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Explicit generators for the stabilizers of rational points
in Thompson’s group F

Krystofer Baker and Dmytro Savchuk

Abstract. We construct explicit finite generating sets for the stabilizers in Thompson’s group F
of rational points of a unit interval or the Cantor set. Our technique is based on the Reidemeister–
Schreier procedure in the context of Schreier graphs of such stabilizers in F . It is well known that
the stabilizers of dyadic rational points are isomorphic to F � F and can thus be generated by 4
explicit elements. We show that the stabilizer of every non-dyadic rational point b 2 .0; 1/ is gen-
erated by 5 elements that are explicitly calculated as words in generators x0; x1 of F that depend
on the binary expansion of b. We also provide an alternative simple proof that the stabilizers of all
rational points are finitely presented.

Dedicated to Rostislav Grigorchuk on the occasion of his 70th birthday

1. Introduction

Research around Thompson’s group F has been very active since its discovery in 1965
by Richard Thompson, who first defined the group in connection with his work in logic.
The group showed up in many areas since then. It led to the construction of finitely pre-
sented groups with an unsolvable word problem [29], served as a proposed platform group
for some cryptographic schemes [28, 35], and played an important role in homotopy the-
ory [11], combinatorics [13], and, of course, group theory. Many basic (and not only)
facts about F are given in a classical paper by Cannon, Floyd, and Parry [12]. Belk’s PhD
thesis [8] can also serve as a very nicely written introduction to the area.

The group F acts by orientation preserving piecewise linear homeomorphisms on the
unit interval Œ0; 1� and on the Cantor setX! consisting of all infinite words over the alpha-
bet X D ¹0; 1º. These actions give rise to the stabilizer subgroups of F with respect to
points or sets of points in Œ0;1� orX! . Understanding such subgroups may give extra infor-
mation about F . For example, one can negatively solve one of the main open questions
about F , whether or not it is amenable (see a recent survey on this topic by Guba [22]), if
one constructs an infinite index subgroup H < F such that the Schreier graph �.F;H/
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of H in F is non-amenable. In [33, 34], the second author has constructed the Schreier
graphs of the stabilizers of each point in X! and showed that the Schreier graph of the
stabilizer of any finite subset of X! is amenable, thus confirming that these subgroups
do not help to resolve the amenability question, but also offering a new geometric insight
on the action of F on X! . This construction was later used to study random walks on
the group F . Kaimanovich in [25] showed that F does not have the Liouville property for
finitely supported measures, and Juschenko and Zheng [24] proved that it has the Liouville
property for some measures that are not finitely supported.

Schreier graphs appear naturally in many contexts. For example, papers [10, 14]
describe Schreier graphs of the actions of certain groups generated by automata on the
boundary of a rooted tree. Miasnikov and the second author proved in [30] that one of the
Schreier graphs studied in [10] is the first example of an automatic graph of intermediate
growth. Schreier graphs also play an important role in the spectral computations related
to groups acting on rooted trees (see, e.g., [4, 19, 20] and a more recent paper [18]).

Stabilizers of points in the Cantor set also serve as the simplest examples of maximal
subgroups in F of infinite index, as was shown in [34]. The question on the existence
of other maximal subgroups of infinite index in F posed in [34] was answered by Golan
and Sapir in [16]. They used the so-called oriented subgroup of F defined by Jones in
relation to his study of linear representation of F and T [23]. This group was also stud-
ied by Golan and Sapir in [15]. Subsequently, other subgroups defined in Jones’ program
were shown to provide examples of maximal subgroups of infinite index in F and other
Thompson-type groups in the papers by Aiello and Nagnibeda [1–3] and Golan [32], who
constructed an infinite countable family of non-isomorphic maximal subgroups of infinite
index in F . A different source of such subgroups was discovered in Thompson’s group V
by Belk, Bleak, Quick, and Skipper in [7].

The structure of the stabilizer subgroups in F of finite subsets of .0; 1/ was studied by
Golan and Sapir in [17], where it was shown, in particular, that the stabilizers of finite sets
of rational numbers from .0; 1/ are finitely generated. Namely, [17, Theorem 5.9] claims
that the stabilizer of a set consisting of m1 dyadic rational numbers and m2 non-dyadic
rational numbers can be generated by 2m1Cm2C 2 elements, and that this is the minimal
possible size for a generating set of such subgroup. Therefore, for singleton sets consist-
ing of rational numbers, one gets 4-element generating sets for dyadic rational numbers
and 3-element generating sets for non-dyadic rational numbers. However, the general con-
struction of generating sets of the stabilizer subgroups in [17] is quite technical. According
to Golan (private communication) in the case of a singleton set, the construction can yield
a generating set in which the generators are given in the form of tree pair diagrams. The
main purpose of this paper is to construct an explicit and simple generating sets for the
stabilizers StF .b/ in F for all rational points b 2 X! in which the generators are given
as explicit words in the generators x0; x1 of F that are obtained directly from the period
and preperiod of b. We achieve this via a completely different approach compared to [17]:
we apply the Reidemeister–Schreier procedure to the Schreier graphs �b of the stabilizers
of rational points in the Cantor set X! , constructed in [34]. Note that since the Schreier
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graphs �b are infinite, the standard Reidemeister–Schreier procedure yields infinite gener-
ating sets that need to be simplified to 4- or 5-element sets. While our construction yields
much simpler generating sets written explicitly as words in the generators x0; x1 of F , the
trade-off of this approach is that it currently works only for stabilizers of singleton sets, as
there is currently no good description of Schreier graphs of the stabilizers of larger finite
sets of rational numbers. Our method also allows us to prove (see Proposition 4.9) that
the stabilizer subgroups are finitely presented, which also follows from the description of
their algebraic structure from [17, Lemma 4.11].

