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Groups with property (T) and many alternating
group quotients

Laurent Bartholdi and Martin Kassabov

Abstract. We prove that, for the free algebra over a sufficiently rich operad (@, a large subgroup of
its group of tame automorphisms has Kazhdan’s property (T). We deduce that there exists a group
with property (T) that maps onto large powers of alternating groups.

To our teacher, mentor and friend Slava Grigorchuk on the occasion of his 70th
birthday — Mnozas nima!

1. Introduction

Property (T), introduced by Kazhdan in [11], may be thought of as a strong, analytic form
of finite generation — it remains the most direct path to proving that lattices in higher-rank
Lie groups are finitely generated. In this spirit, one should expect groups with this prop-
erty to have tight restrictions on their quotients. In particular, the Cayley graphs of their
quotients form so-called expander graphs, characterized, for example, by a spectral gap in
their combinatorial Laplacian. Conversely, families of expander graphs are conveniently
“explained” by their being Cayley graphs of quotients of a single group with property (T).
The performance of the “product replacement algorithm” (producing almost uniform sam-
plings of black box groups) is thus explained by property (T) of automorphism groups of
free groups [7].

It remained for long an open question whether there exists a group with property (T)
that admits all (or at least infinitely many) alternating groups as quotients; see, for exam-
ple, [12, Problems 10.3.2-10.3.4]. A hint that this might be possible appears in [8], proving
that alternating groups admit generating sets turning them into expander graphs. The ques-
tion was settled in [7]: Kaluba, Nowak and Ozawa prove that Aut(Fs) has property (T),
while Gilman [5] had previously shown that Aut(F5) maps onto infinitely many alter-
nating groups. Another example of (T) group mapping onto infinitely many alternating
groups appears in [2], while a (t) group (see below) mapping onto all alternating groups
appears earlier in [4, Theorem 9.17].
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In a completely different direction, Philip Hall proved that, for every finite simple
group G, the minimal number of generators of the direct power G” grows logarithmically
in n and may remain bounded for unbounded exponents provided that the size of the sim-
ple group G grows sufficiently fast. In fact, for every k > 2, there exists a superexponential
function fi (n) such that Alt(r)*/c® is k-generated. For instance, for Alt(5) the alternat-
ing group on 5 letters, Alt(5)*19 is 2-generated while Alt(5)*2° requires 3 generators;
see [0, Section 1.6].

It is thus theoretically possible that there exists a group with property (T), mapping
onto large powers of alternating groups. We achieve a result of this kind in this article,
with a superpolynomial exponent.

Main theorem (= Corollary 14). For every d > 2, there is a group Tz with property (T)
that surjects onto Alt(p@+2k — l)Xp for all primes p >3+ d + 4+/d — 1 and all
k> 1.

The group 'y constructed in Corollary 14 is generated by d + 4 elements; it is not
difficult to slightly modify these groups and make them all 4-generated.

This implies that for every d, there is a group with property (T) that surjects onto
Alt(n)*/® for infinitely many n, with f(n) ~ exp((logn)?). We leave as an open ques-
tion whether there exists a group with property (T) that surjects onto Alt(n)*/ ) for
infinitely many n, with f(n) & exp(n), or at least f(n) = exp(n®) for some o > 0.

1.1. Prior work

It could already be derived, using the techniques from [8] and some extra work, that the
Cayley graphs of Alt(n)X"k may form a family of expander graphs of bounded degree, for
arbitrary k € N, and using [4] that there exists a group with property (7) mapping onto all
Alt(n)=n™"

The idea of considering “large” finite quotients of a group is classical, as we men-
tioned above: combining [5, 7], the group Aut(Fs) has property (T) and permutes the
collection of normal subgroups of F5 with quotient isomorphic to PSL(2, p) as an alter-
nating or symmetric group. Since there are roughly p!° such subgroups, each given by a
generating 5-tuple of elements of PSL(2, p), this shows that Alt(p!®) or Sym(p!®) form
expanders for a uniform generating set coming from the generators of Aut(Fs). It fol-
lows from Corollary 14 that the estimate p!> can be sharpened to p*, and it may even be
brought down to p3 using [2].

