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Some remarks on Grothendieck pairs
Andrei Jaikin-Zapirain and Alexander Lubotzky

Abstract. We revisit the paper of Alexander Grothendieck where he introduced Grothendieck pairs
and discuss the relation between profinite rigidity and left/right Grothendieck rigidity. We also show
that various groups are left and/or right Grothendieck rigid and, in particular, all ascending HNN-
extensions of finitely generated free groups are right Grothendieck rigid. Along the way we present
a number of questions and suggestions for further research.

To Slava Grigorchuk

1. Introduction

Let ¢ : A — T be an embedding between two finitely generated residually finite groups.
We say that ¢ is a Grothendieck pair if the induced homomorphism between the profinite
completions ¢> A — Tisan isomorphism. We say that a Grothendieck pair is trivial if ¢
is an isomorphism, that is, ¢ (A) = T.

Grothendieck pairs were introduced in [16] by Grothendieck. His paper became well
known because of a proposed question as to whether a Grothendieck pair of two finitely
presented groups is always trivial. The first example of finitely generated non-trivial
Grothendieck pairs was given by Platonov and Tavgen’ [27]. This has been followed by
many other constructions [6,20,29], and eventually Bridson and Grunewald [10] gave an
example where both groups were finitely presented. Moreover, the paper of Grothendieck
proposed another conjecture concerning the groups cly (I") which could lead to proving
the main conjecture. However, this conjecture also turned out to be wrong (see [22, 24]
for more details). Much work to build more counterexamples has overshadowed some of
Grothendieck’s remarkable results obtained in his paper. In this article, we want to revisit
them and put them in the context of the recent ongoing work on profinite rigidity.

Recall that a finitely generated residually finite group A is called profinitely rigid if for
any finitely generated residually finite group I" whose profinite completion is isomorphic
to the one of A, I' = A. A finitely generated residually finite group A will be called left
Grothendieck rigid (LGR for short) if whenever ¢ : A < T is a Grothendieck pair, ¢ is an
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isomorphism. Similarly, I' is called right Grothendieck rigid (RGR for short) if whenever
¢ : A — T is a Grothendieck pair, it is trivial. The notion of RGR has previously appeared
in the literature as Grothendieck rigid (see, e.g., [30,31]). We present examples of LGR
and RGR groups in Sections 3 and 4, and in Sections 4 and 6, we also discuss relations
between these three notions. Among the new results we will show that the mapping tori
of a finitely generated free group is RGR (see Section 5).

In his paper, Grothendieck introduced the following class € of groups: G € € if for
any Grothendieck pair ¢ : A — T, the induced map

¢Z :Hom(T", G) - Hom(A,G), 1+ to0¢,

is a bijection. The following theorem summarizes the results of Grothendieck that we want
to emphasize.

Theorem 1.1. The following holds:

(1) The class € is closed under commensurability, inverse limits and direct products
and contains all nilpotent groups.

(2) If A is a commutative ring and G is an affine group scheme of finite type over A,
then G(A) € €.

(3) Compact Hausdorff groups are in €.
(4) Let A be a finitely generated residually finite group. If A € €, then A is LGR.

Note that part (2) of the theorem is a remarkable super-rigidity result, implying that
for every Grothendieck pair A — I', every finite-dimensional representation of A can
be extended to I'. This was a crucial ingredient in [6]. Here are some consequences of
Grothendieck’s theorem.

Corollary 1.2. The following groups are LGR:
(1) finitely generated free groups;
(2) surface groups;
(3) S-arithmetic groups.

Given a group I, its Bohr compactifications is a pair (Bohr(I"), 8) consisting of a
compact (Hausdorff) group Bohr(I") and a homomorphism § : I' — Bohr(I") satisfying
the following universal property: for every compact group K and every homomorphism
o : ' — K, there exists a unique continuous homomorphism & : Bohr(I') — K such that
a = & o . The pair (Bohr(I"), 8) is unique in the following sense: if (L, ') is a pair
consisting of a compact group L and a homomorphism 8’ : I' — L satisfying the same
universal property, then there exists an isomorphism « : Bohr(I') — L of topological
groups such that 8’ o = B.

The proalgebraic completion A(T") of a group I, also called the Hochschild-Mostow
group of T', is the proaffine complex algebraic group A(I") with a homomorphism
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a : ' — A(T") such that for every representation p : I' — GL, (C) there is a unique alge-
braic representation p such that p o @ = p. As in the case of the Bohr compactification,
the pair (A(T"), &) is unique in a canonical way.

Corollary 1.3. Let ¢ : A — T be a Grothendieck pair. Then
(1) @ induces an isomorphism Bohr(¢) : Bohr(A) — Bohr(I");
(2) @ induces an isomorphism A(¢) : A(A) — A(D).

