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Entropy, ultralimits and the Poisson boundary

Elad Sayag and Yehuda Shalom

Abstract. In this paper, we introduce for a group G the notion of ultralimit of measure class
preserving actions of it, and show that its Furstenberg–Poisson boundaries can be obtained as an
ultralimit of actions on itself, when equipped with appropriately chosen measures. We use this result
in embarking on a systematic quantitative study of the basic question of how close to invariant one
can find measures on a G-space, particularly for the action of the group on itself. As applications,
we show that on amenable groups there are always “almost invariant measures” with respect to the
information-theoretic Kullback–Leibler divergence (and more generally, any f -divergence), mak-
ing use of the existence of measures with trivial boundary. More interestingly, for a free group F
and a symmetric measure � supported on its generators, one can compute explicitly the infimum
over all measures � on F of the Furstenberg entropy h�.F; �/. Somewhat surprisingly, while in the
case of the uniform measure on the generators the value is the same as the Furstenberg entropy of
the Furstenberg–Poisson boundary of the same measure �, in general it is the Furstenberg entropy
of the Furstenberg–Poisson boundary of a measure on F different from �.

Dedicated to Slava Grigorchuk on the occasion of his 70th birthday

1. Introduction

This paper has two main goals. The first is to introduce the problem of minimizing the
Furstenberg entropy for group actions. We relate this problem to amenability and bound-
ary actions. The second goal is to introduce the methods of ultralimits into ergodic theory
of group actions by providing a construction of the Furstenberg–Poisson boundary via
ultralimits. This construction sheds new light on known properties of the Furstenberg–
Poisson boundary (see in particular the ending paragraph of the introduction for a very
recent use of it in the non-commutative setting).

We use this construction and basic properties of ultralimits to establish the connection
between the problem of minimizing entropy to both amenability and boundary actions.
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60G10, 60J50, 82C41, 94A17 (secondary).
Keywords: Furstenberg–Poisson boundary, Furstenberg entropy, ultralimits, amenability.

https://creativecommons.org/licenses/by/4.0/


E. Sayag and Y. Shalom 526

1.1. Minimizing entropy problem

Many natural actions of discrete groupsG ÕX , both in the topological and in the ergodic
theoretic setting, admit no invariant probability measure. Basic examples to keep in mind
are the action of an infinite discrete group on itself, the action of the free group Fd
on the space @Fd of infinite reduced words1 and the action of SLn.Z/ on Pn�1R or on
SLn.R/=P.R/ for any parabolic subgroup2. One can ask the following informal basic
question:

How close to invariant can measures on X get?

The notion of Furstenberg entropy, which we now recall, enables one to formalize this
question.

A standard method of measuring distance between two measures is the Kullback–
Leibler (KL) divergence (see [7, Chapter 2]), which is an extremely important and well-
known information-theoretic notion. Recall that given two probability measures �; m
on X , their KL-divergence is defined by

DKL.mk�/ WD

Z
X

� ln
�
d�

dm

�
dm:

The KL-divergence is always non-negative, and it is zero exactly when � D m. The KL-
divergence is much more sensitive than the norm distance k� � mk and is (defined to
be) infinite if �; m are not in the same measure class; however, it can be infinite even if
they are. With the help of this notion, one can quantify the lack of invariance of a given
measure on X under an action of a group G. More specifically, fix a measure � on G
(whose support generates G), and consider the associated Furstenberg entropy for any
(quasi-invariant) probability measure � on X :

h�.X; �/ D h�.�/ WD
X
g2G

�.g/DKL.g� k �/ D
X
g2G

�.g/

Z
X

� ln
�
dg�1�

d�

�
d�:

We emphasize that we consider here the Furstenberg entropy of all probability measures �
and not necessarily �-stationary measures (i.e., � � � D �), as was previously done in the
literature. The Furstenberg entropy vanishes exactly for invariant measures and serves
as a natural quantification for non-invariance. One can also define a similar notion for
the whole family of the well-known information-theoretic “distance functions” called
f -divergence, which our results cover as well.

Our search for the most invariant measure(s) on X can now be formalized by defining

I�.X/ WD inf
�2M.X/

h�.X; �/:

1More generally, the action of a hyperbolic group on its Gromov boundary.
2More generally, the action of any discrete Zariski-dense subgroup of a real semi-simple Lie group

with no compact factors on a flag space. For the non-existence of invariant measure, see [28] or [12].
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Of course, one needs to be more precise here about the class M.X/ of measures � we
take the infimum over. Typically, it shall be a fixed measure class (consisting of all fully
supported measures when X is discrete). In the case of a topological action, we consider
the infimum to be over all the Borel measures on X and denote the result by I top

�
.X/. We

note that in this case, if X is compact then the infimum is achieved (see the discussion in
Subsection 8.2).

A basic fact (see Corollary 3.9) is that I�.X/ � I�.G/ for any G-space X , which
motivates our initial focus on the value of the latter.

These entropy-theoretic quantities give rise to many natural questions; let us state a
few of them.

Problem 1.1. What can be said about I�.X/? In particular:

• Find a method for calculating I�.X/ or I top
�
.X/ in various cases (such as the examples

at the beginning of the section).

• In the case of I top
�
.X/ what can be said about a minimizing measure? Is it unique?

(Somewhat surprisingly, one of our findings is that a minimizing measure need not be
�-stationary.)

• What can be said about actions for which I�.X/ D I�.G/ or I�.X/ D 0?

• In the cases of action of lattices on flag spaces, calculate I�.X/ for the canoni-
cal measure class (e.g., the Haar measure for the maximal compact subgroup) and
appropriate �’s. Is the infimum attained? Is it the same as I top

�
.X/?

This problem (especially the second one) arose naturally from an attempt to tackle
the well-known problem of dependence of the Liouville property on the finite symmetric
generating measure (see the discussion in Subsection 8.1).

In this paper, we are able to calculate I�.G/ for amenable groups and free groups.
The main tool is the new construction of the Furstenberg–Poisson boundary (Theo-

rem E).
For amenable groups, we use the existence of a Liouville measure on amenable groups

(see [17] or [23]) to conclude.

Theorem A (See Theorem 6.2). If G is amenable and � has finite support, then I�.G/D
0. Namely, on any amenable group there are KL-almost invariant measures.

It should be noted that the converse to this result is easy (and follows immediately from
Pinsker’s inequality [4, Theorem 4.19]). We will deduce from Theorem A an interesting
fixed point property for amenable groups acting on a certain distinguished topological
model of their Furstenberg–Poisson boundary (see Theorem 6.6) – as it turns out (see
Corollary 2.9) every countable group admits a canonical one. This theorem was proven
in [21] by entirely different method. Further study of the action on this canonical model
seems interesting, in particular seeking a converse to our result.

We now formulate our results regarding Fd – the free group on d generators.
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Theorem B (See Corollary 7.12). Let � be the symmetric uniform measure on the free
generators and their inverses. Then

I�.Fd / D
d � 1

d
ln.2d � 1/:

In fact, we can compute I�.Fd / for any measure � which is symmetric and supported
on the free generators and their inverses.

Theorem C (See Theorem 7.11). Let � be a symmetric measure on Fd supported on
the free generators and their inverses. Then there is a symmetric measure �, generally
different from �, supported on the generators and their inverses, with

I�.Fd / D h�.@Fd ; ��/;

where �� is the harmonic (hitting, stationary) measure for the �-random walk on the
standard topological boundary of @Fd .

An explicit formula for the measure �� and a complete description of the correspon-
dence � 7! � are given in Subsections 7.1 and 7.2, respectively.

More generally, one can use the well-known information-theoretic generalization
f -divergence in place of the KL-divergence. Namely, we introduce

h�;f .�/ D
X
g2G

�.g/Df .g� k �/

and a corresponding I�;f . Our results are formulated in this setting. For example, our
generalization of Theorem B states the following.

Theorem D (See Corollary 7.12). Let � be the symmetric uniform measure on the free
generators of Fd and their inverses. Then

I�;f .Fd / D
2d � 1

2d
f

�
1

2d � 1

�
C

1

2d
f .2d � 1/:

Another (simple, but important) ingredient in the proof of Theorems B, C and D
will be to give a general criterion3 (see Proposition 3.13) for a measure � to satisfy
h�;f .X; �/ D I�;f .X/.

3It is important to note that this criterion is only about entropy in a fixed measure class. Hence, it could
not be used for calculating I top

�;f
.X/ (see the discussion in Subsection 8.2).
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1.2. Furstenberg–Poisson boundary as an ultralimit

The Furstenberg–Poisson boundary B.G; �/ of a group G with a probability measure �
was first introduced by Furstenberg in the papers [10, 11] and since then it was studied
extensively (cf. [2, 13, 16, 17]).

We remind here that the Furstenberg–Poisson boundary is a probability space .B; �/
with a measurable group action G Õ B such that the measure is stationary, for example,
� � � D �.

In this paper, we give a new construction of the Furstenberg–Poisson boundary via
ultralimits. The objects of interest for us are probability spaces .X; �/ together with a
measurable G-action preserving the measure class.

Our approach toward defining ultralimits of such actions will be via ultralimits
of C �-algebras as in [15] (see Remark 4.22). More precisely, we define the ultra-
limit U limbig.Xi ; �i / of “uniformly bounded-quasi-invariant” G-spaces .Xi ; �i / (see
Definition 4.17).

Recall that given a G-space .X; �/, it admits a minimal measure preserving factor,
called the measurable Radon–Nikodym factor (RN for short). As we observe (see Propo-
sition 2.7), the measurable RN-factor always admits a canonical topological model (i.e.,
a realization on a compact metrizable space on which the group acts continuously). We
denote this space by .X; �/RN – it is the smallest model for which the Radon–Nikodym
derivatives dg�

d�
are continuous.

The RN factor of our large ultralimit space is denoted by U limRN.Xi ; �i /.
With this notation, we can state our new construction of the Furstenberg–Poisson

boundary as an ultralimit of the action of the group on itself (taken with a sequence of
“Abel” measures).

Theorem E (See Theorem 5.9). Let G be a discrete countable group, and � a generating
measure on G. Denote by �a D .1� a/

P1
nD0 a

n��n. Fix U an ultrafilter on
�
1
2
; 1
�

con-
verging to 1. Then U limRN.G; �a/ is a topological model for the Furstenberg–Poisson
boundary B.G;�/.

From this perspective, many classical claims on the Furstenberg–Poisson boundary
become clear:

(1) The maximality of the Furstenberg–Poisson boundary among stationary actions,
proved in [13]. Actually, our proof of Theorem E is by showing maximality for
our construction (see Proposition 5.7).

(2) The Kaimanovich–Vershik basic entropy formula (see [17], Corollary 5.13):
h�.B.G;�// D limn!1

H.��n/
n

.