Our main theorem is given below. To state it, we recall that the generating set ¹x0; x1º

of F can be extended to an infinite generating set ¹x0; x1; x2; : : :º with respect to which F
has the following infinite presentation

F Š hx0; x1; x2; : : : j xkxnx
�1
k D xnC1 for 0 � k < ni; (1.1)

so that xn D xn�1
0 x1x

�n�1
0 for n � 2. We also define elements y1 D x�2

0 x1x0 and
y2 D x

�3
0 x1x

2
0 of F , whose graphs are obtained from the graphs of x1 and x2 by applying

central symmetry about the center of Œ0; 1�2. In the statement below, a word w over any 2-
letter alphabet ¹x; yº will be denoted by w.x; y/, and for any g0; g1 2 F , w.g1; g2/

denotes the element of F obtained by replacing each x and y in w by g0 and g1,
respectively.

Theorem 1.1. The generating sets of the stabilizers in F of rational points of the Cantor
set X! are described as follows.

(a) For a rational point a D 10w1 2 X! with a finite word w that is not a proper
power, we have

StF .a/ D hx2; x3; y1; y2; w.x
�1
1 ; x�1

1 x0/i:

(b) Let b 2 X! be an arbitrary rational point different from 01 and 11 and let
b D vw1 be its unique decomposition as an eventually periodic word with a finite
nonempty periodw 2X� that is not a proper power and a finite preperiod v 2X�

such that the ending of v differs from the one of w. Then there is h 2 F that can
be explicitly computed from the Schreier graph �b , such that h.b/ D 10vw1 and

StF .b/ D hxh
2 ; x

h
3 ; y

h
1 ; y

h
2 ; w.x

�1
1 ; x�1

1 x0/
h
i:

Our result can serve as additional motivation to study Schreier graphs. Our approach
can be applied to other subgroups in other groups, particularly F -type, where the cor-
responding Schreier graphs are well understood. For example, the Schreier graphs of
Thompson’s group T with respect to the stabilizers of rational points in the Cantor set were
constructed by Pennington [31], and one can use the approach developed in the present
paper to construct their generating sets. In general, it would be interesting to describe
Schreier graphs of other maximal subgroups of F discovered by Golan, Sapir, Aiello,
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and Nagnibeda and of the stabilizers of points in other groups of Thompson’s family.
Another interesting question is about the Schreier graphs of the minimal non-solvable
group of homeomorphisms sitting inside F from [9]. Philosophically, a Schreier graph of
a smaller subgroup approximates the Cayley graph of the group better but is usually more
complicated and harder to describe and work with.

The structure of the paper is as follows. We start by setting up the notation and recall-
ing basic facts about F in Section 2. In Section 3, we recall the construction of Schreier
graphs for F and introduce some more notation. Finally, Section 4 contains the proof of
the main result.

2. Thompson’s group F

We start from introducing notation and recalling some basic properties F that we will use
later. Most basic properties of F are nicely surveyed in [12].

Definition 2.1. Thompson’s group F is the group of all strictly increasing piecewise lin-
ear homeomorphisms from the closed unit interval Œ0; 1� to itself that are differentiable
everywhere except at finitely many dyadic rational numbers and such that on the inter-
vals of differentiability the derivatives are integer powers of 2. The group operation is
composition of homeomorphisms.

The group F is generated by two elements x0; x1 defined as follows:

x0.t/ D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

t

2
; 0 � t �

1

2
;

t �
1

4
;

1

2
� t �

3

4
;

2t � 1;
3

4
� t � 1;

x1.t/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

t; 0 � t �
1

2
;

t

2
C
1

4
;
1

2
� t �

3

4
;

t �
1

8
;

3

4
� t �

7

8
;

2t � 1;
7

8
� t � 1:

(2.1)

The graphs of x0 and x1 are depicted in Figure 1.
Throughout the paper, we will adopt the convention to use the right actions as was

done in [34].