In Section 6, we present an example that shows that the isomorphism of profinite com-
pletions does not imply the isomorphism of Bohr compactifications. We do not know if
this is the situation also with the proalgebraic completions.

2. Commutative algebra preliminaries

Let R be a finitely generated commutative ring. Denote by R the profinite completion
of R and by Max R the set of its maximal ideals.

Let m € Max R. Observe that, since the field R/m is finitely generated as a ring, it
is of positive characteristic and thus, by Hilbert’s Nullstellensatz [5, Corollary 5.24], it is
also finite.

Let Ry, denote the localization of R at the maximal ideal m, and let Rg = lim R/ m!
be the m-adic completion of R. By [5, Corollary 10.20], the natural homomorphism
Ry — Ry is injective. On the other hand, by [5, Proposition 3.9], the natural isomorphism
R — [ memax(r) Rm is also injective. Thus, we obtain that the map R — [[,emar) R
is injective, and so, R is residually finite.

Recall that an R-module is faithfully flat if taking the tensor product with a sequence
produces an exact sequence if and only if the original sequence is exact.

Proposition 2.1 ([5, Exercise 10.7]). Let R be a finitely generated commutative ring and
m € Max(R). Then Ry is faithfully flat as an Ry,-module.

The following corollary is a standard consequence of faithfully flatness (see, e.g., [3,
Theorem I11.6.6]).

Corollary 2.2. Let R be a finitely generated commutative ring and m € Max(R). Then

{a€eRz:a®1=1Qac€ Rz ®r, Ra} = Rm.

3. Grothendieck’s theorem

For convenience of the reader, we reprove in this section Grothendieck theorem following
the main steps of Grothendieck’s argument. The proof here might be slightly easier to read
than the one in [16].
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Proposition 3.1. Let G € €. If H is commensurable with G, then H € €.

Proof. Let ¢ : A — T be a Grothendieck pair. We identify the elements of A with their
images under the map ¢. Thus, we can view A as a subgroup of I'. We want to show that
the induced map

4’;1 :Hom(I', H) - Hom(A,H), trH7t1o¢

is bijective. It is enough to consider two cases: H is of finite index in G or G is of finite
index in H.

In the first case, since qb’g; is injective, qbﬁl is injective as well. Let v € Hom(A, H).
Since q% is surjective, there exists r : I' — G such Ehat Y = 1 o ¢. Since H is of finite
index in G, Imt N H is of finite index in Im 7. Since ¢ is onto, Im ¥ is profinitely dense in
Im 7. Thus, since Im¢p <Imt N H, we obtain that Imt < H. Therefore, qﬁ_l is surjective.

Assume now that G is a subgroup of H of finite index. Since we have already proved
the previous case, we can substitute G by its core in H and assume that G is also normal
in H.

Let A1 < A (I'y £T') be the intersection of all subgroups of A (I') of index at
most |H : G|. Then, it is clear that the restriction of ¢ on Ay, ¢1 : A — T'j is also a
Grothendieck pair. Thus, (¢1)2 is a bijection.

Let ¥ € Hom(A, H). Then, ¥~ !(G) is of index at most |H : G| in A, and so, by
our construction of A1, A; < ¥~ 1(G). Hence ¥ (A1) < G. Consider the restriction of yr
on Ay, ¥1 : A1 = G. Since G € €, there exists a unique homomorphism 7; : 'y — G
such that Y1 =1100¢.

If there are two homomorphisms 7,7’ : I’ — G that extend v, then their restrictions
on I'; coincide with 7. Since ¢ : A < T is a Grothendieck pair, I' = ') A. Thus, T = 7’.
This shows that ¢g is injective.

In order to show that ¢y is surjective, we use again that I' = I'; A. For every a € T';
and every b € A, we define

t(ab) = t1(a)y (b).

Since I't N A = Ay and (71)|a, = ¥1 = Y|a,, T is a well-defined map. Let us show that ¢
is a homomorphism. Let b € A. Define two maps 'y — G by

ar:a— Yyd)r(@)y®)™' and ay:a > 1 (bab™t).

Their restrictions on A coincide. Hence, since G € €, a1 = «,. Therefore, for every
ai,ap € I'y and every by, by € A, we obtain that

t(a1b1azby) = t(arbiazby ' b1by) = ti(arbrazby )y (b1by)
t1(a1)ti(brazbT Yy (b1b2) = ti(a)¥ (b))t (az2)y (b)Y (b1bz)
ti(a) ¥ (b1)ti(az2)¥ (b)) = t(aibr)t(azbs).

Hence 7 is a homomorphism which extends ¥, and so ¢g is surjective. ]
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Proposition 3.2. The class € is closed under inverse limits and direct products and
contains all nilpotent groups.

