
Groups Geom. Dyn. 19 (2025), 495–503
DOI 10.4171/GGD/885

© 2025 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

First-order model theory and Kaplansky’s stable
finiteness conjecture for surjunctive groups

Tullio Ceccherini-Silberstein, Michel Coornaert, and Xuan Kien Phung

Abstract. Using algebraic geometry methods, the third author proved that the group ring of a
surjunctive group with coefficients in a field is always stably finite. In other words, every group
satisfying Gottschalk’s conjecture also satisfies Kaplansky’s stable finiteness conjecture. Here, we
present a proof of this result based on the first-order model theory.

To Slava Grigorchuk on his 70th birthday

1. Introduction

A group G is called surjunctive if, for any finite set A, every injective G-equivariant map
� WAG ! AG which is continuous with respect to the prodiscrete topology on AG is sur-
jective (see Section 2 for more precise definitions). Since every injective self-mapping of
a finite set is surjective, it is clear that all finite groups are surjunctive. More generally,
Gromov [13] and Weiss [22] proved that every sofic group is surjunctive. A conjecture
going back to Gottschalk [12] is that every group is surjunctive. Although Gottschalk’s
conjecture is believed to be false by several experts, no example of a non-surjunctive
group, not even of a non-sofic group, has been found up to now.

A ring R is said to be stably finite if, for any integer d � 1, every one-sided invert-
ible square matrix of order d with entries in R is two-sided invertible. Kaplansky [15,
p. 122], [14, Problem 23] proved, using techniques from the theory of operator algebras,
that the group ring KŒG� is stably finite for any group G and any field K of charac-
teristic 0. Kaplansky also asked whether this property remains true for fields of positive
characteristic. The claim that KŒG� is stably finite for any group G and any field K is
known as “Kaplansky’s stable finiteness conjecture”. Elek and Szabó [10, Corollary 4.7]
proved that every sofic group satisfies Kaplansky’s stable finiteness conjecture (see also [4,
Corollary 1.4], [1, Corollary 7.7], and [2, Corollary 1.9]).
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In [21, Theorem B], the third author of the present paper obtained the following
result as a consequence of a generalization of Kaplansky’s direct finiteness conjecture
for algebraic cellular automata.

Theorem 1.1. Let G be a surjunctive group and let K be a field. Then the group ring
KŒG� is stably finite.

Observe that Theorem 1.1, combined with the theorem of Gromov and Weiss on the
surjunctivity of sofic groups, yields the theorem of Elek and Szabó on the stable finiteness
of group rings of sofic groups with coefficients in arbitrary fields.

Several alternative proofs of Theorem 1.1 are known (see Remark 4.3). The goal of
the present note is to provide a proof relying on model theory. Our proof does not make
use of Kaplansky’s result on the stable finiteness of group rings in characteristic 0.

2. Background material

2.1. Cellular automata and Gottschalk’s conjecture (see [6, Chapter 1])

LetG be a group and let A be a set. Consider the set AG consisting of all maps xWG! A.
A cellular automaton over the group G and the alphabet A is a map � WAG ! AG satisfy-
ing the following property: there exist a finite subset S � G and a map �WAS ! A such
that

.�.x//.g/ D �..x ı Lg�1/jS / (2.1)

for all x 2 AG and g 2G, where Lg�1 WG!G denotes the left multiplication by g�1 and
.x ı Lg�1/jS denotes the restriction of x ı Lg�1 to S .

The prodiscrete uniform structure on AG is the product uniform structure on AG

obtained by taking the uniform discrete structure on every factor A of AG D
Q

g2G A.
The prodiscrete topology on AG is the topology associated with the prodiscrete uniform
structure on AG . The prodiscrete topology is also the product topology obtained by taking
the discrete topology on every factor ofAG . EquipAG with the left action ofG defined by
.g; x/ 7! x ıLg�1 for all g 2 G and x 2 AG . A map � WAG ! AG is a cellular automaton
if and only if it is G-equivariant and uniformly continuous with respect to the prodiscrete
uniform structure on AG [6, Theorem 1.9.1]. In the case when A is a finite set, a map
� WAG ! AG is a cellular automaton if and only if it isG-equivariant and continuous with
respect to the prodiscrete topology on AG (this is the celebrated Curtis–Hedlund–Lyndon
theorem, cf. [6, Theorem 1.8.1]). Thus, Gottschalk’s conjecture amounts to saying that,
for any group G and any finite set A, every injective cellular automaton � WAG ! AG is
surjective.

