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Branch groups with infinite rigid kernel
Alejandra Garrido and Zoran Suni¢

Abstract. A theoretical framework is established for explicitly calculating rigid kernels of self-
similar regular branch groups. This is applied to a new infinite family of branch groups in order to
provide the first examples of self-similar, branch groups with infinite rigid kernel. The groups are
analogues of the Hanoi Towers group on 3 pegs, based on the standard actions of finite dihedral
groups on regular polygons with odd numbers of vertices, and the rigid kernel is an infinite Cartes-
ian power of the cyclic group of order 2, except for the original Hanoi group. The proofs rely on a
symbolic-dynamical approach, related to finitely constrained groups.

To Slava Grigorchuk, in gratitude and acknowledgement of the many ramifications
of his work

1. Introduction

A group G with a faithful action on a level-homogeneous rooted tree 7' is a branch group
if it acts level-transitively, and for all n, the rigid stabiliser RstG () = [ [, cjevel n RStG (V)
has finite index in G, where Rstg (v) consists of all elements of G that are only supported
on the subtree rooted at v.

Since the appearance in the 1980s of the first finitely generated examples, branch
groups have been recognised as an important class of groups. This is not only because
of the many examples in the class with interesting properties: finitely generated infinite
torsion groups, groups of intermediate word growth, of non-uniformly exponential word
growth, amenable but not elementary amenable, etc. [9, 10, 20], but also because the sub-
group structure of branch groups forces them to appear as cases in classifications. For
instance, by a result of Wilson ([18], see also [11]), all residually finite just infinite groups
(infinite groups all of whose proper quotients are finite) are either just infinite branch
groups, virtually direct powers of non-abelian hereditarily just infinite groups, or virtu-
ally abelian. This classification also applies in the case of just infinite profinite groups (all
quotients by closed normal subgroups are finite) [19]. Profinite branch groups also arise
as compact-open subgroups of locally decomposable groups, one of five types into which
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one can separate the groups that are totally disconnected, locally compact, compactly
generated, topologically simple and non-discrete [2].

If G is a branch group, it must be residually finite, so it embeds densely into its profin-
ite completion G. The action of G on the rooted tree T gives another completion, with
respect to the topology generated by the stabilisers Stg (1) of levels of the tree; this com-
pletion, denoted G, is in fact the closure of G in the permutation topology of Aut(T"), the
(profinite) group of all automorphisms of 7. The rigid level stabilisers, Rstg(n),n € N,
being of finite index, also yield a profinite topology on G, and G also embeds densely into
the completion G with respect to this topology. Since Rstg (n) < Stg(n) for every n € N,
and they are all of finite index in G, there are surjective morphisms

G—)’Gu—>6,

and the congruence subgroup problem asks what are the kernels: the congruence kernel
ker(@ — G), the branch kernel ker(@ — 6) and the rigid kernel ker(é — G).

The term “congruence” is used by analogy with the classical congruence subgroup
problem for SL, (Z), from which these questions take inspiration. The problem of determ-
ining the congruence, branch and rigid kernels for a branch group G was first posed in [1],
where the first systematic study of this problem was undertaken. It was determined in [5]
that the congruence subgroup problem is independent of the branch action of G.

There are now various examples of branch groups in the literature that show dif-
ferent behaviours for the various kernels. For example, Grigorchuk groups and GGS
groups all have trivial congruence kernel (we say that they have the congruence subgroup
property) [4, 11]. Pervova constructed in [14] the first examples of branch groups with
non-trivial (in fact, infinite) congruence kernel. The rigid kernel of these groups is trivial.
The first example of a branch group shown to have a non-trivial rigid kernel is H® the
Hanoi Towers group on 3 pegs [7]. It was determined in [1] and, later, using a different
approach, in [16], that the rigid kernel is the Klein 4-group. An infinite family of branch
groups with non-trivial rigid kernel is constructed by Skipper in [16], but the rigid kernel
for these examples is not determined and the groups come without self-similar actions
(they are constructed as subgroups of some self-similar groups).

In this paper, we provide the first known examples of self-similar, branch groups with
infinite rigid kernel. They are an infinite family of “dihedral generalisations” of the Hanoi
Towers group H ), one for each odd d > 3, acting on the d-regular rooted tree. The rigid
kernel is determined explicitly; it is isomorphic to a Cartesian product of cyclic groups of
order 2. The product is infinite for d > 5 and, of course, of rank 2 if d = 3.

Main examples: Hanoihedral groups. Let d = 2k + 1 be an odd integer, with d > 3
(k>1),and X ={0,1,...,d —1}. Fori =0,...,d — 1, let y; be the involution in
Sym(X) given by

i =G —1i+1)G—2i+2)--G—ki+k),
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where the entries in the inversion pairs are considered modulo d (for instance, for d = 5,
s = (35)(26) = (03)(12)). Note that u; can be interpreted as the mirror symmetry of

the regular d-gon with vertices 0, 1, ...,d — 1 with respect to the axis through vertex i.
The group generated by all u;,i =0, ...,d — 1, is the dihedral group D(d), the group of
symmetries of the regular d-gon. Fori, j =0,...,d —1, we have u;u; = 027 where

p = (012---d — 1) is the rotation of the d-gon by 27r/d . We also have u; pi; = p~! and
Wip = pii—1 (indices modulo d). The dihedral group D(d) consists of d mirror symmet-
ries, [o, - - -, bd—1, and d rotations, 1, p, p2, - pd_l. The rotations form a subgroup of
index 2 in D(d), which is also the commutator subgroup of D(d).

Fori =0,...,d — 1, let a; be the automorphism of the d-ary rooted tree X * given by

a; :ui(l,...,l,ai,l,...,l),

where the only non-trivial section appears in coordinate i (the only coordinate not moved
by w;). Let D be the self-similar group

D = {ag,...,aq—1).

Note that we defined one group for every odd integer d > 3, but this is not reflected in
our notation for D or its generators (we do not index them by d) lest the notation become
cumbersome.

The definition of the generators of D fits the general construction of generators for
“Hanoi-like groups” from a set of permutations, mentioned in [8, Example 4]. Namely,
the Hanoi Towers group H 4, d > 3, is generated by the automorphisms corresponding
to all transpositions (ij ), the group D is generated by the automorphisms corresponding to
all mirror permutations u;, while the examples in [16] by the automorphisms correspond-
ing to all d cycles of length d — 1 obtained from the cycle (01---d — 1) by removing
one letter. More generally, all of these examples may be seen as variations inspired by
the groups constructed by P. Neumann [12, Section 5]. However, the end result is very
different, as P. Neumann’s examples are just infinite groups with very simple branching
structure and trivial congruence kernel, while the group D has a non-trivial rigid kernel.

The following hold for these examples. Here, X % D’ denotes [[,cy 6x(D’) <
Aut(X™), where 6x(g) is the element of Aut(X ™) that acts as g € Aut(X™) on the subtree
rooted at x € X and fixes the rest of X*. See Section 2 for more definitions.

Theorem 1. Let d be an odd integer, with d > 3. Then:

(1) D is a self-similar, self-replicating, contracting, regular branch group, branching
over its commutator subgroup D’.

(2) D/stp(1) = D(d).
(3) The group D/ D’ is the elementary abelian 2-group of rank d and

D' : X % D'| =d -2@-Dd=2)
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(4) The rigid level stabiliser R, of level n is X" x D’. Forn > 1, we have
8

dn-1
a-1 .

|D : Ry| =20=24"+2.¢q

(5) The rigid kernel of D is an elementary abelian 2-group

AXHB,

X*\{e}

where A has rank (d — 1)(d — 2) and B has rank (d — 1)(d — 3). In particular,
the rigid kernel is a Klein-4 group when d = 3 and isomorphic to [ [y Z/27Z when
d > 3.

(6) The closure D is a finitely constrained group defined by the patterns of size 2 that
can be described as follows. A pattern of size 2

0 d—1
1 d—2

o T Td—2 TTd—1

is an allowed pattern if and only if the permutation Tmomy +++ Tg_Mq—1 is a
rotation in D(d) (i.e., the number of mirror symmetries among 7w, 7, . .., Tg—1
is even).

(7) The closure D is a regular branch group branching over D1, the stabiliser of
level 1. We have, forn > 1,

D :sto(n)| = |D : Stp(n)| = 24" - d T

and the Hausdorff dimension of D is

I log2

d log2d’

Notice that since the rigid kernel is elementary abelian, the branch completion Dof D
is not a branch group, because these do not contain non-trivial virtually abelian normal
subgroups. In particular, the rigid kernel will be in the kernel of any branch action of D.

