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McDuff factors from amenable actions and dynamical
alternating groups

David Kerr and Spyridon Petrakos

Abstract. Given a topologically free action of a countably infinite amenable group on the Cantor
set, we prove that, for every subgroup G of the topological full group containing the alternating
group, the group von Neumann algebra LG is a McDuff factor. This yields the first examples of
nonamenable simple finitely generated groups G for which LG is McDuff. Using the same con-
struction we show moreover that if a faithful action G Õ X of a countable group on a countable set
with no finite orbits is amenable then the crossed product of the associated shift action over a given
II1 factor is a McDuff factor. In particular, if H is a nontrivial countable ICC group and G Õ X is
a faithful amenable action of a countable ICC group on a countable set with no finite orbits, then
the group von Neumann algebra of the generalized wreath product H oX G is a McDuff factor. Our
technique can also be applied to show that if H is a nontrivial countable group and G Õ X is an
amenable action of a countable group on a countable set with no finite orbits, then the generalized
wreath product H oX G is Jones–Schmidt stable.

1. Introduction

In operator algebra theory central sequences have long played a significant role in address-
ing problems in and around amenability, having been used both as a mechanism for
producing various examples beyond the amenable horizon and as a point of leverage
for teasing out the finer structure of amenable operator algebras themselves. In the early
1940s Murray and von Neumann exhibited (sticking to the separable realm, as we do
henceforth) the first example of a II1 factor nonisomorphic to the hyperfinite II1 factor R
by showing that the free group factor LF2, unlike R, does not possess nontrivial central
sequences, i.e., does not have what they called property Gamma [24]. In the late 1960s
McDuff employed central sequences and an iterated group-theoretic construction to engi-
neer an uncountable infinity of pairwise nonisomorphic II1 factors [22]. Shortly thereafter
she gave a characterization of II1 factors admitting a pair of central sequences that asymp-
totically noncommute as those which tensorially absorbR, i.e., those that have the McDuff
property [23]. A bit later in the 1970s Connes put both property Gamma and the McDuff
property to work in the proof of his theorem that injectivity implies hyperfiniteness, a cor-
nerstone in the classification of injective von Neumann algebras [7]. On the topological
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side, central sequences (both in operator and tracial norms) have proven their utility many
times over in the corresponding Elliott classification program for simple separable nuclear
C�-algebras, starting in the 1990s and with increasing intensity over the last decade. For
instance, versions of property Gamma and the McDuff property formulated in terms of
the uniform trace norm were critical ingredients in recent work on the Toms–Winter con-
jecture [3, 4], one outcome of which was the equivalence of finite nuclear dimension and
Z-stability (tensorial absorption of the Jiang–Su algebra) for nonelementary simple sep-
arable unital nuclear C�-algebras. This equivalence permitted one to install the relatively
tractable property of Z-stability as the operative regularity hypothesis in the final classi-
fication theorem [10, 12, 29] and cemented its position as the C�-algebraic analogue of
being McDuff.

Many ICC groups will give rise to II1 factors with property Gamma or the McDuff
property on account of asymptotic commutativity relations within the group itself, which
can be arranged by taking products and/or suitable inductive limit constructions (the ICC
property—which asks that the conjugacy class of every nontrivial element be infinite—
guarantees factoriality, and indeed is equivalent to it by a result of Murray and von
Neumann). Coming up with examples of simple finitely generated groups that yield such
II1 factors is more difficult. The problem of identifying when an infinite group is simple
and finitely generated can itself be a delicate task, but there is at least one rich source
of examples coming from dynamics, namely the alternating groups A.�; X/ of mini-
mal subshift actions � Õ X of countably infinite groups on the Cantor set [25]. These
are subgroups of the topological full group (i.e., the group of homeomorphisms locally
implemented by elements of the acting group) that, in the case of many acting groups �
including Z, are known to coincide with the commutator subgroup. Juschenko and Monod
proved that the topological full group of a minimal Z-action on the Cantor set is always
amenable, which, by passing to the commutator subgroup and specializing to subshift
actions, gave the first examples of amenable infinite simple finitely generated groups [17].
When � is not virtually cyclic, however, the alternating group of a minimal subshift action
can fail to be amenable [9,20,28]. Nevertheless, the first author and Tucker-Drob showed
that if � is amenable and the action is topologically free then for every subgroup of the
topological full containing the alternating group the group von Neumann algebra (which
is always a II1 factor in this case) has property Gamma [20]. The goal of the present paper
is to strengthen this last conclusion to the McDuff property.

