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Substitutional subshifts and growth of groups

Volodymyr Nekrashevych

Abstract. We show how to use symbolic dynamics of Schreier graphs to embed the Grigorchuk
group into a simple torsion group of intermediate growth and to construct a continuum of growth
types of simple torsion groups.

To Rostyslav Ivanovych on the occasion of his 70th birthday

1. Introduction

The paper is a continuation of [15], where first examples of simple groups of intermediate
growth were constructed. It has two main goals: illustrating flexibility of the techniques
of [15, 16] and describing a different approach for defining and studying groups intro-
duced there. We use explicit symbolic substitutional systems and Schreier graphs rather
than generate groups by homeomorphisms of the Cantor set. The difference is mostly for-
mal (as there are standard ways of transforming one type of definitions into the other), but
one approach may be more convenient in some situations than the other.

As the first illustration, we show in Section 3 how to embed the Grigorchuk group [8]
into a simple torsion group of intermediate growth. A procedure of constructing a finitely
generated simple group from an expansive minimal action on a Cantor set is described
in [16]. The standard action of the Grigorchuk group on the Cantor set is equicontinuous
(hence not expansive) which is related to the fact that the Grigorchuk group is residually
finite. However, we can easily transform an action into an expansive one by “exploding”
points. This is, for example, the way how equicontinuous action of Z on the circle by
irrational rotation is transformed into an expansive Denjoy system (see [7, 17]). One can
perform the same trick with the Grigorchuk group and get a simple finitely generated
group containing the Grigorchuk group and sharing with it many finiteness properties.

We describe this construction in a symbolic way by describing how to construct the
Schreier graphs of the new group by substitutions. In fact, the Schreier graphs of the vir-
tually simple group containing the Grigorchuk group will coincide with the graphs of the
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action of the Grigorchuk group on the Cantor set, except that one of the generators (usu-
ally denoted by a in the literature) will be split into three elements with disjoint supports,
so that each edge labeled by a for the Grigorchuk group will be relabeled by one of three
different letters a0; a1; a2.

We give a direct proof (Theorem 3.5) that the new group is virtually simple just by
studying the Schreier graphs. The fact that the group is torsion and of intermediate growth
will follow from the results of [15].

L. Bartholdi and A. Erschler have proved in [1] that every group of locally sub-
exponential growth can be embedded into a 2-generated group of sub-exponential growth.
It would be interesting to know if every such group can be embedded into a simple group
of intermediate growth.

Section 4 contains our second result, showing that there is a continuum of pairwise
different growth types among finitely generated simple groups (Theorem 4.4). We con-
struct a family of groups G˛ generated by 6 elements such that each group in the family
has a simple subgroup of index 16, and there is a continuum of growth types of groups
in the family. The idea of the proof is similar to the analogous result of R. Grigorchuk
in [10] for the class of finitely generated groups. But it has to use a different approach to
defining groups, since the approach in [10] is based on defining group actions on rooted
trees, which necessarily leads to residually finite groups.

Our result is the first explicit example of uncountably many growth types of simple
groups. It was shown in [14] that there is a continuum of pairwise non-quasi-isometric
finitely generated groups that are simple (among many other properties). Examples of infi-
nite sets of pairwise non-quasi-isometric simple finitely presented groups are constructed
in [5, 18].

2. Groups defined by Schreier graphs

2.1. Graphs of actions

Let S be a finite set. An S -labeled directed graph � is given by the set of vertices V ,
the set of edges (arrows) E, the source and range maps s; r W E ! V , and a labeling
map � W E ! S . We will usually drop the word “directed” when talking about S -labeled
graphs.

The graph is perfectly labeled if for every v 2 V and every h 2 S there exists a unique
e1 2 E such that s.e1/ D v and �.e1/ D h, and a unique e2 2 E such that r.e2/ D v and
�.e2/ D h.

Note that a morphism between two S -labeled graphs �1 D .V1; E1; s; r; �/ and �2 D
.V2; E2; s; r; �/ is a pair of maps � W V1! V2; � W E1! E2 such that s.�.e// D �.s.e//,
r.�.e//D �.r.e//, and �.�.e//D �.e/ for every e 2E1. The morphism is an isomorphism
if the maps � W V1! V2 and � W E1! E2 are bijections. A morphism is a covering if it is



Substitutional subshifts and growth of groups 507

surjective, and for every v 2 V1 the map � induces a bijection from s�1.v/ to s�1.�.v//
and from r�1.v/ to r�1.�.v//.

Note that if �1 and �2 are perfectly labeled and (weakly) connected, then every mor-
phism between them is a covering. Moreover, for any two perfectly labeled connected
graphs �1 and �2 and every pair of vertices vi 2 �i , there exists at most one morphism
� W �1! �2 such that �.v1/ D v2. All graphs considered in our paper will be connected.

All our actions are from the left.
If � is perfectly labeled, then every h 2 S defines a permutation V ! V by the condi-

tion h.v/ D r.e/, where e is the unique edge such that s.e/ D v and �.e/ D h. The group
generated by these permutations is called the group defined by � . We usually identify the
elements of S with the corresponding permutations of V . Conversely, for every group gen-
erated by a finite set S of permutations of a set V , we can define the corresponding graph
of the action with the set of vertices V , set of edges E D S � V , and maps s.s; v/ D v,
r.s; v/ D s.v/, �.s; v/ D s.

For a graph � , the combinatorial distance between two vertices v1; v2 is the small-
est number of edges in a sequence e1; e2; : : : ; en such that v1 2 ¹s.e1/; r.e1/º, v2 2
¹s.en/; r.en/º, and ¹s.ei /; r.ei /º \ ¹s.eiC1/; r.eiC1/º ¤ ;. In other words, it is the length
of the shortest path connecting v1 to v2 if we disregard the orientation of the edges.

A rooted graph is a graph with a marked vertex called the root. A morphism of two
rooted graphs is a morphism mapping the root to the root. We have already mentioned that
two rooted perfectly labeled graphs have at most one morphism between them.