In order to make our calculations, we also develop a theoretical framework for finding
the structure of rigid kernels. As for most of the studied examples of branch groups, we
concentrate on the case of self-similar groups (see Section 2 for definitions) because in that
case we can exploit the symbolic-dynamical results obtained in [13, 17] for finitely con-
strained groups. In particular, we obtain the following criterion for determining whether
or not the rigid kernel is trivial.

Theorem 2. Let G < Aut(X™) be a self-similar, level-transitive, regular branch group,
with maximal branching subgroup K. The following are equivalent:



Branch groups with infinite rigid kernel 571

(1) G has trivial rigid kernel.
(2) G branches over some level stabiliser.
(3) K = Stg(n) for somen > 1.

If G is in addition self-replicating, then G is a finitely constrained group and the above
items are also equivalent to

@) |X %G :Stg(1)] = |X * G : Stg(1)].
Example 1.1. It is known that, for G = H® the Hanoi Towers group on 3 pegs, we have
[GxGxG:Gi|=2° and |G xG xG :Stg(1)] = 2.

Thus, H® has a non-trivial rigid kernel.

The value of the former index was indicated in [8], while the value of the latter can
be easily inferred from the description of the closure H (3 as a finitely constrained group,
announced in [6]. These indices were mentioned and used in [17] in the context of the
calculation of the Hausdorff dimension of H () (which happened to be 1 — 1/3 logg 2),
along with a remark that relates the fact that these indices are different to the fact that
H® is not branching over any level stabiliser, which is to say, in the terminology of [1],
that H® has non-trivial rigid kernel. The present text grew out of an attempt to elucidate
and formalise that remark.

Under the assumption that the group is self-similar and regular branch, we obtain vari-
ous results on the size of the rigid kernel, the most explicit and simple to state of which is
as follows.

Theorem 3. Let G be a self-similar, level-transitive regular branch group with maximal
branching subgroup K. Suppose that Stg(2)K > Stg(1).

(1) The rigid kernel of G is trivial if and only if Stg(2) = Trivg (2).

(2) Suppose moreover that G/ K is in a class of groups that is closed under subgroups,
quotients and direct products, in which all short exact sequences that are in the
class split as direct products (e.g., elementary abelian groups). Then the rigid

kernel is St (2 Ste(0) (K
_ S0 7 $60)

T Trivg (2) X*\(s} Trivg (2)

and it is infinite if and only if St (2) N K /Trivg (2) is non-trivial.

Section 2 contains definitions and necessary prerequisites and the proofs of the above
theorems. Section 3 is devoted to the Hanoihedral groups and proving the items in
Theorem 1.
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2. Symbolic portraits and branch completions

2.1. Tree shifts

Let A be a set. Symbolic dynamics has for a long time concerned the study of one-sided
sub-shifts: closed subsets of AN with the product topology (where A is discrete) that are
invariant under the shift map -; : AN — AN, f{(n) = f(1 4 n). This shift map extends
to a right action of N on AN,

Now, N is the free monoid on a single generator: the set of all finite strings over the
alphabet {1} with operation concatenation. This of course generalises to the free monoid
over an alphabet X (which we always take to be finite): the set X* of all finite strings
over X . The right Cayley graph of X* is an infinite, regular, rooted tree whose vertices of
level n are the words X" over X of length n.

A way of visualising an element of AX™ is as a tree portrait: every vertex of the right
Cayley graph of X* is decorated by a value in A.

Passing from N to X *, we obtain the following.

Definition 2.1. A subset S C AX s self-similar over A if it is invariant under the shifts
1 AXT — AX for x € X, defined by f — f, where fi(u) = f(xu). If the shifts are
onto S € AX™ then S is self-replicating over A.

Extending these maps to all of X * yields a right action of X* on AX".

A tree shift over the alphabet A is a closed subset S € AX™ that is self-similar over A.

Tree shifts have been studied in [3, 13].
Suppose now that A is a finite group. Then AX~ is a compact totally disconnected (i.e.,
profinite) group, whose basic open neighbourhoods of the identity are the cylinder sets

n—1
TrivA(n) :={f € AX" : f(u) = eqforallu € X"}, where X" := U Xin>1.
i=0

The subspace topology of G < AX™ has Trivé (n) := G N TrivA(n), n > 1 as basic identity
neighbourhoods.

Notation. For an element g € A% and v € X*, we write §,(g) to mean the element
f € AX" such that:

D fo=g.

(2) f(u) is trivial for all prefixes u of v.

(3) fuw is trivial for all w € X* that is not comparable with v.
Given a subgroup H < AX" and n € N, define X" « H := [Tyexn 0v(H) < TrivA4 (n).

Definition 2.2. A subgroup G < AX" that is self-similar over A is said to branch
symbolically over H < G if H > X % H. In particular,

Triva (1) = Trivia (1) = X * H > X * Triviy (1) = Triviy (2).
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The most obvious example of a group A to take is A = Sym(X). Then the full shift
Sym(X)X" can be viewed as the group Aut(X*) of rooted tree automorphisms
n
* = i =y — i e
Aut(X™) = l(inAut(X ) = LlnSym(X)Z ¢ Sym(X),

n>1 n>1

where
n

Aut(X=") = Sym(X) 2---2 Sym(X)
is the automorphism group of the finite subtree of X * consisting of words of length at
most 7. Multiplication and inversion of portraits are the operations in an infinitely iterated
wreath product: if f, g € Sym(X)X", then
fg(e) = fe)g(e)
f8(x) = flge)(x))g(x). xeX

feg(x1x2--xp) = f(y1y2-+-yn)g(X1X2+++ Xn),
where y; = g(x1x2---x;—1)(xi), xi € X.

The element y; --- y, € X* is the image of x; --- x, € X™* under the action of g. Writing
g[u] for the image of u € X* under g € Aut(X ™), the last line above becomes

fegw) = f(glu])g(u) € Sym(X).

In this setting, TrivA(n) = St(n) = (Nyexn St(v), the stabiliser of all vertices of length
at most 7, and Aut(X*)/St(n) == Aut(X="). The definition of multiplication ensures that
the shift maps - : Aut(X™*) — Aut(X™*) are partial endomorphisms (endomorphisms when
restricted to St(x)).

When A = Sym(X), we do not mention A in the definition of self-similar or branching
symbolically.

Definition 2.3. A self-similar group is a subgroup G of Aut(X ™) that is self-similar over
Sym(X), that is, invariant under the right action of X * on Aut(X*) given by the shift maps
w L AUt(X*) = Aut(X™), fi(v) = f(wu), for w € X*. The group G is self-replicating
if it is self-replicating over Sym(X).

A closed self-similar group is a closed subgroup of Aut(X *) that is also self-similar
(i.e., a subgroup of Aut(X*) that is also a tree-sub-shift).

A self-similar group G < Aut(X ™) branches over K < G if X x K < K.1tis a regular
branch group if it branches over some finite index normal subgroup.

Given a self-similar group G < Aut(X*), its closure G < Aut(X*) is a closed self-
similar group, called its congruence completion. It can also be seen as the inverse
limit

G = l(lr_n G/Stg(n)
neN
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of the inverse system of groups {G/Stg(n),n € N} and canonical morphisms {s,, , :
G/Stg(m) — G/Stg(n),m > n € N}, where Stg(n) = St(n) N G.

Many of the most studied examples of self-similar groups are regular branch. For such
groups, it makes sense to consider the larger tree shift space (Sym(X) x G/K)X" where
now A = Sym(X) x G/K > G/(St(1) N K). Note that we can keep the previous wreath
product structure, by letting all factors G/K act trivially, so that (Sym(X) x G/K)X"
becomes the group Sg := Aut(X*) x (G/K)X". Recalling that we denoted by g[u] the
image of vertex u € X™* under g € Aut(X ™), multiplication in Sk is defined by

(f-h)(g.1) = (fg.h®1),

where h€ (1) = h(g[u]) € G/K and multiplication in G/KX" is performed component-
wise. Again, this definition ensures that all shift maps -, : Sx — Sk for x € X are partial
endomorphisms.

For this case, we will denote TrivY™X)*6/K (1) simply by TrivK (). Having identified
(Sym(X) x G/K)X" with Sk = Aut(X*) x (G/K)X", these subgroups become

TrivE(m) = {f € Sk : f(u) = (id, K) forall u € X ~"}.