1.2. Property (T)

We recall only very briefly the definition of property (T) (for details, see, e.g., [1]). A
discrete group I' has property (T) if its trivial representation is isolated within unitary
representations; this means the following. A representation of I on a Hilbert space H
almost has invariant vectors if for every € > 0 and every finite S C T, there is v € H with
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lsv—v|| <e|v]| forall s € S. The group I has property (T) if every unitary representation
of I' that almost has invariant vectors actually has I'-invariant vectors.

We shall also make use of a relative version of (T): the pair (I', H) with H < T has
relative property (T) if every unitary I'-representation that almost has invariant vectors
has H -invariant vectors. Thus, I" has property (T) if and only if (T, I') has relative prop-
erty (T), and if H is finite, then (', H) always has relative property (T). This relative
property often appeared as a stepping stone in the proof that a group has property (T),
and this article is no exception. Briefly, if (I, H;) has property (T) for a collection of sub-
groups (H;), the invariant subspaces of the H; have well-controlled, large enough angles,
and G is generated by | J; H;, then I has (T) (see [9]). We shall review more precisely the
required condition in the course of the proofs.

Margulis realized in [13] that property (T) leads to explicit constructions of expander
graphs, namely the Cayley graphs of finite quotients. A weaker property, called prop-
erty (t) by Lubotzky, already yields this conclusion: it suffices that the trivial represen-
tation be isolated among those representations of I' that factor through a finite quotient
of I'.

2. Universal algebra

Let O be an operad: a collection (O (n)),en of abstract operations, with compositions
0;:0(m) x O(n) > O(m +n —1) for 1 <i < n, thought of as composing an arity-m
operation with an arity-n operation by feeding the output of the former as ith input of the
latter. These composition maps obey the obvious associativity law. There is also an action
of the symmetric group on @ (n), permuting each operation’s inputs, and compatible with
the compositions.

The operad O is generated by the set S if each operation in @ (n) can be obtained
as a composition of operations in S. For simplicity, we will not allow operations of arity
zero (i.e., constants) in our operads; however, we do not put any other restrictions, so, for
example, operations of arity 1 (namely maps) are allowed.

We shall not need much from the theory of operads, so we concentrate immediately on
a special case that serves our purposes: the free operad on a finite-graded set S, which can
be defined by the usual universal property and also has the following concrete description.
Let S be a finite set of abstract operations {x, : s € S}, each with its arity ar(s) € N.
We denote by ar(S) = max{ar(s) : s € S} the maximal arity of S. The free operad Os
on S consists of all compositions of operations in S, with an ordering of their inputs. The
elements of Qg (n) are rooted trees with n leaves numbered 1, . . ., n, with at each non-leaf
vertex a label s € S and ar(s) descendants in a given order.

Definition 1. Let R be a commutative ring, and let @ be an operad. An Q-algebra over R
is an R-module A endowed with a family of R-multilinear maps A" — A, one for each
element of O (n), satisfying the usual operad axioms.
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If O is the free operad on S, this is equivalent to being given a family of R-multilinear
maps *g: A*) . A one foreachs € S.

In the category of (9-algebras over R, there is a free object on any set X which we
denote by R(X)p. As an R-module, it is generated by all rooted trees of height 1 with
leaves labeled by X and an element in @ (n) labeling the root, where n is the number of
leaves in the tree.

Note that R(X )@ has a natural grading in which all variables have degree 1 and all
operations have degree 0. If X is finite and O is finitely generated and does not contain any
operations of arity 1, then the homogeneous components of R{X )¢ are finitely generated
R-modules. In the case of a free operad O, the free algebra R(X)e, has homogeneous
components of arbitrarily large degrees provided that S contains at least one operation of
arity > 2.

3. Tame automorphisms

Let @ be an operad generated by a finite set S of operations as in the previous section.
Consider a commutative ring R, and let F = R(X)p denote the free (-algebra on

X = {xo,...,Xn—1}. We shall consider a certain subgroup I', n o of the group of tame
automorphisms of F.
ForO0<i <nand f € R{xg,...,%;,...,Xn—1)0, consider the transvection

xj+ foifi =],

Xj otherwise.