Theorem A. Let � Õ X be a topologically free continuous action of a countably infinite
amenable discrete group on the Cantor set, and let G be a subgroup of the topological
full group J� Õ XK containing the alternating group A.�; X/. Then the von Neumann
algebra LG is a McDuff II1 factor.

Applying the above result to the free minimal expansive actions constructed in [9,28],
we obtain the first examples of nonamenable simple finitely generated groups whose
von Neumann algebra is a McDuff factor. The topologically free minimal expansive
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actions constructed in [20, Section 8] give us moreover uncountably many pairwise
nonisomorphic such groups.

We will actually show something a little more general (see Theorem 2.1). The virtue of
formulating Theorem A as we have is that the groupsG in question are automatically ICC.

The argument in [20] for deriving property Gamma makes use of finite permuta-
tional wreath products inside of A.�;X/ that can be expressed spectrally as permutational
Bernoulli actions SF Õ ¹0; 1ºF indexed by Følner sets F of � . A set of measure one
half is constructed in each of the Bernoulli spaces ¹0; 1ºF via a summation condition on
the coordinates that takes into account the Følner boundary effect. This set is shown to
be approximately invariant using the central limit theorem, as was done by Kechris and
Tsankov in [18] for the different purpose of obtaining a characterization of amenability for
actions in terms of the existence of approximately invariant sets of measure one half for the
associated generalized Bernoulli actions. The corresponding projection e in the group von
Neumann algebra is then approximately central to within a prescribed tolerance, yield-
ing property Gamma. A natural strategy for boosting this to the McDuff property would
be to take the tensor factors in the group algebra of the wreath product to be something
noncommutative instead of the algebra C2 sitting over the original Bernoulli base ¹0; 1º,
reinterpret the original binary alternative as a choice of a seed projection p in these (com-
mon) tensor factors, and then choose a second seed projection q that is far from commuting
with p and using it in the same way as p to construct another almost central projection f .
We have been unable to determine, however, if such seed projections p and q can be
found so that the corresponding e and f asymptotically noncommute as the Følner sets F
become more and more invariant. In fact we suspect, on the basis of numerical computa-
tions carried out for us by Giles Gardam, that such e and f will always asymptotically
commute, even when p and q are approximately freely related.

What we have discovered is that one can dispense with the above probabilistic
approach altogether and instead start with a projection p in the noncommutative Bernoulli
base which has trace extremely close to 1, close enough so that if we copy it out into a
single elementary tensor over the Følner core of the set F then we will obtain a pro-
jection zp with trace approximately one half. This requires that the Bernoulli base be a
finite-dimensional �-subalgebra B of LG of very large dimension. Some basic represen-
tation theory for finite alternating groups (guaranteeing that B can be chosen with enough
noncommutativity) then enables us to construct a partial isometry v in B such that if we
copy it into an elementary tensor zv over the Følner core of F , just like we did to p in order
to produce zp, then we will have zv�zv D zp and the projections zvzv� and zp will commute
and be approximately independent, which implies that the commutator Œzv; zv�� is bounded
away from zero in trace norm. Finally one observes that both zv and zv� are approximately
central, with the tolerance being controlled by the approximate invariance of the set F .
From this we conclude the McDuff property.

Our construction can also be applied to establish a connection to amenability for
actions in the spirit of Kechris and Tsankov, only now via the McDuff property for the
crossed product of shift actions over a II1 factor. In this setting there is also an obstruction
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related to inner amenability of the group that prevents one from obtaining a full charac-
terization of amenability for the action. Recall that a group action G Õ X on a set is
amenable if there is a finitely additive G-invariant probability measure on X , or equiv-
alently if there is a state on `1.X/ that is invariant under the induced G-action. Every
action of an amenable group is amenable, but many nonamenable groups admit nontriv-
ial and even faithful amenable actions (see [33] for the case of free groups and [30] for
further discussion and references). A group G is inner amenable if there exists a finitely
additive atomless probability measure onG n ¹eº which is invariant under the conjugation
action of G, which in the case that G is ICC simply means that the conjugation action
G Õ G n ¹eº is amenable. Inner amenability fails for free groups on two or more genera-
tors but does hold for many nonamenable groups. It is implied by property Gamma [8] (so
that the groups G in Theorem A all satisfy it, as was already shown in [20]) but is strictly
weaker [31].

If the action G Õ X has a finite orbit then it is amenable for obvious reasons and
the factoriality condition on the crossed product below fails, and so this case is naturally
omitted from the theorem statement.