Notation 2.2. For any two elements f , g of F and any t 2 Œ0; 1�

.fg/.t/ D g.f .t//; f g
D gfg�1; Œf; g� D fgf �1g�1: (2.2)

To perform calculations with elements of F , we will use the rectangle diagrams of
its elements as described in [12]. Given an element f 2 F , its rectangle diagram is a
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1

0 1
x0

1

0 1
x1

Figure 1. Generators x0 and x1 of F .

rectangle with a top that represents the domain of f , and a bottom that represents the
range of f , in which for every point t on the top where f is not differentiable, we con-
struct a line segment from t to f .t/ on the bottom. These diagrams allow us to see how
sub-intervals of the domain (in between the points of non-differentiability) are mapped to
sub-intervals of the range. This is especially useful when composing functions because
we can just stack the diagrams on top of each other.

Aside from being finitely generated, F is known to have a balanced finite presentation
with two generators and two relators:

F D hx0; x1 j Œx
�1
1 x0; x0x1x

�1
0 � D Œx�1

1 x0; x
2
0x1x

�2
0 � D 1i; (2.3)

where the generators x0; x1 correspond to the ones defined in (2.1). Note that this presen-
tation, as well as the presentation (1.1), is obtained from the presentations given in [12] by
reversing the involved words since we consider the right actions and [12] deals with left
actions.

Besides the above finite presentation, in many situations it is convenient to consider
an infinite, but more symmetric presentation for F given in (1.1), in which generators x0

and x1 again correspond to the ones defined in (2.1). It immediately follows from (1.1)
that

xn D x
n�1
0 x1x

�.n�1/
0 :

Each point of the interval Œ0;1� can be associated with its binary expansion. This allows
us to extend naturally the action of F on the setsX� andX! of all finite and infinite words
over the alphabet X D ¹0; 1º, respectively. The latter set is homeomorphic to a Cantor set,
and it is easy to see that F acts on it by homeomorphisms. The action of generators x0

and x1 can be defined as follows:

x0 W

8<:0w 7! 00w;

10w 7! 01w;

11w 7! 1w;

x1 W

8̂̂<̂
:̂
0w 7! 0w;

10w 7! 100w;

110w 7! 101w;

111w 7! 11w;

(2.4)
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where w is an arbitrary word in X! . These homeomorphisms are rational homeomor-
phisms of X! that can be defined by finite state asynchronous automata. The group of all
rational homeomorphisms of X! was introduced in [21] and was studied extensively by
Belk, Bleak, Matucci, and Zaremsky in connection to Gromov hyperbolic groups [5] and
the Boone–Higman conjecture for this class [6].

Note that the dyadic rational numbers in Œ0; 1� correspond to the sequences end-
ing in 01 or 11, and rational points in Œ0; 1� correspond to eventually periodic
sequences vw1 in X! . We will call such sequences rational elements of X! . All other
elements we will call irrational. There is a one-to-one correspondence between irrational
elements of X! and irrational numbers in Œ0; 1�.

In the description of Schreier graphs below, we will refer to the one-sided shift onX! ,
denoted by � and defined by

�.a1a2a3 � � � / D a2a3a4 � � �

for a1a2a3 � � � 2 X
! .

3. Schreier graphs of stabilizers of rational points

In order to construct explicit generating sets for the stabilizer subgroups in F , we will
apply the Reidemeister–Schreier procedure to the Schreier graphs of these stabilizers.
To explain the construction explicitly, we start from recalling the definition of Schreier
graphs and the description of the Schreier graphs of the stabilizers of rational points ofX!

obtained in [34].

Definition 3.1. LetG be a group generated by a finite generating set S acting on a setM .
The (orbital) Schreier graph �.G; S; M/ of the action of G on M with respect to the
generating set S is an oriented labeled graph defined as follows. The set of vertices of
�.G; S;M/ is M , and there is an arrow from a 2 M to b 2 M labeled by s 2 S if and
only if as D b. A Schreier graph with a selected vertex is called a pointed Schreier graph,
and the selected vertex is then called the base point of this graph.

An equivalent alternative view on Schreier graphs goes back to Schreier. For any
subgroup H of a group G, the group G acts on the set of right cosets G=H by right mul-
tiplication. The corresponding Schreier graph �.G;S;G=H/ is denoted as �.G;S;H/ or
just �.G;H/ if the generating set is clear from the context. The graph �.G;S;H/ is often
considered as a pointed graph by selecting the vertex H as a base point.

Conversely, if G acts on M transitively, then �.G; S;M/ is canonically isomorphic
to �.G; S; StG.a// for any a 2 M , where the vertex b 2 M in �.G; S;M/ corresponds
to the coset from G= StG.a/ consisting of all elements of G that move a to b. Also, to
simplify notation, we will call �.G;S;StG.a// simply the Schreier graph of a and denote
by �a when the group, the set, and the action are clear from the context.
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1$ 1
2 01$ 1

4 001

111111 11111 1111 111
11$ 3

4

101 011 0011 00011

1111101 111101 11101

1101

1011

0111 00111

1001

0101 00101
1111011 111011

11011

1111001 111001

11001

10111

01111

10011

01011

10101

01101

10001

01001

1110111

110111

1110011

110011

1110101

110101

1110001

110001

101111 100111 101011 100011 101101 100101 101001 100001

Figure 2. The Schreier graph of the stabilizer of 101.