H(f):F—F, t(f)(xj)= {

Evidently, #; (/) is an automorphism of F, with inverse ¢; (— f'). By definition, the group
of tame automorphisms of F is the group generated by all such transvections.

Definition 2. Let S be a generating set of an operad @, and choose n > max{ar(S), 2}.
Let N € N be any, and consider the ring R = Z[1/N]. The group ', y,¢ is defined as
the subgroup of Aut(F) generated by'

a; = ti—1(x;) forl <i <n,

oy = th—1(x0/N),

Bs = to(*s(x1,..., Xa(s))) forsesS.

For brevity, we write it simply I',, when the dependency on N and O is irrelevant.

!By its construction, the group depends not only on the operad @ but also on the choice of the gen-
erating set S. This dependence is very mild as we will show in Theorem 5 and is not reflected in the
notation.
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Our first main result is that the group I', has property (T) as soon as the parameter N
is large enough.

Theorem 3. If N is divisible by all primes p < 3 + ar(S) + 4+/ar(S) — 1, then T, N0
has Kazhdan’s property (T).

Proof. Notice first that the automorphisms a7, ..., ®, generate SL,(R), and recall that
SL, (R) has property (T) since n > 3.

Therefore, there exists a constant § such that, for any representation of I', on a Hilbert
space I, any € > 0 and any vector v € JH which is e-almost invariant under the action of
the generators of I',, we have that v is 6e-almost invariant under SL, (R), and in particular
under all #; (rx;) with0 <i # j <nandr € R, and also under all f(r %5 (X1, ..., Xar(s)))
with r € R and s € S since these are words of bounded length in SL,(R) and the
generators of I',.

Consider the following abelian subgroups of I';:

Go = (to(rx1), to(r x5 (X1,...,Xas))) : 7 € R, s € S),
Gi ={tij(rXiy1modn) : 7 € R} forl <i <n.

Then by the previous paragraph, the pairs (I',, G;) all have relative property (T).

Foralli < j, the group generated by G; and Gj is either abelian or nilpotent of class 2:
if 0 <i < j — 1, then it is abelian, isomorphic to R%if0<i = j — 1, then it is isomor-
phic to the Heisenberg group of upper-triangular 3 x 3 matrices over R; and if i = 0, then
it is isomorphic to a subgroup of a product, over s € S, of either R? (ifar(S) < j <n —1)
or the Heisenberg group (if j < ar(S)or j =n—1).

It follows that, in a representation as above, the Friedrichs angles between invariant
subspaces for G;, G; satisty

0 if (G;, Gj) is abelian,

0 < cos <i(fHG",iHGf) <
p~1/2 otherwise,

where p is the smallest prime not dividing N. (Recall that the angle between two
subspaces V, W < J{ is the smallest angle between vectors in V N (V N W)L and
W N (W N V)L.) Indeed, it suffices to consider representations of the Heisenberg group
over Z/ p, which have dimension 1 or > p; and then the bound on the cosine of the angles
is 1/,/p (see [3, Theorem 4.4]).
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To apply [9, Theorem 1.2], it remains to prove that the following matrix is positive
definite:

1 - «+ — 0 -+ 0 —¢
- 1 . 0
e
A= - 0 - 1 -—¢
0 — 1
.o— 0
0 - 1 -
s 0 .- e 0 —2 1

for ¢ = p~1/2, with terms “—&” appearing one step away from the diagonal and in the
second to 1 4 ar(S)th entries of the first row and column.

We can decompose A as the sum of a circulant matrix A; with 2¢ on the diagonal and
—e off the diagonal, and a matrix A, with 1 — 2¢ on the diagonal and —¢ on the third to
1 + ar(S)th entries of the first row and column.

The matrix A is positive semidefinite when & > 0, while A, has eigenvalues 1 — 2¢
(with multiplicity n — 2) and 1 — 2¢ £ /ar(S) — le (with multiplicity 1). Thus, A, is
positive definite when y/ar(S) — le < 1 — 2e. We deduce that A is positive definite when

e<1/2+ yar(S)—1). |

Remark 4. The bound for p in Theorem 3 is not optimal, but it cannot be improved sig-
nificantly. It can be shown that A is not positive definite when & > 1/ max(2, y/ar(S) — 1),
so the best bound is at least max (4, ar(S) — 1).