Given any self-similar group G < Aut(X*) that branches over some finite index normal
subgroup K, there is a natural embedding

Ok : G — Sk, g+ (gw), (guK)uex+).

where g, K is, for u € X*, the image modulo K of the u-shift g, € G of g € G. By the
definition of multiplication in Sk, the map Ok is a homomorphism. Recalling that we have
identified Sg = Aut(X*) x (G/K)X" with (Sym(X) x G/K)X", the element 6k (g) can
be identified with (g, (St(1) N K)),ex*, because of the wreath product structure we have
given to (Sym(X) x G/K)X" and because we are viewing G/(St(1) N K) as a subgroup
of G/K x G/Stg(1) < G/K x Sym(X).

Notation. We will identify G with its image 0x(G) < Sx whenever this is conveni-
ent. Abusing notation, Trivg (n) will denote Tring(G) (n) = GEI(TrivK (n)) = Stg(n) N
X1« K.

Definition 2.4. The closure /G\E of G in Sk is a profinite group that is self-similar over
Sym(X) x G/K and branches symbolically over the closure of K in Sk. It is called the
K-symbolic completion of G. It can also be seen as the inverse limit

=~ .. . K
Gg = I(El G/Trivg (n)
neN

of the inverse system of groups {G/ Trivg (n) :n > 1 € N} and canonical homomorphisms
{tmn: G/Trivg(m) — G/Trivg(n) :m>n>1¢eN}
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Definition 2.5. Given a group G < Aut(X ™), one can also consider, for a vertex v € X*,
the rigid stabiliser of v in G:

Rstg(v) = {g € G : g(u) =id € Sym(X) forall X* \ vX*}

the subgroup that fixes all vertices outside the subtree vX* with root v. Note that
if vX* NuX* = @, then Rstg(v) and Rstg(u) commute. In particular, the subgroup
generated by all Rstg (v) for v € X" is the direct product

Rstg(n) = [ [ Rsta(v)

vex”

and called the rigid level stabiliser of level n in G.

If G is regular branch over K, then X * K < Rstg (1) has finite index in G. Continuing
inductively, X" * K < Rstg (n) all have finite index in G, for n > 1. This last condition,
along with a transitive action on X" for each n, ensures that G is a branch group. The
completion 1<iLnn G/Rstg (n) is called the branch completion of G.

In general, since Trivg (n) = Stg(n) N X" ! % K < Rstg(n — 1), the K-symbolic
completion of G maps onto the branch completion. For a certain choice of K, these two
completions actually coincide.

The subgroup M := (),cx~(Rstg (1)) is the unique maximal branching subgroup
of G. If G is transitive on all levels of X*, then, according to [1, Corollary 1.6], there
exists 7 > 0 such that X" x* M > Rstg(m + n) for all m > 0. In particular,

Trivlg(m +1)=Stgm+1)N X" x M > Stg(m + 1) N Rstg(m + n)
> Rstg(m +n + 1).

Thus, {Trivg (n) :n>1¢€ N} and {Rstg(n) : n > 1 € N} generate the same profinite
topology, so the M -symbolic and branch completions of G coincide.

Remark. In the remainder, we shall always assume that G < Aut(X ™) is a self-similar,
level-transitive, regular branch group, so that we can identify the M -symbolic with the
branch completion of G and omit the M notation, writing Trivg () instead of Trivg (n).

2.2. Completions and kernels

Let G < Aut(X™) be a self-similar, level-transitive, regular branch group with maximal
branching subgroup K, so that there exists k € N such that Trivg(n) > Rstg(n + k) >
Trivg (n + k) forevery n € N. Forevery m > n > 1 € N, the following square of canonical
morphisms commutes:

G/Trivg (m) —2" G/stg (m)

ltm,n lsm,n

G/Trivg (n) —2" G/stg(n)



A. Garrido and Z. Suni¢ 576

This gives a unique morphism y : G = 1(1_111” G/Trivg(n) - G = L“_n,, G/Stg (n) defined
by ¥ ((gn)n) = (¥n(gn))n, whose kernel is

kery = L%lker Yy = 1<¥1$tg(n)/TrlvG(n).
This is the inverse limit of the inverse system whose maps rp, , : Stg(m)/Trivg (m) —
Stg (n)/Trivg (n) are simply the restrictions of the #,, , forallm >n > 1 € N.

Definition 2.6. With notation as above, ker ¥ is the rigid (or symbolic) kernel of G.

Since G is residually finite, it embeds into its profinite completion G, the inverse limit
of the inverse system {G/N : N <y G} of finite quotients of G, and canonical maps
qu,N : G/M — G/N for M <N <y G.

Since each Trivg(n) and Stg(n) are normal subgroups of finite index in G, restrict-
ing to G the projection maps to, respectlvely, ]_[ G/Trivg(n) and [], G/Stg(n) gives
surjective morphisms 7 : G — G and 0 : G — G. Moreover, 6 = ¥ on.

This gives two further kernels: the branch kernel

kern = l(y_n Trivg (n)/ N
N ﬁlfTrivG (n),n

and the congruence kernel

keryon = 1(21 Stg(n)/N.
N ystg(n),n

These completions and their kernels are important to understand the structure of
groups acting on rooted trees, as they give insight into their finite quotients. By analogy
with arithmetic groups, groups for which the congruence kernel is trivial are said to have
the congruence subgroup property.

Examples include many of the first discovered self-similar groups (Grigorchuk,
Gupta-Sidki, etc.). The first examples of groups with non-trivial congruence kernels were
constructed by Pervova in [14], where she also showed that they have trivial rigid kernel.
It was not until [1], where a systematic study of the congruence subgroup property for
branch groups was undertaken, that an example (the Hanoi Towers group) was shown to
have non-trivial branch and rigid kernel. Further examples followed in [16]. The compu-
tations to find the rigid kernel were technical in these cases. The advantage of looking at
tree shifts and portraits is that it clarifies what these kernels are.

The map  is precisely the restriction to G of the canonical epimorphism Sps =
Aut(X*) x (G/M)X" — Aut(X*). The kernel of v therefore consists of all tree portraits
in G that have trivial Sym(X) part in every vertex.

2.3. Finitely constrained groups

We briefly return to the general setting of shifts of AX" (closed subsets that are invariant
under shift maps), where A is any set. A pattern is a function from X =" to A for some
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n > 1, which is the size of the pattern. We say that a pattern of size n > 1 appears in some
f € AX" if there exists u € X* such that f; |x<» is the specified pattern. We will also say
that this is the pattern of size n at u of f.

It is well known in symbolic dynamics that any shift can be defined by declaring some
collection of forbidden patterns which do not appear in any element of the shift. If a finite
collection of forbidden patterns suffices for this definition, the shift is called a shift of finite
fype.

In the case where A is a group, one can analogously define and study groups of finite
type or finitely constrained groups: subgroups of AX " that are simultaneously shifts of
finite type. These groups are characterised in the following theorem [13].

Theorem 2.7 ([13]). Let " < AX" where A is a group that acts on X, and n > 1. The
following are equivalent:

(1) T is a finitely constrained group defined by patterns of size n.
(2) T is closed, self-similar over A, and branches symbolically over Trivr (n — 1).

(3) T is the closure of a group G < AX™ that is self-similar over A and branches
symbolically over Trivg(n — 1).

Observe that if G < Aut(X™) is a self-similar, regular branch group, with maximal
branching subgroup K, then

TivE(2) = Ste(2) N X % K = X * (Stg(1) N K) = X * TrivE (1).

In other words, G branches over Trivg (1), so, after making the identifications explained
in the previous section, we obtain the following corollary from Theorem 2.7.

Corollary 2.8. If G < Aut(X™) is a self-similar, regular branch group, with maximal
branching subgroup K, then the symbolic (branch) completion Gk is a finitely constrained
group defined by patterns of size 2.

Moreover, if G is a self-similar, regular branch group, with maximal branching sub-
group K, then the kernel Rg of the canonical “forgetful” map ¥ : Sx = Aut(X™) x
(G/K)X" — Aut(X*) is precisely Rg = idx(G/K)X", which is evidently a finitely con-
strained group defined by patterns of size 1. The rigid kernel of G is therefore Gx N Rk,
the intersection of two closed groups that are self-similar over Sym(X) x G/K, and
it branches symbolically over TringOfG?(l). Applying Theorem 2.7, we conclude the
following corollary.

Corollary 2.9. If G < Aut(X™) is a self-similar, regular branch group, with maximal
branching subgroup K, then the rigid kernel ker : Gg — G is a finitely constrained group
defined by patterns of size 2.
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Corollary 2.8 also has consequences for the structure of G as a tree shift. It is natural to
wonder whether it is also a finitely constrained group. A priori, it is only a sofic tree shift.
For our purposes (see [3, Section 2] for equivalent definitions), given two finite alphabets
A, B, a sofic tree shift in BX" is the image of a tree shift of finite type in AX" under a
continuous map that commutes with the shift action of X*.