The Schreier graphs of the stabilizers of points of the Cantor set X! with respect
to the generating set ¹x0; x1º are constructed in [34, Theorem 6.1]. First, the Schreier
graph �101 of the stabilizers of 101 (corresponding to 1

2
2 Œ0; 1�) shown in Figure 2

was described in [33]. In Figure 2, the vertices are labeled by the nonzero prefixes of the
corresponding points of X! .

Since F acts transitively on the set of dyadic rational numbers from .0;1/, this graph is
also the Schreier graph of any such number, in which the base point is moved to the vertex
corresponding to that number. This is also the case for any point of the Cantor set X! that
ends with 01 or 11 except 01 and 11 themselves. We comment on this in Remark 4.11
in the end of the paper.

For other rational points of X! , we include here the description of Schreier graphs
from [34] since we will use their structure for the calculations in Section 4.

Theorem 3.2 ([34, Theorem 6.1]). Each rational point b of the Cantor set X! except 01

and 11 can be uniquely written as either b D 1n0vw1 or b D 0m1v1 for some
v D v.0; 1/; w D w.0; 1/ 2 X� such that w is not a proper power and the ending of v
differs from the one of w. The (pointed) Schreier graph �b of the action of F on the orbit
of b is depicted in Figure 3 and has the following structure:

(1) The base point is labeled by b.

(2) Each vertex labeled by 10u for u ¤ � i .w1/ is a root of the tree hanging down
from this vertex that is canonically isomorphic to the tree hanging down at the
vertex 101 in the Schreier graph �101 shown in Figure 2.
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10� jwj�1.w1/

10� jwj�2.w1/

10w1

10�.vw1/

10vw1

01vw1 001vw1 0001vw1

111110vw1

11110vw1

1110vw1 110vw1

101vw1
100vw1

Figure 3. The Schreier graph of the stabilizer of a rational point of the Cantor set.

(3) A path going up from vertex 10vw1 to vertex 10� jwj�1.w1/ turns left or right at
the k-th step, if the k-th letter in vw is 0 or 1, respectively.

(4) If the first letter of w is 0, then there is an edge from the vertex 10w1 to the vertex
10� jwj�1.w1/ labeled by x1 (see Figure 3).

(5) If the first letter of w is 1, then the vertex 110w1 is adjacent to vertices 10w1

and 10� jwj�1.w1/ via edges labeled by x0 and x1, respectively.

(6) The path in the third item for the empty word v and the edge or the path in the
previous two items create a loop in the Schreier graph corresponding to w which
we will call the nontrivial loop.

(7) Each vertex adjacent to the gray vertex in the nontrivial loop, and not belonging
to this loop is either

• the beginnings of geodesics isomorphic to geodesic .1; 01; 001; : : :/ in �101 ,
or

• the root of the tree hanging down and to the left at the vertex 11 in �101 , or

• the root of the tree hanging down and to the right at the vertex 101 in �101 .

We will modify the description above into the one that works better for our purposes.
Namely, the nontrivial loop in Figure 3 can be shifted down, so that all of its vertices
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other than 10w1 itself are below the vertex 10w1 (which will be on the top of the loop
now and will play a role of the root of the tree-like structure made of gray vertices).
In this case, every gray vertex in �b can be identified by a finite word (not necessarily
unique) over the alphabet ¹A;Bº, where A and B correspond to x�1

0 x1 and x1: to a word
W.A; B/ 2 ¹A; Bº� we associate the gray vertex that is the endpoint of the path in �b

initiating at 10w1 and labeled by W.x�1
0 x1; x1/. In other words, �b has now a tree-like

structure, in which the root 10w1 is labeled by the empty word " over ¹A; Bº, and if a
gray vertex has a label W , then the labels of the gray vertices right below it are WA (the
left one) and WB (the right one).

For a finite word U D a1a2 � � � an (over any alphabet), we denote by UR the reverse
word obtained by reading U from right to left, that is, UR D anan�1 � � � a1. Thus, taking
into account the notation given in the introduction, for the word w 2 ¹0; 1º� representing
the period in b, wR.B; A/ denotes a word over ¹A;Bº obtained from wR by replacing 0
and 1 by B and A, respectively. With the above identification of the set of vertices of �b

and ¹A; Bº�, each gray vertex in �b , except those labeled by the prefixes of wR.B; A/

(vertices of the nontrivial loop), is the root of the tree hanging down from this vertex
that is canonically isomorphic to the tree hanging down at the vertex 101 in the Schreier
graph �101 shown in Figure 2 (this corresponds to item (2) in Theorem 3.2). The vertex
labeled by the prefix of wR.B;A/ of length jwj � 1 has only one gray vertex right below
it, while the second connection (either via an edge labeled by x1, if the first letter of w
is 0, or via a path of length 2 labeled by x�1

0 x1, if the first letter of w is 1) joins it to the
root vertex labeled by 10w1.

