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Groups elementarily equivalent to a finitely generated free
metabelian group

Olga Kharlampovich and Alexei Miasnikov

Abstract. We describe groups elementarily equivalent to a free metabelian group with n generators.
We also explore an exponentiation that naturally occurs in metabelian groups.

Dedicated to Slava Grigorchuk on the occasion of his birthday

1. Introduction

In this paper, we describe all groups elementarily equivalent to a free metabelian group G
of finite rank > 1. To do this, we first prove that G is regularly bi-interpretable with Z.
Then following [4] we show that groups elementarily equivalent to G are precisely the
non-standard versions G.zZ/ of G, where zZ � Z, and describe their algebraic structure.
Along the way, we prove that the set of all bases of G is absolutely definable in G. For
this, we provide a new characterization of bases of G in terms of the normal forms and
their coordinate functions which is interesting in its own right. Furthermore, this regu-
lar bi-interpretation of G with Z is strong and injective, which gives many interesting
model-theoretic properties of G. Thus, G is rich, that is, the first-order logic over G is
as expressive as the weak second-order logic over G (see [9]), G admits elimination of
imaginaries and the projective logical geometries over G and Z form equivalent cate-
gories (see [5]), etc. An important part of our characterization of the algebraic structure of
non-standard models G.zZ/ comes from the theory of exponential groups (see [1, 17, 18]).
It turns out that every non-standard group G.zZ/ is an exponential zZ-group, and we can
describe the zZ-exponentiation in G.zZ/.

2. Interpretability and bi-interpretability

One can use the model-theoretic notion of interpretability and bi-interpretability to study
structures elementarily equivalent to a given one. In this paper, we are going to do this for
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free metabelian groups. We recall here some precise definitions and several known facts
that may not be very familiar to algebraists.

A language (or a signature) L is a triple .Fun;Pr; C /, where Fun D ¹f; : : :º is a set
of functional symbols f coming together with their arities nf 2 N, Pr is a set of rela-
tion (or predicate) symbols Pr D ¹P; : : :º coming together with their arities nP 2 N,
and a set of constant symbols C D ¹c; : : :º. Sometimes we write f .x1; : : : ; xn/ or
P.x1; : : : ; xn/ to show that nf D n or nP D n. Usually we denote variables by small
letters x; y; z; a; b; u; v; : : : , while the same symbols with bars xx; xy; : : : denote tuples of
the corresponding variables, say xx D .x1; : : : ; xn/. In this paper, we always assume, if not
said otherwise, that the languages we consider are finite. The following languages appear
frequently throughout the text: the language of groups ¹�; �1; 1º, where 1 is the constant
symbol for the identity element, � is the binary multiplication symbol, and �1 is the symbol
of inversion, and the language of unitary rings ¹C; �; 0; 1º with the standard symbols for
addition, multiplication, the additive identity 0, and the unity 1.

A structure in the language L (an L-structure) with the base set A is sometimes
denoted by A D hAILi or simply by A D hAI f; : : : ; P; : : : ; c; : : :i. For a given struc-
ture A by L.A/, we denote the language of A. When the language L is clear from the
context, we follow the standard algebraic practice and denote the structure A D hAILi
simply by A.

Let B D hBILi be a structure. A subset A � Bn is called definable in B if there is a
formula '.x1; : : : ; xn/ (without parameters) in L.B/ such that A D ¹.b1; : : : ; bn/ 2 Bn j
B ˆ '.b1; : : : ; bn/º. In this case, we denote A by '.Bn/ or '.B/ and say that ' defines A
in B. Similarly, an operation f on the subset A is definable in B if its graph is defin-
able in B. A constant c is definable if the relation x D c is definable. An n-ary predicate
P.x1; : : : ; xn/ is definable in B if the set ¹.b1; : : : ; bn/ 2 Bn j P.b1; : : : ; bn/ is trueº is
definable in B.

Definition 2.1. An algebraic structure A D hAI f; : : : ; P; : : : ; c; : : :i is absolutely inter-
pretable (or 0-interpretable) in a structure B if there is a subsetA� �Bn definable in B, an
equivalence relation � on A� definable in B, operations f �; : : : , predicates P �; : : : , and
constants c�; : : : , on the quotient set A�=� all interpretable in B such that the structure
A� D hA�=�If �; : : : ; P �; : : : ; c�; : : :i is isomorphic to A.