Let GS be the set of rooted perfectly S -labeled connected graphs. Denote byBv.R/ the
ball of radius R with center v. Introduce a metric on GS by defining the distance between
two rooted graphs .�1; v1/, .�2; v2/ to be 2�R, where R is the largest radius such that the
rooted graphs .Bv1.R/;v1/ and .Bv2.R/;v2/ are isomorphic (as rooted S -labeled directed
graphs). This metric induces a natural topology on GS . An equivalent definition of GS is
as the Chabauty space of all subgroups of the free group FS generated by S . Namely,
a rooted perfectly S -labeled graph .�; v/ is in a bijective correspondence with the sub-
group of FS consisting of products s1s2 � � � sn 2 FS such that the corresponding product
s1s2 � � � sn of permutations of V fixes v. (The graph .�; v/ is reconstructed as the Schreier
graph of the cosets modulo the subgroup.) The topology on GS is then the same as the
topology on the space of subgroups of FS induced from the direct product topology on
the set 2FS of subsets of FS (see, e.g., [6]).

Suppose that G is the group defined by a perfectly S -labeled connected graph � . If �
is another perfectly S -labeled connected graph such that there is a morphism � W � ! �,
then the action of G on � pushes forward by � to an action on �. In particular, the
group generated by � is a quotient of the group generated by � (and the corresponding
epimorphism is induced by the tautological map on S ).

The hull of a perfectly labeled graph � is the closure of the set ¹.�; v/ W v 2 V º in
the space GS , where V is the set of vertices of � . It is easy to see that if a graph � is
an element of the hull of a graph � , then the group defined by � is a quotient of the
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group defined by � (also with the epimorphism induced by the tautological map on S ). In
particular, if �1 and �2 have the same hulls, then they define the same groups.

Another easy observation, which we will often use, is that if g 2 G is an element of
length n (with respect to the generating set S ) of the group defined by � , then the image
g.v/ of a vertex v 2 � belongs to Bv.n/ and depends only on the isomorphism class of
the rooted graph .Bv.n/; v/. Namely, if gD h1h2 � � �hn for hi 2 S [ S�1, then g.v/ is the
end of the unique sequence v D vnC1; vn; vn�1; : : : ; v1 of vertices of .Bv.n/; v/, where
for every i , if hi 2 S , then vi is the end of the arrow labeled by hi starting in viC1, and if
hi 2 S

�1, then vi is the beginning of the arrow labeled by h�1i ending in viC1.

2.2. Linear graphs

Most of the graphs defining group in our paper will be of a very special form.
We say that a bi-infinite sequencew D .An/n2Z of non-empty subsets of S is admissi-

ble ifAn \AnC1 D; for every n 2Z. We imagine such a sequence as a graph with the set
of vertices Z in which for every n there are jAnj edges connecting n to nC 1 labeled by
the elements of An. We also add loops at n labeled by the elements of S n .An [ An�1/.
Then the graph �w associated with the sequence w is perfectly S -labeled. Note that all
the edges are not directed in our case. (More precisely, we assume that h D h�1 for every
h 2 S , so that each edge e is equal to its inverse.)

We also consider finite or one-sided infinite sequences satisfying the same condition
An \ AnC1 D ;. We usually call such sequences words or segments (imagining them in
the latter case as subgraphs of a graph �w defined by an infinite sequence w D .An/n2Z).

For a segment I D .A1;A2; : : : ;An/, the segment I�1 is the segment .An; : : : ;A2;A1/
obtained by writing the word in the opposite order. A sub-segment (or a subword) of I is
a segment of the form .Ai ; AiC1; : : : ; AiCk/.

For a set W of finite or infinite (one-sided or two-sided) admissible sequences, we
define the subshift generated by W as the set �W of all sequences .An/n2Z such that every
finite segment .Ai ; AiC1; : : : ; AiCk/ is a segment of an element of W .

Suppose that w is an admissible sequence. Then the action of an element h 2 S on the
set of vertices Z of �w is given by

h.n/ D

8̂̂<̂
:̂
nC 1 if h 2 An;

n � 1 if h 2 An�1;

n otherwise.

Note that the element h has order 2 if h 2
S
n2Z An and 1 otherwise. Denote by Gw the

group defined by the corresponding perfectly labeled graph, that is, the group of permu-
tations of Z generated by the permutations defined by the above formula. It is a subgroup
of the wobbling group on Z, see [12], that is, the group of permutations ˛ W Z! Z such
that supj˛.n/ � nj <1.

We assume that �w is a rooted graph with the root 0 2 Z. The hull of �w can be
described as the set of rooted graphs �u for all sequences u belonging to the subshift
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generated by w and by the sequence w�1 written in the opposite direction, that is, to the
set of all sequences u such that every finite subword of u is a subword of w or of w�1.
Equivalently, it is the closure of the union of the orbits of w and w�1 under the two-sided
shift. If the sets of finite subwords of w and of w�1 are equal, then the hull is equal to the
subshift generated by w. (This will be the case in all our examples.)

Example 2.1. Take S D ¹a;bº, and letwD .� � � ¹aº¹bº¹aº¹bº � � � /. ThenGw is the infinite
dihedral group. The subshift generated by w has two elements.

Example 2.2. Consider S D ¹a; b; cº and the Markov chain w D .¹snº/n2Z, where si is
chosen at random with probability 1/2 from the two possibilities in S n ¹si�1º. Then Gw
is isomorphic with probability 1 to the free product C2 � C2 � C2, since every element of
the free product will appear as a subword of w with probability 1. In other words, with
probability 1 the subshift generated by w is the set of all sequences in the Markov chain.

On the other hand, the group Gw is amenable for a wide class of sequences w.

Definition 2.3. Note that a sequence .an/n2Z is repetitive if for every finite segment
.ai ; aiC1; : : : ; aiCn/ there exists a constant Cn such that for every k 2 Z there exists
j 2 Z such that jj � kj < Cn and .ai ; aiC1; : : : ; aiCn/ D .aj ; ajC1; : : : ; ajCn/. We say
that it is linearly repetitive if there exists a constant L such that Cn � Ln for all n � 1.

In other words, a sequence is repetitive if every finite subword appears in it infinitely
often with bounded gaps between consecutive appearances. If the length of the gaps is
bounded by a linear function of the length of the subword, then the sequence is called
linearly repetitive.

A subshift (i.e., a closed shift-invariant subset of the space of sequences) is called min-
imal if the orbit of each of its elements is dense. It is a classical fact that a sequence is
repetitive if and only if it generates a minimal subshift.

We say that a subshift �w is linearly repetitive, if w is linearly repetitive. It is easy to
check that this does not depend on the choice of a particular sequence w generating the
subshift.

The following is a direct corollary of the main result of [12].

Theorem 2.4. If w D .An/n2Z 2 .2
S /Z is a repetitive admissible sequence, then Gw is

amenable.

