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Intersection-saturated groups without free subgroups

Dominik Francoeur

Abstract. A group G is said to be intersection-saturated if for every strictly positive integer n and
every map cWP .¹1; : : : ; nº/ n ; ! ¹0; 1º, one can find subgroups H1; : : : ; Hn � G such that for
every non-empty subset I � ¹1; : : : ; nº, the intersection

T
i2I Hi is finitely generated if and only if

c.I / D 0. We obtain a new criterion for a group to be intersection-saturated based on the existence
of arbitrarily high direct powers of a subgroup admitting an automorphism with a non-finitely gener-
ated set of fixed points. We use this criterion to find new examples of intersection-saturated groups,
including Thompson’s groups and the Grigorchuk group. In particular, this proves the existence of
finitely presented intersection-saturated groups without non-abelian free subgroups, thus answering
a question of Delgado, Roy and Ventura.

To Slava Grigorchuk, on the occasion of his 70th birthday

1. Introduction

It is a classical result of Howson [7] that the intersection of finitely many finitely gen-
erated subgroups of a non-abelian free group is again finitely generated. This, however,
does not hold for all groups (groups for which it does are said to possess the Howson
property). Recently, Delgado, Roy and Ventura [4] introduced a new notion, intersection
configurations, that can be seen as a generalisation of these considerations.

Definition 1.1 (Cf. [4]). Let n 2 N�1 be a strictly positive integer.

(1) An n-configuration is a map cWP .¹1; : : : ; nº/ n ¹;º ! ¹0; 1º.

(2) An n-configuration c is said to be realisable in a group G if there exist subgroups
H1; : : : ;Hn � G such that for all non-empty subset I � ¹1; : : : ; nº, the subgroupT
i2I Hi is finitely generated if and only if c.I / D 0.

Thus, a group G has the Howson property if and only if the 2-configuration given by
c.¹1º/ D c.¹2º/ D 0 and c.¹1; 2º/ D 1 is not realisable in G.

It is natural to ask which groups satisfy the property that all configurations are
realisable. Such groups were called intersection-saturated by Delgado, Roy and Ventura.
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Definition 1.2 ([4, Definition 3.7]). A group G is intersection-saturated if for every
n 2 N�1, every n-configuration is realisable in G.

In [4], Delgado, Roy and Ventura produced examples of intersection-saturated groups,
all containing F2 � Zm for some m 2 N, where F2 denotes the free groups on two
generators. They asked [4, Question 7.2] if there exists a finitely presented intersection-
saturated group not containing such a subgroup.

In the present note, we introduce a new technique to find intersection-saturated groups,
which allows us to answer this question positively. More precisely, we obtain the following
criterion.

Theorem A. Let G be a group. Suppose that for every n 2 N�1, there exists a finitely
generated group Kn and an automorphism fnWKn ! Kn such that

(I) the subgroup of fixed points of fn is not finitely generated,

(II) G contains a subgroup isomorphic to Knn , where Knn denotes the direct product
of Kn with itself n times.

Then, G is intersection-saturated.

We then apply this criterion to obtain several new examples of intersection-saturated
groups, including Thompson’s groups (Corollary 3.1) and the Grigorchuk group (Corol-
lary 3.3). These examples allow us to answer the question of Delgado, Roy and
Ventura.

Corollary B. There exist finitely presented intersection-saturated groups without non-
abelian free subgroups.

In fact, we go one step further and prove that there are finitely presented intersection-
saturated groups that are amenable.

Corollary C. There exist finitely presented amenable intersection-saturated groups.

2. Proof of Theorem A

Let us first fix the notation that we will use for the rest of this note.

Notation 2.1. For n 2 N�1, we will write Œn� D ¹1; : : : ; nº.

Notation 2.2. If G is a group and n 2 N�1, we will denote by Gn the direct product of n
copies of G. For any g 2 Gn and i 2 Œn�, we will denote by gi the i th component of g, so
that g D .g1; g2; : : : ; gn/.
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Notation 2.3. Let G be a group, let n 2 N be any integer and let H1; : : : ; Hn � G be a
collection of subgroups. For ; ¤ I 2 P .Œn�/, we will write

HI D
\
i2I

Hi :

Let us now introduce the following construction, which will serve as a basis for the
proof of the main result.

Lemma 2.4. Let G be a finitely generated group and suppose that there exists an auto-
morphism f of G such that the subgroup of fixed points of f is not finitely generated.
Then, for any n 2 N�1, there exist finitely generated subgroups H1; : : : ; Hn � Gn such
thatHI is finitely generated for any proper non-empty subset of Œn� butHŒn� is not finitely
generated.

