizable quotients so
easily. Note that ifG is MAP, thenG is embedded as a dense subgroup in bG. This means
there is always a net of elements in G converging to the identity in bG. It is a surprisingly
subtle question to decide, when there exists a sequence of non-trivial elements in G that
converges to the identity in bG (see [13]).

We end this section with a few examples and remarks.

Example 4.4. Consider the Baumslag–Solitar group BS.1; 2/ D ha; b j bab�1 D a2i. It
is well known that BS.1; 2/D ZŒ1

2
� Ì hbi, where the element b acts on .ZŒ1

2
�;C/ by mul-

tiplication with 2. Here, the element a generates the standard copy of Z in ZŒ1
2
�. Now, it

is easy to see that bZb�1 D 2Z � ZŒ1
2
� and b�1Zb D 1

2
Z � ZŒ1

2
�. In particular, we get

ŒZ W Z\ bZb�1�D 2, whereas ŒZ W Z\ b�1Zb�D 1. This implies that the number of left
cosets and the number of right cosets contained in the double coset ZbZ do not agree –
and hence there cannot be a common transversal for Z in BS.1; 2/.

In view of the previous theorem, this is compatible with the fact that even though
BS.1; 2/ is residually finite (and hence MAP) (see, e.g., [10, Lemma 2.4]), the subgroup
Z is well known not to be closed in the pro-finite topology. Indeed, Z is pro-finitely
dense in ZŒ1

2
�. On the other side, Z is Bohr closed as a subgroup of ZŒ1

2
�, since ZŒ1

2
�=Z

is a subgroup of S1 in a natural way. Now, the theorem above shows as a corollary
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that it is not Bohr closed in BS.1; 2/. This can also be shown by direct analysis of the
finite-dimensional unitary representations of BS.1; 2/.

Example 4.5. Consider the 2-solenoid S2, this can be defined as the Pontryagin dual of
the discrete group ZŒ1

2
�, and its subgroup Z2, the Pontryagin dual of ZŒ1

2
�=Z. Note that Z2

is just the group of 2-adic integers. Now, there is a crossed product S2 Ì Z, where the gen-
erator of Z acts by multiplication with 2. Indeed, this action can be defined on ZŒ1

2
� and

thus has a continuous extension to its Pontryagin dual. This crossed product is a Polish
group, whose connected component of the identity is just S2; in fact, it is locally compact.
Now, something similar happens as for the Baumslag–Solitar group (see Example 4.4).
Indeed, Z2 \ bZ2b�1 has index 2 in Z2 and Z2 \ b�1Z2b D Z2, so again, the numbers
of left and right cosets of Z2 in the double coset Z2bZ2 do not agree. Hence, there is no
common transversal. And this happens even though Z2 is compact.

In view of our main result, we note that even though S2 is compact and an inverse
limit of compact Lie groups, neither is the locally compact group S2 Ì Z an inverse limit
of Lie groups nor is Z2 a compact Lie group. Whence, our main result does not apply.

Remark 4.6. According to the results in [1], there exist closed common transversals for
inclusions of pro-finite groups. However, note that this is not possible for general com-
pact groups. Consider S1 � SU.2/ with homogeneous space SU.2/=S1 D S2. A closed
common transversal would be homeomorphic to S2 and hence SU.2/ homeomorphic to
S1 � S2, which is not the case. Hence, there cannot be a closed common transversal – it is
not hard to see that a locally closed transversal exists in this case. It remains an intriguing
open problem to decide if in the context of Theorem 1.1 a common transversal can be
found with a specific rank in the Borel hierarchy, maybe even as a locally closed subset.

A. The space of closed subsets of a Polish space

In this appendix, we summarize results on the hyperspace of closed (compact) subsets of
a Polish space. Details can be found, for example, in [7, 12].

A.1. The Effros Borel space F .X/

Definition A.1. Let X be a Polish space and F .X/ the space of all closed subsets of X .
The Effros Borel structure on F .X/ is the � -algebra generated by sets of the form

¹F 2 F .X/ j F \ U ¤ ;º

for an open set U �X . It is known that F .X/with the Effros Borel structure is a standard
Borel space. We write F �.X/ D F .X/ n ¹;º with the relative Borel structure.