Our next result is that the group I',, contains a substantial part of the tame automor-
phism group of the free @-algebra F and really depends on @ (as the notation suggests)
and only mildly on the choice of its generating set S

Theorem 5. Forall f € R(x1,...,Xp—1-ar(s))0, the group 'y y o contains the transvec-

tion to(f).

Proof. By linearity, it is sufficient to prove this for elements of the free S-magma, namely
for rooted tree. We proceed by induction on the tree’s height, the base case being a single
leaf and no internal vertices; it is dealt with by elementary matrices in SL,(R) C I'y v,0.

Consider therefore s € S, write k = ar(s) and consider a term f = *,(f1,..., fx)
with f1,..., fx € R{x1,...,x¢)e for some £ € N satisfying k 4+ £ < n. By induction,
there are transvections fo( f;) in I',, and since I', contains all even permutations of the
variables, we may assume by induction that I';, contains the transvections

vi=tgj(fy) forl<j <k
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Note that the y; all commute with each other. There is also in ', a conjugate B of S,
that is, the transvection

IB; = fo(*s(xg+1, - ,.X'(+k)).

By a direct computation,

[Bs-vil = (B) ' (B

= to(—*s(Xp1. - Xpqk)) To(*s (Xe 15+ ooy Xej + fioe ooy Xetk)

= 1o(*s(Xet1s -+ fise ooy Xesk))s
so the iterated commutator [... [B}, y1], ..., vk] is the transvection fo(f) which thus
belongs to I'. ]

4. Representations

For an @-algebra A and X = {xo,...,Xn—1}, consider the set R, 4 of ¥-algebra homo-
morphisms R{X )@ — A. Such a homomorphism is uniquely determined by the images of
Xo, - - - » Xn—1, Which are arbitrary elements of A since R({X )@ is free. We may therefore
naturally identify R, 4 with A".

The automorphism group of R(X)e naturally acts on R, 4 by pre-composition.
Under the identification of R, 4 with A", the generators o; (for 1 <i < n) act as
(ag,...,an—1) — (ag,...,ai —aj+1,...,an—1), etc.

Furthermore, the action of R{X)p commutes with the action of the automorphism
group of A by post-composition. Again choosing R = Z[1/N], we obtain an action of
Iy N0 on A" /Aut(A).

Definition 6. An (9-algebra A over R is called minimal if its only subalgebras are A and
the 0-submodule. Here by a subalgebra of A, we mean an R-submodule which is closed
under all operad operations.

Theorem 7. Let A be an O-algebra, and choose n > ar(S) + 2.

(1) If A is minimal and non-trivial, then the action of I'y, N0 on A" has two orbits:
the fixed point 0" and a large orbit consisting of all other points.

(2) If A is minimal, then the induced action of ', on Qp 4 = (A" \ 0")/Aut(A) is
k-transitive, for all k less than the number of Aut(A)-orbits in A. In particular,
if A is finite and |Q2| > 25 and Aut(A) has at least 6 orbits on A, then T, acts
on 2 as a full alternating or symmetric group.

(3) If A, A" are two non-isomorphic minimal algebras, then the actions of T, on Qp 4
and on Q4 are not isomorphic.

We begin by an analogue of the Chinese remainder theorem for minimal algebras.



L. Bartholdi and M. Kassabov 654

Lemma 8. Let the O-algebra A be minimal. For any elements ay, .. .,ay € A\ 0 in dis-
tinct Aut(A)-orbits and for every by, ...,by € A, there exists v € R(x)@g such that the
substitution X > a; maps v to b;, that is, evg, (v) = b; where ev,: R(x)9 — A is the
evaluation map x — a.