Proof. If n D 1, then it suffices to take any non-finitely generated subgroup of G, such as
the set of fixed points of the automorphism f . Thus, let us now assume that n > 1. For
each 1 � i � n � 1, we define Hi by

Hi D ¹g 2 G
n
j gi D giC1º � G

n;

and we define Hn by

Hn D ¹g 2 G
n
j gn D f .g1/º � G

n:

Let I � Œn� be a proper subset. We have

HI D ¹g 2 G
n
j gi D giC1 8i 2 I n ¹nº and gn D f .g1/ if n 2 I º:

If we write k D jI j < n, it is not hard to see that HI is isomorphic to Gn�k , since the
coordinates corresponding to elements of I are uniquely determined by the n � k other
coordinates, which have no restrictions placed upon them. As G is finitely generated, it
follows that HI must also be finitely generated.

Now, let us see that HŒn� is not finitely generated. We have

HŒn� D ¹g 2 G
n
j g1 D g2 D � � � D gn D f .g1/º

D ¹.g; g; : : : ; g/ 2 Gn j g D f .g/º:

Thus, we see that HŒn� is isomorphic to the subgroup of fixed points of f in G, which is
not finitely generated by assumption.

Using the previous lemma, we can realise all configurations taking value 1 at most
once in direct products, as the next lemma shows.

Lemma 2.5. Let G be a finitely generated group with an automorphism f such that
the subgroup of fixed points of f is not finitely generated. Then, for all n 2 N�1, every
n-configuration cWP .Œn�/ n ¹;º ! ¹0; 1º such that jc�1.1/j � 1 is realisable in Gn.
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Proof. Let us fix some n 2 N�1 and a configuration c taking the value 1 at most once.
If c takes only the value 0, then one can simply set H1 D H2 D � � � D Hn D 1. Let
us now assume that there exists some non-empty set I1 � Œn� such that c.I1/ D 1. By
our assumptions on c, this set must be unique. Let us write I1 D ¹j1; : : : ; jn1º, where
n1 D jI1j � n.

By Lemma 2.4, there exist subgroups Hj1 ; : : : ; Hjn1 � G
n1 � Gn such that HJ is

finitely generated for all proper subsets J � I1 but HI1 is not finitely generated. Note
that we have chosen here an arbitrary embedding of Gn1 in Gn. For i … I1, let us define
Hi D 1. Then, for any J � ¹1; 2; : : : ; nº, we have one of the following three cases:

(1) J D I1, in which case HJ is not finitely generated,

(2) J ¨ I1, in which case HJ is finitely generated,

(3) J 6� Ii , in which case HJ D 1 and is thus finitely generated.

Thus, as desired, HJ is finitely generated if and only if c.J / D 0.

To pass from configuration maps with at most one non-zero value to arbitrary con-
figuration maps, let us recall the notion of the join of two configurations, as defined by
Delgado, Roy and Ventura [4].

Definition 2.6 ([4, Definition 3.3]). Let n 2 N�1 and let c1; c2 be two n-configurations.
Their join is the n-configuration c1 ^ c2WP .¹1; 2; : : : ; nº/ n ¹;º ! ¹0; 1º defined by

c1 ^ c2.I / D

´
0 if c1.I / D 0 and c2.I / D 0;

1 otherwise.

Let us now see that the join of two n-configurations realisable in groups G1 and G2,
respectively, is always realisable in the direct product G1 �G2.

Lemma 2.7. Let n2N�1 and let c1; c2 be two n-configurations. LetG1;G2 be two groups
such that c1 and c2 are realisable configurations inG1 andG2, respectively. Then, c1 ^ c2
is realisable in G1 �G2.

Proof. LetH1; : : : ;Hn �G1 andK1; : : : ;Kn �G2 be subgroups realising the configura-
tions c1 and c2, respectively. For all i 2 Œn�, letLi DHi �Ki �G1 �G2. Then, we claim
that L1; : : : ; Ln are subgroups realising the configuration c1 ^ c2. Indeed, let I � Œn� be
a non-empty subset. Then, LI D HI � KI . If both HI and KI are finitely generated,
then LI is also finitely generated, but if one ofHI orKI is not finitely generated, then LI
cannot be either. This shows that L1; : : : ; Ln exactly realises c1 ^ c2.

We are now ready to prove Theorem A, which we restate for the convenience of the
reader.