To illustrate the construction, we give an example of the Schreier graph of the sta-
bilizer of 10.0100/1 (that corresponds to the rational number 4

15
2 .0; 1/) in Figure 4.

Here, we have w.0; 1/ D 0100, so wR.B; A/ D BBAB with the prefix BBA of length
jwj � 1 D 3. Thus, on the figure the vertex BBA D B2A corresponding to the point
.10/100.0100/1 D 10�.w1/ is connected by an edge denoted by ew and labeled by x1

(since the first letter of w is 0) to the root vertex 10.0100/1.
Now we can see that all the gray vertices in �b can be identified uniquely by words

over ¹A;Bº� that do not have wR.B;A/ as a prefix.

4. Generating set for the stabilizers of rational points

In this section, we apply Reidemeister–Schreier procedure to Schreier graphs �b to
compute the explicit generating sets for the stabilizers of rational points of X! .

The Reidemeister–Schreier procedure works as follows (see [26] for the combinato-
rial description of the procedure equivalent to the explanation below). Suppose we have a
groupG generated by a finite set S D ¹s1; s2; : : : ; snº that has a presentationG Š hS jRi,
where R is a set of relators written as reduced words in S [ S�1. Let H be a subgroup
of G with the corresponding pointed Schreier graph � D �.G; S;H/ with H being the
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zw D wR.x1; x�1
0 x1/ D x1 � x1 � x

�1
0 x1 � x1

.10/.0100/1

"

x2 x3 x4

y4 y3 y2 y1 .10/0.0100/1

.10/1.0100/1

x2 x3 x3 x4

A .10/01.0100/1 B

y4 y3 y2

.10/11.0100/1

x2
x3

y3 y2 y1
.10/10.0100/1

x3
.10/00.0100/1

x4

A2 AB BA
B2

y4 y3 y3 y2 y3 y2 y2 y1

A3

B2A

B3

.10/100.0100/1

Edge ew

Figure 4. The Schreier graph of the stabilizer of .0100/1 $ 4
15 .

base point in � (so that H is the stabilizer of this base point). The Reidemeister–Schreier
procedure constructs the presentation for H via the following steps:

(1) Choose a spanning tree T (a subtree in the graph that includes all the vertices)
in � .

(2) Each edge e in � that is not in T gives rise to a Schreier generator of H . Specifi-
cally, this generator is given by a word over ¹s1; : : : ; sn; s�1

1 ; : : : ; s�1
n º that is read

along the path of the form li.e/ � e � l
�1
t.e/

, where i.e/ and t .e/ are the initial and
terminal vertices of e, respectively, and for a vertex v of � , lv is the unique path
in the spanning tree from the base point in � to v.

(3) The collection SH of all Schreier generators constructed in part 2 forms a
generating set for H .

(4) For each vertex v of � and each relator r 2 R, construct a Schreier relator
of H by reading r in � starting from v and recording the generators from SH

corresponding to the edges not in the spanning tree T .

(5) The collection RH of all Schreier relators constructed in part 4 is the set that
defines the presentation of H as H Š hSH j RH i.

If G is finitely presented and H has a finite index in G, the procedure immediately
yields a finite presentation for H . However, it can also be applied to subgroups of infinite
index and, as we will see below, can still yield a finite presentation.

We will now apply the Reidemeister–Schreier procedure to StF .a/ for a rational point
a D 10w1 of the Cantor set X! with a finite word w that is not a proper power, using
the description of the corresponding pointed Schreier graph �a that we discussed in the
previous section, in which point a plays a role of the root of the tree consisting of gray
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vertices. There is an almost natural choice of a spanning tree T in �a consisting of all
edges except the loops at the black rays, the bottom edges of the white rays, and the edge,
that we denote by ew , labeled by x1 coming to the root vertex 10w1 either from a gray
vertex 10�.w/1 if the first letter of w is 0 (as shown in Figure 4) or from a white vertex
connected to that gray vertex if the first letter of w is 1. By Reidemeister–Schreier proce-
dure, StF .a/ is generated by the Schreier generators corresponding to the edges that are
not included in the spanning tree. Let us compute these generators and set up notation for
them.

Every edge e that is not in the spanning tree, except for ew , can be identified uniquely
by the closest gray vertex to the terminal vertex of e, and the distance n from the terminal
vertex of e to that gray vertex. More precisely, for each gray vertex vW of �a labeled
by W D W.A; B/, where A and B correspond to x�1

0 x1 and x1, we define two fami-
lies of Schreier generators of StF .a/. Let xW;n be the Schreier generator corresponding
to the n-th loop (counting from the left) along the black ray stemming out of vW , and let
yW;n be the Schreier generator corresponding to the n-th horizontal bottom edge (counting
from the right) in the white ray stemming out of the white vertex right below vW . Finally,
let zw denote the Schreier generator corresponding to the edge ew . From the structure of
the graph, according to the Reidemeister–Schreier procedure, we calculate

xW;n D W.x
�1
0 x1; x1/ � x

n
0x1x

�n
0 �W.x

�1
0 x1; x1/

�1; n � 1;

yW;n D W.x
�1
0 x1; x1/ � x

�1
0 � x

�n
0 x1x

n�1
0 x0 �W.x

�1
0 x1; x1/

�1; n � 1;

zw D w
R.x1; x

�1
0 x1/:

Thus, according to Reidemeister–Schreier procedure, we obtain the following lemma.