More formally, an interpretation of A in B is described by the following set of formulas
in the language L.B/:

� D ¹U�.xx/;E�.xx1; xx2/;Q�.xx1; : : : ; xxtQ/ j Q 2 L.A/º

(here xx and xxi are n-tuples of variables) which interpret A in B (as in Definition 2.1).
Namely, U� defines in B a subset A� D U�.Bn/ � Bn, E� defines in B an equivalence
relation�� onA� , and the formulasQ� define functions f� , predicatesP� , and constants
c� that interpret the corresponding symbols fromL.A/ on the quotient setA�=�� in such
a way that the L-structure �.B/D hA�=�� If� ; : : : ; P� ; : : : ; c� ; : : :i is isomorphic to A.
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Note that we interpret a constant c 2 L.A/ in the structure �.B/ by the �� -equivalence
class of some tuple xbc 2 A� defined in B by the formula Qc . We write A ' �.B/ if �
interprets A in B as described above and refer to � as an interpretation code or just
code. The number n is called the dimension of � , denoted by n D dim � . By �� , we
denote a surjective map A� ! A (here AD hAIL.A/i) that gives rise to an isomorphism
x�� W �.B/! A. We refer to this map �� as the coordinate map of the interpretation � .
When the formula E� defines the identity relation .x1 D x01/ ^ � � � ^ .xn D x

0
n/, the sur-

jection �� is injective, in which case, �.B/ is called an injective interpretation. Finally,
notation A � B means that A is interpretable in B by the code � .

More generally, the formulas that interpret A in B may contain elements from B that
are not in the language L.B/, that is, some parameters, say p1; : : : ; pk 2 B . In this
case, we assume that all the formulas from the code � have a tuple of extra variables
xy D .y1; : : : ; yk/ for parameters in B:

� D ¹U�.xx; xy/;E�.xx1; xx2; xy/;Q�.xx1; : : : ; xxtQ ; xy/ j Q 2 L.A/º; (2.1)

so that after the assignment y1 ! p1; : : : ; yk ! pk , the code interprets A in B. In this
event, we write A ' �.B; xp/ (here xp D .p1; : : : ; pk/) and say that A is interpretable
in B by the code � with parameters xp. In the case, when xp D ;, one gets again the abso-
lute interpretability. Sometimes, it is convenient to consider interpretations A ' �.B; xp/
together with their coordinate maps, that is, as triples .�; xp;��/.

We say that a structure A is interpreted in a given structure B uniformly with respect to
a subsetD � Bk if there is a code � such that A' �.B; xp/ for every tuple of parameters
xp 2 D. If A is interpreted in B uniformly with respect to a 0-definable subset D � Bk ,
then we say that A is regularly interpretable in B and write in this case A' �.B; '/, pro-
videdD is defined by ' in B. This notion appeared first in [15, Section 1.1] or [14], and it
is similar to the notion of interpretability with definable parameters [7, Remark 5, p. 215].
Note that the absolute interpretability is a particular case of the regular interpretability
where the set D is empty.

It is known that the relation A  B is transitive on algebraic structures (see,
e.g., [4,7]). The proof of this fact is based on the notion of �-translation and composition
of codes, which we present now.

Let � be the code (2.1). Then for any formula '.x1; : : : ; xm/ in the language L.A/,
there is a formula '�.xx1; : : : ; xxm; xy/ in the language L.B/, the �-translation of ', such
that if A ' �.B; xp/, then for any coordinate map �� WA� ! A, one has

A ˆ '.a1; : : : ; am/ ” B ˆ '�.�
�1
� .a1/; : : : ; �

�1
� .am/; xp/

for any elements ai 2A (see [4,7]). Here��1� .ai /means an arbitrary preimage of ai under
�� . Furthermore, for any elements xbi 2 Bn if B ˆ '�.xb1; : : : ; xbm; xp/, then xbi 2 ��1� .ai /
for some ai 2 A with A ˆ '.a1; : : : ; am/.

Definition 2.2. Let A;B, C be algebraic structures. Consider codes

� D ¹U�.xx; xy/;E�.xx; xx
0; xy/;Q�.xx1; : : : ; xxtQ ; xy/ j Q 2 L.A/º
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and
� D ¹U�.xu; xz/; E�.xu; xu

0; xz/;Q�.xu1; : : : ; xutQ ; xz/ j Q 2 L.B/º

which consist of L.C/-formulas. Then the composition of the codes � and � is the code

� ı� D ¹U�ı�; E�ı�;Q�ı� j Q 2 L.A/º

D ¹.U�/�; .E�/�; .Q�/� j Q 2 L.A/º:

The following is an important technical result on the transitivity of interpretations.