2.3. Substitutions

We will construct admissible sequences of non-empty subsets of S using the following
construction.

We start with a set X0 of initial segments, a set K of segments called connectors, and
define inductively sets Xn of the nth generation segments by representing each element
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x 2 Xn as a concatenation x D x"11 e1x
"2
2 e2 � � � ek�1x

"k
k

, where each xi is an element of a
set Xm for m < n (where m may depend on xi ), ei 2 K, and "i is either nothing or �1,
denoting the operation of writing a sequence in the opposite direction. The number k and
the elements xi , ei , "i depend on x. A representation of x as a concatenation of previously
defined segments is called sometimes a substitution.

The subshift generated by the sequence .Xn/n�0 of sets of segments is defined as the
set of bi-infinite graphs �w such that every segment of �w is a sub-segment of a segment
belonging toXn for some n. If the subshift is minimal (i.e., if every graph �w belonging to
it is repetitive), then the group defined by any element �w of the subshift does not depend
on the choice of �w .

Example 2.5. Let S D ¹a; b; c; dº. Choose a single initial segment ¹aº. Let the set of
connectors beK D ¹¹b; cº; ¹b; dº; ¹c; dºº. Define the sets Xn D ¹Inº consisting of single
segments In by the following substitution rule:

InC1 D

8̂̂<̂
:̂
In¹b; cºIn if n � 1 .mod 3/;

In¹b; dºIn if n � 2 .mod 3/;

In¹c; dºIn if n � 3 .mod 3/:

The group defined by this sequence (i.e., by any graph � such that every segment of � is a
sub-segment of one of the segments In) is the Grigorchuk group [8]. See more about this
example in Section 3.

Example 2.6. Take S D ¹ai ; bi ; ci ; di W i D 0; 1; 2; 3º, the initial segments I0, I1 consist-
ing of single vertices (i.e., empty words), connectors e0 D ¹a0; b0; c0º, e1 D ¹a1; b2; c1º,
e2 D ¹a2; b2; c2º, and e3kCi for k > 0 equal to ¹bi ; ciº for k � 0 .mod 3/, ¹bi ; diº for
k � 1 .mod 3/, ¹ci ; diº for k � 2 .mod 3/. Define the segments In for n � 2 by the
substitution:

In D I
�1
n�2en�2I

�1
n�1:

The group defined by these segments is the group of intermediate growth analyzed in [15,
Section 8].

The following two propositions are classical (see, e.g., [4, Proposition 1.4.6]).

Proposition 2.7. LetK be a finite set of segments, and let .Xn/n�0 be a sequence of finite
sets of segments such that each segment x 2 XnC1 is of the form x1e1x2e2 � � � emx�1xmx
for xi 2 Xn and ei 2 K. Suppose that for every n there exists m � n such that every
segment z 2 Xm contains every segment x 2 Xn. Then the subshift � defined by the setS
nXn is minimal.

Proof. If I is any sub-segment of an element of � , then, by definition of � , it is a sub-
segment of a segment x 2 Xn for some n. Let m � n be such that every segment y 2 Xm
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contains x. By definition, every element of � is of the form � � � e�1x0e1x1e2 � � � for some
sequences xi 2 Xm and ei 2 K. Then the distance between any two consecutive copies
of x in every w 2 � will be less than twice the maximum of length of elements ofXm plus
the maximum of lengths of elements of K. It follows that every w 2 � is repetitive.

Proposition 2.8. Suppose that in the conditions of Proposition 2.7, the numbers jm � nj
and mx are uniformly bounded. Then the subshift generated by the union of the sets Xn is
linearly repetitive.

Proof. Note that after replacing Xn by the Xn [ XnK (where K is the set of connec-
tors), we may assume that the segments in XnC1 are obtained just by concatenation of the
elements of Xn.

After passing to a subsequence of .Xn/n�0, we may assume that m D nC 1. Let Ln
be the maximal length of an element ofXn. Then the length of every element ofXnC1 is at
least Ln and at most CLn for some fixed C not depending on n, since jm� nj andmx are
uniformly bounded. It follows that the ratio of lengths of any two elements of XnC1 [Xn
belongs to an interval .C�12 ; C2/ for some constant C2 > 1.

Let v be a sub-segment of an element of the subshift � generated by the sequence
.Xn/n�0. Let n be the smallest number such that v is a sub-segment of a segment x1x2 for
x1; x2 2 Xn such that x1x2 is a segment of an element of � . Then the length of v is not
greater than 2Ln. On the other hand, the length of v cannot be smaller than the length of
the shortest element of Xn�1. It follows that the ratio of the lengths of v and any element
of Xn belongs to an interval .C�13 ; C3/ for a constant C3 > 1 not depending on v and n.
Then the second condition of the proposition implies that the gaps between isomorphic
copies of v in an element of � have length bounded above by C4jvj for a constant C4 not
depending on v.

2.4. Groups of intermediate growth

If G is a group generated by a finite set S , then the associated growth function is the
number 
G.n/ D 
G;S .n/ of elements of G that can be written as products s1s2 � � � sk for
si 2 S [ S

�1 and k � n. The growth rate is the equivalence class of 
G;S .n/ with respect
to the equivalence relation identifying two non-decreasing functions f1; f2 if there exists
a constant C > 1 such that

f1.n/ � f2.Cn/ and f2.n/ � f1.Cn/

for all n � 1. The growth rate does not depend on the choice of the generating set.

Theorem 2.9. Let � � .2S /Z be a linearly repetitive infinite subshift consisting of admis-
sible sequences and containing three sequences .Bn/n2Z, .Cn/n2Z, .Dn/n2Z such that
Bn D B�n D Cn D C�n DDn DD�n for all n � 1 and B0 D ¹c; dº;C0 D ¹b; dº;D0 D
¹b; cº for some pairwise distinct b; c; d 2 S .
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Then G� is an infinite torsion group and its growth function 
.R/ is bounded from
above by eCn

˛
for some C > 1 and 0 < ˛ < 1.

Proof. The proof is the same as the proof of Theorem 6.6 of [15], where only linear repet-
itivity and the structure of the graphs .Bn/n2Z, .Cn/n2Z, and .Dn/n2Z and their smallest
common covering graph „ are used. The growth estimate, improved compared to the
original one, is proved in [3].