(3) Weak containment of the quasi-regular-L2 representation in the regular represen-
tation of the group (see [18]).
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A novel aspect of Theorem E is that one can get quantitative results on the Furstenberg–
Poisson boundary relating it to the action of the group on itself (see Corollary 5.11) with-
out any assumption on the measure �. This is the main tool in the proof of Theorems A–D.
We remark (see Remark 5.12) that while it may be possible to prove Corollary 5.11 via
other more ad hoc methods, we believe that the tools of ultralimits could find use in var-
ious applications. The use of ultralimits in the sequel paper [24] allows us to handle the
topological case, in particular determining I top

�;f
.@Fd /.

Finally, we note that recently the ideas around Theorem E found another interesting
application. In the paper [8] by Das and Peterson, they introduce a Poisson boundary
in a non-commutative setting. They initiate entropy theory of non-commutative bound-
aries, and proved analogies of part of Kaimanovich–Vershik’s fundamental theorems
regarding entropy [17] while the rest are left open. Generalizing our approach to the non-
commutative setting, S. Zhou [27] recently completed the proof of those fundamental
theorems.

2. Preliminaries

2.1. G -spaces and Radon–Nikodym factor

Throughout this paper, G is a discrete countable group.

Definition 2.1. We introduce the following category of G-spaces:

• A QI (quasi-invariant) G-space is a probability space X D .X; �/ together with a
measurable action of G on X , so that � is quasi-invariant (i.e., g�; � are in the same
measure class).

• A factor map between QI G-spaces X;Y is a measurable mapping T W X ! Y which
is G-equivariant (e.g., T .gx/ D gT .x/ a.e.) and with T��X D �Y . One says Y is a
factor of X, and that X is an extension of Y.

• We say the T is a measure preserving extension if dg�Y
d�Y
ı T D dg�X

d�X
.

• We say X is BQI (bounded quasi-invariant) ifR�.g/D dg�
d�
2L1.X/ for any g 2G.

In this case, a majorant for X is a function M W G ! R with klnR�.g/k1 �M.g/.

Remark 2.2. We note that the conditions on an action are almost surely (G is count-
able, so one can assume the action is strict); we also do not assume our measure space is
complete (although one can always replace a space by its completion).

Sometimes, when we write QI G-space, we would not like to fix the probability
measure on X , only the measure class. This should not give rise to any confusion.

In this paper, we shall inherently need to work also with non-standard measure spaces,
that is, ones that are not countably separated. However, we will usually “reduce” the � -
algebra to a countably generated one. We then would like to replace the measure space



Entropy, ultralimits and the Poisson boundary 531

with the new � -algebra by a standard measure space. In general, this replacement will not
be by an isomorphism in the sense that there are inverse factors, but it will be in the sense
that there is an isomorphism of the L1 spaces.

In order to show that such isomorphism always comes from a factor map, we use the
following well-known lemma (see [22, Theorem 2.1]).

Lemma 2.3. Suppose � is a measure space, and A � L1.�/ is a separable sub-
C �-algebra. Consider the Gelfand dual X of A. Then there is a measurable mapping
� W �! X that induces the embedding A! L1.�/. Such a mapping � is unique up to
equality a.e.

If � is a QI G-space and A � L1.�/ is G-invariant, then � is a G-factor.

Definition 2.4. A topological model for a QI G-space X is a QI G-space Y D .Y; �/

together with a factor � W X ! Y such that:

(1) Y is a compact metrizable (equivalently compact Hausdorff and second count-
able) topological space with a continuous G-action; the � -algebra on Y is the
Borel � -algebra.

(2) � induces an isomorphism L1.Y/ Š L1.X/.

From Lemma 2.3, we see that if L1.X/ is separable with respect to the weak topol-
ogy (i.e., the � -algebra is generated by countably many sets), then X posses a topological
model. Moreover, all of them are isomorphic when considered as QI G-space factors
of X.

Let us recall the definition of Radon–Nikodym factor, which, using Lemma 2.3, is
easily seen to agree with the definition given in the introduction.

Definition 2.5. Let X D .X;†;�/ be a QIG-space. Its Radon–Nikodym factor is defined
to be the QI G-space which is a topological model of .X; †RN; �/ where †RN is the
� -algebra generated by

®
dg�
d�

ˇ̌
g 2 G

¯
.

The next definition and proposition formalize the observation that the classical Radon–
Nikodym factor has a canonical topological model. This is easily seen from the perspective
of C �-algebras.

Definition 2.6. An RN model of a BQI G-space X is a compact metrizable space X with
a Borel probability measure � and a continuous G-action on X such that:

• .X; �/ is isomorphic to X as BQI G-spaces.

• For all g 2 G, one has dg�
d�
2 C.X/.

Proposition 2.7. Let X be a BQI G-C �-space and consider its (measurable) RN fac-
tor XRN. Then it has a topological model which is an RN model. In fact, it has a canonical
such model XRN which is a continuous factor of all other RN models.
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Proof. Consider the closure of the algebra generated by all Radon–Nikodym derivatives
ARN WD C �

�
R�.g/ D

dg�
d�

ˇ̌
g 2 G

�
� L1.X/. Note that ARN is separable, and it is

G-invariant since g �R�.h/ D
R�.gh/
R�.g/

. Let XRN be its Gelfand dual. The space XRN is a
RN-model. Namely, it is a compact metrizable space with a continuous action of G and a
BQI Borel measure � such that dg�

d�
2 C.XRN/ Š ARN for all g 2 G.

By Lemma 2.3 applied to ARN � L
1.XRN/, we obtain a factor � W X ! XRN of

G-spaces. Via the map � , the space XRN is a topological model of XRN.
To show the universality ofXRN, let Y be a topological model of XRN which is an RN-

model. Consider the inclusions C.Y / � L1.Y / Š L1.XRN/ � L
1.X/. As for every

g 2 G, we have dg�
d�
2 C.Y /, we conclude ARN � C.Y /. This embedding induces a

continuous factor Y ! XRN.

Remark 2.8. Note thatXRN has the property that the RN-cocyle separates the points ofX .
This characterizes XRN among the RN models.

We finish this section with the following observation regarding the Furstenberg–
Poisson boundary.

Corollary 2.9. Let G be a discrete countable group. Then any BQI G-space which is
equal to its (measurable) RN-factor has a topological model which is RN and minimal
among such topological models.

In particular, this applies to the Furstenberg–Poisson boundary, hence the latter
admits a “canonical” topological model B.G;�/ for a generating measure �.

Proof. The first part is clear by Proposition 2.7. For the second, note that B.G; �/ is its
own measurable Radon–Nikodym factor. Indeed, the linear span of the RN-cocyle is dense
in L1, by [3, Lemma 2.2]. (This lemma is a trivial application of Hahn–Banach and the
fact that Poisson integral is an isomorphism on the Furstenberg–Poisson boundary.)

The interest in this model of the Furstenberg–Poisson boundary is illustrated in The-
orem 6.6, as it is shown that for amenable groups, and symmetric �, there is always a
unique fixed point there.

2.2. G -spaces in the language of C *-algebras

2.2.1. C *-algebras and probability spaces. A basic tool in our work will be com-
mutative C �-algebras. We review some basic notions from this theory that arise from
translating the relevant concepts of measure theory to algebra.

Notations and Recollections 2.10. Let A be a commutative C �-algebra with unit 1.

• AC denotes the positive elements of A.

• A positive functional/measure � is an element � 2 A� with �.AC/ � R�0.
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• If a measure � satisfies in addition that �.1/ D 1, we say � is a state/probability
measure.

• We say that a measure � is faithful if: 8a 2 AC W �.a/ D 0) a D 0.

• Consider the action of A on A� by .a � �/.b/ D �.ba/.
If a 2 AC and � is a measure, then so is a � �.
If � is a faithful measure, then we have a 2 A; a � � D 0) a D 0.

• For a general measure �, we have N� WD ¹a 2 A j �.a
�a/D 0º D ¹a 2 A j a � � D 0º.

Indeed, this follows from the Cauchy–Schwarz inequality for ha; bi� D �.b�a/.

• N� is an ideal of A and � induces a measure � on A
N�

which is faithful.
We call

�
A

N�
; �
�

the reduced version of .A; �/ and denote it by .A; �/red.

• We say that a measurem is bounded absolutely continuous with respect to a measure �
and denote it by m�b � iff there is c 2 AC with m D c � �.
In this case, we have that N� � Nm and hence m defines a measure on A

N�
.

• If � is faithful and m�b �, then there exists a unique c 2 AC with m D c � �. This
element c is called the Radon–Nikodym derivative. It is denoted by c D dm

d�
.

If in addition we have � �b m, then m is faithful and d�
dm
D
�
dm
d�

��1.

Now, we define the notion of probability space in the realm of C �-algebras.

Definition 2.11. The category of C �-probability spaces is defined as follows:

• A C �-probability space is a pair .A; �/ of a unital commutative C �-algebra together
with a faithful state �.

• A factor map T WB!A between C �-probability spaces B D .B;m/ and AD .A;�/

is a �-homomorphism T W B ! A such that T �� D m. We say that B is a factor of A

and A is an extension of B.

Note that in the definition of a factor, T is automatically an injection and thus an
isometry.

2.2.2. G -C *-spaces. LetA be a C �-algebra. By an action ofG onA, we will mean a left
action such that for any g 2G, the mapping a 7! g � aD ga is a C �-algebra isomorphism.
Such action induces an action G Õ A� by g� D g � � D .g�1/��. The set of states is G-
invariant. In addition, any finite measure � on G acts on A by: � � a D

P
g �.g/ �

ga.
Similarly, � acts on A�.

We now define the notion of G-space in the context of C �-algebras.

Definition 2.12. A BQI G-C �-space is a C �-probability space A D .A; �/ together with
an action of G on A such that for any g 2 G, we have g� �b �.

We will denote RA.g/ D R�.g/ WD
dg�
d�

, the Radon–Nikodym cocyle.
A majorant for A is a function M W G ! R such that kln.R�.g//k �M.g/.
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Remark 2.13. It is easy to see thatR�.gh/D gR�.h/ �R�.g/, soR� WG! A� is indeed
a cocyle.

Remark 2.14. Note that it is not always true that for any probability measure � on G, we
have � � � �b �. However, the following is true (and trivial).

Suppose G is a group that acts on a C �-algebra A and � is a state on A such that N�

is G-invariant. Then for any complex finite measure � on G, we have .� � �/.N�/ D 0

and thus � � � is well-defined state on .A; �/red, that agrees with � � �.
This observation will be used without mentioning in Subsection 4.3.

Definition 2.15. A factor p WB!A between two BQI G-C �-spaces A;B is a factor of
C �-probability spaces that is G-equivariant. We say that B is a factor of A and A is an
extension of B.

The factor p is called measure preserving extension/factor if p.RB.g// D RA.g/.

One can define RN-factor in this setting.

Definition 2.16. The Radon–Nikodym factor of a BQI G-C �-space A is the BQI G-
C �-space given by ARN D .ARN; �jARN/ where ARN D C �.R�.g/ j g 2 G/ � A is the
sub-C �-algebra generated by the Radon–Nikodym cocyle.

Note that ARN is G-invariant as gR�.h/ D
R�.gh/
R�.g/

, and also g�jARN �
b �jARN , so

indeed ARN is a BQI G-C �-space. The factor map p W ARN ! A is a measure preserving
extension, and if � WB!A is a measure preserving extension, then p factors through � .

