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On the geometry of the free factor graph for Aut.FN /

Mladen Bestvina, Martin R. Bridson, and Richard D. Wade

Abstract. Let ˆ be a pseudo-Anosov diffeomorphism of a compact (possibly non-orientable)
surface † with one boundary component. We show that if b 2 �1.†/ is the boundary word,
� 2 Aut.�1.†// is a representative of ˆ fixing b, and adb denotes conjugation by b, then the orbits
of h�; adbi Š Z2 in the graph of free factors of �1.†/ are quasi-isometrically embedded. It follows
that for N � 2 the free factor graph for Aut.FN / is not hyperbolic, in contrast to the Out.FN / case.

Dedicated to Slava Grigorchuk on his 70th birthday

1. Introduction

The set of nontrivial proper free factors of a free group FN can be ordered by inclusion
and the geometric realization of the resulting poset is the free factor complex for Aut.FN /.
This complex was introduced by Hatcher and Vogtmann [12] who proved, in analogy with
the Solomon–Tits theorem for the Tits building associated to GL.N;Z/, that this complex
has the homotopy type of a wedge of spheres of dimension N � 2. Our focus here is on
the large-scale geometry of the complex rather than its topology. This geometry is cap-
tured entirely by the 1-skeleton, that is, the free factor graph AF N , metrized as a length
space with edges of length 1. Thus, the vertices of AF N are the nontrivial, proper free
factors of FN , and there is an edge joining A to B if A < B or B < A. (WhenN D 2, this
definition is modified – see Section 2.)

There is a natural action of Aut.FN / on AF N . The quotient of AF N by the sub-
group of inner automorphisms is called the free factor graph for Out.FN /. This graph,
which is denoted by OF N , has emerged in recent years as a pivotal object in the study
of Out.FN /. Much of its importance derives from the following fundamental result of
Bestvina and Feighn [3].

Theorem A (Bestvina–Feighn [3]). The free factor graph OF N is Gromov-hyperbolic.
The fully irreducible elements of Out.FN / act as loxodromic isometries of OF N (i.e.,
have quasi-isometrically embedded orbits) while every other element has a finite orbit.
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The natural map Out.FN / ! Isom.OF N / is an isomorphism [2], so Theorem A
describes all possible actions of cyclic groups on OF N . As the graph is hyperbolic,
we also know that Z2 cannot act with quasi-isometric orbits. In fact, results in the
literature [2, 11] tell us something much stronger.

Theorem B. If r � 2, then every faithful action of Zr by isometries on OF N has a finite
orbit.

Proof. The natural map Out.FN /! Isom.OF N / is an isomorphism [2], so it suffices to
prove this theorem for abelian subgroups of Out.FN /. The centralizers in Out.FN / of fully
irreducible elements are virtually cyclic, so an abelian subgroup of rank greater than 1
contains no fully irreducible elements. Handel and Mosher [11] proved that if a finitely
generated subgroup G < Out.FN / contains no fully irreducible elements, then G has a
finite orbit in OF N (a fact that remains true even if G is not finitely generated [14]).

The purpose of this article is to prove results concerning AF N that contrast sharply
with Theorems A and B. We shall construct actions of Z2 on AF N such that the orbits
are free and metrically undistorted. We shall also establish a criterion that tells us cer-
tain inner automorphisms act as isometries with quasi-isometrically embedded orbits, just
as all fully irreducible automorphisms do. For the moment, however, we are unable to
offer a concise classification of all the isometries that have such orbits. (The natural map
Aut.FN /! Isom.AF N / is an isomorphism, so, as in the Out case, there ought to be a
classification in purely algebraic terms.)

The abelian subgroups Z2 ,! Aut.FN / that we shall focus on are constructed using
pseudo-Anosov diffeomorphisms of compact surfaces with one boundary component.
Let † be such a surface with Euler characteristic 1 � N . Let Mod.†/ be the mapping
class group of †, that is, �0 of the subgroup of Diff.†/ that fixes @† pointwise. Then by
fixing a basepoint on @†, we obtain an identification �1† D FN and a monomorphism
Mod.†/! Aut.FN /. The Dehn twist in the boundary of † is central in Mod.†/. We are
interested in the Z2 subgroup that this twist generates with any pseudo-Anosov element
of Mod.†/. The Dehn twist acts on �1† D FN as an inner automorphism adb , where
b 2 FN is the boundary loop.