Example 2.10. Theorem 2.9 is applicable to the first Grigorchuk group, defined in Exam-
ple 2.5, since the corresponding graphs are linearly repetitive by Proposition 2.8, and
the corresponding subshift contains I�11 ¹b; cºI1; I

�1
1 ¹d; bºI1, and I�11 ¹c; dºI1, where

I1 D ¹aº¹b; cº¹aº¹d; bº¹aº¹b; cº¹aº � � � is the inductive limit of the segments In with
respect to the embeddings of In to the suffix of InC1. We see that Theorem 2.9 is a
generalization of the main result of [9].

Example 2.11. The same arguments show that the group defined in Example 2.6 is also
of intermediate growth.

3. Embedding Grigorchuk group into a simple group

The first Grigorchuk group G is the group generated by the transformations of ¹0; 1º1

generated by the following recurrently defined permutations a; b; c; d :

a.0w/ D 1w; a.1w/ D 0w;

b.0w/ D 0a.w/; b.1w/ D 1c.w/;

c.0w/ D 0a.w/; b.1w/ D 1d.w/;

d.0w/ D 0w; d.1w/ D 1b.w/:

See an equivalent definition in [8].
The following recurrent description of the orbital graphs of the action of G on ¹0; 1º1

is well known (see [2]). The precise description of the space of orbital graphs is from [19].

Proposition 3.1. Let � be the subshift generated by the following segments:

I1 D ¹aº; InC1 D InenIn;

where

en D

8̂̂<̂
:̂
¹b; cº for n � 1 .mod 3/;

¹b; dº for n � 2 .mod 3/;

¹c; dº for n � 3 .mod 3/:

Then the group defined by � is isomorphic to the Grigorchuk group G (for the same
generators a; b; c; d ).
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There is a surjective equivariant continuous mapˆ W �!¹0;1º1, which is one-to-one
except for the set of graphs isomorphic (as non-rooted graphs) to one of the three graphs
I�11 enI1, where I1 is the direct limit of the segments In with respect to the embedding
of In into the left half of InC1. The map ˆ maps all three rooted graphs I�11 enI1 to
111 � � � , so that ˆ is three-to-one on the exceptional set.

The orbital graph of 111 � � � is one-ended chain described by the sequence I1.

We see that Example 2.5 defines the orbital graphs of the Grigorchuk group. We refer
the readers to [19] for the proof of the proposition. Here, we will only describe the map ˆ
by labeling the vertices of In. Define I1 as the graph 1 a 0. Define then

InC1 D .In1/
en

.In0/�1;

where In1 and In0 are obtained from In by appending to the end of the names of their
vertices symbols 1 and 0, respectively. As usual, I�1 denotes reverting the orientation of
a segment I (and keeping the labels of the vertices and edges).

The new vertex-labeled graphs In are isomorphic to the graphs In from the proposi-
tion. (Note that In in the proposition are symmetric.)

It is checked by induction that the left endpoint of In is 11 � � � 1„ƒ‚…
n times

, its right endpoint is

11 � � � 1„ƒ‚…
n�1 times

0, and if v and u are two edges of In connected by an edge labeled by a genera-

tor s, then s.vw/ D uw for all w 2 ¹0; 1º1. The map ˆ is then the limit of the described
labeling.

The Grigorchuk group also acts on the set ¹0; 1º� of finite words (using the same defi-
nition as for the infinite sequences). The action preserves the structure of a rooted tree on
¹0; 1º� (where a vertex v is connected to vx for every x 2 ¹0; 1º). This implies that the
Grigorchuk group is residually finite.

Dynamically, the fact that the Grigorchuk group is residually finite corresponds to the
fact that its action on ¹0; 1º1 is equicontinuous. On the other hand, expansive actions
can be used to construct simple groups (see [16]). A standard trick to force expansivity is
“exploding” points of an orbit. For example, this is the way expansive Denjoy homeomor-
phisms of the Cantor set are obtained from equicontinuous actions by irrational rotations
on the circle (see [7, 17]).

We can perform the same trick with the Grigorchuk group. For example, we can split
the point 000 � � � in two by separating the sequences with an odd and an even number of
leading symbols 0 into two neighborhoods of the two copies of 000 � � �. After we propagate
this split along the G -orbit of 000 � � � , the Grigorchuk group will act on the new Cantor
set expansively. Then the corresponding alternating full group of the action, as defined
in [16], will be simple and finitely generated.

More explicitly, the new Cantor set X will be the set of all right-infinite sequences
x1x2 � � � over the alphabet ¹00; 01; 1º such that each length 2 subword xixiC1 belongs to
the set

¹0001; 0100; 011; 100; 101; 11º:
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Here, the symbol 00 “predicts” that there will be an even number of zeros (including itself)
before the first 1, while 01 “predicts” that the number of zeros will be odd.

The operation of erasing indices is then a continuous surjective map X ! ¹0; 1º1,
which is one-to-one except for the sequences w 2 ¹0; 1º1 containing only finitely many
symbols 1, which have two preimages.

The action of the Grigorchuk group on ¹0; 1º1 naturally lifts to the action on X given
by the rules

a.10xw/ D 01�x0xw; a.11w/ D 011w; a.0xw/ D 1w;

and

b.01�x0xw/ D 01a.0xw/; b.0110xw/ D 0xa.10xw/;

b.0111w/ D 00a.11w/; b.1w/ D 1c.w/;

c.01�x0xw/ D 01a.0xw/; c.0110xw/ D 0xa.10xw/;

c.0111w/ D 00a.11w/; c.1w/ D 1d.w/;

d.0xw/ D 0xw; d.1w/ D 1b.w/:

One can show that this action is expansive. The topological full group of the action is
generated by b; c; d , and the restrictions of a to three subsets of X corresponding to the
three possible values of the second coordinate of a sequence w 2 X:

100w
a0
 ! 0100w; 101w

a1
 ! 0001w; 11w

a2
 ! 011w:

Then, by [13, 16], the derived subgroup of the full group hb; c; d; a0; a1; a2i is sim-
ple. It has finite index in the full group, since the full group is generated by finitely many
elements of order 2.

Instead of proving the above statements, we will describe the full group yG anew as a
group defined by its orbital graphs, and prove that it is virtually simple directly, using only
the structure of its Schreier graphs (see Figure 1).
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The generating set of our group yG will be S D ¹a0; a1; a2; b; c; dº. Consider the
following initial segments:

I1 D ¹a2º¹b; cº¹a0º;

J1 D ¹a2º¹b; cº¹a1º;

and for n � 1 define

InC1 D JnenJ
�1
n ;

JnC1 D JnenI
�1
n ;

where the connector en is equal to ¹b;cº, ¹d;bº, ¹c;dº if n� 0;1;2 .mod 3/, respectively.
Note that In is symmetric for n � 2.