Theorem B. Let M be a II1 factor with trace � . Let G Õ X be an amenable action of
a countable group on a countable set, and suppose that the action has no finite orbits.
Suppose furthermore that the crossed product M˝X Ì G of the associated shift action
G Õ M˝X is a II1 factor (which will be the case, for example, when the action G Õ X

is faithful). Then M˝X ÌG is McDuff.

In the special case when the action is that of an amenable group on itself by left trans-
lation, the conclusion of the theorem follows from a general result of Bédos on actions of
amenable groups on McDuff II1 factors [1].

When G is non-inner-amenable, the amenability of the action G Õ X is actu-
ally equivalent to both the McDuff property and property Gamma for M˝X Ì G,
with the implication from property Gamma to amenability following from [8] and [32,
Lemma 2.7], as observed in [26, Proposition 2.8] (the non-inner-amenability assump-
tion cannot be dropped here, as we illustrate in Example 3.1). Using deformation/rigidity
techniques, it was proved by Popa (for M amenable) and Isono and Marrakchi (for gen-
eralM ) that ifG is nonamenable then the crossed productM˝G ÌG of the shift action is
prime [14,27] and by Patchell that ifG is non-inner-amenable and ICC, the actionG ÕX

is transitive and nonamenable, and the stabilizer of some nonempty finite subset of X is
amenable (a kind of mixing condition) then M˝X ÌG is prime [26].

As a special case of Theorem B, we obtain the following result for II1 factors aris-
ing as group von Neumann algebras of generalized wreath products that conform, as
crossed products, to the framework of the theorem statement. Recall that the general-
ized (restricted) wreath product H oX G of two groups relative to an action G Õ X on a
set is defined as the semidirect product H˚X Ì G where G acts on the restricted direct
sum H˚X by g � .hx/x2X D .hg�1x/x2X . In this case there is a natural isomorphism



McDuff factors from amenable actions and dynamical alternating groups 419

L.H oX G/ Š L.H/˝X ÌG, and under this identification we get the two factoriality
conditions in Theorem B precisely when both H and H oX G are ICC.

Theorem C. Let H be a nontrivial countable ICC group and G Õ X be an amenable
action of a countable group on a countable set with no finite orbits such that the gener-
alized wreath product H oX G is ICC (which will be the case, for example, if G is ICC).
Then L.H oX G/ is a McDuff II1 factor.

As before, when G is non-inner-amenable the amenability of the action G Õ X is
equivalent to both the McDuff property and property Gamma for L.H oX G/.

It was shown in [2,13] that many generalized wreath products are W�-superrigid, i.e.,
uniquely determined as groups by their group von Neumann algebra. The base groups
in [2, 13] are Abelian, in contrast to the above ICC hypothesis on H , which is there to
guarantee the factoriality of LH and hence the applicability of Theorem B. The recent
papers [5, 6] however treat wreath-like products that include ones with ICC bases.

In response to a question of Robin Tucker-Drob, we show that our technique can also
be used to establish the following result on JS-stability for generalized wreath products.
A countable discrete p.m.p. (probability-measure-preserving) equivalence relation is said
to be JS-stable if it satisfies the McDuff-like property of being isomorphic to its product
with the unique ergodic hyperfinite p.m.p. equivalence relation [16]. A countable group
is JS-stable if it admits a free ergodic p.m.p. action whose orbit equivalence relation is
JS-stable. We thank Robin Tucker-Drob for a suggestion that permitted us to remove the
non-Abelianness assumption on H in our original version of the theorem.

Theorem D. Let H be a nontrivial countable group and G Õ X an amenable action of
a countable group on a countable set with no finite orbits. Then the generalized wreath
product H oX G is JS-stable.

The details of the proof of Theorem A, along with a review of definitions and basic
background material, are contained in Section 2. The proofs of Theorems B and D are
contained in Sections 3 and 4, respectively. The reader wishing to quickly grasp the basic
common idea behind these results is advised to start with the proof of Theorem B, where
the technical implementation is simplest.

2. Proof of Theorem A

LetM be a II1 factor and � its faithful normal tracial state. Our factors are always assumed
to be separable for the trace norm kak2 D �.a�a/1=2. A bounded sequence .an/ in M is
said to be a central sequence if kŒan; b�k2 ! 0 for every b 2 M . The factor M has the
McDuff property if M˝R Š M where R is the hyperfinite II1 factor. By a theorem of
McDuff [23],M has the McDuff property if and only if there exist central sequences .an/
and .bn/ in M such that kŒan; bn�k2 6! 0. It is this central sequence criterion that we will
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use to establish the McDuff property in Theorem A. Later in Section 3 we will also invoke
property Gamma, which asks for the existence of a central sequence of unitaries with trace
zero, a condition that is readily seen to be weaker than the McDuff property (which itself
can also be characterized by the existence of a sequence of unital 2� 2matrix subalgebras
that is central in the obvious sense).