Lemma 2.3 ([4]). Let AD hAIL.A/i;B D hBIL.B/i, and C D hC IL.C/i be algebraic
structures and �;� be codes as above. If A � B and B � C, then A �ı� C.

Furthermore, the following conditions hold:

(1) If xp; xq are parameters and �� ; �� are coordinate maps of interpretations �;�,
then . xxp; xq/, where xxp 2 ��1� . xp/, are parameters for � ı�.

(2) �� ı �� D �� ı �n�
ˇ̌
U�ı�.C;. xxp;xq//

is a coordinate map of the interpretation A '
� ı�.C; . xxp; xq// and any coordinate map ��ı�WU�ı�.C; . xxp; xq//!A has a form
��1 ı �� for a suitable coordinate map ��1 of the interpretation A ' �.B; xp/,
provided �� is fixed.

Observe that composition of absolute (regular) interpretations is absolute (regular).
Now we discuss a very strong version of mutual interpretability of two structures,

so-called bi-interpretability.

Definition 2.4. Algebraic structures A and B are called strongly bi-interpretable (with
parameters) in each other, if

(1) there exists an interpretation .�; xp; ��/ of A into B and an interpretation
.�; xq; ��/ of B into A, so the algebraic structures � ı �.A; . xxp; xq// and � ı
�.B; .xxq; xp// are uniquely defined and � ı�.A; . xxp; xq// is isomorphic to A, while
� ı �.B; .xxq; xp// is isomorphic to B;

(2) the composition �� ı ��W U�ı�.A; . xxp; xq// ! A is definable in A and the
composition �� ı �� WU�ı�.B; .xxq; xp//! B is definable in B.

In this case, we additionally say that A and B are strongly injectively bi-interpretable, if
the interpretations � and � are injective.

Note that there is another slightly different notion of bi-interpretation, which for
contrast we sometimes call a weak bi-interpretation, where in the above definition con-
dition (2) that requires definability of the maps �� ı �� and �� ı �� is replaced by a
weaker one that requires definability of some coordinate mapsA�ı�!A andB�ı�!B .
Often, authors do not even mention the difference, implicitly assuming either one or
another. To be precise, we endorse these two notions explicitly. Observe that the bi-
interpretation defined in the books [7, 9] is weak, but in the paper [2], it is strong. There
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are many interesting applications of strong bi-interpretations which we cannot derive from
the weak ones.

Two algebraic structures A and B are called 0-bi-interpretable or absolutely bi-
interpretable (strongly) in each other if in the definition above the tuples of parameters p
and q are empty.

Unfortunately, 0-bi-interpretability is rather rare. Indeed, if A and B are 0-bi-
interpretable in each other, then their groups of automorphisms are isomorphic [7]. Bi-
interpretability with parameters occurs much more often, but it gives much less for appli-
cations; in particular, it is not applicable for first-order classification problems (addition
of constants changes the language).

Fortunately, there is a notion of regular bi-interpretability, which is less restrictive,
occurs more often, and which enjoys many properties of 0-bi-interpretability.

Definition 2.5. Algebraic structures A and B are called regularly bi-interpretable, if

(1) there exist a regular interpretation .�; '/ of A in B and a regular interpretation
.�; / of B in A;

(2) there exists formula �A.xu; x; xr/ in L.A/, where jxuj D dim� � dim�, jxr j D
dimpar � ı�, such that for any tuple xr0 2 '� ^  .A/ the formula �A.xu; x; xr0/

defines some coordinate map U�ı�.A; xr0/! A;

(3) there exists formula �B.xu; x; xt / in L.B/, where jxuj D dim� � dim�, jxt j D
dimpar� ı � , such that for any tuple xt0 2  � ^ '.B/ the formula �B.xu; x; xt0/

defines some coordinate map U�ı�.B;xt0/! B .

Regular bi-interpretation is called injective if both .�; '/ and .�; / are injective.

Definition 2.6. We say that A and B are strongly regularly bi-interpretable, if they are
regularly bi-interpretable, that is, (1)–(3) hold, and additionally

(4) for any pair of parameters . xp; xq/, xp 2 '.B/, xq 2  .A/, there exists a pair of
coordinate maps .�� ; ��/ for interpretations .�; xp/ and .�; xq/, such that for
any xr0 D . xxp; xq/, xxp 2 ��1� . xp/, and xt0 D .xxq; xp/, xxq 2 ��1� .xq/, the coordinate maps
�� ı ��WU�ı�.A; xr0/ ! A and �� ı �� WU�ı�.B; xt0/ ! B are defined in A
and B correspondingly by the formulas �A.xu; x; xr0/ and �B.xu; x;xt0/.