For example, we have

I2 D ¹a2º¹b; cº¹a1º¹d; bº¹a1º¹b; cº¹a2º; J2 D ¹a2º¹b; cº¹a1º¹d; bº¹a0º¹b; cº¹a2º:

We see that In and Jn for n� 0 start and end with ¹a2º¹b; cº and ¹b; cº¹a2º, and that each
of the edges ¹a0º and ¹a1º is surrounded by ¹d; bº on one side and ¹b; cº on the other.

Let � be the subshift generated by the set of segments In, Jn, and let yG be the group
it defines. Note that a0; a1; a2 commute (they are never neighbors) and that the subgroup
ha; b; c; d i � yG , where a D a0a1a2, has the same orbital graphs as the Grigorchuk group,
hence it is isomorphic to it.

For every n, each orbital graph �w is obtained by connecting infinitely many copies
of In and Jn by connectors e0; e1; e2 in some order. (Here, and in the sequel, by a “copy”
of an interval I we mean an isomorphic copy of I or I�1.) It follows from the description
of I1 and J1 that the decomposition into copies of I1 and J1 is unique. This in turn implies
that the decomposition of �w into the copies of In and Jn is unique for every n.

Let Hn, for n � 2, be the subgroup of elements g 2 yG satisfying the following
conditions:

(1) Each copy of In and Jn in �w is g-invariant.

(2) The element g commutes with isomorphisms between the copies of In and with
isomorphisms between copies of Jn (in both orientations).

(3) The action of g on a copy of In leaves both halves Jn�1; J�1n�1 of In invariant.

Denote by SJn the symmetric group on the set of vertices of Jn. It follows from the
definition that Hn is naturally identified with a subgroup of SJn � SJn�1 . Denote by AJn
the corresponding alternating subgroups.

Proposition 3.2. The group Hn is equal to SJn � SJn�1 for every n � 2.

Proof. Denote by HIn and HJn the intersections of Hn with ¹1º � SJn�1 and SJn � ¹1º,
respectively.
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It is easy to see that the element a0 and the commutators Œb; a0�; Œc; a0�; Œd; a0� belong
to HJ2 . It follows that HJ2 contains the symmetric group on the four vertices of the
sub-segment ¹d; bº¹a0º¹b; cº of J2. Taking commutators of the elements of this sym-
metric group with b; c; a1; a2, and taking into account that a0 2 HJ2 , we conclude that
HJ2 D SJ2 � ¹1º.

We have a1 2H2. Since the projection ofH2 onto SJ2 is surjective, it follows thatHI2
contains the action of a1 on the vertices of I2. Taking commutators with b; c; a2, we con-
clude that the elements of HI2 can permute the vertices of one half ¹a2º¹b; cº¹a1º of I2
by any permutation, that is, that HI2 D SJ1 . This finishes the proof for n D 2.

Suppose that we know that the proposition holds for n, and let us prove it for nC 1.
Note that the right end of Jn and the left end of J�1n are adjacent in �w to ¹enº only. Copies
of I�1n appear in �w only inside JnC1, and their right end (the left end of I�1n , respec-
tively) is adjacent only to en. Their left ends (the right ends of I�1n ) are the right ends
of JnC1, hence they are always adjacent to enC1. One of the letters b; c; d , write it as x,
belongs to en but does not belong to enC1. ThenHIn �HJnC1 and Œx;HIn ��HJnC1 . Tak-
ing commutators ofHJn with the group generated by Œx;HIn �, we show that the alternating
group of permutations of the vertices of JnC1 is contained inHJnC1 . ButHIn contains odd
permutations, hence HJnC1 D SJnC1 . It follows that HInC1 contains the group SJn , hence
HnC1 D SJnC1 � SJn .

We obviously have Hn < HnC1. Let H1 be the union of the subgroups Hn.

Proposition 3.3. The derived subgroup H 01 of H1 is simple and has index 2 in H1.

Proof. The derived subgroup of Hn is the direct product AJn � AJn�1 of alternating
groups of permutations of the vertices of Jn and Jn�1. It follows that H 01 is the union
of the subgroups AJn � AJn�1 . Let g 2 H 0n be an arbitrary non-trivial element. Let
.g1; g2/ 2 AJn � AJn�1 be the corresponding element of the direct product of alternat-
ing groups. Let .h1; h2/ be the element of AJnC1 � AJn representing g 2 HnC1. The set
of vertices of JnC1 is a union of a set in a bijection with the set of vertices of Jn and a
set in a bijection with the set of vertices of In. The permutation h1 acts by g1 on the first
set and by g2 on the second one. The permutation h2 acts by copies of g1 on two halves
of the set of vertices of InC1. Consequently, for allm� nC 2 both coordinates of g in the
direct product AJm � AJm�1 are non-trivial. Consequently, the normal closure of g in H 0m
is equal toH 0m. Hence, the normal closure of g inH 01 is the whole derived subgroupH 01.

If .k1; k2/ 2 .Z=2Z/2 is the parity of an element g of SJn � SJn�1 Š Hn, then the
parity of g as an element of SJnC1 � SJn Š HnC1 is .k1; k1/, since the permutation in the
second coordinate SJn�1 is copied twice as a permutation of the second half In of JnC1.
It follows that an element of SJn � SJn�1 Š Hn belongs to H 01 if and only if its first
coordinate is an even permutation. Consequently, ŒH1 W H 01� D 2. An element of H1
not belonging to H 01 is, for example, a2.
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Figure 2. Graphs J1 and „.

Denote by J1 the inductive limit of the segments Jn with respect to the embedding
of Jn to the left part of JnC1. Then J1 is a right-infinite chain. Let � be its left endpoint.
The subshift � contains the graphs ƒn D J�11 enJ1 for all n D 0; 1; 2, since J�1

k
enJk

are sub-segments of InC1 for all k < n. The smallest common cover of the graphsƒn, for
nD 0; 1; 2, is the graph„ obtained by taking four copies of J1 and connecting the copies
of � together by a Cayley graph of the Klein four-group ¹1; b; c; dº. The four copies of J1
in „ can be denoted .J1; x/ for x 2 ¹1; b; c; dº so that the left end of J1 in the copy
.J1; x/ is connected by an edge labeled by y to the left end of .J1; xy/. See Figure 2,
where J1 is shown above „.