Let � be a countable discrete group and � Õ X a continuous action on the Cantor
set. The topological full group J� Õ XK of the action is the group of all homeomor-
phisms h from X to itself for which there exist a clopen partition ¹A1; : : : ; Anº of X
and s1; : : : ; sn 2 � such that h.x/ D six for all i D 1; : : : ; n and x 2 Ai . This group is
countable because � is countable and X admits only countably many clopen partitions.

Next we recall from [25] the definition of the alternating group A.�; X/. Let d 2 N
and write Sd for the symmetric group on ¹1; : : : ; dº. Consider the homomorphisms
 W Sd ! J� Õ XK for which there exist pairwise disjoint sets A1; : : : ; Ad � X such
that the image of a permutation � under  acts as the identity on the complement of
A1 t � � � t Ad and for each i D 1; : : : ; d maps Ai to A�.i/ via some element of � . The
images of these homomorphisms generate a subgroup Sd .�;X/ of J� Õ XK, and we can
also consider the subgroup Ad .�; X/ of Sd .�; X/ generated by the images of the restric-
tions of the homomorphisms to the alternating group Ad � Sd . The group A3.�; X/ is
called the alternating group of the action � Õ X and written A.�; X/. When the action
has no finite orbits, one has A.�;X/ D Ad .�;X/ for every d � 3. It is shown in [25] that
if the action of � is minimal and topologically free then A.�; X/ is simple, while if �
is finitely generated and the action is expansive (equivalently, is a subshift action with
finitely many symbols) and has no orbits of cardinality less than 5 then A.�;X/ is finitely
generated.

We invariably denote by � the unique normal tracial state on a II1 factor, with the par-
ticular algebra being understood from the context. The identity element of a group will
always be written e.

By [20, Proposition 5.1], if � Õ X is a topologically free continuous action of group
on the Cantor set, then every subgroup of J� Õ XK containing A.�; X/ is ICC. Theo-
rem A is thus a consequence of the following result. The amenability of the group �
will be applied in the form of the Følner property, which requires, for every finite
set e 2 K � � and ı > 0, that there exists a nonempty finite set T � � such thatˇ̌T

s2K s
�1T

ˇ̌
� .1 � ı/jT j.

Theorem 2.1. Let � Õ X be an action of a countably infinite amenable group on the
Cantor set with at least one free orbit. Then the group von Neumann algebra of any ICC
subgroup of J� Õ XK containing A.�;X/ is a McDuff II1 factor.

Proof. Factoriality follows from the ICC condition.
Let � be a finite symmetric subset of J� Õ XK and let " > 0. By the definition of the

topological full group, we can find a clopen partition P D ¹P1; : : : ; PN º of X such that
for each h 2� there exist sh;1; : : : ; sh;N 2 � for which hx D sh;ix for every i D 1; : : : ;N
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and x 2 Pi . Let K be the collection of all of these sh;i together with the identity element
of � .

Take a ı > 0 such that
4�ı=.1�ı/ � 1 �

"

32
: (2.1)

By taking a logarithm and applying l’Hôpital’s rule, one can verify, for all � 2 R, that

lim
r!1

.2 � 2�r
�1

� 1/�r D
1

4�
: (2.2)

It follows that we can find an r0 > 0 so that, for all r � r0 and � 2 ¹1; ı=.1 � ı/º,ˇ̌̌
.2 � 2�r

�1

� 1/�r �
1

4�

ˇ̌̌
�

"

32
: (2.3)

By hypothesis there exists an x0 2X such that the action of � on the orbit �x0 is free.
By amenability, there exists a nonempty finite set T �� such that the set T 0D

T
s2K s

�1T

(which is a subset of T since e 2 K) satisfies jT 0j � d.1 � ı/jT je. Since � is infinite, we
can choose T so that its cardinality is larger than r0, and also large enough so that

.2�..1�ı/jT j/
�1

/d.1�ı/jT je �
1

2
�
"

8
: (2.4)

Since the action of � on the orbit of x0 is free and � is infinite, we can find a sequence
.dk/ in � such that the points tdkx0 for k 2 N and t 2 T are pairwise distinct. By the
pigeonhole principle, we can find a subsequence .dkj / such that for every t 2 T the points
tdkj x0 for j 2 N belong to a common member of P . In particular, using continuity we
can find a finite set D � � of cardinality as large as we wish (to be specified below) and
a clopen neighborhood B of x0 such that the sets tdB for d 2 D and t 2 T are pairwise
disjoint and for every t 2 T the sets tdB for d 2 D are contained in a common mem-
ber of P . This choice of D guarantees the existence of a function � 2 K��T defined by
htdx D �.h; t/tdx for h 2 �; t 2 T; d 2 D, and x 2 B .