We end this section by noting the relation between our definitions for G-spaces in the
algebraic and classical settings.

In one direction, let .X; �/ be a BQI G-space, then .L1.X/; �/ is a BQI G-C �-
probability space.

In the opposite direction, for a BQI G-C �-probability space .A; �/, Gelfand’s rep-
resentation theorem provides a compact Hausdorff space X with C.X/ Š A. The state �
defines a Borel measure onX . Moreover,X admits a natural continuousG-action and with
those, .X; �/ is a BQI G-space. Also, the Radon–Nikodym cocyle consists of continuous
functions. Note that when A is a separable C �-algebra, X is a RN-model.

3. f -divergence and entropy

Throughout this section, f denotes a convex function in .0;1/ with f .1/ D 0.
We denote by F.x; y/ WD yf

�
x
y

�
the corresponding homogeneous function in two

variables.
It is well known that F W .0;1/2 ! R is convex (e.g., see Lemma 3.2).
In this section, we define the notion of entropy based on the notion of f -divergence,

generalizing the Furstenberg entropy in the case of f .t/D t ln.t/, and establish a criterion
for a measure to minimize it.
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3.1. Definition of f -entropy

Recall the definition of f -divergence.

Definition 3.1 (f -divergence). Let �; m be two measures on a measurable space X in
the same measure class. We say that � has finite f -divergence with respect to m if
f
�
d�
dm

�
2 L1.m/ and define

Df .� k m/ WD

Z
X

f

�
d�

dm

�
dm:

For a more symmetric formulation, note that we can take any measure ! in the same
measure class then the f -divergence is finite iff F

�
d�
d!
; dm
d!

�
2 L1.!/, and we have

Df .� k m/ D

Z
X

F

�
d�

d!
;
dm

d!

�
d!:

The f -divergence does not change when we change f by a linear function vanishing at 1.
Thus, by the convexity, one can always assume f � 0. Hence, we define Df to be C1
when f

�
d�
dm

�
… L1.m/.

First, we have the following lemma.

Lemma 3.2. Let f W .0;1/! R be a convex function, then F.x; y/D yf
�
x
y

�
is convex.

Moreover, if f is strictly convex and x0; x1; y0; y1 2 .0;1/ and x0
y0
¤

x1
y1

, then F
restricted to the interval between .x0; y0/; .x1; y1/ is strictly convex.

Proof. Note that the convexity condition

F..1 � t /x0 C tx1; .1 � t /y0 C ty1/ � .1 � t /F .x0; y0/C tF .x1; y1/

is the same as f
�
.1�t/x0Ctx1
.1�t/y0Cty1

�
� f

�
x0
y0

�
�

.1�t/y0
..1�t/y0Cty1/

C f
�
x1
y1

�
�

ty1
..1�t/y0Cty1/

which
follows from the convexity of f . The moreover part follows too.

The previous lemma yields the following using (conditional) Jensen inequality.

Lemma 3.3. The f -divergence has the following properties:

(1) Df is a convex function in both variables and non-negative.

(2) For a measurable mapping � W X ! Y , we have

Df .��� k ��m/ � Df .� k m/:

(3) In the notations of item (2), ifDf .��� k ��m/DDf .� km/<1 and f is strictly
convex, then d�

dm
is Y -measurable; moreover, d�

dm
D

d���
d��m

ı � .

Definition 3.4. Let X be a QI G-space.
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• We denote by M.X/ the set of measures on X in the given measure class on it.

• Given a probability measure � onG, we define the Furstenberg �;f -entropy to be the
function h�;f WM.X/! Œ0;1� given by

h�;f .�/ D
X
g2G

�.g/Df .g� k �/:

• Define M�;f .X/ D h
�1
�;f
Œ0;1/.

Example 3.5. For f .t/D t ln.t/, the divergenceDf DDKL is the famous KL-divergence.
Notice that h�;f D h� is the Furstenberg entropy:

h�.�/ D
X
g2G

�.g/

Z
X

� ln
�
dg�1�

d�

�
d�:

An immediate application of Lemma 3.3 yields the following lemma.

Lemma 3.6. Let � be a probability measure on G.

(1) For any QI G-space X , the function h�;f is convex.

(2) Let � W .X; �/ ! .Y; m/ be a factor of QI G-spaces. Then h�;f .X; �/ �

h�;f .Y;m/. If � is a measure preserving extension, we have equality.

(3) Suppose � is generating and f is strictly convex. If � W .X; �/ ! .Y; m/ is a
factor such that h�;f .X; �/ D h�;f .Y; m/ <1, then � is a measure preserving
extension.

Definition 3.7. Let X be a QI G-space. Given a convex function f with f .1/ D 0 and a
probability measure � on G. We define the minimal entropy number by

I�;f .X/ D inf
�2M.X/

h�;f .X; �/:

Lemma 3.8. Let .X; �/ be a QI G-space, and � 2M.G/. Then h�;f .�/ � h�;f .� � �/.

Proof. Consider G � X with G acting only on the first coordinate. Then .G � X; � � �/
is measure preserving extension of .G; �/, and is an extension of .X; � � �/ via the action
map. It follows from item (2) of Lemma 3.6 that

h�;f .G; �/ D h�;f .G �X; � � �/ � h�;f .X; � � �/:

The lemma immediately implies that the action of a group on itself is largest in terms
of entropy.

Corollary 3.9. For any QI G-space X , we have I�;f .G/ � I�;f .X/.
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Let us show that for ergodic measure classes, a minimizing measure for entropy is
unique (if exists).

Lemma 3.10. Suppose f is a strictly convex function with f .1/ D 0 and � is a finitely
supported generating probability measure on G. If X is a QI G-space which is ergodic
(invariant sets are null or co-null), then h�;f is a strictly convex function on M�;f .X/.

In particular, there is at most one measure � 2 M�;f .X/ for which h�;f .X; �/ D
I�;f .X/.

Proof. Fix ! 2M.X/. Let �0; �1 2M�;f .X/ and �t D .1 � t /�0 C t�1. Note that as F
is convex,

h�;f .�t / D
X
g2G

�.g/

Z
X

F

�
dg�t

d!
;
d�t

d!

�
d!

�

X
g2G

�.g/

Z
X

.1 � t /F

�
dg�0

d!
;
d�0

d!

�
C tF

�
dg�1

d!
;
d�1

d!

�
d!

D .1 � t /h�;f .�0/C th�;f .�1/:

If one has equality h�;f .�t / D .1 � t /h�;f .�0/ C th�;f .�1/ < 1, then according to
Lemma 3.2 for any g 2 Supp.�/ we have a.e. dg�0

d�0
D

dg�1
d�1

. However, this yields that
d�0
d�1

is G-invariant (since � is generating) and using ergodicity we deduce �0 D �1. Thus,
h�;f is strictly convex.

The previous lemma implies that for infinite groups, the infimum defining I�;f .G/ is
not attained.

Corollary 3.11. Let f be a strictly convex function with f .1/ D 0 and � be a gen-
erating probability measure on G. Suppose that � is a probability measure on G with
I�;f .G/ D h�;f .�/ <1. Then G is finite and � is the normalized counting measure.

Proof. Since the right G-action is an automorphism of the (left) G-space G, Lemma 3.10
implies that � is right G-invariant, concluding the proof.

3.2. A criterion for minimizers of entropy

Our goal is to find a criterion for a measure on a QI G-space X to have minimal entropy
h�;f . We stress again that we consider only measures in the measure class given on X .

In this subsection, we assume in addition that f is smooth. Recall we denoted
F.x; y/ D yf

�
x
y

�
.

Proposition 3.12. Let .X; �/ be a BQI G-space. Then for any m 2M.X/ and g 2 G, we
have

Df .gm k m/ � Df .g� k �/C

Z
X

@F

@x

�
1;
dg�1�

d�

�
C
@F

@y

�
dg�

d�
; 1

�
d.m � �/:



E. Sayag and Y. Shalom 538

Proof. Using the convexity of F , we get the inequality F.v/ � F.u/CrF.u/ � .v � u/
for any v; u 2 .0;1/2. Fix ! 2 M.X/ (e.g., ! D �). Substituting v D

�
dgm
d!

; dm
d!

�
; u D�

dg�
d!
; d�
d!

�
, we have a.e

F

�
dgm

d!
;
dm

d!

�
� F

�
dg�

d!
;
d�

d!

�
C

�
rF

�
dg�

d!
;
d�

d!

�
;

�
dgm

d!
;
dm

d!

�
�

�
dg�

d!
;
d�

d!

��
D F

�
dg�

d!
;
d�

d!

�
C
@F

@x

�
dg�

d!
;
d�

d!

��
dg.m � �/

d!

�
C
@F

@y

�
dg�

d!
;
d�

d!

��
d.m � �/

d!

�
:

As both partial derivatives of F are homogeneous of degree 0 and � is BQI, all terms in
the above inequality are !-integrable. We conclude

Df .gm k m/ � Df .g� k �/C

Z
X

@F

@x

�
dg�

d!
;
d�

d!

�
dg.m � �/

C

Z
X

@F

@y

�
dg�

d!
;
d�

d!

�
d.m � �/:

Note that for p 2 X we have dg�
d�
.g � p/ D d�

dg�1�
.p/, and thusZ

X

@F

@x

�
dg�

d!
;
d�

d!

�
dg.m � �/C

Z
X

@F

@y

�
dg�

d!
;
d�

d!

�
d.m � �/

D

Z
X

@F

@x

�
dg�

d�
.p/; 1

�
dg.m � �/.p/C

Z
X

@F

@y

�
dg�

d�
.p/; 1

�
d.m � �/.p/

D

Z
X

@F

@x

�
dg�

d�
.g � p/; 1

�
d.m � �/.p/C

Z
X

@F

@y

�
dg�

d�
; 1

�
d.m � �/

D

Z
X

�
@F

@x

�
1;
dg�1�

d�

�
C
@F

@y

�
dg�

d�
; 1

��
d.m � �/:

This proves the desired inequality.

Proposition 3.13. Let .X; �/ be a BQI G-space and � is a finitely supported measure
on G. Then h�;f .�/ D I�;f .X/ iff the function on X

‰�;f .�I �/ WD
X
g2G

�.g/

�
@F

@x

�
1;
dg�1�

d�

�
C
@F

@y

�
dg�

d�
; 1

��
is constant (a.e.).
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Proof. Take m 2M.X/. Using Proposition 3.12, we get

Df .gm k m/ � Df .g� k �/C

Z
X

@F

@x

�
1;
dg�1�

d�

�
C
@F

@y

�
dg�

d�
; 1

�
d.m � �/:

Averaging over �, we conclude

h�;f .m/ � h�;f .�/C

Z
X

‰�;f .�I x/ d.m � �/.x/:

If ‰�;f .�I �/ is constant, then we get h�;f .m/ � h�;f .�/ and thus h�;f .�/ D I�;f .X/.
To finish the proof, we return to the other direction of the implication in the first state-

ment. Suppose � is BQI measure such that h�;f .�/ D I�;f .X/. We will show ‰�;f .�; �/

is constant. Consider any measure m in the bounded measure class of � and define
'.t/ D h�;f ..1 � t /� C tm/. We claim that

'0.0/ D

Z
X

‰�;f .�I x/d.m � �/.x/: (3.1)

This would finish the proof. Indeed, the minimality of � implies that the above integral
is non-negative. As we can take any measure m in the bounded measure class, it follows
easily that ‰�;f .�I �/ must be constant a.e.