Lemma 4.1. For a rational point aD 10w1 ofX! , wherew 2X� is not a proper power,
the stabilizer of a in F is generated by the following elements of F :

StF .a/ D hxW;n; yW;n; zw j n � 1;W 2 ¹A;Bº
� that does not have

wR.B;A/ as a prefixi:

Most of the arguments below are devoted to the simplification of the generating set in
the above lemma. First, we observe that

x";n D x
n
0x1x

�n
0 D xnC1;

where xnC1 is one of the generators of F from the infinite presentation (1.1) of F . We
also denote

yn WD y";n D x
�1
0 � x

�n
0 x1x

n�1
0 x0 D x

�n�1
0 x1x

n
0 :
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It is shown in [12, Example 2.3] that the action of xn on Œ0; 1� is as follows:

xn.t/ D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

t; 0 � t � 1 �
1

2n
;

t

2
C
1

2
�

1

2nC1
; 1 �

1

2n
< t � 1 �

1

2nC1
;

t �
1

2nC2
; 1 �

1

2nC1
< t � 1 �

1

2nC2
;

2t � 1; 1 �
1

2nC2
< t � 1;

or, equivalently, xn can be represented by the rectangle diagram below:

.............................................................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
................................................................................................................................................................................................................................................................................................................................................................................................................ .......

.......

.......

.......

.......

.......

.......

.......

. .............................................................

.............................................................

1 � 1
2n

xn D

In the next lemma, we will compute the action of yn on Œ0; 1�.

Lemma 4.2. The function yn is given by

yn.t/ D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

2t; 0 � t �
1

2nC2
;

t C
1

2nC2
;

1

2nC2
< t �

1

2nC1
;

t

2
C
1

2
�

1

2nC1
;

1

2nC1
< t �

1

2n
;

t;
1

2n
< t � 1;

or, equivalently, by the following rectangle diagram:

.............................................................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................

.............................................................

.............................................................

1
2n

yn D

Proof. We prove the claim by induction on n. For the base case n D 1, we have y1 D

x�2
0 x1x0, so we calculate the expression for y1 by rectangle diagrams (note that since

here, unlike in [12], we consider right actions, we juxtapose the rectangle diagrams from
top to bottom).

...........................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......


....................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................


.......
.......
.......
.......
.......
.......
...........................................................................................................................................................................................................................................................................................................................................................................

....................................................

.................................................................

.................................................................

.............................................................................................

..........................................................................................................................................................................................

.............................................................................................

.............................................................................................

.............................................................................................

....................................................

.................................................................

.................................................................

........................................

........................................

.......................................................

x�1
0 =

x�1
0 =

x1=

x0=

= = y1

1
2

1
2

1
4

1
4

1
8
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The induction step is proved similarly. Assuming that the claim holds true for yn for
some fixed n, since ynC1 D x

�1
0 ynx0, we calculate using the corresponding rectangle dia-

grams, where we concentrate only on the left side because x0 coincides with t
2

and x�1
0

coincides with 2t for all t 2 Œ0; 1
4
�.

....................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......



.................................................................

.................................................................

....................................................

.......................................................

.......................................................

....................................................

........................................

........
........
........
........

........................................

..............................................

.......................................................

.......................................................

x�1
0 =

yn=

x0=

= = ynC1

1
2n

1
2nC1

1
2nC1

Corollary 4.3. For each n � 1;m � 1 the elements xn and ym commute.

Proof. The claim follows from the fact that the supports of xn and ym are disjoint: xn

moves points only in 1X! and ym only in 0X! .

To compute the relations between yi ’s, we consider the following transformation of F
(to be justified in the next lemma):

'W F �! F

f .t/ 7�! 1 � f .1 � t /;

where t is a real number.

Lemma 4.4. For each f 2 F , '.f / is an element of F whose graph is the image under
the central symmetry (with respect to the center

�
1
2
; 1

2

�
of Œ0; 1�2) of the graph of f .

Proof. The point .t; f .t// is on the graph of f if and only if .1 � t; 1 � f .t// is a point
on the graph of '.f /.1 � t / because

.1 � t; 1 � f .t// D .1 � t; 1 � f .1 � .1 � t /// D .1 � t; '.f /.1 � t //:

Therefore, '.f / is also an increasing piecewise linear homeomorphisms from Œ0; 1� to
itself that is differentiable everywhere except at finitely many dyadic rational numbers
and such that on the intervals of differentiability the derivatives are integer powers of 2.
Thus, '.f / is an element of F .