Since „ covers the graphs ƒn, the group yG naturally acts on the set of vertices of „,
that is, „ is a Schreier graph of yG . In fact, „ is the Schreier graph of yG with respect to
the intersection of the stabilizers of the copies of the left end of J1 in the Schreier graphs
ƒn.

Proposition 3.4. An element g 2 yG belongs to H1 if and only if it leaves invariant the
subsets .J1; x/ of „.

Proof. If g 2 H1, then there exists n such that g 2 Hn. But then g leaves the copies of
the segment Jn; In invariant, hence it leaves also invariant the subsets .J1; x/ of„ which
are unions of such segments.

Conversely, suppose that g 2 yG leaves the subsets .J1; x/ invariant. Note that each
of the segments In; Jn is of the form Jn�2 � � � J

�1
n�2. It follows that in the decomposition

� � �X1ek1X2ek2 � � � of �w into the copies Xi of the segments In; Jn, the connectors eki
are surrounded by J�1n�2ekiJn�2. If the length of g is shorter than the length of Jn�2, then
any path describing the action of g on X D J�1n�2ekiJn�2 (if it is completely inside X )
can be lifted to a path in „ so that eki is covered by the Cayley graph of ¹1; b; c; dº (i.e.,
by the central part connecting the copies of J1). Since g leaves the parts .J1; h/ invari-
ant, the path will start and end in one half (Jn�2 or J�1n�2) of X . It follows that the points
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of �w do not cross the connectors eki under the action of g. Moreover, the action of g on
each copy Xi of the segments In; Jn will depend only on the isomorphism class of Xi . It
follows that g 2 H1.

Theorem 3.5. The group yG is virtually simple.

Proof. Let A D hH 01
yG
i be the normal closure of H 01 in yG . We will prove that it is a

simple subgroup of finite index.
Let us prove first that A has finite index. For a vertex v 2 J1 and an element g 2 yG ,

denote by �g.v/ the element of ¹1; b; c; dº such that the lift of the action of G to„ moves
.v; 1/ to .g.v/; �g.v//. We have �g.v/ D 1 for all but finitely many vertices of J1. We
have

�g1g2.v/ D �g1.g2.v//�g2.v/ (3.1)

for all g1; g2 2 yG and all vertices v.
Denote by �.g/ the product of the values of �g.v/ for all vertices of J1. It follows

from (3.1) and the fact that ¹1; b; c; dº is commutative, that � W yG ! ¹1; b; c; dº is a
homomorphism. It is also easy to check that �.b/ D b; �.c/ D c, and �.d/ D d , so � is
an epimorphism.

By Proposition 3.4, an element g 2 yG belongs to H1 if and only if �g.v/ D 1 for all
vertices v of J1. In particular, H1 < ker�.

It is checked directly that �Œa2;b�.v/ is equal to 1 for all vertices v except for two of
them (the left endpoint � of J1 and ba2.�/), where it is equal to b. Similarly, �Œa2;c� is
equal to c on two vertices and to 1 everywhere else. The group H 01 is 2-transitive on J1,
that is, for any two pairs .v1; v2/ and .w1; w2/ of different points of J1, there exists
h 2H 01 such that h.v1/D w1 and h.v2/D w2. (This follows from the description ofH 01
given above and the fact that the alternating groups An are 2-transitive for n � 4.) Con-
sequently, every element of ker � can be written as a product of an element of H1 and
elements of the form Œa2; b�

h and Œa2; c�h for h 2H 01. Note that Œa2; b�; Œa2; c� 2 A, since
a2 2 H

0
1. As ŒH1 W H 01� D 2, this implies that A is a subgroup of index at most 2 in

ker�. Consequently, A is a subgroup of finite index in yG .
Let us show that A is simple. Suppose that N C A is a non-trivial proper normal sub-

group of A. Let g 2N n ¹1º. The element g moves a vertex v of J�11 e1J1. There exists n
such that both v and g.v/ belong to the central segment J�1n e1Jn of J�11 e1J1, and the
distance from v to the boundary of J�1n e1Jn is greater than the length of g. We can find
an isomorphic copy of J�1n e1Jn inside Jm for some largem and an element h 2H 0m mov-
ing v but fixing pointwise all elements of the jgj-neighborhood of the boundary of Jm.
Then the commutator Œh; g� is non-trivial and belongs to H 0m. Since H 01 is simple, it
follows that N � H 01.

It remains to show that the normal closure of H 01 in yG is equal to the normal closure
of H 01 in A. The group H 01 is generated by the set of permutations g 2 yG such that the
hgi-orbits are of lengths 1 and 3, and g preserves the sets of vertices of the copies .J1; x/
of J1 in „. Moreover, for any D, we can take as a generating set a subset C of this set
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such that for every g 2 C every two hgi-orbits of length 3 are on distance at least D from
each other.

It follows from the arguments from the proof that A is a subgroup of finite index in yG
that a conjugate of an element of C by an element of yG is equal to a conjugate by an
element of A. Consequently, the group generated byH 01

A is equal to the group generated
by H 01

yG .

The intersection of G with the simple finite index subgroup of yG has finite index in G .
It is known that every subgroup of finite index in G has a subgroup isomorphic to G (see,
e.g., [11, Section 12]). Consequently, the simple finite index subgroup of yG contains an
isomorphic copy of the Grigorchuk group. So, we have embedded the Grigorchuk group
into a simple finitely generated torsion group of intermediate growth yG . Indeed, the group
yG is torsion and of intermediate growth by Theorem 2.9.

4. A continuum of growth types

We construct in this section, using the techniques of defining groups by their Schreier
graphs, a family of virtually simple groups containing continuum of pairwise different
growth types.

Our set of generators will be S D ¹a0; a1; a2; x; y; b; c; dº. We will use the same
notation

e1 D ¹b; cº; e2 D ¹d; bº; e3 D ¹c; dº

as for the Grigorchuk group and the virtually simple group yG .
Start with

I0 D ¹a0º¹a1º; J0 D ¹a0º¹a2º:

Let ˛ D .˛0; ˛1; : : :/ be a sequence of symbols � or non-trivial elements of the free
monoid ¹x; yº�. Define the sequence of pairs of segments, associated with ˛, by the
following rule.