Theorem C. Let † be a compact surface with one boundary component, fix an iden-
tification �1† D FN , let b 2 FN be the homotopy class of the boundary loop, let
� 2 Aut.FN / be the automorphism induced by a pseudo-Anosov element of Mod.†/,
letƒD h�; adbi < Aut.FN /, and note thatƒŠ Z2. Then, for every A 2AF N , the orbit
map � 7! �.A/ defines a quasi-isometric embedding ƒ Š Z2 ,! AF N .

Corollary D. For N � 2, the free factor graph AF N is not Gromov-hyperbolic.

These results should be compared with the work of Hamenstädt [10], who construc-
ted similar quasi-flats in spotted disc complexes of handlebodies and in certain sphere
complexes.
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A crucial property of the boundary element b 2 FN is that it is filling in the sense
that it is not contained in any proper free factor of FN . Given any filling element b, we
analyse the action of adb on AF N with the aim of showing that the orbits of hadbi give
quasi-isometric embeddings of Z. The key tool in this analysis is the notion of b-reduced
decomposition for elementsw 2FN , which we introduce in Section 3. Using these decom-
positions, we define an integer-valued invariant ŒA�b of a free factor A, and we use this to
define a Lipschitz retraction of AF N onto the hadbi-orbit of a vertex V ; roughly speaking,
this retraction sends the vertex A to adn

b.V / if n D ŒA�b .

Theorem E. If an element b 2 FN is not contained in any proper free factor, then there
is a Lipschitz retraction of AF N onto each orbit of hadbi. In particular, these orbits are
quasi-isometrically embedded.

In Section 2, we recall classical results of Whitehead and others describing the struc-
ture of elements b 2 FN that are not contained in any proper free factor. This structure
controls the behaviour of the function A 7! ŒA�b that is used in Section 3 to prove The-
orem E. With Theorem E in hand, one feels that Theorem C ought to follow easily, since
orbits of the fully irreducible automorphism � project to quasi-geodesics in OF N , but the
details are slightly delicate; this is explained in Section 4.

The fact that we cannot offer a concise classification of the isometries of AF N is
symptomatic of the fact that the large-scale geometry of AF N is poorly understood. In
Section 5, we highlight some of the begging questions in this regard.

2. Background

We assume that the reader is familiar with the rudiments of the theory of free-group
automorphisms.

We write FN to denote the free group on N generators. Let � be a basis of FN . Every
elementw 2FN is represented by a unique reduced word in the letters � [ ��1; the length
of this word is denoted by jwj� . We write D to denote equality in FN and � to denote
equality as words. A subgroup A � FN is a free factor if it is generated by a subset of a
basis, and is a proper free factor if A ¤ FN .

The natural definition of AF N that we gave in the introduction is unsatisfactory in
the case N D 2, since there are no edges. We remedy this by decreeing that a pair of ver-
tices hui and hvi are to be connected by an edge if and only if ¹u;vº is a basis for F2. Then
OF 2 is defined to be the quotient by the action of the inner automorphisms. With these
conventions, OF 2 is the Farey graph with the standard action of Out.F2/ Š GL.2;Z/.

2.1. Whitehead graphs, word length, and the cut-vertex lemma

An element of FN is primitive if it belongs to some basis, and is simple if it belongs to
some proper free factor. Every element w has a cyclic reduction w0, obtained by writ-
ing w � w1w0w

�1
1 with w1 as long as possible. An element is cyclically reduced (with
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respect to the basis �) if w D w0. We use Wh� .w/ to denote the cyclic Whitehead graph
of w. This is the graph with vertex set � [ ��1 that has an edge from x to y�1 if xy is a
subword of the cyclic reduction w0 or if x is the last letter of w0 and y is the first letter of
w0. Importantly for us, the cyclic Whitehead graph keeps track of the turns crossed by the
axis of the element w in the Cayley tree determined by � .