Lemma 4.5. The map ' is an automorphism of F of order 2.
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Proof. Since by Lemma 4.4 the graph of '.f / is symmetric to the graph of f , we imme-
diately obtain that ' is an involution, so it is both one-to-one and onto. We only need to
check that ' is a homomorphism:

'.f .t/ ı g.t// D '.g.f .t///

D 1 � g.f .1 � t // D 1 � g.1 � 1C f .1 � t //

D 1 � g.1 � Œ1 � f .1 � t /�/

D Œ1 � f .1 � t /� ı Œ1 � g.1 � t /�

D '.f .t// ı '.g.t//: (4.1)

Thus, ' is an automorphism.

Lemma 4.6. For each n � 1,
'.xn/ D yn:

Proof. If an element f 2 F sends a point a 2 Œ0; 1� to a point b D f .a/ 2 Œ0; 1�, then

'.f /.1 � a/ D 1 � f .1 � .1 � a// D 1 � f .a/ D 1 � b:

Therefore, the rectangle diagram of '.f / is obtained from the rectangle diagram of f by
applying a reflection about the vertical symmetry axis of the rectangle:

............................................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
..................................................................................................................................................................................................................................................................................................................................................................................................


.......
.......
.......
.......
.......
.......
.................................................................................................................................................................................................................................................................................................................................................................................................. ....................

....................
....................

....................
....................

....................
....................

....................
...........

.............................................................................................................................

a

b

1 � a

1 � b

'

Thus, the statement of the lemma immediately follows from Lemma 4.2 and the
rectangle diagram for xn.

Corollary 4.7. For each n � 1 and 0 � k < n,

ykyny
�1
k D ynC1:

Proof. Follows from Lemma 4.6 and the relations from the presentation (1.1).

We are now ready to simplify the generating set for StF .a/ from Lemma 4.1. For any
wordW 2 ¹A;Bº�, letWA andWB denote the number of A’s and B’s inW , respectively.
We refer the reader to Figure 4 to illustrate the proposition below, where edges outside of
the spanning tree T are labeled by Schreier generators xn; n � 2, ym; m � 1, and zw .

Proposition 4.8. For any integer n � 1 and any W 2 ¹A; Bº� that does not have
wR.B;A/ as a prefix, we have

xW;n D xnC1CWB
;

yW;n D ynCWA
:
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Proof. It follows from the presentation (1.1) that xn
0x1x

�n
0 D xnC1 for all n � 1.

Therefore,
xW;n D W.x

�1
0 x1; x1/ � x

n
0x1x

�n
0 �W.x

�1
0 x1; x1/

�1

D W.x�1
0 x1; x1/ � xnC1 �W.x

�1
0 x1; x1/

�1:

Since for any i � 2,

.x�1
0 x1/xi .x

�1
0 x1/

�1
D x�1

0 � .x1xix
�1
1 / � x�1

0 D x
�1
0 � .xiC1/ � x0 D xi

and
x1xix

�1
1 D xiC1;

the conjugation of xnC1 by W.x�1
0 x1; x1/ increases the index exactly by WB and xW;n D

xnC1CWB
.

Similarly,

yW;n D W.x
�1
0 x1; x1/ � x

�1
0 � x

�n
0 x1x

n
0 �W.x

�1
0 x1; x1/

�1

D W.x�1
0 x1; x1/ � yn �W.x

�1
0 x1; x1/

�1:

It follows from Corollary 4.3 and the definition of yn that for i � 1

.x�1
0 x1/yi .x

�1
1 x0/ D x

�1
0 yix0 D yiC1

and
x1yix

�1
1 D yi :

Therefore, the conjugation of yn by W.x�1
0 x1; x1/ increases the index exactly by WA and

yW;n D ynCWA
.

Finally, we prove the main result of the paper, Theorem 1.1 from the introduction, that
we repeat here for convenience of the reader.

Theorem 1.1. The generating sets of the stabilizers in F of rational points of the Cantor
set X! are described as follows.

(a) For a rational point a D 10w1 2 X! with a finite word w that is not a proper
power, we have

StF .a/ D hx2; x3; y1; y2; w.x
�1
1 ; x�1

1 x0/i:

(b) Let b 2 X! be an arbitrary rational different from 01 and 11 point and let
b D vw1 be its unique decomposition as an eventually periodic word with a finite
nonempty periodw 2X� that is not a proper power and a finite preperiod v 2X�

such that the ending of v differs from the one of w. Then there is h 2 F that can
be explicitly computed from the Schreier graph �b , such that h.b/ D 10vw1 and

StF .b/ D hxh
2 ; x

h
3 ; y

h
1 ; y

h
2 ; w.x

�1
1 ; x�1

1 x0/
h
i:
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Proof. For part (a), we start from a generating set

¹xW;n; yW;n; zw j n � 1;W 2 ¹A;Bº
� that does not have wR.B;A/ as a prefixº

constructed in Lemma 4.1. By Proposition 4.8, all generators xn;W and yn;W are equal
to some of the xi , i � 2 and yj , j � 1. On the other hand, xi D x";i�1 for i � 2 and
yj D y";j for j � 1. Therefore, we can conclude that