If ˛n D � , then
InC1 D JnenJ

�1
n ;

JnC1 D Jn¹xºIn¹yºIn¹yºJ
�1
n :

If ˛n D t1t2 � � � tm 2 ¹x; yº�, then

InC1 D JnenJ
�1
n ;

JnC1 D JnenIn¹t1ºIn¹t2ºIn¹t3º � � � ¹tmºJ
�1
n :

Let �˛ be the subshift defined by the set of ¹In; Jnºn�0, and let G˛ be the group
defined by �˛ .

Note that since every two connectors en are disjoint, the subgroup ¹1; b; c; dº of G˛ is
isomorphic to the Klein four-group for every ˛.
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Proposition 4.1. The group G˛ is virtually simple for every sequence ˛. More precisely,
the derived subgroup G0˛ is simple and G˛=G0˛ Š .Z=2Z/

4.

Proof. For every n � 0, every element of the subshift �˛ is obtained by concatenating
isomorphic copies of the segments In, Jn using the connectors e1; e2; e3, ¹xº, and ¹yº. It
is easy to see that the decomposition into a concatenation of the copies of the segments I0
and J0 (and connectors between them) is unique. Since the segment InC1 is the only seg-
ment of the form JnenJ

�1
n , it follows by induction that the decomposition into copies

of In and Jn is unique for every n � 0.
Each segment In consists of two copies of Jn�1. Therefore, we get a canonical

partition of each graph � 2 �˛ into isomorphic copies of Jn and Jn�1.
Similarly to Section 3, denote for n � 1 by Hn the subgroup of all elements g 2 G˛

preserving the set of vertices of each copy of Jn and Jn�1 of the partition and commuting
with all isomorphisms between the copies of Jn and between the copies of Jn�1 (in both
orientations). The group Hn is naturally identified with a subgroup of the direct product
SJn � SJn�1 of symmetric groups on the sets of vertices of Jn and Jn�1. Denote by HJn
and HIn the intersections of Hn with SJn � ¹1º and ¹1º � SJn�1 .

Note that a1; Œa0; a1� generate a subgroup of G˛ isomorphic to S3, preserving the
vertices of each copy of I0, acting trivially on the copies of J0, and commuting with iso-
morphisms between the copies of I0. Similarly, a2; Œa0; a2� generate a subgroup of G˛
acting as the full symmetric group on the sets of vertices of the copies of J0.

Let us prove at first that Hn contains the direct product AJn � AJn�1 of the groups of
even permutations of the sets of vertices of Jn and Jn�1, that is, that HJn contains the
alternating group on Jn and HIn contains the alternating group on Jn�1. Let us prove this
by induction. Both the inductive step and the base case n D 1 will be proved at the same
time.

Let v1; v2; : : : ; vm be the vertices of In listed in the order they appear in the segment.
Then Hn contains the permutation h D .v1; v2/.vm�1; vm/ for n � 1 or the permutation
.v1; v2/ for n D 0, acting identically on the copies of Jn. Consider the commutator Œx; h�
if ˛n D � or the commutator Œb; h� if ˛n ¤ � . This commutator will be a cycle of length 3
on the set of vertices of JnC1 and will act identically on the vertices of InC1. Conjugat-
ing it by elements of HJn , by elements of HIn , and by x; y, b; c; d , we will get enough
3-cycles to generate AJnC1 � HJnC1 . The group HInC1 will contain HJn by the inductive
assumption (or by the fact that ha2; Œa0; a2�i is S3). This finishes the inductive argument.

Let h1 2 SJn ; h2 2 SJnC1 be arbitrary permutations. Since there are even numbers of
copies of Jn and Jn�1 in JnC1, they will induce an even permutation of the set of vertices
of JnC1. By the same argument, they will induce an even permutation of the set of vertices
of JnC2. It follows that the corresponding permutation belongs toAJnC2 �AJnC1 �HnC2.
Consequently, SJn � SJn�1 is contained in G˛ , hence Hn coincides with the whole group
SJn � SJn�1 .



Substitutional subshifts and growth of groups 521

Denote by H1 the union of the groups Hn. Note that we have shown that H1 is iso-
morphic to the direct limit of the direct products of the alternating groups AJn � AJn�1 ,
which implies that H1 is perfect.

Let J1 be the limit of Jn with respect to the embedding of Jn to the left end of JnC1.
It follows from the recursions defining the segments In and Jn that the subshift �˛ con-
tains the graphs J�11 zJ1 for each z 2 ¹¹xº; ¹yº; e1; e2; e3º, since the corresponding finite
segments J�1n zJn are sub-segments of Im and Jm for allm � nC 3. The same arguments
as in the proof of Proposition 3.4 show that an element g 2 G˛ belongs to H1 if and
only if it leaves invariant the sets of vertices of J1 and J�11 in the graphs J�11 zJ1 for
every z 2 ¹¹xº; ¹yº; e1; e2; e3º. Note that x, y, b, c, d generate a group K isomorphic
to .Z=2Z/4, as they commute with each other. Similarly to the proof of Theorem 3.5,
define �g.v/ for a vertex v of J1 to be the product h1h2h3 2 K of the elements h1 2 hxi,
h2 2 hyi, h3 2 ¹1; b; c; dº, where h1 is equal to x if v is moved by g from J1 to J�11
in J�11 ¹xºJ1 and to 1 otherwise, h2 is equal to y if v is moved by g from J1 to J�11
in J�11 ¹yºJ1 and to 1 otherwise, and h3 describes to which branch .J1; h/ the vertex v
is moved by g in the graph „ obtained by gluing the copies of J1 together along the
endpoint of J1 by the Cayley graph of ¹1; b; c; dº.

Then g 2 H1 if and only if �g is constant 1. Let �.g/ be the product of the values
of �g.v/ over all vertices v of J1. Then, by the same arguments as in the proof of The-
orem 3.5, � W G˛ ! K is an epimorphism and its kernel is equal to the normal closure
of H1 in G˛ (we are in a better situation here than for Theorem 3.5, since H 01 D H1
now).

The same argument as in the proof of Theorem 3.5 shows that for every non-trivial
element g 2 ker� the normal closure of g in ker� contains H1 and that the normal clo-
sure of H1 in ker� and in G˛ coincide, which proves that ker� is simple. Note that this
implies that ker� D G0˛ , since K is commutative.

Proposition 4.2. Let ˛ D .˛1; ˛2; : : :/ be a sequence such that ˛n D � for all n big
enough. Then there exist C > 1 and 0 < ˛ < 1 such that the growth of G˛ satisfies

G˛ .n/ � exp.Cn˛/ for all n � 1.