A vertex v of a graph is a cut vertex if the full subgraph spanned by vertices not
equal to v is disconnected. The famous lemma below was stated by Whitehead for prim-
itive elements [21], and the generalization to simple elements was observed by various
authors (see, e.g., [15, Proposition 49] or [13, 16, 20]). (For readers who pursue the refer-
ences: Whitehead uses the word simple differently to modern authors – his simple sets are
subsets of bases.)

Lemma 2.1 (Whitehead’s cut-vertex lemma [21]). Let N � 2. If w is a simple element
of FN , then for any basis � of FN the cyclic Whitehead graph Wh� .w/ contains a cut
vertex.

If the Whitehead graph Wh� .w/ contains a cut vertex that is not isolated, then there is
a Whitehead automorphism that reduces the cyclic length of w. Using this, one can prove
the following standard proposition, which can be seen as a partial converse to Whitehead’s
lemma.

Proposition 2.2. Let N � 2. If w 2 FN is not contained in a proper free factor and
jwj� � j�.w/j� for all � 2 Aut.FN /, then Wh� .w/ contains no cut vertex.

Note that any graph with at least 3 vertices that is disconnected contains a cut vertex.
As we are working with N � 2, all of the Whitehead graphs we consider have at least 4
vertices, and so those without cut vertices are connected.

3. Orbits in AF N of filling inner automorphisms

The goal of this section is to prove Theorem E: If b 2 FN is not contained in a proper free
factor, then there is a Lipschitz retraction of AF N onto each hadbi-orbit. These retractions
will be constructed using b-reduced decompositions.

3.1. b-reduced decompositions and a cancellation lemma

Definition 3.1 (b-reduced decomposition). Fix a basis � of FN . Given a cyclically
reduced word b and a reduced word w representing an element of FN , the b-reduced
decomposition of w (with respect to �) is the decomposition

w � bkwbb
�k
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(equality as reduced words) such that jkj is maximal. Define Œw��
b
WD k 2 Z. Given a

subgroup A � FN , define

ŒA��b WD sup¹Œa��b W a 2 Aº;

allowing ŒA��
b
D1.

We shall drop the superscript � from Œw��
b

and ŒA��
b

when there is no danger of
ambiguity.

Remark 3.2 (Geometric interpretation). Consider the action of FN on the Cayley tree
associated to � . As b is cyclically reduced, it acts as translation through a distance jbj
in an axis Xb that passes through the basepoint 1 and contains each vertex bi . Roughly
speaking, Œa�b records (with sign) the time that the path from 1 to the axis Xa of a spends
on Xb . More precisely, the orthogonal projection of Xa onto Xb is contained in a minimal
interval of the form Œbi ; bj � and Œa�b is i if i > 0, is j if j < 0, and is 0 if i � 0 � j – see
the proof of Lemma 3.3. Note that the projection of Xa to Xb is a point if Xa \ Xb D ;

and equals Xa \Xb otherwise.
The minimal invariant subtree TA for a subgroup A � FN is the union of the axes Xa

with a 2 A. If TA \Xb is compact, as it will be if A is finitely generated and A\ hbi D 1,
then either it is empty, in which case the projection of TA is a point and ŒA�b D Œa�b for all
a 2 A, or else TA \ Xb is contained in a minimal interval of the form ŒbI ; bJ � and from
the geometric description of Œa�b we have I � ŒA�b � J . These observations lead to the
philosophically important approximation

ŒA�b �
dist.�Xb

.TA/; 1/

jbj
;

where �Xb
denotes orthogonal projection to Xb and the constants implicit in the

approximation depend on the length of TA \Xb .

Lemma 3.3 (Cancellation lemma). Suppose that b 2 FN is not contained in a proper free
factor and let � be a basis of FN that minimizes jbj� . Suppose that a 2 FN is contained in
a proper free factor and Œa��

b
D 0. Then the first and last jbj� C 1 letters ofw� b3 � a � b�3

remain after reducing w. In particular, Œb3ab�3��
b
� 1.