Proof. Let¢ : A — T be a Grothendieck pair.

If G is an inverse limit of G;, then Hom(I", G) is a direct limit of Hom(T", G;). Then
since ¢#Gi are bijections, q% is bijective.

Suppose G = G x G,, then Hom(T", G) = Hom(T', G;) x Hom(T", G;) and d)é =
(gbgl , qbéz). Thus, if G; and G, are in €, then G € € as well.

Finally, by [28, Proposition 2], finitely generated nilpotent groups are RGR. There-
fore, ¢ induces an isomorphism ¢, : A/y,(A) — T'/y,(T"), where y,,(A) denotes the nth
term of the lower central series of A, and so for every nilpotent group G, ¢>g is a
bijection. ]

Now we prove the second part of Theorem 1.1, which is the main part of the theorem.

Proposition 3.3. Let ¢ : A < T be a Grothendieck pair, A a commutative ring, G an
affine group scheme of finite type over A and ¥ : A — G(A) a homomorphism. Then
there exists a unique T : I' — G(A) such that = t o ¢.

Proof. Since A and I' are finitely generated, without loss of generality we may assume
that A is a finitely generated ring. In particular, A is residually finite.
Consider the following commutative diagram:

G L alr
{ iAi 3.1
GALARL T

First observe that since $ is an isomorphism, if T exists, it is unique. We call this property
the uniqueness of extensions.

Let B be the A-subring of A generated by the coordinates of the elements from
1//2(¢A5_1(F)). Denote by 7 : I' — G(B) the restriction of ¥ ;o $‘1 on I'. We want to
show that the embedding « : A < B is an isomorphism. Assume that it is not the case.
Then, by [5, Proposition 3.9], there exists m € Max(A) such that the natural ring homo-
morphism o, : Am — B, induced by «, is not surjective. Observe that oy, is injective
by [5, Proposition 3.9]. The homomorphism oy, induces an embedding

om,G : G(Am) = G(Bn).

Consider the following commutative diagram:

GAm) 2™ A ST

{ {

G4p) <2 R 5

(3.2)

= <
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andlet 7 : I' — G(Ag) be the restriction on I' of the map 4, © 5’1.
Consider the two maps a1, a2 : Ay — A ®4,, Am such that

a1(a)=a®1 and woz(a)=1®a.

For i = 1,2, we obtain the induced maps o; g : G(Az) — G(Az ®4,, Am). We put
i =dajgomn: [ — G(Agz ®4, Asm)- Since the restrictions of 771 and 7, on A coincide,
the uniqueness of extensions (proved above) implies that 7; = m,. Thus, by Corol-
lary 2.2, w(I") < G(An)- Thus, we have constructed a representation 7 : I' - G(Ap)
that extends ¥4,

Consider the representation tp, : ' — G(Bm) induced by 7. Observe that by our
definition of B, the entries of the matrices from tp_ (") generate By over Am. On the
other hand, the restrictions of 7, and om,g © w on A coincide. Hence, by the unique-
ness of extensions tp, = m,G © 7. This means that By, = otm(Am), and so oy, is onto, a
contradiction. Hence B = A. ]

Corollary 3.4. Compact Hausdorff groups are in €.

Proof. Let G be a compact Hausdorff group. By the Peter—Weyl theorem, G is an inverse
limit of compact Lie groups. Thus, in view of Proposition 3.2, we may assume that G is
a compact Lie group. By Tannaka’s theorem (see, e.g., [11]), G is isomorphic to R-points
of an algebraic group. Therefore, by Proposition 3.3, G € €. ]

Proposition 3.5. Let A be a finitely generated residually finite group. If A € €, then A is
LGR.

Proof. Let¢ : A — T be a Grothendieck pair. Since A € €, the induced map
qﬁf\ :Hom(I, A) - Hom(A,A), trH>T1o0¢

is a bijection. Therefore, we obtain that A is a retract of I', and since both groups are
residually finite and ¢ is an isomorphism, ¢ is an isomorphism. ]

Proposition 3.1, Proposition 3.3 and Proposition 3.5 prove Corollary 1.2 in the intro-
duction since the free groups and the surface groups are isomorphic to some arithmetic
groups.

Proof of Corollary 1.3. The two statements are proved similarly. Let us prove the second
one.

By Proposition 3.3, the affine complex algebraic groups are in €. Since A(A) is
proaffine complex algebraic group, Proposition 3.2 implies that A(A) € €. Thus, there
exists 7 : ' > A(A), ¢ = T o ¢, where o : A — A(A) is the canonical map. The unique-
ness of proalgebraic completion I' — A(I") implies that A(¢) is an isomorphism. |
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4. Grothendieck left/right rigid groups

In this section, we discuss Grothendieck left/right rigid groups. Corollary 1.2 gives us a
number of LGR groups, some of them, for example, finitely generated free groups and
surface groups, are also RGR. In fact, all locally extended residually finite (LERF) groups
are RGR. Recall that a group is called LERF if every finitely generated subgroup is closed
in the profinite topology.