StF .a/ D hxi ; yj ; zw W i � 2; j � 1i:

Now, since xnD x
n�3
2 x3x

�.n�3/
2 for n� 4 by presentation (1.1) and ynD y

n�2
1 y2y

�.n�2/
1

for n � 3 by Corollary 4.7, we reduce the generating set to

StF .a/ D hx2; x3; y1; y2; zwi:

Finally, the replacement of zw by z�1
w

z�1
w D w

R.x1; x
�1
0 x1/

�1
D w.x�1

1 ; .x�1
0 x1/

�1/ D w.x�1
1 ; x�1

1 x0/

finishes the proof.
Part (b) follows from the transitivity of the action of F on the set of rational points

with the same period, as follows directly from Theorem 3.2 and was also proved by Belk
and Matucci (see [27, Proposition 3.2.3]). Indeed, given an element h 2 F such that
h.b/ D 10w1, we get StF .b/ D h StF .10w1/h�1, which proves the claim. The ele-
ment h can be calculated as a word over ¹x0; x1; x

�1
0 ; x�1

1 º that is read along a path in �b

connecting b to 10w1. This word can be clearly effectively computed given the prepe-
riod v, but we leave writing out the explicit algorithm that involves a few cases to the
reader.

In the last proposition, we show that the Reidemeister–Schreier procedure yields finite
presentability of stabilizers of all rational points in X! , which, as stated in the introduc-
tion, also follows from [17, Lemma 4.11]. We will not write out the exact presentation,
but it certainly can be done if needed in each individual case.

Proposition 4.9. For each rational point b of X! , the stabilizer StF .b/ is finitely
presented.

Proof. The claim is obvious for b D 11 and b D 01 as in these cases StF .b/D F , which
is finitely presented. By conjugation, if necessary, we can assume that b D 10w1 and thus
by Theorem 1.1 StF .b/D hx2; x3; y1; y2;w.x

�1
1 ; x�1

1 x0/i. We will show that it is enough
to take only a finite number of relators from the set of Schreier relatorsRStF .b/ constructed
in Step 4 of the Reidemeister–Schreier procedure. Indeed, since the length of the longest
relator in (2.3) is 14, any Schreier relator from RStF .b/ that is obtained by reading a rela-
tor from R D ¹Œx�1

1 x0; x0x1x
�1
0 �; Œx�1

1 x0; x
2
0x1x

�2
0 �º starting from a vertex in �b with
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distance at least 7 from the edge ew will involve only generators of StF .b/ of the form xi

or yj for some i � 2, j � 1. It follows from presentation (1.1) that

hx2; x3; x4; : : :i D hx2; x3i Š F

and from Lemma 4.6 that

hy1; y2; y3; : : :i D hy1; y2i Š hx1; x2i Š F:

Thus, all of such relators will follow from 2 relators between x2 and x3, 2 relators between
y1 and y2 (coming from a finite presentation (2.3) of F ), and 4 commuting relators
Œxi ; yj �, i D 2; 3, j D 1; 2. Note that the commuting relations hold true by Corollary 4.3
and are consequences of a finite number of Schreier relations.

Since there is only finite number of vertices in �b which are distance at most 6
from the edge ew , and each such vertex will introduce 2 Schreier relators from the
Reidemeister–Schreier procedure, the claim follows.

We finish the paper with a couple of remarks and a question.

Remark 4.10. In the case of StF .101/ D StF
�

1
2

�
, the nontrivial loop in the Schreier

graph �101 becomes a degenerate loop consisting just of one edge labeled by x1 from
the vertex 101 to itself, that is, we obtain the Schreier graph shown in Figure 2. In
this case, we have w D 0 2 X and zw D z0 D x1, so Theorem 1.1 yields StF .101/ D
hx2; x3; y1; y2; x1i. Since x3 D x1x2x

�1
1 the last equality simplifies to

StF .101/ D hx1; x2; y1; y2i Š hx1; x2i � hy1; y2i Š F � F;

which is the well-known generating set and structure description for StF .101/.

Remark 4.11. While in the interval .0; 1/ we have 0:v101 D 0:v011, in the Cantor
set X! v101 and v011 are 2 distinct points and they have disjoint orbits under the action
of F . Since the action of F on X! is induced by the action on Œ0; 1�, the corresponding
Schreier graphs �v101 and �v101 must be isomorphic and the stabilizers in F of these
points must be equal. This can be easily verified by applying Theorems 1.1 and 3.2 in this
case.

Since by [17, Theorem 5.4] the stabilizer of any non-dyadic rational number can be
generated by 3 elements, it is natural to ask the following question.

Question 4.12. Are the generating sets of StF .b/ produced in Theorem 1.1 minimal for
non-dyadic rational points b?

Acknowledgments. The authors would like to thank Gili Golan for her comments on the
historical background and to the anonymous referee for careful reading of the paper and
providing several suggestions that improved the exposition.
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