For each s 2 K we have sT 0 � T and so for every h 2 � we can find a �h 2 Sym.T /
such that �ht D �.h; t/t for all t 2 T 0. Consider the alternating group A.D/. We regard
the product A.D/T as a subgroup of A.�;X/ with an element .!t /t2T in A.D/T acting by
tdx 7! t!t .d/x for all x 2 B , t 2 T , and d 2 D and by x 7! x for all x 2 X n TDB .

By the representation theory of alternating groups [11, 15], the Artin–Wedderburn
decomposition of LA.D/ takes the form C ˚

�L
l2L Mkl

�
where kl � jDj � 1 for every l

in the finite set L. Write tr for the tracial state on LA.D/ associated to the left regular rep-
resentation of A.D/ on `2.A.D//, that is, the vector state a 7! haıe; ıei where ¹ıg W g 2
A.D/º is the canonical orthonormal basis for `2.A.D//. The summand C in the Artin–
Wedderburn decomposition corresponds to the trivial representation of A.D/ and thus
must act on `2.A.D// as the orthogonal projection onto the one-dimensional subspace of
A.D/-invariant vectors, which is spanned by the unit vector � D jA.D/j�1=2

P
g2A.D/ ıg .

It follows that the projection f WD .1; 0/ 2 C ˚
�L

l2L Mkl

�
satisfies

tr.f / D hf ıe; ıei D hhıe; �i�; ıei D
1

jA.D/j
: (2.5)
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Consequently, there exist �l > 0 for l 2 L with jA.D/j�1 C
P
l2L �l D 1 (in fact

�l D k2
l
=.1 C

P
l2L k

2
l
/ by standard theory) such that for all a D .b; .cl /l2L/ 2 C ˚�L

l2L Mkl

�
we have, denoting by trl the unique tracial state on Mkl ,

tr.a/ D
b

jA.D/j
C

X
l2L

�l trl .cl /: (2.6)

For l 2 L, write ¹e.l/i;j º1�i;j�kl for the matrix units of the summand Mkl . Set dl D

b2�..1�ı/jT j/
�1
klc and define

p D
X
l2L

dlX
iD1

e
.l/
i;i ;

q D
X
l2L

 
2dl�klX
iD1

e
.l/
i;i C

klX
iDdlC1

e
.l/
i;i

!
;

v D
X
l2L

 
2dl�klX
iD1

e
.l/
i;i C

klX
iDdlC1

e
.l/

i;i�klCdl

!
:

We have v�v D p, vv� D q, and vpq D pq. Moreover, writing el D
Pdl
iD1 ei;i we have,

by (2.6),

tr.p/ D tr.q/ D
X
l2L

tr.el / D
X
l2L

�l
dl

kl
:

It follows, by virtue of the equation
P
l2L �l D 1 � jA.D/j

�1, our choice of dl , and the
fact that kl � jDj � 1 for every l 2 L, that we can make the quantity tr.p/ as close to
2�..1�ı/jT j/

�1
as we wish by taking jDj sufficiently large. Thus, given an "0 > 0 we can

take D to have large enough cardinality so that

tr.p/ � 2�..1�ı/jT j/
�1

� "0:

Since tr.pq/D
P
l2L �l .2dl � kl /=kl , we may similarly assume that jDj is large enough

so that
2 � 2�..1�ı/jT j/

�1

� 1 � "0 � tr.pq/ � 2 � 2�..1�ı/jT j/
�1

� 1:

Therefore, by taking "0 small enough we can guarantee, in view of (2.4), that

tr.p/d.1�ı/jT je � .2�..1�ı/jT j/
�1

� "0/d.1�ı/jT je �
1

2
�
"

4
(2.7)

and, in view of (2.3), that

tr.pq/ıjT j � .2 � 2�..1�ı/jT j/
�1

� 1 � "0/ıjT j � 1 �
"