Proposition 4.1. Let I be a finitely generated residually finite LERF group. Then T is
RGR.

Proof. If ¢ : A — T is a proper embedding and A is finitely generated, then there exists
a finite quotient of I, where the image of A is a proper subgroup. Hence ¢ is notonto. m

This applies to many finitely generated self-similar branch groups [15], all lattices in
SL;(R) and in SL,(C) [4, 36]. Not all fundamental groups of compact 3-manifolds are
LERF. However, in [33], Sun proved that they are RGR. Furthermore, all non-uniform
lattices in SL,(C) are virtually free-by-cyclic [4,36]. These groups are also RGR. In fact,
in Section 5, we prove that all ascending HNN-extensions of finitely generated free groups
are RGR. Notice that by a result of Borisov and Sapir [8], the ascending HNN-extensions
of finitely generated free groups are residually finite.

So, in summary, all lattices in SL,(R) = SO(2, 1) are both LGR and RGR. For
SL,(C) = SO(3, 1), all are RGR and the arithmetic ones are also LGR.

Question 1. This leads us to the following questions:
(a) Is a non-arithmetic lattice in SL,(C) LGR?
(b) Is the fundamental group of a compact 3-manifold LGR?
(c) Are lattices in SO(n, 1) LGR or RGR when n > 47

In spite of all of this, there are hyperbolic groups which are not RGR.
Proposition 4.2. There exists a hyperbolic group which is not RGR.

The proof uses the following fundamental result which plays important role in the
construction of Grothendieck pairs [6, 10,27].

Theorem 4.3. Let G be a finitely generated residually finite group and N a normal
subgroup. Assume that G/ N has no non-trivial finite quotients and H,(G/N;Z) = 0.

(a) If N is finitely generated, then N — G is a Grothendieck pair.

(b) Let P ={(g1,82) € G xG:g1N = goN}. If G/N s finitely presented, then
P — G x G is a Grothendieck pair.
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A standard example of a non-trivial finitely presented group Q without finite quotients
and having trivial H,(Q; Z) is the Higman group

(a,b,c,d ca'ba =b%, b7 Veb =%, ¢ V'de =d?, d lad = az). “4.1)

Proof of Proposition 4.2. Using the construction of Rips [32], we obtain that there are a
finitely presented group G and a normal subgroup N of G such that

(i) G/N is the Higman group (4.1).

(ii) G has a presentation satisfying the small cancellation condition C’(1/6).

(iii) N is finitely generated.

The second condition implies that G is of cohomological dimension 2, hyperbolic and can
be cubulated [36]. Thus, by [1], G is virtually compact special, and so, residually finite.
By Theorem 4.3, N — G is a Grothendieck pair. ]

Theorem 4.3 also enables us to see that an LGR group is not always RGR.
Proposition 4.4. There exists an LGR group which is not RGR.

Proof. Let F4 be the free group of rank 4 and I' = F4 X Fy4. I is a finite-index subgroup
of SL,(Z) x SL,(Z) and hence LGR by Corollary 1.2.

Let N be a normal subgroup of Fj so that F4/N is the Higman group. Then, by
Theorem 4.3, I" is not RGR. [

This is the example produced in [27] as a first counterexample to the Grothendieck
question. More examples which are LGR and not RGR are given in [6]. However, we do
not know whether RGR groups are always LGR.

Question 2. Is there an RGR group, which is not LGR?

Observe that the subgroup N in the proof of Proposition 4.2 is not finitely presented.
Recall that a group is called coherent if all its finitely generated subgroups are finitely
presented. For example, the ascending HNN-extensions of finitely generated free groups
are coherent by the result of Feighn and Handel [14]. For those we will show in Section 5
that they are RGR.

Question 3. Is a coherent residually finite (hyperbolic) group RGR?
Clearly, if G is an LGR or RGR group, then so is a group that contains G as a subgroup
of finite index. But we do not know whether the same conclusion holds for subgroups of

finite index.

Question 4. Is the property to be LGR or RGR a commensurability invariant?
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5. Ascending HNN-extensions of finitely generated free groups

Let F be a finitely generated free group and & : I — F an injective endomorphism of F.
Then the group

My =(F,t| 17" ft =a(f), f € F)

is called the mapping torus of o or ascending HNN-extension of F corresponding to «.
We denote by k : F' — M, the canonical embedding of F into M, and by j : M, — M,y
the canonical homomorphism of M, to its profinite completion. If H is a subgroup of F,
denote by H the closure of j o k(H) in M; We will also denote by H the closure of H
in F.