To verify (3.1), we observe that by definition

'.t/ D
X
g

�.g/

Z
X

F

�
.1 � t /

dg�

d�
C t

dgm

d�
; .1 � t /C t

dm

d�

�
d�:

Since � has finite support andm;g� are in the bounded measure class of �, we can differ-
entiate under the integral sign and (3.1) follows from a direct computation (as in the proof
of Proposition 3.12).

Example 3.14. For � symmetric and finitely supported, we have a simpler formula
for ‰�;f .

Denote ‰f .z/ D @F
@x
.1; z/C @F

@y
.z; 1/ D f 0

�
1
z

�
C f .z/ � zf 0.z/. Then we have

‰�;f .�I �/ D
X
g2G

�.g/‰f

�
dg�

d�

�
:

The next inequality will play a key role in our proof of Theorem 6.6.

Corollary 3.15. LetX be a QIG-space, � a probability measure onG with finite support
and � 2M.X/ a BQI measure. Then for any m 2M.X/,

h�.m/ �

Z
X

�
1 �

d� � �

d�
�

X
g2G

�.g/ ln
�
dg�1�

d�

��
dm:
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Proof. We have F.x; y/ D x ln
�
x
y

�
so that @F

@x
.1; z/ D � ln.z/C 1; @F

@y
.z; 1/ D �z. By

Proposition 3.12,

DKL.gm k m/ � DKL.g� k �/C

Z
X

@F

@x

�
1;
dg�1�

d�

�
C
@F

@y

�
dg�

d�
; 1

�
d.m � �/

D DKL.g
�1� k �/C

Z
X

�
� ln

�
dg�1�

d�

�
C 1 �

dg�

d�

�
d.m � �/

D

Z
X

�
1 �

dg�

d�
� ln

�
dg�1�

d�

��
dm:

Averaging over �, we obtain the desired inequality.

4. Ultralimits

In this section, we introduce an ultralimit for G-spaces via ultralimits of C �-algebras. We
begin by recalling the basic definition of ultralimit of Banach spaces and C �-algebras.

For this section, 	 is a set and U is an ultrafilter on 	. Recall that this means U � 2	

a collection of subsets of 	, satisfying:

(1) I 2 U;; … U.

(2) U 3 A � B ) B 2 U.

(3) A;B 2 U) A \ B 2 U.

(4) for any A � I , either A 2 U or I n A 2 U.

4.1. Ultralimit of a sequence

We recall the usual definition of ultralimit of a sequence.

Definition 4.1. Let 	 be a set and U be an ultrafilter on 	.

• We say that a property P holds for U-a.e. i iff ¹i 2 	 j P.i/ is trueº 2 U.

• Given a compact Hausdorff space X and an 	-sequence .ai /i2	 , an element a 2 X
is called the U-ultralimit of .ai / iff for every open neighborhood W of a, we have
ai 2 W for U-a.e. i .
We denote a D U limi2	 ai .

We have the following well-known lemma (for a reference, see [5]).

Lemma 4.2. Let X; Y be compact Hausdorff spaces. Let .ai /i2	; .bi /i2	 be sequences
in X . Then:

(1) An ultralimit of .ai / exists and is unique.
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(2) If ai D bi for U-a.e. i , then U lim ai D U lim bi .

(3) If f W X ! Y is a continuous function, then f .U lim ai / D U lim f .ai /.

Example 4.3. Considering the compact Hausdorff space R D R [ ¹˙1º; we have a
well-defined U-ultralimit of any sequence of real numbers, and we also can define the
U-ultralimit of any bounded sequence of complex numbers. This ultralimit is a complex
number.

By Lemma 4.2, the resulting map U limi2	 W `
1.	/! C is a C �-homomorphism.

4.2. Ultralimits of Banach spaces and C *-algebras

We recall the basic notion from [15].

Notation 4.4. Let Bi be normed linear spaces (over C) for i 2 	, and let U be an
ultrafilter on 	.

Define the following normed space:

V WD `1.	; ¹Biº/ WD
°
.vi /i2	 2

Y
i2	

Bi
ˇ̌

sup
i

kvikBi <1
±
; k.vi /kV D sup

i

kvikBi :

Consider the subspace: NU D ¹.vi / 2 V j U limkvikBi D 0º � V .

One has the following formula for the quotient norm.

Lemma 4.5. In the notations above:

• NU � V is a closed subspace.

• For all v D .vi / 2 V

inf
u2NU

kv C ukV D U limkvikBi :

Definition 4.6. Define the U-ultralimit of the normed spaces Bi to be the normed space

B WD U limBi WD
`1.	; ¹Biº/

NU

:

We will write U lim vi for the class of .vi / in B . By Lemma 4.5, we have kU lim vikB D
U limkvikBi .

Lemma 4.7. Suppose .Bi /i2	 are Banach spaces, then:

(1) U limBi is a Banach space.

(2) Let a.n/i 2Bi , and suppose thatMn are positive numbers with ka.n/i kBi �Mn andP
Mn <1. Then we have

U lim
i

X
n

a
.n/
i D

X
n

U lim
i
a
.n/
i :
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Proof. For (1), the quotient of a Banach space by a closed subspace is a Banach space.
For (2), we have equality

�P
n a

.n/
i

�
i
D
P
n.a

.n/
i /i on V and the projection to B is

continuous.

To define the ultralimit of C � algebras, we make the following observation.

Lemma 4.8. Suppose .Bi /i2	 are C �-algebras. Then B D U lim Bi has a unique
structure of C �-algebra satisfying .U lim ai /

� D U lim a�i ; .U lim ai / � .U lim bi / D

U lim ai � bi .
If Bi are commutative, then so is B . If Bi all have unit, then U lim 1Bi is a unit for B .

Proof. Indeed, V D `1.	; ¹Biº/ is a C �-algebra with the operations .ai /� D .a�i /; .ai / �
.bi / D .ai � bi /. Clearly, NU defined above is a �-two sided ideal. So the quotient is a
C �-algebra, the lemma follows.

Definition 4.9. Given C �-algebras Bi , their ultralimit U limBi is the ultralimit as above
together with the C �-algebra structure as in Lemma 4.8.

The following basic lemma is useful.

Lemma 4.10. Let Ai be C �-algebras, A D U limAi be the ultralimit.

(1) If ai 2 Ai ; supkaik < 1 are self adjoint/positive/normal, then a D U lim ai is
self adjoint/positive/normal.

(2) If ai 2 A are normal and kaik � M , then for any continuous function f on the
disc D.0;M/ we have f .U lim ai / D U lim f .ai /.

(3) If a 2 A is self adjoint/positive, then we can find ai 2 Ai self adjoint/positive with
kaik D kak; a D U lim ai .

Finally, we would like to discuss duality: for a normed space B we denote the dual
normed space by B�, and for v 2 B; f 2 B� we denote hv; f i D f .v/.

It is easy to see one has a canonical isometric embedding ˆ W U limi B
�
i ,!

.U limBi /� described by the formula hU limvi ;ˆ.U limfi /i DU limhvi ; fi i. Hereafter
we shall omit ˆ from the notations.

4.3. Ultralimits of C *-probability spaces and the G -equivariant case

We shall need to define the ultralimit of C �-probability spaces (see Definition 2.11).

Definition 4.11. Let .Ai ; �i /i2	 be a collection of C �-probability spaces. Define their
ultralimit

.A; �/ D U lim.Ai ; �i / WD .U limAi ;U lim �i /red:

Given .ai / 2 `1.	; ¹Aiº/, we will denote by U lim ai the element of A which is the
class of U lim ai 2 U limAi in A D U limAi

NU lim �i
.
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Lemma 4.12. Let .Ai ; �i / be C �-probability spaces, .A; �/ D U lim.Ai ; �i /.

(1) If ai 2 Ai ; kaik �M;f 2 C.D.0;M//, then:

• f .U lim ai / D U lim f .ai /,

• �.U lim ai / D U lim �i .ai /.

(2) If �i are states onAi with �i �b �i and supkd�i
d�i
k �M , then on U limAi we have

U lim �i �
b U lim �i . In particular, U lim �i induces a probability measure �

on A and d�
d�
D U lim d�i

d�i
.

Proof. (1) Obvious from Lemma 4.10.
(2) Obvious, since for a D U lim ai 2 U limAi , we have

.U lim �i /

�
a �U lim

d�i

d�i

�
D U lim �i

�
ai �

d�i

d�i

�
D U lim �i .ai /

D .U lim �i /.U lim ai /:

Lemma 4.13. One has the following:

(1) Let .Ai ; �i / and .Bi ;mi / beC �-probability spaces and Ti W .Bi ;mi /! .Ai ; �i / be
factors. Then there is a factor map T DU limTi WU lim.Bi ;mi /!U lim.Ai ; �i /
satisfying T .U lim bi / D U limTi .bi /.

(2) For any C �-probability space .A; �/, the diagonal mapping �.a/ D U limi a

defines a factor � W .A; �/! U limi .A; �/.

Proof. (1) The natural map T W `1.	; Bi / ! U lim.Ai ; �i / defined by T ..bi // D

U limTi .bi / is a �-homomorphism. As T �.U lim�i /..bi //D .U lim�i /.U limTi .bi //D
p�.U limmi /..bi // where p is the projection p W `1.	; Bi /! U lim.Bi ; mi /, we con-
clude that T gives rise to a factor map T WU lim.Bi ;mi /!U lim.Ai ; �i /with the desired
property.

(2) � W A! U limA
N�

is a �-homo. and ��
�
U limi �

�
.a/ D U limi �.a/ D �.a/.

Let G be a discrete countable group.
Consider a collection .Ai /i2	 of BQIG-C �-spaces. We will say that Ai are uniformly

BQI, if there is a function M W G ! RC which is a majorant for all of them (recall the
definition of a majorant from Definition 2.12).

Given such a collection, we next define its ultralimit.

Definition 4.14. Let .Ai /i2	 be uniformly BQI G-C �-spaces. Consider A D U lim Ai .
By functoriality (Lemma 4.13), we get a natural G-C �-space structure on A, such that
when ai 2 Ai are uniformly bounded then gU lim ai D U lim gai . We will say that A is
the ultralimit of the uniformly BQI G-C �-spaces Ai .

Lemma 4.15. Let .Ai /i2	 be uniformly C �-BQI-G-spaces, and let A D .A; �/ D

U lim.Ai ; �i /.
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Let � be a probability measure on G and ai 2 Ai be uniformly bounded elements.
Then:

(1) For any g 2 G, we have RA.g/ D U limRAi
.g/.