Proof. As � minimizes jbj� , in particular b is cyclically reduced. Let T be the Cayley
tree for FN with respect to the basis � . As b is cyclically reduced, the axis Xb of b passes
through the identity vertex 1 2 T . Let Xa be the axis for a. Let p be the shortest path
from 1 to Xa. The intersection of p with Xb is of length at most jbj� � 1, as the reduced
word representing a starts with the word labelling p and ends with its inverse and Œa�b D 0.
Furthermore, the intersection ofXa withXb can have length at most jbj� : To see this, note
that the cyclic Whitehead graph Wh� .b/ does not contain a cut vertex by Proposition 2.2,
whereas Wh� .a/ does by the cut-vertex lemma, so Xa cannot contain all the turns (pairs
of consecutive labels from � [ ��1) that appear along Xb .
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1y b3y
Xb

Xa
b3.Xa/ D Xb3ab�3

Figure 1. The proof of the cancellation lemma.

As in Figure 1, let y be the furthest point along Xb in the b�1 direction that is con-
tained in p [ Xa. By the above, d.1; y/ � 2jbj� � 1. It follows that the distance from 1

to b3y (in the positive direction along Xb) is at least jbj� C 1. This implies that the path
from 1 to the axis of b3ab�3 contains the interval Œ1; b3y�. Again, as the path from 1 to the
axis gives the initial and terminal (in reverse) subwords of b3ab�3, the result follows.

Remark 3.4. Consider the orbit OD ¹hbkab�ki W k 2Zº of a free factor hai generated by
a primitive element under the action of adb . It is not hard to see that the map f W O ! Z
given by f .w/ D Œw�b is injective outside of f �1.0/. And under the assumptions of the
above lemma, jf �1.0/j � 3.

Proposition 3.5. Suppose b 2 FN is cyclically reduced with respect to � and that the
cyclic Whitehead graph Wh� .b/ is connected with no cut vertex. Let T be the Cayley tree
with respect to � and letXb be the axis of b in T . If A� FN is a proper free factor and TA

is the minimal subtree of A in T , then

(1) jTA \Xbj � jbj� .

(2) For any two elements a1; a2 2 A,

jŒa1�
�
b � Œa2�

�
b j � 1:

In particular, ŒA��
b
2 Z.

Proof. If TA \Xb D ;, then Xa has the same projection to Xb for all a 2 A. In this case,
part (1) is trivial and Œa1�

�
b
D Œa2�

�
b

for all a1; a2; 2 A by the geometric interpretation
(Remark 3.2). Otherwise, the projection TA to Xb is a compact interval equal to TA \Xb .
As TA \ Xb is compact, there exists a 2 A such that the axis of a contains TA \ Xb

by [17, Lemma 4.3]. As every element of A is simple, as in the preceding proof this would
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contradict the cut-vertex lemma if jTA \Xbj > jbj� . This proves (1). For (2), it then suf-
fices to show that if a1; a2 2 FN are elements of FN and the projections of Xa1 and Xa2

to Xb are contained in an interval of length at most jbj� , then jŒa1�
�
b
� Œa2�

�
b
j � 1. This

again follows from the geometric interpretation: TA \Xb is contained in .bi�1; biC1� for
some i < 0, or contained in Œbi�1; biC1/ for some i � 0. In the first case, one can check
that Œa��

b
2 ¹i; i C 1º for all a 2 A, and in the second Œa��

b
2 ¹i � 1; iº for all a 2 A.

Theorem 3.6. Suppose that b 2 FN is not contained in a proper free factor and that � is
a basis that minimizes jbj� . Then the map AF ! Z given by A 7! ŒA��

b
is 1-Lipschitz if

N � 3 and is 2-Lipschitz if N D 2.

Proof. Proposition 2.2 tells us that Proposition 3.5 applies to b, and Proposition 3.5 (2)
assures us that if A < B then jŒA��

b
� ŒB��

b
j � 1; this covers the case N D 3. For the case

N D 2, a different argument is needed, because AF N is defined differently. In this case,
the vertex ha1i is adjacent to ha2i if ¹a1; a2º is a basis. As in Proposition 3.5 (1), we know
that the projection �Xb

.Xai
/ of each axis to Xb has length at most jbj� . We claim that,

furthermore, if the projections are disjoint then the arc connecting �Xb
.Xa1/ to �Xb

.Xa2/

is length at most jbj� . This claim clearly gives a uniform bound on the difference between
Œa1�b and Œa2�b , and with a similar case-by-case analysis as in Proposition 3.5, one can
check that Œa1�b and Œa2�b differ by at most 2.