The main result of this section is the following theorem.

Theorem 5.1. Let F be a finitely generated free group and o : F — F an injective endo-
morphism of F. Let H be a finitely generated a-invariant subgroup of F and w € F. Then
j ok(w) € H if and only if there exists n € N such that " (w) € H.

The case H = 1 of the theorem implies that M, is residually finite (see [8,
Lemma 2.1]). Our motivation is that this theorem implies the following result.

Theorem 5.2. An ascending HNN-extension of a finitely generated free group is RGR.

Before proving Theorems 5.1 and 5.2, let us first describe the structure of M,. It was
previously studied in [17, Theorem 5.8].

Proposition 5.3. The group My is isomorphic to (/t\) X P, where
(1) P =(,en @ (F) and

(2) the restriction of & on P is the automorphism that defines the semidirect product
(t) x P.

The following example illustrates the meaning of the proposition in a straightforward
case.

Example 5.4. Consider o : Z — Z, 1 > p. Then My = Z x Z[ ;] and P = [],., Z.

Proof. By atheorem of Nikolov and Segal [26], the profinite completion of a finitely gen-
erated profinite group is isomorphic to the group itself. In this proof we will not distinguish
between them.
Let V be a verbal open subgroup of F . Since V is verbal, @(V) < V. Thus, & induces
an endomorphism
a:F/Vv—>F/V
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Since F /V is finite, for any f € F, we can define limy—, oo @' ( fV). Observe that verbal
open subgroups form a base of neighborhoods of the identity of F. Thus, for any f € F,

we can define
i:F— P, [+ lima"(f)eP.
n—00

It is clear that @ o i =i o . Observe that i induces the homomorphism
i:F—>P, g~ lima@"(g) € P.
n—>00

Let g € P and let V be again a verbal open subgroup of F. Then there exists 1 € F such
that g = @'¥*VI'(h). Therefore, f(gV) = gV. Thus, i fixes the elements of P, and so / is
aretract. In particular, i (F) is dense in P.

Since o o i =i o «, there exists the map

—~

e My — (t)xg P, t—1t, k(f)—i(f).

Observe that the diagram

)

My S () xg P
te

F 5 {)xg P

is commutative. Hence the diagram

—F —~

M, — (t) xg P
1% I

ﬁ i) G\) Xa P

is also commutative. In particular, kerk < keri.
We want to show that £ is an isomorphism. It is onto since i (F) is dense in P. Let K
be an open normal subgroup of M,,. Put K(F) = F N (j o)~ '(K). Then o induces an

_—

automorphism on F/ K(F'). Therefore, keri < K (F). Since

kerk = ﬂ Ié(\F)
K<,M,

keri < ker. Thus, keri = ker& and so ker# N Im& = {1}. On the other hand, M =
(t) x Imk, and so ker & < Imk. Hence ¢ is injective.

We denote the map ¢ from the previous proof by &4. Since we have the following
commutative diagram
M, > I,
\Sa Aia
(t) xg P
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and & is an isomorphism, the map &, : My — (/t\) Xg P provides all information about
the embedding of M|, into its profinite completion.

Let H be a finitely generated «-invariant subgroup of F. We denote by 8 : H — H
the restriction of @ on H. Then the subgroup of M, generated by ¢ and H is isomorphic to
M. Moreover, the inclusion map ¢ : Mg < M, is onto if and only if there exists n € N
such that ¢ (F) < H.

Proposition 5.3 gives us a description of ]Tl; : there exists a homomorphism &g : M B~
(/t\) X @, such that

(1) @ = Nyen A"(A).
2 tllg restriction of 8 on Q is the automorphism that defines the semidirect product
(t) x Q and
(3) ép is an isomorphism.
Observe that since F is LERF, H =~ H and SOAQ can be seen as a subgroup of P. By

our definition of B, the restriction of & on Q is . Hence we have a canonical embedding
() 3 Q < (t) xg P. This description allows us to understand also the map ¢.

Proposition 5.5. The following diagram is commutative:

M, % M,

In particular,
(1) The map ¢A> is injective.
(2) The map [ﬁ is surjective if and only if j ok (F) < H.

Proof. The commutativity of the diagram follows directly from the definitions of g,
and £g and the two conclusions from the commutativity of the diagram. ]

Now we are ready to prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. The “if” direction is clear. Let us show the other direction.

Using the isomorphism &g, we will identify the elements of M, and (/t\) xg P. With
this identification, the elements of H correspond to the elements of Q = ﬂne N a’ (H~ ),
and so, by the hypothesis of the theorem, e4(w) = i(w) € Q, where i is the map con-
structed in the proof of Proposition 5.3 (here we see F as a subgroup of M, and forget
about k).