The canonical map ¥ : Sg = Aut(X*) x (G/K)X" — Aut(X*), (f.h) — f is indeed
continuous, and it commutes with the shift action of X* on Sg and Aut(X ™) because

V(. 1)) = f(uv) = W(f. h)y(v) € Sym(X)

holds for all (f,h) € Sk and u,v € X*. The map ¢ : G — G is the restriction of ¥ to
the tree shift of finite type G, so G is indeed a sofic tree shift.

The following theorem of Penland and Suni¢ shows that, in many cases, groups that
are sofic tree shifts are already finitely constrained groups.

Theorem 2.10 ([13, Theorem Al). Let A be a finite group acting on X and G < AX”.
If the normaliser of G in AX * contains a level-transitive subgroup that is self-replicating
over A, then G is a sofic tree shift group if and only if G is a finitely constrained group.

This together with Corollary 2.8 allows us to conclude the following.

Corollary 2.11. Let G < Aut(X™) be a self-replicating, level-transitive, regular branch
group. Then the closure G of G in Aut(X*) is a finitely constrained group.

Note that the above says nothing about the size of defining patterns of G, just that they
are bounded.

Theorem 2.12 (Theorem 2). Let G < Aut(X ™) be a self-similar, level-transitive, regular
branch group, with maximal branching subgroup K. The following are equivalent:

(1) G has trivial rigid kernel.

(2) G branches over some level stabiliser.

(3) K = Stg(n) for somen > 1.

If G is in addition self-replicating, then G is a finitely constrained group and the above
items are also equivalent to

@) |1X %G :Stg(1)] = |X %G : Stg(1)].

Proof. Let G < Aut(X™) be a self-similar, level-transitive, regular branch group, with
maximal branching subgroup K.

(1) & (2). The rigid kernel of G is trivial if and only if {Trivg(n) : n € N} and
{Stg(n) : n € N} generate the same topology on G, which holds if and only if for every
n € N there is some m € N such that Trivg (n) > Stg(m). This is equivalent to the exist-
ence of some s € N such that X *x Stg(s) = Stg(s + 1). To wit, if Trivg(n) > Stg(m),
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then, since G branches over Trivg(1) and K is the maximal branching subgroup, we
have Stg(m) < K and thus X % Stg(m) < Stim + 1) N (X *x K) < Stg(m + 1), so
X * Stg(m) = Stg(m + 1). Conversely, if X * Stg (s) = Stg (s + 1), then G branches over
St (s) and therefore Stg (s) < K, so Stg(s) = Stx(s) and Stg(n + s) = X" * Stx(s) <
X" % Stg (1) = Trivg(n + 1) for every n € N.

(2) & (3). If K is the maximal branching subgroup, then K > Stg (n) for some n > 1
if and only if Stg(n + 1) > X * Stg (n).

If G is also assumed to be self-replicating, then Corollary 2.11 says that G is a
finitely constrained group. In particular, by Theorem 2.7, there exists some n > 0 such
that Stg(n 4+ 1) = X * Stg(n). This implies that

X *G: X *Stg(n)| = |X %G : X xStg(n)| = |X * G : Stg(n + 1)
=|X %G : Stg(1)||Stg (1) : Stg(n + 1)|
=|X %G : Stg(1)||Stg (1) : Stg(n + 1)].

At the same time,

|X % G :Stg(n + 1)]
|X * Stg(n) : Stg(n + 1)|
X *G :Stg(1)] - |Ste(n) : Stg(n + 1)]
N | X * Stg(n) : Stg(n + 1)]

|X %G : X *Stg(n)| =

Putting these together, | X * G : Stg(1)| = |X * G : Stg(1)| - | X * Stg(n) : Stg(n + 1)|;
therefore, | X * G : Stg(1)| = |X * G : Stg(1)| if and only if X * Stg(n) < Stg(n). This
shows that items (2) and (4) are equivalent. ]

Note that the above result is not “quantitative”. Namely, when the two indices in con-
dition (4) are not equal, we have no information on the rigid kernel other than that it is
non-trivial.

2.4. The rigid kernel

For the rest of this section, fix G < Aut(X ™), a self-similar, level-transitive, regular branch
group, with maximal branching subgroup K. We will drop the K notation from now on,
s0G = E;; and R = Rg, etc.

As stated above, the rigid kernel ker(é — G) is G N R where R = id x(G/K)X",
and it is a finitely constrained group defined by patterns of size 2, by Corollary 2.9.

Notice in particular that the rigid kernel inherits from R any property of G/K that is
inherited by subgroups of Cartesian products (for instance, and this will be important for
our examples, being elementary abelian).

The patterns of size 2 defining G N R are in

Stg(2)/Trivg (2) = Stg(2)(X * K)/(X * K).
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Once a root pattern is fixed, the patterns of size 2 at each x € X must be chosen
so that their value at x (which must be in {id} x G/K) matches the value at x
of the root pattern of size 2. This means that the pattern of size 2 at x € X is
in a coset of (Stg(2) N Trivg(1))/Trivg(2) inside Stg(2)/Trivg(2) or, equivalently,
in a coset of (Stg(2)(X * K) N K)/(X * K) in Stg(2)(X * K)/(X * K). Note that
K/(X = K) is not trivial in general, so there may still be non-trivial elements in
Ste(2)(X * K)N K)/(X = K).

The same argument holds for all v € X* \ {¢}, so G N R is the inverse limit of the
extensions

X2 4 Stc(2)N K

Tive ) — Stg(n)/Trivg(n) — Stg(n — 1)/Trivg(n — 1) n > 3.

Lemma 2.13. Let X be the inverse limit of the inverse system {X;, ¢;; : X; — X; | j =
i > 1 € N} of finite groups and homomorphisms. Then X is also the inverse limit of the
surjective inverse system {Y;, \;; : j =i > 1}, where Y; = ﬂjzi img;; and ¥j; = ¢ly;.

Proof. A straightforward exercise in the definitions of inverse limit. ]

Theorem 2.14. Let G be a self-similar, level-transitive, regular branch group with
maximal branching subgroup K.

(1) The rigid kernel of G is finite if and only if

ﬂ (Stg(n)Trivg(m)) N K < Trivg(m) foreverym > 1.

n>m
(2) If the system {Stg (m)/Trivg (m), rn m} is surjective, then the rigid kernel is finite

if and only if Stg(2) N K < Trivg(2), in which case the rigid kernel is isomorphic
to Stg(1)/Trivg (1).

Proof. Foreachi > 1, define H; := (;-; Stg (k)Trivg (i) /Trivg (i). By Lemma 2.13, we
can replace each Stg (i)/Trivg (i) by H; “and each rj; by its restriction to H; (which we
still denote by 7; ;). The rigid kernel is finite if and only if there exists i > 1 such that r; ;
is an isomorphism for each j > i, which occurs if and only if the kernel of r;; is trivial.
This is equivalent to Trivg(i) N ﬂkz ; Sta(k)Trivg (j) = Trivg (j), which occurs if and
only if the left-hand side is contained in the right-hand side, as the other containment holds
always. Now,

Trivg (i) N () Ste (k) Trivg (/)
kzj
= XM (KNstg()) N ()G N X (Stg(k —i + DTrivg(j —i + 1))

k>j

— xi~ly (K N () Stelk —i + DTrivg(j —i + 1))
k>j
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and similarly, Trivg (j) = X?~! % Trivg(j —i + 1). So the rigid kernel is finite if and only
if there exists i > 1 such that

X1« <K N () stak —i + DTrivg(j —i + 1)) <X UsTrivg(j —i + 1)
k>j
for every j > i. But this occurs exactly when
(K N () Sto(k —i + DTrivg(j —i + 1)) < Trivg(j —i + 1).
k>j
This makes j — i the only variable, so that the rigid kernel is finite if and only if
(K N ﬂ Stg (n)TrivG(m)) < Trivg(m) forevery m > 1. 2.1
n>m

If the system {Stg (m)/Trivg (m), 1y m} is surjective, then Stg (n)Trivg (m) = Stg (m)
forevery n > m > 1, so (2.1) becomes K N Stg(m) < Trivg (m) for every m > 1. In par-
ticular, K N Stg(2) = Trivg(2). Now, suppose that the inverse system is surjective and
that K N Stg(2) = Trivg(2). Then, for each m > 2, the kernel of 7y, y—1 is

Stg(m) NTrivg(m —1) X" 2% (Stc(2) N K) X" 2% Trivg(2) _ Trivg (m)
Trivg (m) N Trivg (m) - Trivg (m) " Trivg (m)

where the second-to-last equality holds because K N Stg(2) = Trivg(2). This means that
T'm,m—1 15 an isomorphism, for each m > 2, and therefore the rigid kernel is isomorphic to
im(ry,,1) = Stg(1)/Trivg (1), which is finite, as required. |

Lemma 2.15. The inverse system {Stg (n)/Trivg (n), rmp : m > n > 1 € N} is surjective
if and only if Stg (2)K > Stg(1).