(2) � �U lim ai D U lim� � ai .

(3) .� � �/.U lim ai / D U lim.� � �i /.ai /.

Proof. Item (1) is immediate from Lemma 4.12, whereas items (2) and (3) are immediate
from Lemma 4.7 since k�.g/ gaik � �.g/.supikaik/; k�.g/ �

g�k � �.g/ and
P
g �.g/

is a convergent sum.

Lemma 4.16. We have the following:

(1) Let .Ai ; �i / and .Bi ; mi / be uniformly BQI G-C �-spaces and Ti W .Bi ; mi /!
.Ai ; �i / be factors. Then there is a factor map T D U lim Ti W U lim.Bi ; mi /!
U lim.Ai ; �i / satisfying T .U lim bi / D U limTi .bi /.
If each Ti is measure preserving extension, then so is T .

(2) For any BQI G-C �-space .A; �/, the diagonal mapping �.a/ D U limi a defines
a measure preserving extension � W .A; �/! U limi .A; �/.

Proof. Note that T; � from Lemma 4.13 are G-equivariant. Also, if all Ti are measure
preserving extensions, then T .RU limmi .g// D T .U limRmi .g// DU limTi .Rmi .g// D
U limR�i .g/ D R�.g/.

Since�.R�.g//DU limR�.g/D RU lim �.g/, we get that� is a measure preserving
extension.

4.4. Ultralimits for G -spaces via algebras

Definition 4.17. Let Xi D .Xi ; �i / .i 2 	/ be a collection of uniformly BQI G-spaces,
in the sense that there is a uniform majorant for the whole family. Consider Ai D

.L1.Xi /; �i /, which are uniformly BQI G-C �-algebras, and let ADU lim Ai D .A; �/.
The Gelfand space X for A is a BQI G-space that will be denoted by U limbig Xi . We call
it a version of the ultralimit of the actions Xi .

The RN factor of A will be denoted by U limRN Xi , we consider it is using the
canonical topological RN model of Proposition 2.7, that is, C.U limRN Xi / D ARN.

Note that if 'i are uniformly bounded functions on Xi , then we have a well-defined
function ' 2L1.X/which corresponds to U lim'i 2A (for which we keep this notation).

Lemma 4.15 implies that

U lim
dg�i

d�i
D
dg�

d�
:

The basic result we shall need is that entropy behaves well under ultralimits.
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Lemma 4.18. Let .Xi ; �i / be uniformly BQI G-spaces and .X; �/ D U limbig.Xi ; �i /. If
f 2 C.0;1/ is a continuous function, and g 2 G, then

U lim
Z
Xi

f

�
dg�i

d�i

�
d�i D

Z
X

f

�
dg�

d�

�
d�:

Proof. Let M be a uniform majorant for Xi , then e�M.g/ � dg�i
d�i
� eM.g/. From

Lemma 4.12, we get

U lim
Z
Xi

f

�
dg�i

d�i

�
d�i

D U lim �i

�
f

�
dg�i

d�i

��
D �

�
U limf

�
dg�i

d�i

��
D �

�
f

�
U lim

dg�i

d�i

��
D �

�
f

�
dg�

d�

��
D

Z
X

f

�
dg�

d�

�
d�:

Corollary 4.19. Let .Xi ; �i / be uniformly BQI G-spaces and .X; �/ D U limbig.Xi ; �i /.
Let f be a convex function with f .1/ D 0, � a finitely supported probability measure
on G. Then we have

U limh�;f .Xi ; �i / D h�;f .X; �/:

Proof. Follows from Lemma 4.18 by linearity.

Remark 4.20. As remarked in the introduction, in the sequel [24] the theory of ultralimit
of uniformly QI G-spaces will be developed from the measure theory point of view, and
this is the reason for “big” in the notation U limbig Xi .

Remark 4.21. Using the continuity of U lim for sequences, one can deduce that the equal-
ity in Corollary 4.19 holds for more general �’s by controlling the tail term. A concrete
example is given in Remark 5.13.

Remark 4.22. In the paper [6], the authors considered a construction of ultralimit of mea-
sure preserving actions using a construction of ultralimit of probability spaces due to Loeb
(for the case of finite probability spaces, see [9]). Our usage of C �-algebras is because it
was the fastest and least technical way to be able to state and prove Theorem E. However,
it limits us to work with bounded functions and in particular to restrict ourselves to work
with bounded-quasi-invariant actions (see Definition 2.12) and to make the assumption of
uniformly bounded-quasi-invariant (see Definition 4.17). This suffices for our paper.

The sequel paper [24] elaborates on the ultralimit construction, and in particular devel-
ops a measure theoretic ultralimit for quasi-invariant actions as well, under a natural
assumption of “uniformly quasi-invariance” (which is more technical). Another goal is to
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show the equivalence between the construction developed here and the measure theoretic
one taken there.

We believe that this method of ultralimits could be intriguing and useful in further
research in the ergodic theory of group actions.

5. The Furstenberg–Poisson boundary as an ultralimit

In this section, we provide a novel construction of the Furstenberg–Poisson boundary
B.G;�/ of a discrete countable group G together with a generating measure �.

Lemma 5.1. Assume � is a generating probability on G and C > 0. Let � is a measure
on a measurable G-space X such that � � � � C � �. Then .X; �/ is BQI with a majorant
depending only on C;�.

This is clear, as �.g/dg�
d�
�

d.���/
d�
� C , hence dg�

d�
�

C
�.g/

.

Notation 5.2. Let .G;�/ be a measured discrete countable group, with � generating. For
any 0 < a < 1, define the Abel sum

�a WD .1 � a/

1X
nD0

an � ��n:

We have the following lemma.

Lemma 5.3. With the notations above:

• �a is a probability measure on G.

• We have the following formula:

� � �a D .1 � a/

1X
nD0

an � ��.nC1/ D
�a

a
�
1 � a

a
ıe:

• For a > 1
2

, the collection of measures �a is uniformly BQI.

The first two items are obvious, the last item follows from the second one and
Lemma 5.1.

Now, we give the main definition of this section.

Definition 5.4. Let U be an ultrafilter on
�
1
2
; 1
�

which contains .1 � "; 1/ for all " > 0.
Define the U-Abel C � space of .G;�/ to be the following ultralimit:

B
alg
U
.G;�/ D U lim

a
.L1.G;�a/; �a/

together with the probability measure �� D U lim�a on B
alg
U
.G;�/.

Denote by BU.G; �/RN the compact metrizable BQI G-space corresponding to
B

alg
U
.G;�/RN, where the latter is the Radon–Nikodym factor of B

alg
U
.G;�/.
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Note that BU.G; �/RN is the canonical model of Proposition 2.7 for the RN factor of
U limbig.G;�a/.

Proposition 5.5. We have � � �� D ��. Thus, .Balg
U
.G; �/; ��/, BU.G; �/RN are

�-stationary.

Proof. Using Lemma 5.3, we have the following identity in U lima .L
1.G/�/:

� � �� D U lim
a
� � �a D U lim

a

�a

a
�
1 � a

a
ıe D U lim

a
�a D ��:

Thus, we get this identity when we consider �� as a state on the underlying C �-algebra of
B

alg
U
.G;�/.

Our main goal for this section is to show that BU.G; �/RN is the RN model of the
Furstenberg–Poisson boundary of .G;�/ of Corollary 2.9.

Lemma 5.6. The action of G on itself satisfies the following property:

(1) Given a QI G-space .X; �/ and a quasi-invariant measure � on G, define Y D
G �X with the G-action g.h; x/ D .gh; x/ and the product measure � � �. Then
.Y; � � �/ is a QI G-space. The mappings m.g; x/ D gx; p.g; x/ D g define a
diagram

.Y; � � �/
m

�����! .X; � � �/??yp
.G; �/

in which m is a factor map and p is measure preserving extension.

(2) Dually, let .A; �/ be a BQI C �-G-space, � a BQI measure on G. Then we have a
BQI C �-G-space .C; �/ and a diagram

.A; � � �/
m

�����! .C; �/x??p
.L1.G/; �/

in which m is a factor and p is measure preserving extension.

Proof. (1) It is obvious that p is G-equivariant and that p�.� � �/ D �. Moreover, since
the action is only on the first component, we conclude that dg.���/

d.���/
D

dg�
d�
ı p which

imply that p is a measure preserving extension.
The equalities m.g � .h; x// D m.gh; x/ D .g � h/ � x D g � .h � x/ D g �m.h; x/ and

m�.� � �/ D � � � implies that m is a factor.
(2) By Gelfand’s representation theorem, AŠ C.X/ where X is a compact Hausdorff

topological space, G acts on X continuously and � is a regular probability measure on X .
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We have that dg�
d�
2 C.X/ and in particular bounded, hence .X; �/ is a BQI G-space.

Applying the first item, take .C; �/ D .L1.Y /; � � �/ and m to be the composition
A Š C.X/ � L1.X; �/! .C; �/. The lemma follows.

Let us show a universality property of B
alg
U
.G;�/.

Proposition 5.7. Let .A; �/ be a C �-BQI G-space which is �-stationary space. Then we
have .C; �/ a C �-BQI G-space which is �-stationary together with a diagram

.A; �/
m // .C�/

B
alg
U
.G;�/RN

i // B
alg
U
.G;�/

p

OO

where m is a factor, and p; i are measure preserving extensions.

Proof. It is clear that i is a measure preserving extension. Consider �D �a
�
a > 1

2

�
, note

that � � � D � and thus by Lemma 5.6, we have .Ca; �a/ with

.A; �/
ma
�����! .Ca; �a/x??pa

.L1.G/; �a/

Since �a are uniformly BQI and pa is measure preserving, we conclude that �a are uni-
formly BQI. We take .C; �/ WD U lim.Ca; �a/. Using functionality (Lemma 4.16), the
maps U limama;U lima pa fit into the following diagram:

.A; �/
�

�����! U lima.A; �/
U limama
������! .C; �/ D U lima.Ca; �a/x??U lima pa

B
alg
U
.G;�/ D U lima.L

1.G;�a/; �a/

such thatm WDU limma ı� is a factor, p DU limpa is a measure preserving extension;
in particular, .C; �/ is �-stationary.

We shall need the following well-known result, whose proof follows by comparing the
conditional measures (see [11] or [2]) to the disintegration.

Lemma 5.8. Let B.G;�/ be the Furstenberg–Poisson boundary of .G;�/. Let X be a �
stationary G-space that is an extension of the Furstenberg–Poisson boundary p W X!
B.G;�/. Then p is a measure preserving extension.

We now come to our characterization of the Furstenberg–Poisson boundary, which
implies Theorem E.
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Theorem 5.9. Let G be a discrete countable group, and � a generating measure on G.
Then BU.G; �/RN is the canonical RN model of the Furstenberg–Poisson boundary of
.G;�/.

Remark 5.10. Recall from Corollary 2.9 that the Furstenberg–Poisson boundary admits
a canonical RN model.