To prove the claim, if Xa1 and Xa2 do not intersect, then the bridge between them is
contained in the axis for a1a2 (see [6, Figure 4]). It follows that if �Xb

.Xa1/ and �Xb
.Xa2/

do not intersect, then the arc between the projections is contained in �Xb
.Xa1a2/. Since

a1a2 is primitive, Proposition 3.5 (1) tells us that �Xb
.Xa1a2/ has length at most jbj� , and

we have proved the claim.

3.2. Change of basis

Proposition 3.7. Let b 2 FN be an element that is not contained in a proper free factor.
Let � and T be bases of FN which minimize the word length of b. Then there exists a
constant K such that for all A 2 AF N we have

ŒA�Tb �K � ŒA�
�
b � ŒA�

T
b CK:

Proof. Let T � and T T be the Cayley trees of FN given by � and T , respectively. Let
f W T � ! T T be the map that sends each edge of T � to the geodesic in T T with the
same endpoints. Let 1� and 1T be the basepoints of the respective Cayley trees and
use g� D g:1� and gT D g:1T to denote the vertices in the trees given by g 2 FN . If
p D Œ1� ; g� � is a path in T � from 1� to the axis of an element a 2 FN , then the bounded
backtracking property (see [5, 9]) implies that gT D f .g� / lies at distance at most C
from the axis of a in T T , where C is the bounded backtracking constant. Therefore, as
jbj� D jbjT , the proposition reduces to showing that for any path p based at 1� , the
reduction of f .p/ spends approximately the same amount of time travelling along the
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axis of b in T T as the path p does along the axis of b in T � (in the same direction). This
is reasonably standard: Decompose such a path p as p D p1p2p3, where p1 D Œ1� ; b

k
�
�

for some k, the path p2 is a segment of length � jbj� , and p3 is a path disjoint from
the axis X�

b
� T � except for its initial endpoint. As f is bi-Lipschitz on the vertex set,

p3 can further be decomposed as p03p
00
3 , where f .p003/ is disjoint from XT

b
and p03 is of

uniformly bounded length. Then the intersection of the reduction of f .p/ with XT
b

in
TT is Œ1T ; b

k
T
�, up to cancellation/concatenation with a subpath of f .p2p

0
3/, which is of

uniformly bounded length.

4. Building quasi-flats

In this section, we will build quasi-flats in AF N . The first proposition is quite technical:
Exceptionally, in the proof of this proposition, we will assume that the reader is familiar
with the stable train tracks of [4].

Proposition 4.1. Let † be a compact surface with one boundary component, and fix a
basepoint on the boundary giving an identification �1† D FN . Let b 2 FN be the homo-
topy class of the boundary loop, let �0 2 Aut.FN / be the automorphism induced by a
pseudo-Anosov element of Mod.†/, and let Œ�0� be its outer automorphism class. Then,
there exists a basis � of FN and a representative � of Œ�0� fixing b, such that:

(1) The basis � minimizes jbj� .

(2) For all A 2 AF N , there exists a constant MA such that

jŒ�r adk
b.A/�b � Œadk

b.A/�bj �MA

for all k; r 2 Z.

(3) � is the unique representative of Œ�0� that fixes b and acts on the Gromov bound-
ary @FN so that the endpoints of the infinite words b1 and b�1 are both
non-attracting fixed points.

Proof. In [4, Sections 1–3], it is shown that an automorphism �0 as above has a stable
train track representative f WG ! G on a graph G with exactly one indivisible Nielsen
path (iNP) � which, as the automorphism is geometric, forms a loop representing b based
at a point x 2 G that is fixed by f . Furthermore, � crosses every edge in G exactly twice
(see [4, Lemma 3.9] and the discussion in [4, Section 4]).