Let us first assume that H is of finite index in F. Then, i (w) € H . Hence there exists n
such that o™ (w) € H,and so, since HNF = H, oa™(w) € H.

Now assume that H is arbitrary. Let V' be a verbal subgroup of F of finite index. Then
HYV is an a-invariant subgroup of F of finite index and j o k(w) € VH. Thus, by above,
there exists n € N such that " (w) € HV.
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There exists a subgroup U in F of finite index such that H is a free factor of U. We
can find a verbal subgroup V of F of finite index such that V' < U. Then, by Kurosh’s
subgroup theorem, H is a free factor of VH . Since HV is a-invariant, one can replace F
by HV, and so without loss of generality we can assume that H is a free factor of F.

The following argument uses ideas of the proof of [8, Theorem 1.2]. The situation
considered in [8, Theorem 1.2] corresponds to the case where H = {1}.

Let F be the algebraic closure of a finite field. Let My = Matyx4(F) be the affine
algebraic [F-variety corresponding to 4 by 4 matrices with the ring of regular functions
Fla;; |1 <i, j <4].

The group H is a free factor of F. Let xy, ..., x; be a set of free generators
of F such that the first [ elements xq, ..., x; are free generators of H. To each point
p=(A1,....,Ar) e M f corresponding to k invertible matrices over [, we associate the
representation 7, : ' — GL4(IF) that sends x; to A;. These points form an open (in the
Zariski topology) subset W of M, f.

Consider the ring of regular functions on M, f

R=TFla; |1 <i,j <4 1<m<Kk],

and let X, = (a]}) € Matyx4(R). Consider a word v € F' in a reduced form as a word in

{xijEl }. Let X, be the matrix over R obtained from v by substituting x; by X; and x;” L by
the adjoint matrix adj(X;). Observe that if p € W, then

Xy(p) =cpv-1p(v), where0 #cp, €F.

We put
DM — M (X1, X)) = Kae)s---» Xate)-

Let Ny < M4 be the closed subvariety corresponding to the matrices of type

1 0 0 0

Cll’
0 a 0 0
Ny = L1 lajj € F
0 0 a3z asza
0 0 asz asa

Claim 5.6. We have that ®(N} x Mk=") € NI x MF=1.

Proof. This follows from the fact that H is «-invariant, and so X (y,) are matrices over
theringF[almj|l§i,j§4,1§m§l]. [

The dimension of the variety Ni X Mf_l isequal ton =5-1+16-(k —1). We
denote by V' the closure of ®" (N, ‘{ X M f_l )in N, 4{ x M, f‘l with respect to the Zariski
topology.

Let S be the ring of regular functions on N, ‘{ x M ‘{‘_l, that is, the quotient of the
algebra R by the ideal generated by

m m m m m m m m . PR
{91,1 —az,z,al,z,az’l,a&j,aj’3,a4,j,aj,4.1 <m<l;j =12},
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and let X; be the image of X; in Mat,(S). Let Q be the ring of fractions of S. Consider
the representation 7 : F — GL4(Q) that sends x; to X;. Observe that if for any ring R we
put
aip 0 0 0
0 ai, 0 0 .
P(R) = 0 0 433 asa 14 € R;,
0 0 as3 asa

then t(H) < P(Q). Note also that for every p € (er X Mrk_l) NWandv € F
t()(p) = 7 (v).
Claim 5.7. We have that
H={veF:t(v)e P(Q)}.

Proof. We have to show that for every v & H, there exists p € N‘{ X Mf_l such that
7)) & P(E).

Write F = H % T, and let v = hot1hy -+ - hg_1thy, where k > 0, with h; € H for
i=0,....,k,1#£¢t; €eTfori =1,...,kand h; # 1fori =1,...,k — 1. We can also
assume that iy = hy = 1. Therefore, v = t1hq -+ hp_1 k.

We can find a homomorphism f : H — P(F) such that f(h;) £ Z(GL4(F)) for
i=1,....,k—1.Puta; = f(h;). Let

b1,1

b =

S O = O
S = O O
—_ O O O

1,
0
0
0
with b;,1 € F \ {0, 1}. We consider the generalized word
u(t) = btiarty - ap—1teb 't ait -ty ar

By [35, Theorem 5], there exists a homomorphism g : T — GL4(IF) such that

bg(t1)aig(ta) -+~ ar—18()b ™ g(t) " ail, - g() ey g ()™ # 1.
In particular, g(t1)a1g(t2) - - - ax—1 g (tx) does not commute with b, and hence,

g(ty)aig(tz)---axr—18(tx) ¢ P(F).