Proof. Forevery m > n > 1, the image of r,, , is Stg (m)Trivg (n)/Trivg (n). Observe that

Stg(n + DTrivg(n) = (G N X" % Stg (2))(X" ! * Trivg (1))
=G N X" % (Stg(2)Trivg (1))
=G NX" 1% (Stg(1) N Stg(2)K)
<GNX"xstg(l) = Stg(n) (2.2)

where the third equality follows from Trivg (1) = Stg (1) N K. If the inverse system is sur-
jective, then, in particular, Stg (2)Trivg (1) = Stg (1) N St (2) K = Stg (1), so Stg(2)K >
Stg (1). Conversely, if Stg(2) K > Stg (1), then we obtain equalities in (2.2). Inductively,
this implies that Stg (m)Trivg (n) = Stg(n) foreverym > n > 1. L]

Theorem 2.16 (Theorem 3). Let G be a self-similar, level-transitive, regular branch
group with maximal branching subgroup K. Suppose that Stg(2)K > Stg(1).
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(1) The rigid kernel of G is trivial if and only if Stg(2) = Trivg (2).

(2) Suppose moreover that G/ K is in a class of groups that is closed under subgroups,
quotients and direct products, in which all short exact sequences that are in the
class split as direct products (e.g., elementary abelian groups). Then the rigid

kernel is
Stg (2) Stg(2) N K

- Trivg (2) Trivg (2)

X*\{e}
and it is infinite if and only if Stg(2) N K /Trivg (2) is non-trivial.

Proof. According to Lemma 2.15, the inverse system {Stg (i )/ Trivg (i), r;,; } is surjective.
(1) The rigid kernel is trivial if and only if Stg(n) = Trivg (n) for every n > 1. Con-
versely, suppose that Stg(2) = Trivg(2). Then Stg(2) N K = Trivg(2), so Theorem 2.14
implies that the rigid kernel is isomorphic to Stg(1)/Trivg (1), which is trivial because it
is the image of the trivial quotient Stg (2)/Trivg (2).
(2) For every n > 2, we have the following short exact sequence:
Stg(n) N Trivg(n — 1) Stg (n) Stg(n —1)

1— — — -1,
Trivg (1) Trivg (n) Trivg(n — 1)

where the leftmost non-trivial term is equal to X2 % (Stg(2) N K/Trivg(2)). Since
Stg (n)/Trivg (n) < [[x<» G/ K, the assumption on G/ K implies that the above short exact
sequence splits as a direct product. Inductively, this means that

Stg(n) St (2) Stc(2) N K

Trivg (n) ~ Triv (2) X 1_[ T Trivg (2)
rnvg(n G ekxex<n G

for every n > 2. Taking the inverse limit gives the result. ]

For all self-similar examples in the literature where the congruence subgroup problem
has been considered, the inverse system {Stg (n)/Trivg(n), rmn : m > n > 1 € N} turns
out not to be surjective, except for the Hanoi Towers group H®), as will be seen in the
next section. In all the other cases, the rigid kernel is trivial anyway because K > Stg (1)
for some n. It would be interesting to have examples of self-similar branch groups with
non-trivial rigid kernel and such that the inverse system {Stg (n)/Trivg (n), rmn :m >n >
1 € N} is not surjective.

3. An infinite family of Hanoi-like groups

We analyse, for odd d, the group D = (ay, ...,a4—1) and prove the items in Theorem 1.

Notation. All arithmetic operations on the indices are done modulo d.
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3.1. Element decomposition and the contracting property

The following are straightforward to verify.

Lemma 3.1. With the notation of the introduction, and x € X, we have:

ni(x) =2i —x oi(x)=i+x
pipy = p>¢=7) plpl = p't
wip’ = pi-j2 P’ i = pivj2

pip’wi =p" p T pip’ = -y

pz(im_imfl +l‘m72_im—3+"'+i2_i1), m eVen,
Wiy Kty = ip My =
Wip—im—1+im—r2—im—3+-—iz+ip, M odd.
) 2(im — im—1 +im—2 — im—3 + -+ +ix —i1) + x, m even,
iy Wiy ="+ Mip iy (X) = . . . . . .
2(im — im—1 tim—2 —Im—3+ -+ —i2 +i1)—x, modd.

Lemma 3.2. Let g = a;, a,,_, - ai,a;,. The root permutation of g is
pz(im_im—l+im—2_im—3+"'+i2_il)’ m even,

8(&) = My Miy—y "+ Hig iy =
Rim=im-1+im—2—im-3+-=—ip+ir, M odd.

The following table gives the position to which each a;; is contributed in the first level
decomposition of g:
contributed to position

aij, i1

aij, 2i1 — iz

aj, 2i1 —2iy+1i3

a;, 2ip—2iy+2i3—1i4

If aj, and a;;, with k > j happen to be contributed to the same position, then a;, appears
to the left of a;; (just as in g) in the corresponding section. More formally,

1 1 1 1
g = l_[ aij = 1_[ /’Lij(gl.j (aij) = l—[ /'Lij . l_[ Sﬂilﬂiz"'ﬂij_l (ij)(aij)
j=m j=m j=m j=m
1 1
= l_[ Mij - 1_[ 82(i1—i2+i3—i4+"-+(—1)ji_,;l)-‘r(—l)j*li,' (aij)a

j=m j=m

where all the products should be written from left to right with decreasing indices.
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Lemma 3.3. The group D is contracting, with nucleus {1, ay, ...,aq—1}. Moreover, for
allge Dandx € X,

1
lgx] < E(Igl + 1),

where the length function is with respect to the generating set S = {ag,...,a4—1}. In
particular, for all g € D with |g| > 2, we have

x| < gl.

3.2. The commutator subgroup D’

For a word W over § ={ayo,...,ag—1}and j =0,...,d — 1, letexp; (W) be the number
of occurrences of the letter a; in W.

Lemma 3.4. If the word W represents the identity in D, then, for j = 1,...,d — 1,
exp; (W) =2 0.

Proof. By induction on |W|. The only word of length up to 1 that represents the identity
is the empty word. This establishes the base of the induction. Let the claim be true for all
words of length < m, for some m > 1, and let W be a word of length m + 1 representing
the identity in D. If two consecutive letters in W are equal, we may remove them without
affecting the parity of the exponents or the group element represented by W, obtain a
shorter word, and apply the induction hypothesis. Otherwise, because of the contraction,
the first level sections of W can be represented by words Wy, ..., W;_; of length < m.
Since the sections of a trivial element are trivial, each of the word Wy, . .., Wy _{ represents
the identity. Therefore, by the induction hypothesis, for j = 0,...,d — 1,

d—1
exp; (W) = Zexpj (W;) =, 0. |
i=0

The last result shows that the exponents modulo 2 are well defined at the level of group
elements by setting exp;(g) = exp; (W), forg € D and j =0,...,d — 1, where W is
any word over S representing g.

Lemma 3.5. With notation as above, the following statements hold:

(1) The map exp : D —(Z/27)% by exp(g) = (expo(g),-..,expy_1(g)) is a surject-
ive homomorphism.

(2) The kernel of exp is the commutator of D.

(3) A word W over S represents an element in the commutator D' if and only if
exp; (W) =20, for j =0,...,d — L.

(4) |D : D'| = 2% and D/ D’ is elementary abelian 2-group of rank d, generated by
(the image) of S.
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(5) |D :Stp(1)D'| = 2 and Stp(1)D’/ D’ is the kernel of the augmentation map
aug: D/D’ — Z/2Z defined by ag’ ---aj*" — Z?’;ol ;.

6) |Stp(1) : Stp(1) N D'| = |D'stp(1) : D'| =241,

Proof. Since the parity of exp; does not depend on the representatives, we have
exp;(gh) =2 exp;(g) + exp; (h), which shows that exp is a homomorphism. Surjectivity
is clear, since exp; (a;) = 1.

Let K be the kernel of exp. By definition of exp, the element g is in K if and only if,
forj =0,...,d — 1, we have exp; (g) =2 0. In other words, an element g represented by
aword W over S is in K if and only if every generator appears an even number of times
in W.