Proof. The proof is by induction on k. The base case k = 1 follows from the minimal-
ity of A which implies that the evaluation map ev,, is a surjective map R(x)p — A.
Assuming the statement for k, the evaluation maps at aq, . . ., ag yield a surjection

evg, X+ X evg t R{x)o — Ak,

The kernel V of this map is a subalgebra of R{x)p because O has no constants; and the
evaluation at ax 41 maps V to a subalgebra of A. Since A4 is minimal, the image is either the
whole of A, proving the induction step, or is 0. In the last case, ev,, , is identically zero
on V, so induces a (still surjective) algebra homomorphism A¥ — A. Pre-composing this
homomorphism with the i th embedding A — A¥, we obtain a homomorphism ¢;: A — A
mapping a; to ax1; and ¢; is non-zero, so its kernel is 0 and its image is A4, that is, ¢; is
an automorphism of A; therefore, a; and ay ., are in the same orbit of Aut(A). ]

Proof of Theorem 7. (1) Consider A a minimal algebra and a € A a non-zero element.
Since A is minimal, a generates the whole algebra A, and we will show that the I';;-orbit

of (a,0,...,0) contains every non-zero element of A”.
Consider (ag, ...,an,—1) € A™ \ 0". Since I" contains the group of even permutations,
we can assume that a,—q # 0. Thus, each of ag — a,ay, as, ..., ay—» may be, respec-

tively, written as an expression v;(a,—1) since a,—; is non-zero and thus generates the
algebra A. By Theorem 5 and conjugation, the transvection ¢; (v;) belongs to I', for all

1 <i < n. Applying them in sequence, we see that (a,0,...,0,a,_1) is in the same orbit
as (ag,4ai,...,ay—1). Finally, a,—; may be written as an expression in a and another
transvection from I',, sends (a,0,...,0,a,—1) to (a,0,...,0).

(2) For the second statement, we shall prove that the action of T, is k-transitive when-
ever k is at most the number of Aut(A)-orbits on A \ 0. Using Lemma 8, the proof of
k-transitivity is standard. Consider ay,...,ar € A\ 0 in different orbits under Aut(A).
Let vy,..., v be vectors in A” \ 0" which are in different Aut(A)-orbits under the diago-
nal action. We use induction on k to show that there is an element in I" which sends v; to
(a;,0,...,0)foralli =1,...,k. The base case k = 1 is the first statement of the theorem.
For the induction step, we can assume that v; = (a;,0,...,0) fori = 1,..., k. If some
coordinate by 41, ; of vk41 is non-zero for some j > 0, then we can find a transvection
which changes the zeroth coordinate of vy to axyq and fixes v; fori = 1,...,k and
then uses Lemma 8 to move the resulting vector to (ax+1,0, ..., 0). Otherwise, the zeroth
coordinate of vg 41 is in a different Aut(A)-orbit than ay, ..., a,,, and again by Lemma 8,
we can find a transvection which fixes vy, ..., v and makes some other coordinate of
Vk+1 hon-zero.
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The final claim in (2) follows from the well-known fact that there are no highly
transitive groups acting on large finite sets except the alternating and the symmetric group.

(3) For the last statement, let us assume that the actions of I', on €2, 4 and on Q, 4
are isomorphic. Then, using the language of group theory, we can characterize the respec-
tive subsets (A4 \ 0) x 07! and (4 \ 0) x 0"~! as the fixed sets of all transvections ¢; (a)
with 1 <i < n. The action of transvections f¢(a) being isomorphic on these two sets then
directly lets us reconstruct the (-algebra structure on A, A’ from the I';,-action. |

Remark 9. Itis likely that the minimality assumption on A can be replaced with a weaker
one, such as simplicity, plus a small extra assumption (such as a bound on the number of
generators of the subalgebras of A). This will slightly change the statement to a claim
that there is one large orbit consisting of all generating tuples of A. However, this will
significantly complicate the proof (see [2]).

Remark 10. The last conclusion of (2) relies on the classification of finite simple groups.
This dependence can be avoided when Aut(A4) is much smaller than A, since it can be
shown without using the classification that there are no non-trivial k-transitive groups
on n points for k > logn and n sufficiently large.

It may seem that Theorem 7 requires a too strong assumption — minimality of A —
rather than, say, simplicity. For example, in the category of associative algebras, there are
very few minimal algebras (since every minimal algebra is commutative). However, for
the free operad Qg as soon as S contains enough operations, minimal algebras are the
norm rather than the exception.