2.2. Stably finite rings (see [16, Section 1.B])

All rings are assumed to be associative and unital. The zero element of a ring is denoted
by 0 and its unital element is denoted by 1.
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A ring R is called directly finite if ab D 1 implies ba D 1 for all a; b 2 R. If K is a
field and V is a vector space over K, then the endomorphism ring of V is directly finite
if and only if V is finite-dimensional. A ring R is called stably finite if the ring Matd .R/
of d � d matrices with entries in R is directly finite for every integer d � 1. Every stably
finite ring R is directly finite since the ring Mat1.R/ is isomorphic to R. All finite rings,
all commutative rings, all fields, all division rings, all one-sided Noetherian rings, and all
unit-regular rings are stably finite (and therefore directly finite). There exist directly finite
rings that are not stably finite (see, for instance, [17, Exercise 1.18]).

2.3. Group rings (see [19])

Let G be a group and let K be a field. The set KG , which consists of all maps ˛WG ! K,
has a natural structure of a vector space over K. The support of ˛ 2 KG is the subset
of G consisting of all g 2 G such that ˛.g/ 6D 0. Let KŒG� denote the vector subspace of
KG consisting of all ˛ 2 KŒG� having finite support. The convolution product ˛ˇ of two
elements ˛; ˇ 2 KŒG� is defined by

.˛ˇ/.g/ WD
X

h1;h22G
h1h2Dg

˛.h1/ˇ.h2/

for all g 2 G. Equipped with the convolution product, the vector space KŒG� is a K-
algebra. For g 2 G, consider the element ıg 2 KŒG� defined by ıg.g/D 1 and ıg.h/D 0

for all h 2 G n ¹gº. Then ı1G
D 1 2 KŒG�. As ıgg 0 D ıgıg 0 for all g; g0 2 G, we deduce

that the map g 7! ıg defines a group embedding of G into the group of units of KŒG�.
We have ˛ D

P
g2G ˛.g/ıg for all ˛ 2 KŒG�, so that the family .ıg/g2G is a vector basis

for KŒG�.
The group ring ofG with coefficients inK is the ring underlying theK-algebraKŒG�.

2.4. Linear cellular automata and stable finiteness of group rings (see [4],
[6, Chapter 8])

Let K be a field and let V be a vector space over K. The set V G has a natural product
structure of a vector space over K. A cellular automaton � W V G ! V G is called a linear
cellular automaton if � is a K-linear map. The stable finiteness of group rings admits the
following interpretation in terms of linear cellular automata.

Theorem 2.1. Let G be a group and let K be a field. Then the ring KŒG� is stably finite
if and only if, for any finite-dimensional vector space V over K, every injective linear
cellular automaton � WV G ! V G is surjective.

Proof. See [6, Corollary 8.15.6].
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2.5. Model theory of algebraically closed fields (see [18], [13, Section 5])

Two fields are called elementary equivalent if they satisfy the same first-order sentences
(i.e., first-order formulae without free variables in the language of rings). Isomorphic fields
are always elementary equivalent, but the converse does not hold in general. For example,
the algebraic closure Q of Q and the field C of complex numbers are not isomorphic
since Q is countable while C is uncountable. However, the fields Q and C are elementary
equivalent by the Lefschetz principle whose general formulation is as follows.

Theorem 2.2 (Lefschetz principle). Any two algebraically closed fields of the same
characteristic are elementary equivalent.

Proof. This is a classical result in model theory which can be rephrased by saying that
the theory of algebraically closed fields of a fixed characteristic is complete (see [18,
Proposition 2.2.5 and Theorem 2.2.6]).

The Lefschetz principle is one of the key ingredients in our proof. We shall also make
use of the following.

Theorem 2.3. Let be a first-order sentence in the language of rings which is satisfied by
some (and therefore any) algebraically closed field of characteristic 0. Then there exists
an integer N such that  is satisfied by any algebraically closed field of characteristic
p � N .

Proof. This is (iii)) (v) in [18, Corollary 2.2.10].

3. Proof of Theorem 1.1

Let us first establish some auxiliary results.

Lemma 3.1. Let G be a group, d � 1 an integer, and S � G a finite subset. Then there
exists a first-order sentence  d;S in the language of rings such that a field K satisfies
 d;S if and only if there exist two matrices A;B 2 Matd .KŒG�/ such that

(1) the support of each entry of A and B is contained in S ;

(2) AB D 1 and BA 6D 1.