We identify �1.G; x/ with FN via a choice of maximal tree T in G together with an
orientation of the edges in G n T . Each edge-loop based at x determines a word in the
letters �˙1 whose length is the number of edges of G n T crossed by the loop. In partic-
ular, jbj� D 2N . Since b is the boundary of a surface of Euler characteristic 1 � N , this
tells us that � minimizes the length of b. We define � to be the automorphism induced by
f�W�1.G; x/! �1.G; x/.
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We now prove the second part with r � 0. There exists a legal loop l in G based
at x that crosses some edge exactly once (this is a variant of Francaviglia and Martino’s
sausage lemma [8, Lemma 3.14]). Any such loop represents a primitive element in FN .
As in [4, Section 2], we lift f to a map zf W zG ! zG on the universal cover that repres-
ents � (i.e., zf .gy/ D �.g/ zf .y/ for all y 2 zG). The map zf fixes a lift zx of our basepoint
x 2 G, and the axis of b (acting as a deck transformation of zG) contains zx. As the loop l
is based at x, its axis Axis zG.l/ in zG also contains zx. As l is legal and zx is fixed by zf ,
the axis of �r .l/ also contains zx for all r � 0. It follows that iterated images of l are
cyclically reduced, so that Œ�r .l/�b D 0 for all r � 0. For k 2 Z, the axis of adk

b.l/ is also
legal and contains the point bk zx, so that k � 1 � Œadk

b.l/�b � k C 1. As bk zx is also fixed
under zf , this implies that k � 1 � Œ�r adk

b.l/�b � k C 1 for all k 2 Z and r � 0. As the
map AF N ! Z induced by ŒA� 7! ŒA�b is 2-Lipschitz, we have

jŒ�r adk
b.A/�b � Œadk

b.A/�bj � jŒ�
r adk

b.A/�b � Œ�
r adk

b.l/�bj C jŒ�
r adk

b.l/�b � Œadk
b.l/�bj

C jŒadk
b.l/�b � Œadk

b.A/�bj

� 2dAF N
.A; hli/C 2C 2dAF N

.A; hli/ WD CA;

for all r � 0 and k 2 Z.
Note that any possible choices for representatives of Œ�0� fixing b differ by a power of

adb . If � is the representative chosen above, then as zf .bnzx/ D bnzx for all n 2 Z, both
ends of the axis of b in zG are non-attracting under the action of � on @FN . For k ¤ 0, one
end of the axis will be attracting and the other will be repelling under the action of adk

b�

on the boundary. This establishes (3).
To deal with the case where r < 0 in (2), we run the entire argument again for Œ�0�

�1.
This provides a representative  of Œ�0�

�1 fixing b, such that for all A 2 AF N there
exists a constant C 0A such that jŒ r adk

b.A/�b � Œadk
b.A/�bj � C

0
A for all k 2 Z and r � 0.

Note that although you might be working with a different basis � 0 on which b is minimal
length, the projections AF N ! Z are coarsely equivalent by Proposition 3.7. Further-
more, this is the unique representative of Œ�0�

�1 fixing b such that b1 and b�1 are
non-attracting under @ . This implies that  D ��1, so we can finish part (2) by taking
MA WD max¹CA; C

0
Aº.

We finally have all of the tools that we need to prove Theorem C, which we restate for
the reader’s convenience.

Theorem 4.2. Let † be a compact surface with one boundary component, fix an iden-
tification �1† D FN , let b 2 FN be the homotopy class of the boundary loop, let
� 2 Aut.FN / be the automorphism induced by a pseudo-Anosov element of Mod.†/,
letƒD h�; adbi < Aut.FN /, and note thatƒŠ Z2. Then, for every A 2AF N , the orbit
map � 7! �.A/ defines a quasi-isometric embedding ƒ Š Z2 ,! AF N .
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Proof. Note that it is enough to prove the result for one orbit. We may also replace � with
adk

b� without changingƒ, so we can assume that � and the basis � are as described in Pro-
position 4.1. Let s 2 � and letAD hsi. Then k � 1� Œadk

b.A/�
�
b
� kC 1 for all k 2Z. We

define a map OF N !Z as follows: For each conjugacy class ŒB� of a free factor, we pick
a closest point Œ��j .ŒA�/ in the Œ��-orbit of ŒA�. This assignment ŒB� 7! j is Lipschitz [3],
and by composing it with the natural projection AF N ! OF N , we obtain a Lipschitz
map RWAF N ! Z which is invariant under Inn.FN /. It follows from Theorem 3.6 that
the map Œ���

b
�RWAF N ! Z2 is also Lipschitz, and we claim that B 7! �R.B/adŒB�b

b
.A/

gives a Lipschitz retraction of AF N onto the A-orbit of ƒ D h�; adbi. To see this, note
that R.�j adk

b.A// D j for all j; k 2 Z, and

k � 1 �MA � Œ�
j adk

b.A/�b � k C 1CMA;

where MA is the constant provided by Proposition 4.1.