Since the image of exp is abelian, we have D’ < K. On the other hand, since every
generator of D has order 2, every element of D represented by a word in which every
generator appears an even number of times is in the commutator D’. Thus, K < D’.

Since D’ = K and exp is surjective, we have D/D’ = D/K = (Z/27)%. Note that,
for j =0,...,d — 1, the vector exp(a;) is the jth standard basis vector of (Z)27)°.

As D/Stp(1) = D(d) and d is odd, the abelianisation of D(d) has order 2 and is
isomorphic to D/ D’Stp (1), where only the parity of the number of reflections matters.

The last item follows from the previous two. ]

Lemma 3.6. The group D branches over its commutator subgroup D’.

Proof. Fori # j,the indices i, 2i — j, and 3i — 2 are distinct, and from Lemmas 3.1
and 3.2, we obtain

a2i—ja;iaja; = 83i—2;(a;) 62i—j(azi-;a;) 8i(ai)
(azi—jaiaja;)?* = 8zi—j([azi—;, a;]).
If i = 0, then
(azi-jaiaja;) = 82j(ai)s—j(a—jaj)do(ao) = (ao.*, *,....%), (3.D
where * represents elements that are not important; while if i # 0,
(azi—jaja;a;)*? = 8o(a;)8j—i(azi—ja;)0xi—iy(ai) = (@i, *, %, ..., %). (3.2)
If 2i — j =0, set h = 1; otherwise, h = a;_j/». Then
(a2i—jaia;a)))" = (lazi—j.a;]. 1. 1,....1). (3.3)

By Lemma 3.5, the elements ((a2;—;a;aja;)*)" are all in D’, and letting i, j run
through {0, ..., d — 1} in (3.3) yields that D’ contains the set {§o([a;,a;]) :i # j €
{0,...,d — 1}}. Conjugating this set by appropriate products of elements (3.1) and (3.2),
we obtain that D’ > 0 % D’. Since D is transitive on X, we can conjugate by elements
that permute X to get D’ > X % D’. [
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3.3. The first level stabiliser Stp (1)

While it is possible to analyse the first level stabiliser directly, we find it suitable to use
graph homology.

For a simple, connected, undirected graph I' = (V, E), the edge space is the vector
space of dimension | E| (the coordinates are indexed by E) over the field with 2 elements.
Fix a vertex vy in V. Each walk w starting at vy in I is represented in the edge space by
the vector (#,(w))eck, where #,(w) is the number of times the edge e is used, in either
direction, in the walk w (note that only the parity plays a role). The cycle space of I',
based at vy, is the subspace of the edge space spanned by the representations of the closed
walks in I', starting and ending at vy (the cycle space does not depend on vy, but we prefer
to have a base point anyway).

Let T be a spanning tree of I' and E” be the set of edges not on the tree T'. The number
of edges in E’ is |E| — |V| + 1. For each edge e € E’ pick, arbitrarily, one endpoint to
be the origin o(e) and the other to be the terminus 7 (e), and let p, be unique path in T
from vy to o(e), followed by the edge e to ¢(e), followed by the unique path in 7 from
t(e) to v,. The cycle space has dimension | E| — |V | 4 1 and the representatives of p,, for
e € E’, in the edge space form a basis of the cycle space.

The cycle space can also be described through vertex conditions as follows. A vector
(xe)eck is in the cycle space if and only if, for every vertex v, we have >, _, x, = 0,
where the summation is taken over all edges incident with v (all edges with either o(e) = v
ort(e) = v). Each of these | V| vertex conditions is implied by the other vertex conditions,
and any |V| — 1 of them are linearly independent. Note that the vertex conditions simply
state that (x.)ee g represents a closed walk, based at vy, such that each edge e in E is used,
up to parity, x, times, if and only if, for every vertex v, the number of distinct edges incid-
ent with v that are used an odd number of times is even (so that the number of entrances
and exits from v can be matched).

In our situation, the graph I' is the left Schreier graph of the action of D on its quo-
tient D(d), with respect to the generating set S = {ao,...,ag—1} of D. The graph T’
is isomorphic to the complete bipartite graph K4 4. The d rotation vertices pj, j =
0,...,d — 1 are connected by a total of d? edges to the d mirror symmetry vertices
i, j =0,...,d — 1. For every edge e, we declare the rotation vertex incident to e to be
the origin, and the mirror symmetry vertex incident to e to be the terminus.

For a fixed rotation vertex p;, there are d edges, labelled by the generators in S, using
p’ as origin and connecting p/ to the appropriate mirror symmetry. Since fu; p/ = j1;_ /25
the edge labelled by a; with origin p/ looks like

ol e

® [i—j/2- 3.4

Similarly, for a fixed mirror symmetry vertex ji;, there are d edges, labelled by the gen-
erators in S, using u; as terminus and connecting (; to the appropriate rotation. Since
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wipj = p>=7), the edge labelled by a; with terminus z; looks like

L. ai
pﬂkﬂ).

o 1.

We interpret (X * D)/(X * D') = X % (D/D’) = (Z/2Z)%" as the edge space of T
as follows. We take the trivial rotation 1 = p° to be the base of I'. A word W = a;, -+ -a;,
over S is identified with the corresponding walk in I" starting at 1 (the first step is along
the edge labelled by a;,, the next along the edge labelled by a;,, and so on). When we
pass along the edge e in (3.4) in the direction from the origin p’/, the letter a; is con-
tributed to position p~/ (i) = i — j in the decomposition of g = a;,, -+ a;,. When we
pass along the same edge in the direction from the terminus, the letter a; is contributed
to position /Li__lj/z(i) = ftj—jj2(i) =i — j. Thus, g; is contributed to the same position,
i — j, regardless of the direction in which we pass the edge e. This means that we can
identify (X * D)/(X * D') =~ (Z/ZZ)d2 with the edge space of I' by observing that,
for the edge e in (3.4), a word W = a;,, ---a;, and g € D represented by W, we have
# (W) = exp; (gi—;)- In other words, the parity of the letter @; in the (i — j)th compon-
ent of the decomposition of g, taken as an element of (X * D)/(X * D') =~ (Z/ 2Z)d2,
keeps track of the parity of #,.

The first level stabiliser Stp (1) consists of all group elements represented by words
which are closed walks based at 1 in I'. Thus, the image of Stp(1) in the edge space
(X * D)/(X = D') is precisely the cycle space of I

Proposition 3.7. The following statements about the first level stabiliser Stp (1) of D are
true.

(1) An element a;,a;,,_, ---ay belongs to the first level stabiliser Stp (1) if and only
if m is even and

htizt+--=giatiast+---.
(2) The first level stabiliser Stp (1) is generated by the elements
ajajyiaiao = 8j(a;) 8j—i(aj+i) 8—i(ai) do(ao),

fori,j=1,...,d — 1.

(3) The elements of the first level stabiliser can be described as follows. An ele-
ment (go, ..., 8da—1) of X * D is an element of Stp(1) if and only if, for
j=0,....d -1,

d—1 d—1
> exp;ii(gi) =2 ) exp;_;(gi) =2 0.

i=0 i=0

Each of these 2d parity conditions is implied by the other 2d — 1.
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@) |X % D:Stp(1)| =229V and |Stp(1): X % D'| = 2@~ Both (X * D)/Stp(1)
and Stp(1)/(X % D’) are elementary abelian 2-groups, of ranks 2d — 1 and
(d — 1)2, respectively.

Proof. (1) The root permutation of a;,, ---a;, is Wi, - -+ Ki, and a;,, - - a;, represents an
element in Stp (1) if and only if u;, --- p;; = 1, which happens precisely when m is even
(so that we have a rotation) and i, — i;,—1 + -+ + i — i1 =4 0 (so that the rotation is
trivial).

(2) Let T be the spanning tree of I consisting of all edges incident with the trivial
rotation 1 together with all edges incident with pg. Fori, j = 1,...,d — 1, the cycles

ao ai 5 G4 aj

1 Mo o Hj 1

form a basis of the cycle space (the third edge is the one not in 7', and it connects the
non-trivial rotation vertex p?’ to the mirror symmetry vertex (;, not equal to fo). Thus,
the elements a;a; 4 ja;ao generate Stp (1).

(3) In our situation, we have 2d vertex conditions, one for every vertex in the Cayley
graph of D(d).