Theorem 11. Assume that S contains at least two operations and that O is free on S.
Then, for every finite-dimensional vector space V over a field K, the collection of minimal
O-algebra structures on 'V is Zariski-dense among all O-algebra structures.

In particular, for every prime p, the proportion of minimal algebras among all
O-algebra structures on (Z/ p)* is at least 1 — 6p(1~ISD&=1_

Proof. Let us first write V = ]Kk, a k-dimensional vector space.

A multilinear operation x5 on V, of arity ar(s), is a linear map y ®ar(s) V', and the
space of such maps has dimension k®®*1 The set ¥ of ©-algebra structures on V is
therefore a vector space of dimension Y g k21,

For any choice of a subspace W < V, say of dimension d, the fact that x; maps
W ®2() back to W is a linear condition imposing d2"®) (k — d) independent constraints.
The subspace of ¥ consisting of algebras for which W is a subalgebra therefore has
codimension Y ¢ d*® (k — d).

The union of all these subspaces, as W varies over the Grassmann variety of
d-dimensional subspaces, is thus a variety of codimension at least

> d"k —d)—dk - d).

seS
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which is positive as soon as S contains at least two operations.
In the case of (-algebra structures on (Z/p)¥, the above arguments show that the
probability of a non-minimal structure is bounded by

k—1

k _ ar(s) (f—
Z(d) = Toes " k=d)
V4

d=1

where the p-binomial coefficient (g)p = (P)k/(P)a(p)k—a is the number of subspaces
of (Z/ p)¥ of dimension d; here (p); = (1 — p)--- (1 — p¥). Since all operations have
arity at least 1 and there are |.S| operations, we have the following obvious upper bound:

k—1

k _ -
Z(d) pISIdlk=d)
p

d=1

It is not difficult to see that the contribution of the terms for d = 1 and d = k — 1 is
bounded above by Z%p(l’m)(k’l), which is <3pU~ISD&=D for p > 2. For all other

terms, we can use
() ()
d),=\d

since (S)p counts strings o € {0, 1)¥ with d ones and weighted by pl{i</:0i>}. this
gives that the contribution of all other terms is bounded above by

k—2
> (fz) pUSIED2E=2 " which is <(2F — 2 — 2k) p2ISEDE=D) i | > 3,
d=2

These bounds are sufficient to prove the desired inequality for p > 3 or k > 6, and the
remaining cases can be verified directly. ]

Remark 12. The probability that a random O-structure on (Z/p)* has a 1-dimensional
subalgebra is approximately p(1~I1SD&=1) 5o the above bound is close to optimal. It can be
improved to 1 — (2 + €) pA=ISD&=1 /(1 — p1=ISI) for every € > 0 and large enough p.
Of course, all these bounds say nothing in case k = 1, when every algebra structure is
clearly minimal.

The next issue before applying Theorem 7 is to show that generically the automor-
phism group of an @ g-algebra is very small. It is reasonable to assume that generically the
only automorphisms are scalars — a quick computation shows that Ald is an automorphism
of an algebra A if and only if A>®)~! = | for all s € S. Indeed, this is the case.

Theorem 13. Assume that S contains at least two operations. Then for any prime p > 2,
most minimal Og-algebra structures on (Z/p)* have “trivial” automorphism group,
namely

Aut(A) = {Ad : 12O =1, vs e S
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More precisely, the number of minimal algebras with non-trivial automorphism groups is
less than 1/ p* of all possible algebra structures szes fer@+1

Proof. Consider ¢ € Aut(A); it is a linear map, so is given by a k x k matrix. Up to
passing to a field extension, there is an eigenvector a € A ® K with eigenvalue A € K.

Since a generates A ® K, we have that A ® K is a quotient of K (x)@, so ¢ is uniquely
determined by @ and A. Moreover, since K (x)o is graded, the operator ¢ is diagonaliz-
able with eigenvalues A’. Furthermore, if all operations in S have arity 1, then ¢ is scalar
since the whole algebra K (x)¢ lies in degree 1; while if there are higher-arity operations,
then A is a root of unity. In the first case, we are done; in the second case, let n be the
order of A, and for all i € Z/n, let V; be the eigenspace of ¢ with eigenvalue A’, say of
dimension d;.