8
: (2.8)
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Note also by (2.3) that

tr.pq/.1�ı/jT j � .2 � 2�..1�ı/jT j/
�1

� 1/.1�ı/jT j �
1

4
C
"

4
: (2.9)

For every a 2 LA.D/ and R � T , write zaR for the element
N

t2T at 2 LA.D/˝T D
L.A.D/T /� LA.�;X/ where at D a if t 2 R and at D 1 otherwise. Note that the restric-
tion of the trace � on LA.�; X/ to L.A.D/T /, under the identification of the latter with
LA.D/˝T , is equal to the tensor product trace tr˝T . Note also that for h 2�, a 2 LA.D/,
and S � T 0 we have uhzaSu�1h D za�hS . Since T 0 has cardinality at least d.1� ı/jT je, we
can choose an S � T 0 with exactly this cardinality. It follows using (2.7) and (2.9) that

kŒzvS ; zv
�
S �k

2
2 D k zpS � zqSk

2
2 D �. zpS C zqS � 2fpqS /

D 2.tr.p/jS j � tr.pq/jS j/ �
1

2
� ":

Furthermore, for all h 2 � we have j�hS n S j � ıjT j and hence, using (2.8),

kuhzvSu
�1
h � zvSk

2
2 D kzv�hS � zvSk

2
2

D kzv�hS\S .zv�hSnS � zvSn�hS /k
2
2

� kzv�hS\Sk
2
kzv�hSnS � zvSn�hSk

2
2

� .kzv�hSnS � 1k2 C k1 � zvSn�hSk2/
2

D 4kzv�hSnS � 1k
2
2

D 4�.zv��hSnS zv�hSnS � zv
�
�hSnS

� zv�hSnS C 1/

� 8�.1 � zv�hSnS /

D 8.1 � tr.pq/j�hSnS j/

� 8.1 � tr.pq/ıjT j/ � ": (2.10)

Thus, if we take such zvS and zv�S over an increasing sequence of sets � with union
J� Õ XK and a sequence of tolerances " converging to zero, we obtain noncommut-
ing approximately central sequences for LJ� Õ XK inside of LA.�; X/. This yields the
McDuff conclusion in the theorem.

In the above proof we could have avoided the application of l’Hospital’s rule by alter-
natively taking the seed projections p and q to be approximately independent with respect
to the trace. In fact this is how we will proceed in the proof of Theorem B, where the
whole picture simplifies due to the diffuseness of the seed space.

3. Proof of Theorem B

It is a standard fact (provable in the same way as for groups acting on themselves by trans-
lation) that amenability for a group action G Õ X on a set is equivalent to the following
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Følner property: for every finite set e 2 K � G and ı > 0, there exists a nonempty finite
set T � X such that

ˇ̌T
s2K s

�1T
ˇ̌
� .1 � ı/jT j, in which case we say that T is .K; ı/-

invariant. Such sets T are informally referred to as Følner sets with the understanding
that a certain degree of approximate invariance is at play. It can also be shown, in the
same way as for groups themselves with respect to the left regular representation, that
amenability for an actionG Õ X is equivalent to the existence of approximately invariant
unit vectors for the induced unitary representation � on `2.X/, i.e., to the existence, for
every finite set F � G and ı > 0, of a unit vector � 2 `2.X/ satisfying k�.g/� � �k < ı
for every g 2 F . If G itself is amenable (i.e., the action of G on itself by left translation
is amenable) then all of its actions are amenable, as is easy to verify. See [19, Section 4.1]
for more information.

Proof of Theorem B. We wish to show, given a finite subset � of M˝X Ì G and an
" > 0, that there exists a pair of elements inM˝X ÌG whose commutators with elements
in � have trace norm less than " and whose commutator with each other has trace norm
bounded away from zero independently of ". It evidently suffices to check this for� drawn
from a subset of the crossed product which generates a trace-norm dense subalgebra. We
may thus assume that�D�1 [�2 where�1 consists of elementary tensors inM˝X of
finite support and �2 is the set ¹ugºg2F of canonical unitaries corresponding to elements
in a given finite subset F of G containing e. Write Y for the union of the supports of
elements in �1.