Proof of Theorem 5.9. Consider B.G; �/ the canonical RN model to the Furstenberg–
Poisson boundary, and consider .C.B.G; �//; �/ D .L1.B.G; �//; �/RN. It is �-
stationary, and thus by Proposition 5.7, there exists a �-stationary C �-G-space .C; �/
and a diagram:

C.B.G;�//
m // .C; �/

B
alg
U
.G;�/RN

i // B
alg
U
.G;�/

p

OO

Here, q D p ı i is a measure preserving extension. Thus,

.C.BU.G;�/RN/; ��/ Š B
alg
U
.G;�/RN Š .C; �/RN:

Let X D .X; �/ be a Gelfand space for .C; �/. It is a �-stationary space and m gives
rise to a factor map m W X ! B.G; �/. By Lemma 5.8, we conclude that m is a mea-
sure preserving extension, which implies that m induces an isomorphism .C; �/RN Š

.C.B.G;�//; �/.
In conclusion, we get .C.B.G; �//; �/ Š .C.BU.G; �/RN/; ��/, and the proof is

complete.

Corollary 5.11. Let G be a discrete countable group, � a generating probability mea-
sure on G. Denote by .B; �/ the Furstenberg–Poisson boundary of .G; �/. Then for any
f 2 C.0;1/ and g 2 G, we have

lim
a!1�

X
x2G

f

�
�a.g

�1x/

�a.x/

�
�a.x/ D

Z
B

f

�
dg�

d�
.x/

�
d�.x/:

In particular, if f is convex with f .1/D 0 and � is a finitely supported measure on G, we
have

lim
a!1�

h�;f .G;�a/ D h�;f .B.G;�/; ��/:

Proof. Follows immediately from Lemma 4.18 and Theorem 5.9 using the following
observation: lima!1� R.a/ D R iff for any ultrafilter U on .0; 1/ with U lim a D 1 one
has U limR.a/ D R.

Remark 5.12. We note that it is possible to prove the above corollary without applying
our ultralimit construction, in a more direct way by considering Martin boundary (see
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[25, Chapter IV section 24] and [26] and noticing that the Green function is actually
G.g; x j a/ D g�a.x/

1�a
). It could be interesting to relate those constructions.

One can deduce from Corollary 5.11 the fundamental Theorem 3.1 in [17].

Corollary 5.13. For � of finite entropy (entropy- H.�/ WD �
P
g �.g/ ln.�.g//), the

following holds:

h�.B.G;�/; ��/ D lim
n!1

H.��n/

n
:

Proof. Indeed, first note that one hasH.� � �/ �H.�/CH.�/ and thus hD lim H.��n/
n

exists and H.��n/
n
� h. The desired equality follows from the following 3 steps:

Step 1. We have h � h�.�/ for any �-stationary .X; �/.
Let us show first H.�/ � h�.�/. Indeed, dg�1�

d�
� �.g/ and thus � ln

�
dg�1�
d�

�
�

� ln.�.g// and then integrate over X and average using �. Since for �-stationary � one
has h��n.�/ D n � h�.�/, we conclude Step 1.

Step 2. We have h�.B.G;�/; ��/ D lima!1� h�.G;�a/.
Corollary 5.11 yields hıg .�a/ ! hıg .��/ for any g 2 G. Since 0 � hıg .�a/ �

ln
�

2
�.g/

�
for a � 1

2
, and

P
g �.g/ ln

�
1

�.g/

�
D H.�/ <1, we can replace sum and limit

and conclude Step 2.

Step 3. We have h � lim infa h�.G;�a/.
One has the following formula h�.G;�/D �

P
g.� � �� �/.g/ ln.�.g// for entropy

on the group.
Thus, noting that �a.e/ � 1 � a and using the concavity of H , we obtain

lim inf
a

h�.�a/ D lim inf
a
�

X
g

.� � �a � �a/.g/ ln.�a.g//

D lim inf
a

�
1 � a

a
H.�a/C

1 � a

a
ln.�a.e//

�
� lim inf

a
.1 � a/2

X
anH.��n/

� lim inf
a

.1 � a/2
X
n

an � n � h D h:

The rest of the paper will consist of applications of our characterization of the
Furstenberg–Poisson boundary (Theorem 5.9) and in particular its numerical consequence
(Corollary 5.11). The first application will be to amenable groups (Theorem A). The
second application will be to the problem of calculating entropy minimal number (see
Definition 3.7) for the action of the Free group on itself (Theorems B, C and D).
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6. Applications for amenable groups

Recall that a generating probability measure on G is called Liouville if the corresponding
Furstenberg–Poisson boundary is a point.

Corollary 6.1. If � is a Liouville measure on G, then for any finitely supported
probability measure � on G and a convex function f with f .1/ D 0 we have

lim
a!1�

h�;f .�a/ D 0:

Here, �a D .1 � a/
P
n a

n��n.

Proof. It is a special case of Corollary 5.11, as in this case, B.G;�/ is a point.

Using the (proven) Furstenberg conjecture (see [17]), we conclude the following
characterization of amenability, which includes Theorem A.

Theorem 6.2. The following are equivalent for a discrete countable group G:

(1) G is amenable.

(2) For each S � G finite and " > 0; f 2 C.0;1/ with f .1/ D 0, there exists a
symmetric probability measure � on G such that

8g 2 S W

ˇ̌̌̌
ˇZ
G

f

�
dg�

d�

�
d�

ˇ̌̌̌
ˇ < ":

(3) G has KL-almost invariant symmetric measures. That is, for any finite S �G and
" > 0, there is a symmetric probability measure � on G with

8g 2 S W DKL.g� k �/ < ":

(4) For any QI G-space X , finitely supported probability measure � on G and a
convex function f with f .1/ D 0, one has I�;f .X/ D 0.

Moreover, one can choose �’s in items (2) and (3) from a commutative subalgebra of
measures.

Proof. (1) ) (2): From [17, Theorem 4.4], there is a generating symmetric measure �
such that .G; �/ is Liouville. In particular, the Furstenberg–Poisson boundary is a point,
and thus by Corollary 5.11 we conclude

lim
a!1�

Z
G

f

�
dg�a

d�a

�
d�a D f .1/ D 0

and thus taking � D �a for a < 1 large enough will satisfy the desired property.
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For the moreover part, note that the measures �a commute.
(2)) (4): From (2), it is clear that I�;f .G/D 0. From Corollary 3.9, we conclude (4).
(4)) (3) is clear. Also, (3) is a special case of (2) for f .t/D t ln.t/ (so the moreover

part follows).
(3)) (1) follows from Pinsker’s classical inequality km� �k �

p
2DKL.m k �/ (see,

e.g., [4, Theorem 4.19]) and Reiter’s condition for amenability.

Remark 6.3. (1) Note that in order to find `1-almost invariant measures on amenable
groups, one can use measures supported on finite sets (e.g., Følner sets). However, such
measures cannot be the desired measures � given in item (3) of Theorem 6.2. Indeed, for
the KL-divergence to be finite, the measure has to be supported on the whole group (if G
is finitely generated).

(2) If in Theorem 6.2 one does not care about the commutativity (and symmetry) of �’s,
it is possible to prove the result with the same machinery of ultralimits, without having to
use Furstenberg’s (proven) conjecture.

This will be explained in the sequel paper [24], where the framework of all amenable
actions is covered.

We say that a probability measure � on a finitely generated group G is SAS (symmet-
ric, adapted, smooth) if it is symmetric, generating and

P
�.g/e"jgj <1 for some " > 0

and word metric j�j.
Using Corollary 6.1, one sees the following property for Liouville groups.

Corollary 6.4. Let G be a finitely generated group with a symmetric finitely supported
Liouville measure. Then, there is a sequence .�n/ of SAS measures that is Df -almost
invariant, for any f -divergence. That is, for any g 2 G we have Df .g�n k �n/! 0.

Proof. This follows from Corollary 6.1 by noting that if � is finitely supported and
symmetric, then �a are SAS for any a < 1 and taking �n D �1�1=n.

Remark 6.5. Note that if a sequence of probability measures .�n/ onG is uniformly BQI
and `1-almost invariant, then it isDf -almost invariant for any f -divergence. Indeed, from
`1-almost invariance, one deduces that for any non-principle ultrafilter U on N the ultra-
limit measure U lim �n is G-invariant. Using Lemma 4.18, we conclude the Df -almost
invariance.

Note that the measures built in Theorem 6.2 and Corollary 6.4 are uniformly BQI.

The next theorem concerns a fixed point result for amenable groups on RN models of
stationary actions. It is a reformulation of a result from [21]. However, our proof is very
different and is based on the problem of “entropy minimizing”:

Theorem 6.6. Let G be an amenable group, and let � be a generating symmetric prob-
ability measure. Suppose X is a compact topological space, with a continuous G-action
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and that � is a �-stationary measure on X such that the Radon–Nikodym derivatives dg�
d�

are continuous.
Then there is a continuous measure preserving factor � W X ! Y so that Y G , the

set of G-invariant points of Y , contains exactly one point. In particular, the action of an
amenable group on the RN model of its Furstenberg–Poisson boundary admits a unique
fixed point.

Proof. First, by changing � to
P1
nD1 2

�n��n, we may assume � is supported on all ofG.
By taking Y to be the RN model of the Radon–Nikodym factor of X , we may suppose
that the Radon–Nikodym derivatives separate points of X , and show that XG consists of
one point.

DenoteE D
®
x 2X

ˇ̌
8g 2G W dg�

d�
.x/D 1

¯
. We claim thatE DXG . Indeed,E isG-

invariant set, as the RN functions separate points, we see thatE contains at most one point,
thus E � XG . For the other inclusion, if x 2 XG , then g 7! dg�

d�
.x/ is a multiplicative

homomorphism; in particular, dg
�1�
d�

.x/ D
�
dg�
d�
.x/
��1, by symmetry of �:

1 D
X
g

�.g/
dg�

d�
.x/ D

1

2

X
g

�.g/
�dg�
d�

.x/C
�dg�
d�

.x/
��1�

�

X
g

�.g/ D 1;

so we have equality which implies dg�
d�
.x/ D 1 for any g 2 G, so x 2 E.