Thus, the representation, that is equal to f when restricted to H and to g when restricted
to T, does not send v to P(IF). |

We put
Z={peV:Xu(p) e PEF))
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If Z # V, then by [8, Theorem 1.4], there exists a quasi-fixed point p € (V\ Z) N W
for ®. Thus, a power (say q) of ® fixes p and, as in [8, Lemma 2.2], we can construct a
map 6 : My — PGL4(IF) ¢ C,; with finite image. Observe that this map separates w and H,
that is, 6(w) ¢ 0(H ), because the image of 7,(H) < P(IF) and 7,(w) = c;}v Xuw(p) &
P(F). But, since j o k(w) € H, this is impossible. Thus Z = V.

Let p € (N} x MF~!) 0 W. Then we have

T(@" (W) (P) = (@ (W) = ¢pgnuy " Xan@w)(P) = € anguy - Xu (@ (P)).

Thus, for all p € (N,l X Mrk_l) N W, we have that t(a” (w))(p) € P(IF), and so, since
(er X M,k_l) N W is dense in er X Mrk_l, 7(a"(w)) € P(Q). Therefore, by Claim 5.7,
a"(w) € H. |

Proof of Theorem 5.2. Let F be a finitely generated free group and « : F' — F an injective
endomorphism of F. Let I' = M,,. Assume that ¢ : A < I" is a non-trivial Grothendieck
pair. Let  : I' — Z be the canonical projection on Z. Then, since $ isonto, T o p(A) =Z.
Thus, without loss of generality, we can assume that ¢ € ¢(A). It follows from [14, Propo-
sition 2.3] that there are finite subsets A and B of F such that ¢(A) = (¢, A, B) and the
following holds:

(1) (4, a(4)) = (A, B).

(2) With respect to the generators z, A, B, ¢(A) has a presentation of the following

form ¢(A) = (t, A, B|C), where C = {tat 'a(a™!) : a € A}.
Since the profinite completions of A and I" are isomorphic, the Liick approximation [25]
implies (see, e.g., [30, Corollary 6.4]) that their first L2-Betti numbers coincide. The first
L?-Betti number of T is zero.

Since the deficiency of an infinite finitely presented group minus 1 is at least the first
L2-Betti number (see [18, Theorem 3.21]), B is empty. Thus, A is isomorphic to the
ascending HNN-extension of the free group H = (A) corresponding to the restriction
ofoxon H.

By Proposition 5.5, j o k(F) < H.By Theorem 5.1, there exists n such that ™ (X) C
H, where X is a finite generating set of F. Hence «” (F) < H, thatis, t" Ht™" contains F,
and so F < ¢(A). Hence ¢ is an isomorphism. |

6. Grothendieck properties versus profinite properties

In [34], Tavgen’ constructed a non-trivial Grothendieck pair ¢ : A < T" of soluble groups
such that A = I'. For the convenience of the reader, we recall this ingenious construction
leaving the reader to complete the details or consult [34].

Let p be a prime. For any m € Z, write m = r + k(p — 1), where 0 <r < p — 1
and put ¢,, = r + kp. Observe that g,, is coprime with p. Recall that Z,) denote the



Some remarks on Grothendieck pairs 611

localization of Z at the ideal (p). Then the group T is isomorphic to a semidirect product

= ( b Z(p))N(Z@(ZZZ)),

I,meZ
where the action of the right subgroup on the left subgroup is described in the following
way:
(1) Z@®(Z7Z) = {(b,cn.d | [b.ch]l = 1,[b.d] = 1,dcnd™" = chy1. n € Z).
(2) The element a € Zy) of the (I, m) summand of B, ,c7 Z(p) is denoted by a; .
(3) baym b7 = am i1, cnamic;! = Gminam and day, ;d=1 = ap_y .
In order to construct A, consider the map

[ B 2o —> P ami > Pla)m,

I,meZ meZ

where the element a € Q of the mth summand of @,,., Q is denoted by ay,. Then ker f
is a normal subgroup of I', and we define

A =ker f x(Z & (Z:7)).
It seems plausible that I" in the example of Tavgen’ is profinitely rigid.

Question 5. Is there a finitely generated residually finite profinitely rigid group which is
not Grothendieck left/right rigid?

An example in reverse is easy to construct. Let Cy; = (a) be a cyclic group of order 11,
o € Aut(Cyp) a generator of Aut(Cy1) and ¢ : Z — Aut(Cy;) that sends 1 to o¥. Then
the group Z x ¢, Ci1 is clearly Grothendieck left/right rigid. However, it is not profinitely
rigid since its profinite completion is isomorphic to the one of Z x4, C1; and the groups
Z xg, C11 and Z x g Cyy are not isomorphic.

Clearly for A < T’ to be a Grothendieck pair is stronger than just A = T. The fol-
lowing result shows that, indeed, some properties of Grothendieck pairs do not hold for
groups having isomorphic profinite completions.