Fix a vertex p’/ representing a rotation. Its incident edges are a jti.fori =0,...,d —1.
The edge a; ; is contributed to position p~/(j 4+ i) = i. The vertex condition at p/ then

reads
d—1

ZeXPj-H(gi) =, 0.

i=0
Fix a vertex u;/, representing a mirror symmetry. Its incident edges are a;_;, for i =
0,...,d — 1. The edge a;j_; is contributed to position /,Lj_/lz(j —1) = pjp(j —i) =1i.
The vertex condition at j4j/, then reads

d—1

Z exp;_;(gi) =2 0.

i=0

(4) The dimension of the cycle space Stp(1)/(X * D’) is (d — 1)? since we have
|E| —|V|+1=d?—-2d + 1 = (d — 1)2. The dimension of the complementary space
(X *D)/stp(l)is|V|—1=2d — 1. [

Proposition 3.8. The rigid level stabiliser R, = Rstp(n) of level n in D is X™ % D’. For

n > 1, we have
dan—1
a1 .

|D : Ry| =2W724"+2 . g

Proof. We have already seen in Lemma 3.6 that x * D’ < D’ and therefore x * D’
Rstp(x) for every x € X. This implies that X = D’ < R;. Inductively, X" % D’
X" 1% D' < Dforeveryn > 1andso X" x D' < R, foreveryn > 1.

IATA
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To show the opposite containment, consider an element g = 8x(gx) € Rstp(x) for
some x € X. Then, since g € Stp(1), it must satisfy the equations in Proposition 3.7 (3),
which reduce to exp;(gx) =2 0 forall j € {0,...,d — 1}. By Lemma 3.5, gx € D’, so
Rstp/(x) < Rstp(x) < x * D’ forevery x € X and X * D’ = Ry = Rstp/(1).

From this we obtain that X2 x D’ = X x Rstp/(1) = R, and inductively that X" x*
D’ =R, foralln > 1.

By the above, Proposition 3.7 (4), and since D/Stp(1) = D(d), we have

ID: Ry| = |D :stp(1)||Stp(1) : (X * D')| = 2d -2@=D*,

This in turn implies that

D' Ry = D (x % D) = PRI pawavrvica g pana-a
DD/

Since |[D : Ry| =|D : D'||D': Ri|and R; = X * R;_1,s0 R; = X' x D’ for all i, we
have

n—1 n—1
ID:Ry| =|D:Ry|x [[IRi: Risa| =D :D'|x[[ID': X% D'|* =2°-d",
i=1 i=0
where 1 = Y70 di = (@" —1)/(d —1) and s =d + (d —1)(d —2) Y1y d' =
d"(d —2) + 2. .

3.4. The rigid kernel of D

We first prove that the hypotheses of Theorem 3 hold for D. According to Proposition 3.8,
the maximal branching subgroup of D is D’, and we know from Lemma 3.5 that D/ D’
is an elementary abelian 2-group of rank d. This means that D satisfies the hypotheses of
the second item of the theorem. It only remains to see that Stp (2) D’ > Stp (1) and find
Stp(2)/Trivp (2).

Lemma 3.9. The following items hold:
(1) (Stp(2)(X = D"))/(X * D) = Stp(2)/Trivp (2).

(2) The quotient (Stp(2)(X * D"))/(X % D') is an elementary abelian 2-group of
rank (d — 2)(d — 1) with a basis given by the images modulo (X * D') of

ajdajyiajdo -djaed—jdo-aj-idodi—jdo-d-idodido,
2 2 2 2 2 2
jaie{l,....d —1},i#—j. (3.5)

(3) The patterns of the corresponding generators of Stp (2)/Trivp (2) are

N\~

aoalaj+la]a—/a17 7] ;
2 2 2

] \)\//

J

ido aj—zaoaz—]ao a,aoa—jao aidod-idy
2 2 2 2
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(4) Stp(2)D’ =Stp(1)D’ and {Stp (n)/Trivg (n), rm n} is a surjective inverse system.

Proof. (1) Since Trivp(2) = X * Trivp (1) = X * (Stp(1) N D’) and Stp(2) = Stp(1) N
(X % Stp (1)), we have

Stp(2) _ Stp(1) N X * Stp(1) - Stp(1) N (X * Stp(1)D') _ Stp(2)(X x D)
Trivp(2) X *Stp()NX D’ — X % D’ N X % D’

(2) From the above, we must work out Stp (1) N (X * Stp(1)D’)/(X * D). Recall
from Proposition 3.7 (2) that Stp(1)/(X * D’) is generated by (d — 1)? elements:

ajajyiaiag = 8]-(aj)Sj_i(aj+i)8_i(a,-)80(a0) fori, j € {1, e, d — 1}.

Recall from Lemma 3.5 that Stp(1)D’/D’ is the kernel of the augmentation map
aug : D/D’ — Z/27 defined by ag° ---agd_’ll — Zid;(,l a;. Thus, Stp(1) N (X *
Stp(1)D’)/(X * D’) is the kernel of the map

Aug : Stp(1)/(X * D) — (Z/2Z)d, (x0,...,xXq—1) > (aug(xp), ...,aug(xz—1)).

The parity conditions given in Proposition 3.7 (3) when added all together imply that
(x0,...,x4-1) € Stp(1)/(X * D) satisfies the equation Zid;(,l aug(x;) =, 0 and there-
fore the image of Aug has dimension at most d — 1 in Z/2Z¢. Now note that, as d is
odd, 2 ranges through all of {1,...,d — 1} with j € {1,...,d —1}. So the d — 1 images

Aug(ajaoa—jaog) = Aug($j(aja—;)82j(ao)do(ao)) = 82;(1)8o(1)

for j € {1,...,d — 1} are linearly independent, and so they form a basis for the image
of Aug. Consequently, the kernel of Aug is an elementary abelian 2-group of rank
d-1)2-(d-1)=(d-2)(d-1).

By expressing the images under Aug of the generators {a;a; y;a;a0:i,j=1,...,d —1}
of Stp(1) in terms of the above basis elements, we obtain that Aug(a;ajtia;ap) =
Aug(a_;a_;_ja_jap) and so the (d — 1)(d — 2) relations

Aug(ajajiiaiag) = Aug(ajrapa—jag) + Auglaci—iy/2a0ai—j)/200)
+ Aug(a_;j2aoa;/»ao),

fori,j €{l,...,d —1},i # —j form a basis for the kernel of Aug. This basis consists
of the images, modulo X * D’, of

aopdidj+idj - Ajra0d—j/200 - A—j/200di/200 - A(j—i)/2404(i—j)/240,
joi=1,....,d —=1,i #—].

(3) Using that a;ja; y;a;ag = 8;(a;)d;—;i(aj+i)6—i(ai)o(ao), it is straightforward to
see that an element g of the form shown in (3.5) has the following non-trivial sections:
gj =ajag, §—i = a;ap, §j—; = dj4+;dg, and g = axa_y fork = j/2,—i/2,(j —i)/2.
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In general, these sections are not in Stp (1), as needed for g to be in Stp (2); they are only
in Stp (1) D’. However, since X * D’ < Trivp (1), we can find appropriate elements of D to
multiply g and obtain an element of Stp (2) with the same pattern at the root. For example,
we can use the following elements with appropriate values of k € {1,...,d — 1}

akag - aolak. aij2lao = aj2arar2a0 € Stp(1),
axa—gla—g,ao]l = araoa_gao € Stp(1)
to obtain the patterns in the statement.

(4) Choosing j = i in (3.5) and taking the image modulo D’, we obtain the generat-
ors{ajapD’: j =1,...,d — 1} which are exactly the generators of Stp(1)D’/D’. Thus,
Stp(2)D’ > Stp(1), and Lemma 2.15 yields that the inverse system {Stp (n)/Trivp (n) :
n > 1} is surjective. L]

In particular, by the first part of Theorem 3, D has non-trivial rigid kernel. It only
remains to find the structure of Stp (2) N D’/Trivp (2) to conclude, using the second item
of the theorem, that the rigid kernel of D is an infinite Cartesian product of finite groups.

Lemma 3.10. The quotient Stp(2) N D' /Trivp (2) is an elementary abelian 2-group of
rank (d — 1)(d — 3). Writing [j,i] := aja;yiaiao € Stp(1) for j,i € {1,...,d — 1}, the
Sollowing patterns of size 2 generate Stp(2) N D’ /Trivp (2):
So([j/2.—j/2A-1G —)/2.—( —D)/2] - [-i/2.i/2] - [].i])

8 ([j/2.j/2D8j i (G +i)/2. (G +)/2D)8-i([i/2.1/2D)8(j—iy/2

(G —=0)/2. = —)/2D) - 8+j2([FJ /4 FJ/4DS+i/2([£i/2, £i/2])

S22 +D)/4.( +D)/4D) - 8x—iya(l(G —1)/4,—(j —i)/4])

Sl +0)/4. = +1i)/4])
forjie{l,....,d —1},i # %j.
Proof. As in the proof of Lemma 3.9, we will work out the quotient Stp (2)(X * D’) N
D’/X % D', as it is isomorphic to Stp(2) N D’/Trivp(2). As Stp(2)(X * D) N D' =
Stp(2)(X * D) N Stp(1) N D', we consider Aug from Lemma 3.9 and another map
whose kernel is Stp (1) N D’/(X * D’).