Corollary 4.3. For N � 2, the Aut free factor complex AF N is not Gromov-hyperbolic.

Proof. This follows immediately from the theorem and the fact that for everyN � 2 there
is a compact surface with one boundary component that has Euler characteristic 1 � N
and admits pseudo-Anosov diffeomorphisms. For N even, this is an orientable surface of
genus N=2, while for N odd we must take the connected sum of an orientable surface of
genus .N � 1/=2 with a projective plane [18].

5. Problem list

We end the paper with a list of open problems.
Our results extend the list of automorphisms that are known to have undistorted

orbits in AF N : Bestvina and Feighn [3] proved that this is true for fully irreducible
automorphisms, and we have added inner automorphisms adb given by filling elements.

Question 1. Which cyclic subgroups of Aut.FN / have undistorted orbits in AF N ? Is
every orbit of a cyclic subgroup either finite or undistorted?

One can ask about other abelian subgroups of Aut.FN /, or more ambitiously, about
more general quasi-flats.

Question 2. Which abelian subgroups of Aut.FN / have undistorted orbits in AF N ?

Question 3. Are there any quasi-flats of rank 3, that is (possibly non-equivariant)
quasi-isometric embeddings of Z3 into AF N ?

We find it unlikely that there should be an action of Z3 with quasi-isometric orbits.
The image of any Z3 Š ƒ < Aut.FN / in Out.FN / contains a copy of Z2; as we saw
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in the introduction, this implies that ƒ has a finite orbit in OF N , and therefore a sub-
group of finite index in ƒ fixes some ŒA� 2 OF N . So if there were a free action of Z3

on AF N with quasi-isometrically embedded orbits, then there would be such an orbit in
the fibre over a point in OF N . It does seem possible, however, that there are Z2 sub-
groups with undistorted orbits in such a fibre: Candidates can be obtained by replacing the
pseudo-Anosov � in Theorem C with a partial pseudo-Anosov supported on a subsurface
containing the boundary of †. In this case, h�; adbi Š Z2 does not fix an obvious free
factor, but does fix the conjugacy class of a free factor. It is not clear whether the orbits of
such subgroups are undistorted or not.

The quasi-flats in AF N constructed in this paper come in families where each pair of
quasi-flats coarsely share a common line: If b is the boundary word for a surface †, then
independent pseudo-Anosov homeomorphisms of † will give distinct quasi-flats, each
pair of which will have bounded neighbourhoods whose intersection is a quasi-line that is
a bounded neighbourhood of an hadbi-orbit. This observation allows us to construct many
more non-equivariant quasi-isometric embeddings Z2 ,!AF N by piecing together half-
flats and parallel strips from the various equivariant flats coarsely containing hadbi-orbits.
This pattern of intersections shows that the families of quasi-flats that we currently have
cannot be used to define a relative hyperbolic structure on AF N . (We refer to [19] for
the definition of such a structure.) But our lack of knowledge about quasi-flats in general
means that we cannot answer the following question.

Question 4. Is AF N relatively hyperbolic? If not, is it thick in the sense of [1]?

We have seen that if a compact surface † has one boundary component, then every
isomorphism �1.†/ Š FN gives rise to a family of quasi-flats that coarsely intersect in
a quasi-line. If such families account for all quasi-flats in AF N , then, in the spirit of
Dowdall and Taylor’s co-surface graph [7], one might hope to obtain a hyperbolic space
by coning them off.

Definition 5.1 (An Aut version of the co-surface graph). Let ACN be the graph obtained
from AF N by adding a new edge between two points A and B if there exists a surface †
with one boundary component such that both A and B are tethered subsurface subgroups
of † (subsurfaces with an embedded arc to the basepoint, which is on the boundary).

Dowdall and Taylor proved that the co-surface graph of Out.FN / is hyperbolic.
Following their lead, we can ask the same question about the Aut version.

Question 5. Is ACN Gromov-hyperbolic?
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