Proposition 6.1. Consider the following two quadratic forms:

g =33+ 22422+ 22+ a2+ x2 - V2x2 - V2x2
and

g2 = x2 4+ x2 —x2 —x2 —x2 —x2 - V2x2 - V2x2.

Then there exist finite-index subgroups T' < Spin(q1)(Z[+/2]) and A < Spin(q2)(Z[v/2)),
with I' = A, while their Bohr compactifications are not isomorphic.
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Proof. Let us also define the quadratic forms:

Gr = X7+ x3 + X3+ xF +x2 + a2+ V2x2 4+ V2xd
and

E:x%+x§—x§—x§—x§—xé+ \/Ex$+ ﬁx%.

For i = 1,2, let G; = Spin(¢;)(Z[v2]). Let 0} : Z[v/2] — R (j = 1,2) two distinct
embeddings of Z[+/2] into R such that oy (v/2) = +/2 and 02(+/2) = —+/2. They induce
natural embeddings

0i,1 : Gi <> Spin(gi)(R) and  0; : Spin(g:)(Z['2]) < Spin(g)(R).
Then we have two embeddings:
Gi < Spin(g;)(R) x Spin(gi)(R).  x > (07,1(x), 0i,2(x)).

It is well known that these embeddings realize Spin(g;)(Z[+/2]) as irreducible lattices.
By [21, Paragraph 11.1], the congruence kernels of G; are finite and by [2, Corollary 4],
the congruence completions of G; are isomorphic. Thus, G, and G are commensurable.
Therefore, there exist finite-index subgroups I' < G; and A < G, such that the profinite
completion of I" is isomorphic to the profinite completion of A.

By [7, Theorem 3], the connected component of the Bohr compactification of T is
Spin(g7)(R) and the connected component of the Bohr compactification of A is trivial. =

Let & be a property of groups. We say that J is profinite if for two finitely gener-
ated residually finite groups A and T, having the same profinite completion, the following
holds: if A satisfies &, then I' also does. In the last two decades, a lot of efforts were
devoted to understand which properties of groups are profinite. Most of them lead to neg-
ative results [2,9, 13, 19,20, 23]. It is interesting to study which properties are shared by
groups in Grothendieck pairs. We say that the property & is up Grothendieck if for every
Grothendieck pair A < I if A satisfies &, then I" also does. The down Grothendieck
property is defined symmetrically. In [12], these two notions were called up/down weak
profinite properties.

Clearly, every profinite property is both up Grothendieck and down Grothendieck. But
the converse is not true. Corollary 1.3 and Proposition 6.1 show that having a specific
Bohr compactification is an up/down Grothendieck property but not a profinite one. Now,
what is the relation between down and up Grothendieck properties? Clearly every prop-
erty of groups which is inherited by subgroups is down Grothendieck, for example, being
residually- p, being linear or being amenable. By [20, Theorem 10.2], amenability is not
up Grothendieck. We expect that there are many properties of this sort that are not up
Grothendieck.

Question 6. For instance, we can ask the following questions:
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(a) Is the property to be residually- p up Grothendieck?
(b) Is the property to be linear up Grothendieck?

The property to be residually- p is not a profinite property by [23], but we do not know
whether the property to be linear is profinite.

Finally, we notice that to be LGR is an up Grothendieck property and as we have
seen in Proposition 4.4, it is not down Grothendieck. Also there are less obvious exam-
ples. The property (7) is up Grothendieck; however, by [20, Theorem 10.2], it is not down
Grothendieck.

7. Additional questions

By analogy with profinite rigidity, it is natural also to consider Bohr rigidity and proalge-
braic rigidity. A finitely generated residually finite group A is called Bohr rigid (proalge-
braic rigid) if for any finitely generated residually finite group I" whose Bohr compacti-
fication (proalgebraic completion) is isomorphic to the one of A, I' = A. In the case of
Grothendieck pairs, the ambient groups have the isomorphic Bohr compactifications.

The profinite completion T of T is 1somorphlc to the Bohr(I") modulo, its connected
component, so if Bohr(I") = Bohr(A), then [ = A. Hence profinite rigidity implies Bohr
rigidity. In the same way, profinite rigidity implies proalgebraic rigidity.

Question 7. This leads us to the following questions:
(a) Is a finitely generated residually finite group which is Bohr rigid also profinite
rigid?
(b) Is a finitely generated residually finite group which is proalgebraic rigid also
profinite rigid?

A long-standing question of Remeslennikov asks whether a finitely generated free
group is profinitely rigid. The solution to this problem is far from being achieved by the
methods that we have. Perhaps these weaker questions may be easier to handle.

Question 8. Is a finitely generated free group Bohr rigid? Is a finitely generated free group
proalgebraic rigid?
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