Consider g = (go,...,&d—1) € Stp(1). By Lemma 3.5, g € D’ if and only if each
generator a; of D appears an even number of times in g. Now, by the definition of
the a;, any appearance of a; in g gives exactly one appearance of a; in some g;. So
g € D' if and only if, for every j € X, the number of appearances of a; across all g; is
even (Vj € X : Z;jz_ol exp;(gi) =2 0, where exp; is as in Lemma 3.4). In other words,
Stp(1) N D’ is the kernel of the map

Exp : Stp(1) N (X * D) — (Z/27)%,
d-1

d—1
(80,---.8a—1) — (Z expy(gi)s---r Y eXPd_1(gi))-
i=0

i=0
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By Lemma 3.9, Stp (2)(X * D')/(X * D’) is the kernel of the map Aug, so

(Stp(2)(X * D') N Stp(1) N D’)
(X * D)

is the kernel of the map

Aug x Exp : Stp(1)/(X % D) — (Z/27)%¢
g = (8o,---,8a-1) — (Aug(g), Exp(g))

= ((aug(go), - aug(gd—1)).

( Z expy (i) Z expy—1 (&) ))

The 2d parity conditions given in Proposition 3.7 (3) imply that the sum of entries in
each of the images of Aug and Exp must be 0 modulo 2. Thus, the image of Aug x Exp
has dimension at most 2d — 2.

To improve readability, we write [/, i] := a;ajy;a;ag, 8, for the nth canonical basis
vector in (Z/27)% and for the zero vector in (Z/27Z)% . Notice that the elements

{(Aungxp)([j,jD:(8,-8_,-,8082,~>, jell,....d—1} 36

(Aug xExp)([j,—J]) = (80825, 8;6—;), je{l,....d -1}

are linearly independent, as d is odd. Again because d is odd, these elements span the
image of Aug x Exp:

(Aug xExp)([2/, =2j]11/, j1[=J/. =] = (80845, —)
(Aug x Exp)((2/. 2711/, =jll=J. /D) = (= 8084;)
for j €{1,...,d —1}. So the image of Aug x Exp is indeed of rank (2d — 2), and therefore
the kernel has rank (d — 1)2 — (2d —2) = (d — 1)(d = 3).
For j,i € {1,...,d — 1},i # +£j, we have the following (d — 1)(d — 3) relations:
(Aug x Exp)([/,i]) = (806;8;-i6i. 808;6:8;+i)
= (808j,—) + (800 —i,—) + (800—i, =) + (=, 806;)
+ (=, 808:) + (=, 808 +i),
which yield generators of Stp (2)(X * D') N D’/ X * D’, the images modulo X * D’ of
Ui U2, =0 /B4 T/ AT/ = 142,120 4/ 4=/
G = )/2.G = D/ —i)/4.( = D/ANG — /4G~ /4]
U2 /20 A A 2200 4
G +D/2.G 4D/ + /4 () = D/Al) i)/, +D)/4]
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for j,i € {1,...,d —1},i # £j. Using the same trick as in the proof of Lemma 3.9,
we can multiply each of the above elements by a suitably chosen element of (X % D’)
to ensure that the patterns at each x € X are in Stp(1). This gives the patterns in the
statement. u

Notice that for d = 3, the quotient Stp(2) N D’/Trivp(2) is trivial and we have
only (d — 1)(d — 2) = 2 generators of Stp(2) modulo X x D’, namely ajaraiag -
dadopdidop * di1aopdrdgog = (aoaz, dodp, aoaz) and djzaidszdop * di1dopdzdp * dzdod1do =
(apai, apay, apay). Therefore, the rigid kernel is isomorphic to the Klein-4 group,
generated by these elements. This agrees with the conclusions of [1, 15].

Corollary 3.11. The rigid kernel of D is isomorphic to a Cartesian product of cyclic
groups of order 2. If d = 3, the rank is 2; if d > 5, the rank is infinite.

3.5. Congruence completion and Hausdorff dimension of D

The Hausdorff dimension of a closed subset of AX™ is a way of measuring its “relative
size”. If A=F <Sym(X),d = |X|,and G < FX" = lim F? .2 F is aclosed subgroup,
its Hausdorff dimension is

lo G :Stg(n d—1Dlo G :Stg(n
hdim(G) = lim inf gp |G Stoml (@ = Dlogip [G 2 Ste ()]

3.7)
n—00 IOgIFle_',’_?F n—00 ar —1

In performing these calculations for D, the appropriate choice of F < Sym(X) to take
is D(d), so | F| = 2d in the formulas above.
Proposition 3.12. We have, forn > 1,

n—1

D :Stp(n)| = D : Stp(m)| = 24" - d

and the Hausdorff dimension of D is

— 1 log2
hdim(D) =1—- —- .
im(D) d log2d

Proof. The first equality is a general fact about profinite closures. We only need to show
that the sizes of D/Stp(n) are as claimed. For this, we use that

|D : Rstp(n)|
|Stp (n) : Trivp ()| - [Trivp (n) : Rstp ()|

|D 2 Stp(n)| =

The numerator has already been determined in Proposition 3.8. For the denominator, we
have, firstly

[Trivp (1) : Rstp ()] = | X" '« (Stp(1) N D') : X" x D'| = |stp(1) N D" : X % D'|4"".
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Since [Stp(1) : X % D’| = 2(=D? by Proposition 3.7 (4) and |Stp(1) : Stp(1) N D’| =
29-1 by Lemma 3.5, we have that |Stp (1) N D’ : X % D'| = 2(¢-D(@=2),
Now, from the proof of Theorem 3, we extract that

X2 4 (StD(Z) N D/)
Trivp (2)
= |Stp(2) N D : Trivp(2)|* - |Stp (1) : Trivp(1)],

|Stp(n) : Trivp(n)| =

“|Stp(n — 1) : Trivp(n — 1)|

where a = Y'25d' = (d"' — 1)/(d — 1). Using Lemma 3.10 and that [Stp(1) :

1

Trivp (1)| = 2471, we conclude that
IStp (n) : Trivp (n)| = (2(d—1)(d—3))a .pd—1 _ 2(d—3)(d"*1—1)+d—1.

Putting all of the above together, we get that |D : Stp(n)| = (2°d")/(2% - 2Y),
where t = (d" - 1)/(d — 1), s =d"(d —2) +2,u=(d —-3)d" ' —-1)+d -1,
v=(d—1)(d —2)d" ', sos —u—v =d" ! and we get the first part of the statement.

For the Hausdorff dimension, the result follows from (3.7) and

- qn—1 dr—1
log,;(|D : Stz (n)]) = logy4(|1D = Stp(n)]) = logy, (247 -d 1)
d"n—1 d"'-1

= - logy 2). .

Corollary 3.13. (1) The closure D is a finitely constrained group defined by the
patterns of size 2 that can be described as follows. A pattern of size 2

0 d—1
1 d—2

o T Td—2 Td—1

is an allowed pattern if and only if the permutation wwomy -+ Tg_pmg—1 € D(d)
is a rotation in D(d) (the number of mirror symmetries among m, g, . . ., Tg—1 IS
even).

(2) The closure D is a regular branch group branching over Stp (1) = Sty (1), the
stabiliser of level 1. Moreover,
[X « D :Stp(1)] =221 and [X %D :Stp(1)] =2,

so we recover, using Theorem 2, the known fact that D has non-trivial rigid kernel.

Proof. (1) First note that all elements of D/Stp(2) satisfy the constraints in the state-
ment, because each generator a; of D contributes a single reflection w; to the pattern at
the root and the same reflection p; to the pattern at exactly one vertex of level 1. Since
D is self-similar, all patterns in D of size n must also satisfy these constraints. The fact
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that all allowed patterns in the statement of size n arise in D follows from the fact that
|D : Stz (n)| as calculated in Proposition 3.12 is exactly the number of allowed patterns.
(2) The first part of the statement follows from Theorem 2.7 and the fact that D is
finitely constrained, defined by patterns of size 2. For the second part, the first equality is
proved in Proposition 3.7, while the second follows from the constraint of index 2 in the
allowed patterns of size 2. |
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