Proof. Since d and S are fixed, we can quantify over d � d matrices in Matd .KŒG�/
whose support of each entry is contained in S by quantifying over the coefficients of every
entry of the matrix. Consequently, the existence of two matrices A;B 2Matd .KŒG�/ sat-
isfying (1) and (2) can be expressed by a 2d2jS j-variables first-order sentence  d;S in the
language of rings, depending only on the group multiplication table of the elements in S .
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For the sake of completeness, we give below an explicit formula for  d;S . We rep-
resent the entries at the position .i; j / of the matrices A and B by

P
s2S xi;j;ss andP

s2S yi;j;ss, respectively. For 1 � i; j � d , and g 2 S2 D ¹st W s; t 2 Sº � G, let

P.i; j; g/ WD

dX
kD1

X
s;t2S
stDg

xi;k;syk;j;t and Q.i; j; g/ WD

dX
kD1

X
s;t2S
stDg

yi;k;sxk;j;t :

Let D WD ¹.i; i; 1G/ W 1 � i � dº. Then the properties AB D 1 and BA D 1 can be,
respectively, expressed by the first-order formulae P and Q, where

P D

 ^
.i;i;1G/2D

P.i; i; 1G/ D 1

!
^

 ^
g2S2;.i;j;g/…D

P.i; j; g/ D 0

!

Q D

 ^
.i;i;1G/2D

Q.i; i; 1G/ D 1

!
^

 ^
g2S2;.i;j;g/…D

Q.i; j; g/ D 0

!
:

Hence, we can take  d;S WD 9 xi;j;s; yi;j;s .1 � i; j � d; s 2 S/; P ^ :Q.

Lemma 3.2. Let G be a group and suppose that K and L are elementary equivalent
fields. Then KŒG� is stably finite if and only if LŒG� is stably finite.

Proof. As K and L play symmetric roles, it suffices to show that if KŒG� is not stably
finite then LŒG� is not stably finite. So, let us assume that KŒG� is not stably finite. This
means that there exist an integer d � 1 and two square matrices A and B of order d
with entries in KŒG� such that AB D 1 and BA 6D 1. If S � G is a finite subset contain-
ing the support of each entry of A and B , the field K satisfies the sentence  d;S given
by Lemma 3.1. Since K and L are elementary equivalent by our hypothesis, the sen-
tence  d;S is also satisfied by the field L. Consequently, the group ring LŒG� is not stably
finite either.

The following result follows from Theorem 2.1 and [20, Theorem 6.3].

Lemma 3.3. Let G be a group and suppose that the group ring KŒG� is stably finite for
every finite field K. Then the group ring KŒG� is stably finite for any field K.

Proof. We divide the proof into four cases.

Case 1. The field K is the algebraic closure of the field Fp WD Z=pZ for some prime p.
For every integer n� 1, letKn denote the subfield ofK consisting of all roots of the poly-
nomial XpnŠ

� X . In other words, denoting by �WK ! K the Frobenius automorphism,
Kn is the subfield of K consisting of all fixed points of �nŠ. We have Kn � KnC1 for all
n � 1 and K D

S
n�1 Kn. Moreover, Kn is a finite field (of cardinality pnŠ) for every

n � 1. Let A and B be square matrices of order d with entries inKŒG� such that AB D 1.
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Then there exists n0 � 1 such that all entries of A and B are in Kn0 ŒG�. Since Kn0 ŒG� is
stably finite by our hypothesis, we deduce that BA D 1. This shows that KŒG� is stably
finite.

Case 2. The field K is algebraically closed of characteristic p > 0. This follows from
Case 1, Lemma 3.2, and Theorem 2.2.

Case 3. The field K is algebraically closed of characteristic 0. Suppose by contradiction
that KŒG� is not stably finite. This means that K satisfies the sentence  d;S given by
Lemma 3.1 for some integer d � 1 and some finite subset S � G. By applying Theo-
rem 2.3, we deduce that there exists an integer N � 1 such that  d;S is satisfied by any
algebraically closed field of characteristic p � N . This implies that LŒG� is not stably
finite whenever L is an algebraically closed field of characteristic p � N , in contradiction
with Case 2.

Case 4. The field K is arbitrary. Let K denote the algebraic closure of K. Then KŒG� is
stably finite by Case 2 and Case 3. As KŒG� is a subring of KŒG�, we deduce that KŒG�
is itself stably finite.

Remark 3.4. We could also deduce Case 3 from the theorem of Kaplansky men-
tioned above asserting that KŒG� is stably finite for any group G and any field K of
characteristic 0.

Proof of Theorem 1.1. Suppose first that the fieldK is finite. Let V be a finite-dimensional
vector space overK. Then V is finite (of cardinality jV j D jKjdim.V /). SinceG is surjunc-
tive, every injective cellular automaton � W V G ! V G is surjective. In particular, every
injective linear cellular automaton � W V G ! V G is surjective. Therefore, KŒG� is stably
finite by Theorem 2.1.