So it is enough to show E ¤ ;. Assume for the sake of contradiction that there is
no point x0 with dg�

d�
.x0/ D 1 for all g. By compactness of X , we get there is a finite

S0 � G so that there is no point x0 with dg�
d�
.x0/ D 1 for all g 2 S0. We may assume

e 2 S0; S
�1
0 D S0. Note that in the Jensen inequality

�

X
s2S0

�.s/ ln
�
ds�1�

d�

�
� ��.S0/ ln

�X
s2S0

�.s/

�.S0/

ds�1�

d�

�
:

There is no equality, by assumption on S0, but both sides are continuous functions, so we
get some "0 > 0 with

�

X
s2S0

�.s/ ln
�
ds�1�

d�

�
� ��.S0/ ln

�X
s2S0

�.s/

�.S0/

ds�1�

d�

�
C "0: (6.1)

Let ı > 0, note that there is a symmetric probability measure � on G which has finite
support, agrees with � on S0 and � � .1 C ı/ � �. Indeed, take A � G n S0 finite and
symmetric with �.A/ � �.GnS0/

1Cı
and define � D �jS0 C

1��.S0/
�.A/

�jA.
We will show

I�.X/ � "0 � ı � ln.1C ı/: (6.2)

Using Theorem 6.2, we see I�.X/ D 0. This implies "0 � ı C ln.1 C ı/, choosing an
appropriate ı > 0, we obtain a contradiction.
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We now verify inequality (6.2). Using Jensen and (6.1),

�

X
g2G

�.g/ ln
�
dg�1�

d�

�
D �

X
g2S0

�.g/ ln
�
dg�1�

d�

�
�

X
g2GnS0

�.g/ ln
�
dg�1�

d�

�
� ��.S0/ ln

�X
s2S0

�.s/

�.S0/

ds�1�

d�

�
C "0

� �.G n S0/ ln
� X
g2GnS0

�.g/

�.G n S0/

dg�1�

d�

�
� � ln

�
d � � �

d�

�
C "0:

Note that � � � � .1C ı/� � � D .1C ı/� and thus d���
d�
� .1C ı/.

For any m 2M.X/ (i.e., in the measure class of �), we get by Corollary 3.15:

h�.m/ �

Z
X

�
1 �

d� � �

d�
�

X
g2G

�.g/ ln
�
dg�1�

d�

��
dm

�

Z
X

�
1 �

d� � �

d�
� ln

�
d � � �

d�

�
C "0

�
dm

� 1 � .1C ı/ � ln.1C ı/C "0:

Taking infimum over m, we obtain I�.X/ � "0 � ı � ln.1 C ı/ and the proof is
complete.

Remark 6.7. One should note that for the lamplighter group,G D Z=2 o Zd with d > 2,
and the uniform symmetric measure � coming from the standard generating set ˙ei ; ı0,
the space X D

Q
Zd Z=2 of final configuration with the measure of final configuration, is

a �-stationary space .X; �/ which is in fact the Furstenberg–Poisson boundary (see [20]
for the Furstenberg–Poisson boundary of lamplighter groups). However, there are no fixed
points in this action. The reason is that X is not RN model. More precisely, for 0 2 X ,
and g D e1, one can show that dg�

d�
is not continuous at 0. We thank Gady Kozma for a

discussion clarifying this issue.
This has the following implication: consider A D C �

�
C.X/[

®
dg�
d�

¯
g2G

�
� L1.X/

and let Y be the Gelfand dual. Then there is a continuous mapping � W Y ! X which is
a measurable isomorphism. Moreover, Y is an RN-model, and thus by Theorem 6.6, we
see that the G-invariant closed set S WD

®
y
ˇ̌
8g 2 G W dg�

d�
.y/ D 1

¯
� Y is non-empty.

Since X is minimal, we conclude �.S/ D X ; however, S has measure zero. This means
that X is covered by the null-set S .
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Remark 6.8. We believe that an existence of a fixed point on the RN-model for a
Furstenberg–Poisson boundary B.G; �/ for a symmetric generating � implies that G is
amenable. However, we have not been able to prove this.

7. Free groups and entropy

Let F D Fd be a free group on d � 2 generators, that we denote by a1; : : : ; ad . Denote
also a�i D a�1i .

Our main goal in this section is, given f;� where � is symmetric and supported on the
generators, to find I�;f .F / WD inf�2M.F / h�;f .F; �/.

7.1. The boundary of the free group and harmonic measures

Consider the standard topological boundary X D @F of F as the space of infinite length
reduced words in the free generators, that is, the subset of ¹a˙1; : : : ; a˙d ºN consisting of
words .wn/n�0 with wnC1 ¤ w�1n . It is clear that X is a compact metrizable space with
the standard continuous F action.

For any 
 2 F , we denote by X
 the subspace of X consisting of words that begins
with 
 . The collection ¹X
º
2F consists of clopen sets and gives a basis for the topology
of X .

In this subsection, we fix a generating probability measure � on F which is supported
on ¹aiºiD˙1;:::;˙d and denote pi D �.ai /.

The next lemma and most of the following discussion can be found in [19, Section 2].
We include the proof of the lemma in order to make our results (Theorem 7.11) explicit.

Lemma 7.1. There exist unique 1 > qi > 0 .i D ˙1; : : : ; ˙d/ such that for j D
˙1; : : : ;˙d ,

qj D pj C qj
X
i¤j

piq�i :

Proof. Let x D 1 �
P
i piq�i . Then the equations for j;�j are equivalent to qj

pj
D

q�j
p�j

and p�j q2j C xqj � pj D 0 which yields that x determines qj by

qj D
�x C

p
x2 C 4pjp�j

2p�j
:

Thus, we need to show that there exist unique x 2 .0; 1/ with f .x/ D 0, where

f .x/ D �x C 1 �
X
i

pi
�x C

p
x2 C 4p�ipi

2pi

D .d � 1/x C 1 �

dX
jD1

q
x2 C 4pjp�j :
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Note that f .0/ � 0 (equality for symmetric measures), f .1/ < 0 and f is concave with
f 0.0/ D d � 1 > 0. Thus, f has a unique zero in this interval.

Consider the �-random walk Rn on F . The random walk converges a.e. to an ele-
ment of X . The hitting measure �� is the unique �-stationary measure on X . The
Furstenberg–Poisson boundary of .F; �/ is isomorphic to .X; ��/ (see the Theorem in
[16, Section 7.4]).

Before computing the measure ��, we make the following observations and notation:

• The probabilities qj WD P .9n W Rn D aj / are the numbers of Lemma 7.1. Indeed, they
are positive and < 1 as the random walk is not recurrent. To show they satisfy the
equation, we use the Markov property of the random walk. More precisely, we split
according to the cases R1 D ai . The latter has probability pi . For i D j , we get there
exists such n, namely n D 1. For i ¤ j , we note that in order to get to aj , we need to
get first from ai to e, which has probability q�i , and then to aj , which has probability
qj . This shows qj D pj C qj

P
i¤j piq�i .

• Define v.ai / D vi D ��.Xai /. We claim that vi
1�v�i

D qi . Indeed, let us verify
qi .1 � v�i / D vi . For this we provide a probabilistic argument: the probability that
the limit R1 starts with ai is the probability that it gets to ai for the first time at some
finite n0, and that if we consider the random walkR0n D a

�1
i RnCn0 , thenR01 does not

start with a�i . Now, by the Markov property, this happens in probability qi .1 � v�i /,
verifying the claim. From the formulas vi

1�v�i
D qi and v�i

1�vi
D q�i , we conclude the

following direct formula for vi :

vi D
qi .1 � q�i /

1 � q�iqi
:

Note that if � is symmetric, then pi ; qi ; vi are symmetric and the above reduces to
vi D

qi
1Cqi

.

Lemma 7.2. The measure �� is given by

��.X
 / D v.
1/

mY
`D2

v.
`/

1 � v.
�1
`�1
/


 D 
1 � � � 
m reduced form;

and

dai��

d��
D

8̂<̂
:
q�i on X nXai ;
1

qi
on Xai :

Proof. Since
P
i vi D

P
i ��.Xai / D 1 by the definition of vi , the right-hand side yields

a Borel probability measure � on X . We will show

dai�

d�
D

8̂<̂
:
q�i on X nXai ;
1

qi
on Xai ;
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and conclude � is �-stationary. By the well-known uniqueness of the stationary measure,
we deduce � D ��.

Let 
 D 
1 � � � 
m be a reduced form. A direct computation yields

�
ai�

�
.X
 / D �.a

�1
i X
 / D

´
�.Xa�1i 
 / 
1 ¤ ai ;

�.X
2���
m/ 
1 D ai :

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
v.a�1i /

v.
1/

1 � v.ai /

mY
jD2

v.
j /

1 � v.
�1j�1/

1 ¤ ai ;

v.
2/

mY
jD3

v.
j /

1 � v.
�1j�1/

1 D ai :

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

v�i

1 � vi
� v.
1/

mY
jD2

v.
j /

1 � v.
�1j�1/

1 ¤ ai ;

1 � v�i

vi
� v.
1/

mY
jD2

v.
j /

1 � v.
�1j�1/

1 D ai :

D �.X
 / �

8̂<̂
:
q�i 
1 ¤ ai ;

1

qi

1 D ai :

This shows the formula for dai�
d�

. Now, for � 2 X starting with aj , we conclude that

d� � �

d�
.�/ D

X
i

pi �
dai�

d�
.�/ D

X
i¤j

pi � q�i C
pj

qj

D
1

qj

�
pj C qj

X
i¤j

pi � q�i

�
D
qj

qj
D 1:

This shows � � � D � which proves the lemma.

7.2. Measures on the boundary minimizing entropy in their class

We now turn to finding entropy-minimizing measures on the boundary.

Notation 7.3. • Let f be a strictly convex smooth function on .0;1/ with f .0/ D 0.
Denote ‰f .z/ D f .z/ � zf 0.z/C f 0

�
1
z

�
.

• Denote by �d the set of generating symmetric probability measures on Fd supported
on ¹aiºiD˙1;:::;˙d .

Note that ‰0
f
.z/ D �z � f 00.z/ � 1

z2
f 00.z/ < 0 and thus ‰f is a decreasing function.

Given f as above, we define a mapping �d
T
�! �d as follows.
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Definition 7.4. Given � 2 �d , denote pi D �.ai / and let qi be as in Lemma 7.1. Define
T .�/ D � 2 �d by

�.a˙j / D �j D
c

‰f .qj / �‰f
�
1
qj

� ;
where c is a normalization c D

�
2
Pd
iD1

1

‰f .qj /�‰f .
1
qj
/

��1.

Since ‰f is decreasing, T is well defined.

Example 7.5. For f .z/ D z ln.z/, we have ‰.z/ D � ln.z/ C 1 � z, and ‰.q/ �

‰.q�1/ D 2 ln.q�1/C q�1 � q.

The next proposition gives a minimizing measure for the entropy in a specific measure
classes on the boundary.

Proposition 7.6. Let f be as in the notation. Given � 2 �d let � D T .�/. Consider
X D @F as a QI F -space with the measure class of ��. Then

h�;f .X; ��/ D I�;f .X/:

Proof. Note that since � is symmetric, pi ; qi ; vi ; �i are all symmetric.
Note that as �� is BQI and � has finite support, the conditions of Proposition 3.13

apply, and �� is minimal for the entropy h�;f in its measure class iff ‰�;f .��I �/ is a
constant function. We now show ‰�;f .��I �/ is constant. Note that as � is symmetric,

‰�;f .��I �/ D
X

iD˙1;:::;˙d

�.ai /

�
@F

@x

�
1;
dai��

d��

�
C
@F

@y

�
dai��

d��
; 1

��
;

where, as usual, F.x; y/ WD yf
�
x
y

�
. Note that

@F

@x
.1; z/C

@F

@y
.z; 1/ D f

�
1

z

�
C f .z/ � zf 0.z/ D ‰f .z/:

Now take � 2 X that starts with aj :

‰�;f .��I �/ D
X

iD˙1;:::;˙d

�.ai /‰f

�
dai��

d��
.�/

�
D C C �.aj / �

�
‰f

�
1

qj

�
�‰f .qj /

�
D C C c;

where C D
P
iD˙1;:::;˙d �.ai /‰f .qi / is independent of j , and c is the normalization in

the definition of T (see Definition 7.4). This is independent of j , concluding the proof.