Choose a ı > 0 small enough so that .1� 2�2ı=.1�ı// � "=8. Since by assumption the
action onX has no finite orbits, the cardinality of the Følner sets for the action will tend to
infinity as we demand more and more invariance. We can thus find an .F; ı/-invariant sub-
set T ofX that is disjoint from Y by first shrinking the tolerance ı a little and then finding
a Følner set for this tightened tolerance that has sufficiently large cardinality so that its
intersection with the complement of Y will do the job. Set S D

T
s2F s

�1T , which by
.F; ı/-invariance satisfies jS j � .1� ı/jT j. SinceM is a II1 factor it contains commuting
projections p and q of trace 2�jS j

�1
which are independent, i.e., �.pq/ D �.p/�.q/ (e.g.,

choose a masa inM , write it in the formA˝A in such a way that the trace � onM restricts
to � jA˝1 ˝ � j1˝A under the canonical identification of the two copies of A with A˝ 1
and 1˝ A, and take f ˝ 1 and 1˝ f for a suitable projection f ). Since the projections
p � pq and q � pq have the same trace they are Murray–von Neumann equivalent, and so
we can construct a partial isometry v 2M such that v�v D p, vv� D q, and vpq D pq.
Note that

�.v/ D �.qvp/ D �.vpq/ D �.pq/: (3.1)

For a 2 M and R � T , write zaR for the element
N

t2T at 2 M
˝X where at D a

if t 2 R and at D 1 otherwise. Then �. zpS / D �.zqS / D �.p/jS j D 1=2 and �.fpqS / D
�.p/2jS j D 1=4. By our choice of T , both zv and zv� commute with the elements in �1.
Moreover,

kŒzvS ; zv
�
S �k

2
2 D k zpS � zqSk

2
2 D �. zpS /C �.zqS / � 2�.fpqS / D 1

2
;



McDuff factors from amenable actions and dynamical alternating groups 425

and, using (3.1) and estimating as in (2.10) in the proof of Theorem 2.1, we have, for every
g 2 F ,

ku�1g zvSug � zvSk
2
2 D kzvgS � zvSk

2
2

� 4kzvgSnS � 1k
2
2

D 4�.zv�gSnS zvgSnS � zv
�
gSnS � zvgSnS C 1/

� 8�.1 � zvgSnS /

D 8.1 � tr.pq/jgSnS j/

� 8.1 � .2�2jS j
�1

/ıjT j/

� 8.1 � 2�2ı=.1�ı// � ":

Taking such zvS and zv�S over an increasing sequence of finite sets� with trace-norm dense
union in M˝X ÌG and a sequence of tolerances " converging to zero, we obtain central
sequences witnessing the McDuff property.

As mentioned in the introduction, it follows by [8] and [32, Lemma 2.7] that if G in
the context of Theorem B is assumed to be non-inner-amenable then the action G Õ X

is amenable whenever M˝X ÌG has property Gamma, and so in this case amenability
of the action G Õ X is equivalent to both the McDuff property and property Gamma for
M˝X ÌG. The non-inner-amenability cannot be dropped here, as the following example
illustrates.

Example 3.1. Let G WD F2 � F˚N
2 act on the set X WD F2 �N by .s; .tk/k2N/ � .r; n/D

.srt�1n ; n/. Since F2 is nonamenable, there are a finite set L � F2 and a ı > 0 such thatP
g2L jgD�Dj � ıjDj for every finite set D � F2. Given any nonempty finite subset E

of X , there is a nonempty finite set J � N such that we can write E D
F
n2J .En � ¹nº/

where En is nonempty for each n 2 J , in which case, identifying F2 with the subgroup
F2 � ¹eº of G, we haveX

g2L

jgE�Ej D
X
g2L

X
n2J

jgEn�Enj �
X
n2J

ıjEnj D ıjEj:

This shows that the action G Õ X fails the Følner condition and hence is nonamenable.
Now letM be any II1 factor, let�1 �M˝X be a finite set of elementary tensors with

finite support, and let F be a finite subset of G. Write �2 for the set ¹ugºg2F of unitaries
in the crossed product M˝X Ì G corresponding to F . For an element .s; .tk/k2N/ in G,
we will call the (finite) set of indices k in N for which tk ¤ e its support. Furthermore,
for s 2 F2 and n 2 N we denote by gs;n the element .e; .tk/k2N/ supported on ¹nº with
tn D s. WriteK1 for the set of all n 2N such that F2 � ¹nº intersects the support of some
element of �1 and write K2 for the union of the supports of the elements in F . Then
K WD K1 [K2 is a finite subset of N. Write a; b for the generators of F2. Then for every
n 2 N n K and s 2 ¹a; bº we have ggs;ng�1 D gs;n for all g 2 F and ugs;nyu

�
gs;n
D y
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for all y 2 �1. Furthermore, kŒuga;n ; ugb;n �k2 D
p
2, and so one can construct a noncom-

muting sequence of such pairs of unitaries which are asymptotically central, showing that
the II1 factor M˝X ÌG is McDuff.