By applying Lemma 3.3, we conclude that KŒG� is stably finite for any field K.

4. Final remarks

Remark 4.1. Following [6, Definition 8.14.1], we say that a group G is L-surjunctive if,
for any field K and any finite-dimensional vector space V over K, every injective linear
cellular automaton � W V G ! V G is surjective. The following definition was introduced
by the third author in [20]. A group G is called linearly surjunctive if for every finite-
dimensional vector space A over a finite field K, all injective linear cellular automata
� WAG ! AG are surjective. Every L-surjunctive group is obviously linearly surjunctive.
The converse (cf. [20, Corollary 7.3]) is also true by Lemma 3.3 and Theorem 2.1. Thus,
a group is L-surjunctive if and only if it is linearly surjunctive. Every surjunctive group
is clearly linearly surjunctive, since every finite-dimensional vector space over a finite
field is finite, but there might exist linearly surjunctive groups that are not surjunctive.
Observe that the hypothesis that G is linearly surjunctive is sufficient in the first part of
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the proof of Theorem 1.1. Thus, the conclusion of Theorem 1.1 remains valid for all lin-
early surjunctive groups. From Theorem 2.1 and the discussion above, we deduce that the
following conditions are equivalent for a group G: (i) G is linearly surjunctive; (ii) G is
L-surjunctive; and (iii) G satisfies Kaplansky’s stable finiteness conjecture.

Remark 4.2. Kaplansky’s direct finiteness conjecture asserts that the ringKŒG� is directly
finite for any group G and any field K. Since stable finiteness implies direct finiteness,
Kaplansky’s direct finiteness conjecture is a weakening of Kaplansky’s stable finiteness
conjecture. In [9, Theorem 2.2], Dykema and Juschenko have shown that, for any field K
and any groupG, the ringKŒG� is stably finite if and only if the ringKŒG �H� is directly
finite for every finite group H . It follows that Kaplansky’s direct finiteness conjecture is,
in fact, equivalent to Kaplansky’s stable finiteness conjecture.

Remark 4.3. In [3, p. 10], using the fact that every field embeds in an ultraproduct of finite
fields (an observation credited to Pestov), the authors prove that, given a groupG, the ring
KŒG� is directly finite for any field K as soon as KŒG� is directly finite for any finite
fieldK. They then deduce thatKŒG� is directly finite for any surjunctive groupG and any
field K. As every virtually surjunctive group is surjunctive (see [7, Exercise 3.26]), this
last result, combined with the result of Dykema and Juschenko mentioned in Remark 4.2,
implies Theorem 1.1. Recently, Bradford and Fournier-Facio [2, Corollary 3.25] gave
another proof of Theorem 1.1. Note that their proof makes use of Kaplansky’s result on
the stable finiteness of group rings in characteristic 0. Other alternative proofs for The-
orem 1.1 have been privately communicated to us by Benjamin Steinberg and Andreas
Thom.

Remark 4.4. There are also three famous conjectures attributed to Kaplansky about the
structure of group rings of torsion-free groups: the unit conjecture, the zero-divisor conjec-
ture, and the idempotents conjecture. Kaplansky’s unit (resp. zero-divisor, resp. idempo-
tent) conjecture asserts that, for every torsion-free groupG and any fieldK, the ringKŒG�
has no non-trivial units (resp. no zero-divisors, resp. no non-trivial idempotents). It is well
known that if KŒG� has no non-trivial units then it has no zero-divisors, and that if KŒG�
has no zero-divisors then it has no non-trivial idempotents. On the other hand, if a ring R
has no non-trivial idempotents, then it is directly finite (observe that if a; b 2 R satisfy
ab D 1, then ba is an idempotent). Thus, any torsion-free group satisfying Kaplansky’s
idempotent conjecture also satisfies Kaplansky’s direct finiteness conjecture. Recently,
Gardam [11] disproved Kaplansky’s unit conjecture by exhibiting a non-trivial unit in
the group ring of the Promislow group with coefficients in F2 (the Promislow group is
the fundamental group of the unique flat 3-dimensional closed manifold which is a real
homology sphere). By replacing  d;S by a suitably chosen first-order sentence  S in the
language of rings and adapting the proofs of the three lemmas in the previous section, one
sees that, given a torsion-free group G, the ring KŒG� has no non-trivial units (resp. no
zero-divisors, resp. no non-trivial idempotents) for any field K as soon as this is true for
any finite field.
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Added in proof. In [8], we have extended our model-theoretic arguments to the monoid
setting and showed that monoid algebras of surjunctive monoids (cf. [5]) are stably finite.
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