Remark 7.7. Note that in the infimum I�;f .X/, we only take measures in the measure
class of ��. In a future work, the first named author discusses the problem of minimal
entropy over all measures on X , and it will turn out that the infimum remains the same,
although this requires considerably more effort.
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We would next like to show that we indeed cover in our analysis all the generating
measures � which are symmetric and supported on the set of free generators and their
inverses.

Lemma 7.8. The mapping T W �d ! �d is a bijection.

Proof. We first extend T to the boundary of the simplex �d . This can be done by inter-
preting the boundary as elements of�r ; r < d and taking the corresponding T there. This
yields a continuous map T W�d !�d that sends the boundary to itself. This implies that
T .�d / D �d \ T .�d / � �d is relatively closed.

We wish to show that the image is also open, which would then imply T is surjective.
By invariance of domain (cf. [14, Theorem 2B.3]), it is enough to show that T is injective.

In order to show injectivity of T , we first show that � D .pi / 7! .qi / is injective, and
then that .qi / 7! � is injective.

For the first mapping, from .qi / one can reconstruct .pi /, as the defining equation is0BBBB@
1
q1
C q1 2q2 2q3 � � � 2qd

2q1
1
q2
C q2 2q3 � � � 2qd

:::

2q1 2q2 2q3 � � �
1
qd
C qd

1CCCCA
0BBB@
p1
p2
:::

pd

1CCCA D
0BBB@
1

1
:::

1

1CCCA :
So we will show the matrix above is non-singular. Employing row operations, this matrix
has the same determinant as the matrix:0BBBB@

1
q1
C q1 2q2 2q3 � � � 2qd

q1 �
1
q1

1
q2
� q2 0 � � � 0

:::
:::

::: � � �
:::

q1 �
1
q1

0 0 � � �
1
qd
� qd

1CCCCA :
We show that the determinant of the latter matrix is positive by induction. Indeed,
expanding using the second row, we get determinant

�

�
q1 �

1

q1

�
2q2

�
1

q3
� q3

�
� � �

�
1

qd
� qd

�

C

�
1

q2
� q2

�
det

0BBBB@
1
q1
C q1 2q3 � � � 2qd

q1 �
1
q1

1
q3
� q3 � � � 0

:::

q1 �
1
q1

0 � � �
1
qd
� qd

1CCCCA :
The second term is the same determinant but for less variables and since 0 < qi < 1 the
first term is > 0, by the induction assumption the second term is positive. So, we need to
show only the base case, and indeed

det

 
1
q1
C q1 2q2

q1 �
1
q1

1
q2
� q2

!
D

�
1

q1
C q1

��
1

q2
� q2

�
C 2q2

�
1

q1
� q1

�
> 0:



E. Sayag and Y. Shalom 560

Thus � 7! .qi / is injective. Let us show that the mapping .qi / 7! � is injective.
Consider '.z/ D ‰f .z/ �‰f . 1z /; this is a positive decreasing function (as ‰f is

decreasing). Note that from � we can reconstruct '.qi /
'.qj /

D
�j
�i

for each i; j . Assume that �
corresponds to distinct .qj / ¤ .q0j /. Without loss of generality, there is some j0 with
qj0 > q

0
j0

. As v.z/ D z
1Cz

is an increasing function and .v.qj //; .v.q0j // are probability
measures (see the discussion before Lemma 7.2), we conclude that there must be j1 with
qj1 < q

0
j1

. But then '.qj0 /

'.qj1 /
<

'.q0j0
/

'.q0j1
/
, which is a contradiction.

Remark 7.9. Note that the proof of Proposition 7.6 yields that for � ¤ T .�/ the
measure �� is not minimizing in its measure class for h�;f .

It is not difficult to see that for f .t/ D t ln.t/, the map T is not the identity (see the
following example). This means that the �-entropy minimizer on the boundary X is, in
general, not the �-stationary measure.

Example 7.10. Let d D 2 and f .t/ D t ln.t/. Consider �.a˙1/ D 1
3
; �.a˙2/ D

1
6

. A
direct computation (using computer and the proof of Lemma 7.1) shows that � D T .�/
has �.a˙1/ � 0:32378 and in particular � ¤ �. Further computation (using Lemma 7.2)
yields h�.��/ � 0:5126.

7.3. Minimizing entropy for the action of F on itself

In the following theorem, we compute the minimal entropy number I�;f for the action of
the free group F on itself. Note the next theorem includes Theorem C.

Theorem 7.11. Let f be a strictly convex smooth function on .0;1/.
Let � 2 �d and let � D T �1.�/ 2 �d . Then

I�;f .F / D h�;f .@F; ��/:

Proof. Consider X D @F as a QI G-space with the measure class of ��, then by
Corollary 3.9, we have I�;f .F / � I�;f .X/. By Proposition 7.6, we have I�;f .X/ D
h�;f .X; ��/.

On the other hand, by Corollary 5.11 (the corollary of the main result),

h�;f .X; ��/ D lim
a!1�

h�;f .F; �a/ � I�;f .F /:

This finishes the proof.

As for Theorem B and the more general Theorem D, we have the following corollary.

Corollary 7.12. Let � be the uniform symmetric measure �.a˙j / D 1
2d

. Then for any
strictly convex and smooth f , we have

I�;f .Fd / D
2d � 1

2d
f

�
1

2d � 1

�
C

1

2d
f .2d � 1/:
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In particular, taking f .t/ D t ln.t/, we conclude

I�;KL.Fd / D
d � 1

d
ln.2d � 1/:

Proof. It is clear that vi ; qi are independent of i and thus vi D 1
2d
; � D T .�/ D �.

Hence, qi D
1
2d

1� 1
2d

D
1

2d�1
. Thus, by Theorem 7.11,

I�;f .Fd / D h�;f .��/ D
X
i

1

2d

Z
@Fd

f

�
dai��

d��

�
d��

D
2d � 1

2d
f

�
1

2d � 1

�
C

1

2d
f .2d � 1/:

In particular, I�;KL.Fd / D
d�1
d

ln.2d � 1/.

8. Final remarks

8.1. Possible relation with the Liouville problem

8.1.1. Entropy and stationary measures. One initial motivation for this work was an
attempt to present stationary measures as information-theoretic minimizers. Using the
approach and results established in this paper, where one approximates the entropy of
all boundaries by the self action of the group, it is not difficult to see that this would
have immediate implications to the fundamental open problem of (in)dependence of the
Liouville property on the (symmetric, finitely supported) generating measure chosen on
the group. A natural approach toward the minimization property would be to show that
convolution with � might reduce the �-entropy. As it turns out, this is usually not true.
Indeed, for the action F2 Õ @F2 and � a non-uniform measure on the free generators, the
�-harmonic measure is not in general a minimizing measure for the �-entropy. Moreover,
there is a minimum (in a measure class) for the entropy which is the �-harmonic mea-
sure for a measure � ¤ �. In fact, let us explain why in general no information-theoretic
entropy can be used to detect stationary measures as minimizers.

Let h D h�;f (with � finitely supported) be some entropy for an amenable group G
with a non-Liouville measure � (e.g., G D Z=2 o Z3). We explain why convolution by �
cannot always decrease the entropy h.

Indeed, take .B; �/ to be (a topological model of) the Furstenberg–Poisson bound-
ary. We know 0 D I�;f .B/ and hence there is m 2 M.B/ (in the measure class) with
h.m/<h.�/. Observe that��n �m converges weakly to �. Indeed, consider�DGN with
the �-random .Xn/ and its probability measure P . Note that for the stationary � -algebra �

(see [17, Subsection 0.3]), one has that .B;�/ is a topological model of .�;� ;P /. Suppose
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h D dm
d�

, then for any a 2 L1.B/ D L1.�/ we have

.��n �m/.a/ D EP Œ.Xn �m/.a/�

D EP

"Z
B

a.Xn � x/h.x/d�.x/

#
D

Z
B

EP Œa.Xn � x/�h.x/d�.x/:

Note that (a.e.) a.Xn.!/ � x/! a.!/. Thus, EP Œa.Xn � x/�! �.a/ for a.e x 2 B which
implies that .��n �m/.a/! �.a/ which shows weak convergence.

Since h is lower semi-continuous with respect to weak topology (follows from [1, The-
orem 2.34] which shows f -divergence are such), we conclude that lim infn h.��n �m/ �
h.�/ > h.m/, showing that convolution by � cannot always decrease entropy.

8.1.2. Other versions of almost-invariant measures. In view of Theorem 6.2, one can
ask when there are `1-almost-invariant measures on a group. That is, when for every
S � G finite and " > 0, there is a measure � on G such that



ds�
d�
� 1




1
� " for all

s 2 S . It is easy to see that for finitely generated groups, this is equivalent to having
subexponential growth.

Recall that we say that a measure � on a finitely generated group G is SAS if it is
symmetric, generating and satisfies

P
�.g/e"jgj <1 for some " > 0 and word metric j�j.

Definition 8.1. A finitely generated group is tame if there is a sequence .�n/ of SAS
measures that is KL-almost invariant.

Corollary 6.4 implies that groups with a symmetric finitely supported Liouville
measure are tame. We find the following problem intriguing.

Problem 8.2. Is there a finitely generated amenable group which is not tame?
Are the lamplighters Z=2 o Zd ; d � 3 tame?

Our hope is that the above lamplighters are not tame. One can then make the spec-
ulation that being tame is related to the “Liouville dependence problem” concerning
boundary triviality of symmetric finitely supported measures. Our proof of the fixed point
Theorem 6.6 came as an attempt to employ these ideas, However, eventually it produces
a fixed point without the SAS assumption.

8.2. Uniqueness of entropy minimizers

As explained in the introduction, for some actions G Õ X , the infimum of the entropy
function is attained. The f -divergence is lower semi-continuous with respect to the weak
topology4. Thus, if X is a compact G-space, the entropy function h�;f WM.X/! Œ0;1�

4See [1, Theorem 2.34]; there is also a proof using a variational representation of f -divergences.
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is lower semi-continuous. Hence, the entropy h�;f attains its infimum I
top
�;f
.X/. It is then

very natural to inquire about its uniqueness. While as we have seen (Lemma 3.10), inside
a specific ergodic measure class, uniqueness holds under natural conditions on f , we have
no criterion for uniqueness in the topological setting, nor can we establish any non-trivial
uniqueness result.

Another problem is finding a criterion for a measure � to be a minimizer of entropy.
Inside a specific measure class we have Proposition 7.6 yielding a complete solution; in
the topological case, however, we do not have any criterion.

In the sequel paper [24], we will show that for the topological action Fd Õ @Fd we
have under the notations of Proposition 7.6 that I top

�;f
.@Fd / D h�;f .@Fd ; ��/.
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