Let us compute the linear conditions imposed on ¢ by the fact that it commutes with
each operation ;. It must map V;, ® --- ® V,-ar(s) to Vi, +..4i,, so the dimension of the
space of (9-algebra structures which commute with ¢ is

Z Z iy« diy ) iy i

seS il,.‘.,ia,(S)GZ/n

Since the space V;, +...+i, is not the full space, its dimension is less than or equal to k — 1.
Therefore, for each s € S, we have

Z dil Tt diar(s) dil +"'+iar(s)

< Y diyediy (k1) = kO ),

i1 ,...,ia,(S)EZ/n

Thus, the total sum is less than

Zkar(s)+1 _ Zkar(s) < Zkar(s)-i-l _ k2 —k,

seS seS seS

since by assumption that there are at least 2 operations in S and one has arity at least 2.
This shows that each candidate ¢ is an automorphism of a minimal algebra structure
with probability at most p‘kz_k . Since the number of possibilities for ¢ is less than pkz,
the probability that an algebra structure is minimal and has a non-trivial automorphism is
less than p*. ]

Corollary 14. Let S consist of one binary operation and one operation of arity d > 2.
Then the group T'q 2 n,05 has property (T) provided that N is divisible by all pnmes less
than 3 + d + 4v/d — 1 < 5d. Moreover; this group surjects onto Alt(p‘d+2k — 1)Xp

for all primes p >3+ d +4~d — 1l and all k > 1.

Proof. Property (T) for the group I'y 12, n,04 is a direct consequence of Theorem 3.
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For k > 2, there are pkd+1 choices for an operation of arity d on (Z/p)*. By The-
orems 11 and 13, almost all of the operations yield minimal (9-algebra structure A on
(Z/ p)* with trivial automorphism group. In order to count to non-isomorphic ones, we
need to divide by the size of the group GLy(Z/p). At the end, it is easy to see that there
are at least

ar(s)+1 _ _ _ _
ps T (1 = 6p~USIEDE=D 7Ry IGL (2 p)|

2 pkd+1+k3_k2(1 _ 5p

—(d—1)(k—1) _ kd+1

P> p
non-isomorphic minimal @g algebra structures on (Z/p)* with trivial automorphism
group. When k = 1, it is easy to see that there are at least p = pkﬂlJrl non-isomorphic
Os-structures on Z/p. By Theorem 7 (2), each of these algebras yields a highly
transitive action of I'" := I'y4> n,0g ON pl*2k _ 1 points, yielding an alternating
or symmetric quotient of I on that many points. Furthermore, all generators of I’
have order p, which is odd by our restrictions, so this quotient is alternating. Since
these actions are non-isomorphic, they can be combined into a surjection from I' to
Alt(p@+2k _ l)kadH. L]

Using results from [10], we can deduce the following.

Corollary 15. For every d, there is a group with property (t) whose profinite completion
is
T Aty ="
n

Idea of the proof. For any fixed d > 2, the previous coggtlruction produces a group with
property (T) which maps onto [, Alt( pld+2k _ l)xl’k for some fixed prime p. This
can be combined with the results from [10] to produce a group with (t) and profinite
completion [, Alt(p@+2k — 1)xr* o Finally, use that

pd+2le+)_

I1 Alt(n)y ="

n:p(d+2)k_1

d+1
can be boundedly generated by p?+?2 copies of Alt(p@+2k — 1)X1’k . L]

We do not know for which functions f(n) there exists a finitely generated group
with property (T) or (z) which maps onto Alt(n)*/™ for all n — the above construc-
tion shows that this is possible for log f(n) &~ (logn)? for any fixed d, and on the other
side, one needs log f(n) < O(nlogn); otherwise, the minimal number of generators of
Alt(n)*/® would be unbounded. This question is roughly equivalent to the question for
which functions f(n) it is possible to turn the Cayley graphs of Alt(n)*/® in bounded
degree expanders.
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