For every finite sequence .˛1; ˛2; : : : ; ˛k/ of symbols � and elements of ¹x; yº� and
for every R � 1, there exists n such that for every sequence

˛ D .˛1; ˛2; : : : ; ˛k ; �; �; : : : ; �„ ƒ‚ …
n times

; ˛kCnC1; ˛kCnC2; : : :/

the ball of radius R in the Cayley graph of G˛ is isomorphic to the ball of radius R of the
group G.˛1;˛2;:::;˛k ;�;�;�;:::/.

Proof. The first statement follows directly from Theorem 2.9.
Let us prove the second statement. For every .˛1; ˛2; : : : ; ˛k/ and R, there exists n

such that the segment Im; Jm defined by .˛1; ˛2; : : : ; ˛k ; �; �; : : :/ for m � k C n has
length more than R.
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Note that the set of segments of length R in ImC1 and JmC1 do not depend then on
the symbol ˛m. Consequently, for every

˛ D .˛1; ˛2; : : : ; ˛k ; �; �; : : : ; �„ ƒ‚ …
n times

; ˛kCnC1; ˛kCnC2; : : :/;

the set of segments of length R in the graphs belonging to �˛ coincides with the set of
segments of length R in the graphs belonging to �˛0 for ˛0 D .˛1; ˛2; : : : ; ˛k ; �; �; : : :/.
It follows that an equality g1 D g2 for products of length � R of the generators
x; y; b; c; d; a0; a1; a2 are true or false in G˛ and G˛0 at the same time, that is, the groups
G˛ and G˛0 have isomorphic balls of radius R in their Cayley graphs.

Proposition 4.3. For every finite sequence .˛1; ˛2; : : : ; ˛k�1/, there exists a natural num-
ber M such that for every N � 1 there exists a word w 2 ¹x; yº� such that for every
infinite sequence ˛ D .˛1; ˛2; : : : ; ˛k�1; w; ˛kC1; ˛kC2; : : :/, the growth of the group G˛
satisfies


G˛ .Mn/ � 2n

for all n D 1; : : : ; N .

Proof. Consider the segment Ik defined by .˛1; ˛2; : : : ; ˛k�1/, and let g be the product
of the labels along a simple path from the left to the right endpoints of Ik , so that g has
length equal to the length of Ik and moves it left end to the right end.

Let w 2 ¹x; yº� be a word containing all words v 2 ¹x; yº� of length � N as sub-
words. For every word v D t1t2 � � � tn 2 ¹x; yº

n, consider the corresponding element
gv D tng � tn�1g � � � t1g of G˛ for ˛ D .˛1; ˛2; : : : ; ˛k�1; w; ˛kC1; ˛kC2; : : :/.

Since w contains v D t1t2 � � � tn 2 ¹x; yº
n, the segment IkC1 will contain the sub-

segmentZv D Ik¹t1ºIk¹t2º � � � Ik¹tnº. The element gv D tng � tn�1g � � � t1g will move the
leftmost vertex of Zv to its rightmost vertex, and the length of gv is equal to the length
of Zv . Any other element gv0 for v0 2 ¹x; yº� of length � n will move the left end of Zv
to another vertex, since any geodesic path connecting the ends of Zv must have length n
and contain exactly the same edges t1; t2; : : : ; tn on the same places as in the geodesic
path corresponding to gv . It follows that all elements gv for v 2 ¹x; yºn, for n � N , are
pairwise different. There are 2n of them, and their length is n.jIkj C 1/. It follows that
M D jIkj C 1 and the chosen w will satisfy the conditions of the proposition.

Theorem 4.4. There exists a continuum of pairwise different growth types of simple
finitely generated groups.

Proof. After we proved Propositions 4.2 and 4.3, the proof of the theorem is similar to the
proof of Theorem 7.2 of [10].

Choose a sequence C1; C2; : : : of positive integers converging to infinity. We will
define for every sequence � D .r1; r2; : : :/ 2 ¹0; 1º1 a sequence ˛� such that there is a
continuum of different growth types among the groups G˛� . The sequence ˛� will be the
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limit of finite sequences ˛.r1;r2;:::;rn/ so that ˛.r1;r2;:::;rnC1/ is a continuation of ˛.r1;r2;:::;rn/.
At the same time, we will define a sequence R1; R2; : : : of positive integers.

Using Propositions 4.2 and 4.3, we can find R1, ˛0 D .�; �; : : : ; �/, and ˛1 D .w/ for
w 2 ¹x;yº�, such that if 
0.n/ is the growth ofG˛ for any ˛ beginning with ˛0, and 
1.n/
is the growth of G˛ for any ˛ beginning with ˛1, then we have


0.C1R1/ � 
1.R1/:

Suppose that we have definedRn and the sequences ˛v for all sequences v 2 ¹0;1ºn of
length n. Then by Propositions 4.2 and 4.3, there exists a number k, a word w 2 ¹x; yº�,
and a number RnC1 > Rn such that if 
0 is the growth function of any group G˛ , where ˛
starts with ˛v for v 2 ¹0; 1ºn followed by �; �; : : : ; �„ ƒ‚ …

k times

, and 
1 is the growth function of any

group G˛0 for ˛0 starting with ˛u for u 2 ¹0; 1ºn followed by w, then we have


0.CnC1RnC1/ � 
1.RnC1/:

This will give us an inductive definition of the groups G˛� for � 2 ¹0; 1º1 and of
the sequence Rn. Suppose now that �1; �2 2 ¹0; 1º1 are two sequences which differ
in infinitely many coordinates. Suppose that the growth functions 
i of G˛�i are equiv-
alent. Then there exists C > 1 such that 
2.R/ < 
1.CR/ and 
1.R/ < 
2.CR/ for
all R � 1. Since �1 and �2 are different in infinitely many coordinates, there exists n
such that Cn > C and the nth coordinates of �1 and �2 are different. Then we will have
either 
1.CnRn/ � 
2.Rn/ < 
1.CRn/ or 
2.CnRn/ � 
1.Rn/ < 
2.CRn/, which is a
contradiction.

It follows that the sets of groups with equivalent growth functions in the set of groups
¹G˛� W � 2 ¹0; 1º

1º are at most countable, hence we have a continuum of pairwise differ-
ent growth types in this set. Each group in this set is virtually simple by Proposition 4.1.
Since a finite index subgroup has the same growth type as the group, it follows that there
is a continuum of different growth types of simple finitely generated groups.

Funding. The author was supported by NSF grant DMS2204379.
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