4. Generalized wreath products and JS-stability

Recall that the full group of a p.m.p. action G Õ .Y; �/ is the set of all measurable maps
T W Y ! G with the property that the transformation T 0 of Y given by T 0.y/ WD T .y/y
is a measure automorphism. By Kida’s general version of a criterion due to Jones and
Schmidt in the free ergodic case [16,21], to verify that a countable group G is JS-stable it
suffices to show that it admits a p.m.p. action G Õ .Y; �/ possessing a stability sequence,
i.e., a sequence of pairs .Tn; An/ where Tn is a member of the full group and An is a
measurable subset of X such that

(i) �.¹y 2 Y W Tn.gy/ D gTn.y/g
�1º/! 1 for every g 2 G,

(ii) �.T 0n .B/�B/! 0 for every measurable B � Y ,

(iii) �.gAn�An/! 0 for every g 2 G,

(iv) �.T 0n .An/�An/ � 1=2 for all n 2 N.

The following proof uses the same kind of idea as in Sections 2 and 3, but there is an
additional technical twist here in the construction of the full group elements in the defini-
tion of stability sequence, one that has no analogue in von Neumann algebra framework
of the previous two sections.

Proof of Theorem D. Denoting by � the Lebesgue measure on Œ0; 1�, we consider the
p.m.p. action H oX G

˛Õ .Y; �/ WD ..Œ0; 1�H /X ; .�H /X / D .Œ0; 1�H�X ; �H�X / induced
by the given action G Õ X and the Bernoulli action H



Õ .Œ0; 1�H ; �H /, as determined

by ˛ag..ys;x/s2H;x2X / D .ya�1x s;g�1x/s2H;x2X for a D .ax/x2X 2 H˚X and g 2 G. By
the discussion above, it suffices to show that ˛ admits a stability sequence.

To that end, let F D ¹zhigi W i 2 I º be a finite subset of H oX G with zhi 2 H˚X and
gi 2 G for every i 2 I . Set W D

S
i2I supp zhi and K D ¹gi W i 2 I º, and take an " > 0

such that 2�3" > 1 � jF j�1. As in the proof of Theorem B, we can find a finite subset E
of X that is .K; "/-invariant and disjoint from W [

S
i2I g

�1
i W .

For s 2 H write �s W Œ0; 1�H ! Œ0; 1� for the projection map onto the coordinate
at s, and set U0 D Œ0; 2�jE j

�1
� and U1 D Œ0; 1� n U0. Let h 2 H n ¹eº and consider the

map ! W Œ0; 1�H ! H that is equal to h on Z WD ��1e .U0/ \ �
�1
h
.U1/, to h�1 on the

image of Z under the shift 
h (which is disjoint from Z), and to e otherwise. Define
T W Y ! H˚X � H oX G by declaring, for all y 2 Y and x 2 X , that

T .y/.x/ D

´
!.yx/; x 2 E;

e; otherwise:
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By construction, T is an element of the full group of ˛. Set

A D ¹.yx/x2X 2 Y W yx 2 �
�1
e .U0/ for all x 2 Eº:

Because E is disjoint from W , both T and its image are invariant under the action
(via ˛ and by conjugation, respectively) of any element of H˚X supported on W . Let
g 2 K, denote by Yg the set of all y 2 Y such that T .˛g.y// D gT .y/g�1, and set

C D ¹.yx/x2X 2 Y W yx 2 �
�1
e .U0/ \ �

�1
h .U0/ \ �

�1
h2
.U0/ for all x 2 E�g�1Eº:

One can easily check that C � Yg , and therefore

�.Yg/ � �.C / � .2
�jE j�1/3"jE j � 1 �

1

jF j
:

Moreover, by construction we have T0.B/ D B for all measurable rectangles B such that
evx.B/ D Œ0; 1�H for all x 2 E, where evx denotes the evaluation map at x.

Finally, we have

�.T0.A/�A/ D 2.�.A/ � �.T0.A/ \ A// D 2

�
1

2
�
1

4

�
D
1

2

and, for t 2 F ,

�.˛t .A/�A/ D 2.�.A/ � �.˛t .A/ \ A// � 2

�
1

2
�

�
1

2

�.1C"/�
�

1

jF j
:

By constructing such A and T with respect to an increasing sequence of finite sets Fn
such that

S
n Fn D H oX G, we obtain a stability sequence for ˛.
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