The proof of the next theorem can be found, for example, in [7, Theorem 12.13].
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Theorem A.2 (Kuratowski–Ryll-Nardzewski). Let X be a Polish space. There exists a
sequence of Borel maps �nWF �.X/! X .n D 1; 2; : : :/ such that ¹�n.F /º1nD1 is dense
in F for every F 2 F �.X/.

A.2. Space of compact subsets K.X/ and the Vietoris topology

Let X be a topological space, K.X/ be the space of all compact subsets of X with the
Vietoris topology, that is, the one generated by the sets of the form

¹K 2K.X/ j K � U º; ¹K 2K.X/ j K \ U ¤ ;º

for U open in K. A basis for the Vietoris topology then consists of the sets

¹K 2K.X/ j K � U0; K \ Ui ¤ ; .i D 1; : : : ; n/º

for U0; : : : ; Un open in X . If X is metrizable with a compatible metric d , then the
Hausdorff metric ı on K.X/ with respect to d is defined by

ı.K;L/ D

8̂̂<̂
:̂
0 .K D L D ;/;

1 .exactly one of K;L is ;/;

max¹maxx2K d.x;L/;maxy2L d.y;K/º .K ¤ ; ¤ L/:

In this case, it can be shown that the Vietoris topology coincides with the metric topology
given by the Hausdorff metric ı [12, Proposition 2.4.14]. If X is a compact metrizable
space, then so is K.X/ [12, Proposition 2.4.17]. Since ¹;º is isolated in K.X/ (cf. [7,
Exercise 4.20]), in this case the set K�.X/ D ¹K 2K.X/ j K ¤ ;º is also compact.

A.3. Wijsman topology on F �.X/

Now ifX is a (not necessarily compact) Polish space with a complete compatible metric d ,
a Wijsman topology on F �.X/ is the weak topology generated by the maps F �.X/ 3

F 7! d.x; F / 2 R; x 2 X . The Wijsman topology is a Polish topology compatible with
the Effros Borel structure [2, Section 4].

A.4. K�.X/ as a Borel subspace of F �.X/

We will use the fact that K�.X/ is a Borel subspace of F � for the proof of Theorem 1.1.
Since we were unable to find a proper reference, we record the proof here.

Lemma A.3. Let .X; d/ be a Polish metric space. Then the inclusion map j WK�.X/!
F �.X/ is Vietoris–Wijsman continuous. In particular, the restriction of the Effros Borel
structure of F �.X/ to K�.X/ agrees with the Borel structure induced by the Vietoris
topology. If in addition X is compact, then on K�.X/ D F �.X/ the Vietoris topology
and the Wijsman topology agree.
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Proof. We show that the identity map idWK�.X/! F �.X/ is sequentially continuous.
Suppose .Kn/1nD1 is a sequence in K�.X/ which ı-converges to some K 2 K�.X/. Let
x 2 X . Assume by contradiction that .d.x;Kn//1nD1 does not converge to d.x;K/. Then
there exists " > 0 such that at least one of the sets IC D ¹n 2N j d.x;Kn/� d.x;K/C "º
or I� D ¹n 2 N j d.x; K/ � d.x; Kn/ C "º is infinite. Assume that IC is infinite. By
passing to a subsequence, we may assume that d.x; Kn/ � d.x; K/ C " for all n. Let
y 2 K. Then d.y;Kn/ � maxy02K d.y0; Kn/ � ı.K;Kn/

n!1
����! 0. By compactness, for

each n 2 N, there exists yn 2 Kn such that d.y;Kn/ D d.y; yn/. Then

d.y; yn/ � d.x; yn/ � d.x; y/ � d.x;Kn/ � d.x; y/ � d.x;K/C " � d.x; y/:

Let n!1. Then we obtain

d.x; y/ � d.x;K/C ":

Since y 2 K is arbitrary, it implies that

d.x;K/ � d.x;K/C ";

which is a contradiction. Similarly, it follows that it is impossible for I� to be infinite,
whence d.x;Kn/

n!1
����! d.x;K/. Since x is arbitrary, this shows that Kn

n!1
����! K in

F �.X/. Therefore, the inclusion map j WK�.X/! F �.X/ is continuous. In particular,
j is an injective Borel map. Therefore, it defines a Borel isomorphism of K�.G/ onto its
image. If moreover X is compact, then j is a bijective continuous map from a compact
space K�.X/ to a Hausdorff space F �.X/, whence it is a homeomorphism.
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