Theorem A. Let G be a group. Suppose that for every n 2 N�1, there exists a finitely
generated group Kn and an automorphism fnWKn ! Kn such that
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(I) the subgroup of fixed points of fn is not finitely generated,

(II) G contains a subgroup isomorphic to Knn .

Then, G is intersection-saturated.

Proof. Let us fix n 2N�1 and an n-configuration c. Let k D jc�1.1/j, and let I1; : : : ; Ik 2
P .Œn�/ n ¹;º be an enumeration of the sets mapped to 1 by c. For every 1 � i � k, we
define the n-configuration ci WP .Œn�/ n ¹;º ! ¹0; 1º by ci .J / D 1 if and only if J D Ii .
It is obvious that c D c1 ^ c2 ^ � � � ^ ck (note that the join is associative, so that this
expression is well defined).

By Lemma 2.5, for every 1� i � k, the configuration ci is realisable inKn
kn

. Applying
Lemma 2.7 inductively, we then conclude that the configuration cD c1 ^ � � � ^ ck is realis-
able inKkn

kn
. SinceKkn

kn
embeds inG by assumption, we conclude that the configuration c

is realisable in G.

3. New examples of intersection-saturated groups

We will now apply Theorem A to find new examples of intersection-saturated groups. Our
first application is Thompson’s groups. We refer the reader to [2] for an introduction to
these groups.

Corollary 3.1. Thompson’s groups F , T and V are intersection-saturated.

Proof. Since F � T � V , it suffices to prove the result for F . By [6, Corollary 22], the
restricted wreath product Z o Z D

L
Z Z Ì Z is contained in F . Let g 2

L
Z Z be any

non-trivial element, and let C.g/ denote the centraliser of g in Z o Z. Since
L

Z Z is
abelian, it is clear that

L
Z Z � C.g/, and since the action of Z on

L
Z Z has no fixed

point except for the identity, we have in fact
L

Z Z D C.g/.
Let fg WZ oZ!Z oZ denote conjugation by g. Its set of fixed points isC.g/D

L
Z Z,

which is not finitely generated. It is known that for every n 2 N, F contains a subgroup
isomorphic to F n (this follows directly, e.g., from [2, Lemma 4.4]). Thus, F contains
also a subgroup isomorphic to .Z oZ/n for every n 2 N, and we conclude by Theorem A
that F is intersection-saturated.

Since Thompson’s group F is finitely presented and does not contain a non-abelian
free subgroup [2, Corollary 4.9], we immediately obtain the following corollary, which
answers [4, Question 7.2].

Corollary B. There exist finitely presented intersection-saturated groups without non-
abelian free subgroups.

Since the amenability of Thompson’s group F is famously an open question, Corol-
lary B still leaves open the question of the existence of finitely presented amenable
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intersection-saturated groups. We will answer this question – thanks to our second applic-
ation of Theorem A, which is about branch groups. We refer the reader to [1] for the
definition and an introduction to these groups.

Theorem 3.2. LetG be a finitely generated branch group. IfG contains an element ˛ 2G
whose centraliser CG.˛/ is not finitely generated, then G is intersection-saturated.

Proof. It follows from the definition of a branch group (see, e.g., [1, Definition 1.1]) that
for every n 2 N, there exists a subgroup Kn � G such that

(1) Kn has exactly kn distinct conjugates, for some n � kn <1,

(2) for every g 2 G, either gKng�1 D Kn or ŒKn; gKng�1� D Kn \ gKng�1 D 1,

(3) the subgroupHnD h¹gKng�1 j g 2Gºi ŠK
kn
n is normal and of finite index inG.

We note that since G is finitely generated, condition (3) implies that Kknn , and thus Kn,
must also be finitely generated. Therefore, to apply Theorem A, it suffices to find for every
n 2 N an automorphism fnWKn ! Kn whose set of fixed points is not finitely generated.

Let us now fix some n 2 N. By condition (1), there exists a bijection �W Œkn� !
¹gKng

�1 j g 2 Gº between the set Œkn� and the set of conjugates of Kn. Since G acts by
conjugation on the set of conjugates ofKn, we can pull this action back through � to obtain
an action of G on Œkn�. Let l D jŒkn�=h˛ij be the number of orbits in Œkn� under the action
of the subgroup of G generated by ˛, and for every i 2 Œkn�, let o.i/D jh˛i � i j be the size
of the orbit of i under the action of the subgroup generated by ˛. Let ¹j1; : : : ; jlº � Œkn�
be a set containing exactly one representative of each orbit under the action of h˛i. We
claim that CHn.˛/, the centraliser of ˛ in Hn, is isomorphic to

L D

lY
iD1

C�.ji /.˛
o.ji //:

To see this, let us define a homomorphism  WL! Hn by setting

 .hji / D

o.ji /�1Y
mD0

˛mhji˛
�m
2

o.ji /�1Y
mD0

�.˛m � ji /

for hji 2C�.ji /.˛
o.ji //� �.ji / and then defining .hj1 � � �hjl /D .hj1/ � � � .hjl /. Using

the fact that by condition (2), distinct conjugates commute and intersect trivially, it is easy
to check that  is an injective homomorphism. Furthermore, for hji 2 C�.ji /.˛

o.ji //, we
have

˛ .hji /˛
�1
D

o.ji /Y
mD1

˛mhji˛
�m
D

o.ji /�1Y
mD0

˛mhji˛
�m
D  .hji /;

where we have used the fact that ˛o.ji /hji˛
�o.ji / D hji since hji 2 C�.ji /.˛

o.ji //. It
follows that the image of  is contained in CHn.˛/.
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Now, let h D h1 � � � hkn 2 CHn.˛/ be any element of Hn centralising ˛. We have

˛h˛�1 D .˛h1˛
�1/ � � � .˛hkn˛

�1/ D h1 � � � hkn :

Since, for any j 2 Œkn�, we have ˛hj˛�1 2 �.˛ � j /, we must have ˛hj˛�1 D h˛�j for
all j 2 Œkn�, which implies that ˛m � hj˛�m D h˛m�j . In particular, for every i 2 Œl �, we
have ˛o.ji /hji˛

�o.ji / D h˛o.ji /�ji D hji , which means that hji 2 C�.ji /.˛
o.ji //. Since every

j 2 Œkn� can be written as ˛m � hji for some i 2 Œl � and some m 2 ¹0; : : : ; o.ji / � 1º, we
conclude from all this that h D  .hj1 � � � hjl /. This shows that  .L/ D CHn.˛/ and thus
finishes showing that CHn.˛/ Š L.

By assumption, CG.˛/ is not finitely generated. Since Hn is of finite index in G,
CHn.˛/ D CG.˛/ \ Hn must be of finite index in CG.˛/ and thus cannot be finitely
generated. This implies that there exists some i0 2 Œl � such that C�.ji0 /.˛

o.ji0 // is not
finitely generated. Indeed, we have just seen that CHn.˛/ Š

Ql
iD1 C�.ji /.˛

o.ji //, so if
all C�.ji /.˛

o.ji // were finitely generated, CHn.˛/ would be as well. Notice that by con-
struction, ˛o.ji0 / normalises �.ji0/, so that conjugation by ˛o.ji0 / is an automorphism of
�.ji0/ whose set of fixed points, C�.ji0 /.˛

o.ji0 //, is not finitely generated. Since �.ji0/
is by definition a conjugate of Kn, and thus isomorphic to it, we have just proven the
existence of an automorphism fnWKn ! Kn whose set of fixed points is not finitely gen-
erated. This finishes proving that the assumptions of Theorem A are satisfied by G and
thus that G is intersection-saturated.

As a corollary, we get that the Grigorchuk group is intersection-saturated (we refer the
reader to [3] for an introduction to this group).

Corollary 3.3. The Grigorchuk group is intersection-saturated.

Proof. The Grigorchuk group is a finitely generated branch group (see, e.g., [1, Proposi-
tion 1.25]), and by a theorem of Rozhkov [8, Theorem 1], it admits elements whose cent-
ralisers are not finitely generated. Thus, by Theorem 3.2, it is intersection-saturated.

Although we consider this to be out of the scope of the current article, we believe
that it should be fairly straightforward to adapt Rozhkov’s arguments in [8] to show that
all finitely generated branch spinal groups possess elements whose centralisers are not
finitely generated and thus are intersection-saturated (see [1] for the definition of spinal
groups). We do not currently know, however, this must be the case for all finitely generated
branch groups.

Question 3.4. Do all finitely generated branch groups possess an element whose central-
iser is not finitely generated?

If the answer to the above question is negative, could there exist finitely generated
branch groups that are not intersection-saturated?
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Question 3.5. Are all finitely generated branch groups intersection-saturated?

Let us finally conclude this note by using Corollary 3.3 to show that there exist finitely
presented amenable intersection-saturated groups.

Corollary C. There exist finitely presented amenable intersection-saturated groups.

Proof. By a result of Grigorchuk ([5], Theorem 1), there exists a finitely presented
amenable group � containing the Grigorchuk group � as a subgroup. Since � is
intersection-saturated by Corollary 3.3, � is intersection-saturated.
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