Theorem 2.7 ([4, 12]). Let A and B be regularly bi-interpretable in each other, so
A Š �.B; '/ and B Š �.A;  /. Then

(1) for any zB � B, the code .�; '/ regularly interprets a structure zA ' �.zB; '/ in zB
such that zA � A;

(2) every L.A/-structure zA elementarily equivalent to A is isomorphic to �.zB; '/ for
some zB � B;

(3) for any B1 � B � B2, one has

�.B1; '/ Š �.B2; '/ ” B1 Š B2:
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In fact, one does not need bi-interpretability of A and B in Theorem 2.7; it suffices
to have a weaker condition that A is regularly invertibly interpretable in B (see [4, 12]).
However, for other applications, bi-interpretability is required.

Elimination of imaginaries plays an important part in model theory (see [7] for details).
This involves imaginaries without parameters.

Definition 2.8. We say that an algebraic structure B has uniform elimination of imag-
inaries with parameters, if the algebraic structure BB , obtained from B by adding all
elements of B to the language as constants, has uniform elimination of imaginaries without
parameters.

Theorem 2.9 ([4]). Let A and B be strongly bi-interpretable with parameters in each
other, so A ' �.B; xp/ and B ' �.A; xq/, and � is injective. If B has uniform elimina-
tion of imaginaries with parameters, then A has uniform elimination of imaginaries with
parameters.

Note that Z has uniform elimination of imaginaries (with or without parameters).
Hence, all structures strongly injectively bi-interpretable with Z (with parameters) enjoy
uniform elimination of imaginaries with parameters.

3. Bi-interpretation of a free metabelian group with Z

It was announced in [10] and proved in [9] that a free metabelian group G of finite rank
n � 2 is prime, atomic, homogeneous, and QFA (quasi finitely axiomatizable). Further-
more, it was shown in [9] that G is rich which implies a host of model-theoretic results
for G. This was done by proving the existence of bi-interpretation of G with Z. Here we
improve on our bi-interpretation from [9] and provide new applications of this in the next
section.

Throughout this section, we denote by G a free metabelian group of rank n � 2.

3.1. Preliminaries for metabelian groups

In this section, we introduce notation and describe some results that we need in the sequel.
Let G0 D ŒG; G� be the commutant of G and Gm the mth term of the lower central

series of G. For a subset A � G denote by hAi the subgroup generated by A � G and by
CG.A/ the centralizer of A in G. If g; h 2 G, then Œg; h� D g�1h�1gh is the commutator
of g and h, and gh D h�1gh is the conjugate of g by h. The maximal root of an element
g 2 G is an element g0 2 G such that g0 is not a proper power in G and g 2 hg0i. Note
that the maximal roots of the elements in G exist and they are unique.
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We will be using the following standard commutator identities that hold in every group
for any elements a; b; c:

Œa; b��1 D Œb; a�; Œa�1; b� D Œb; a�a
�1

; (3.1)

Œab; c� D Œa; c�bŒb; c�; Œa; bc� D Œa; c�Œa; b�c : (3.2)

In [11], Mal’cev obtained a description of centralizers of elements in free solvable
groups; in particular, in free metabelian groups G, centralizers are as follows.

Lemma 3.1. Let g 2 G; g ¤ 1. Then

(1) if g 2 G0, then CG.g/ D G0;

(2) if g 62 G0, then CG.g/ D hg0i, where g0 is the unique maximal root of g.

Let v 2 G nG0. Define a map �v W G0! G0 such that for c 2 G0 �v.c/D Œv; c�. Then
the map �v is a homomorphism. Indeed, using the second commutator identity in (3.2),
one has for c1; c2 2 G0

Œv; c1c2� D Œv; c2�Œv; c1�
c2 D Œv; c2�Œv; c1� D Œv; c1�Œv; c2�; (3.3)

as claimed. Similarly, in the notation above, the map �v W c ! Œc; v� is a homomorphism
�v W G

0 ! G0.
Let v 2 G nG0 and d 2 G0. Then for any k 2 Z, there exists c 2 G0 such that

.vd/k D vkdk Œc; v�:

We prove first, by induction on k, that

dkv D vdk Œc; v�

for some c 2 G0. Indeed, for k D 1, one has the standard equality dv D vdŒd; v�. Now

dkC1v D dkdv D dkvdŒd; v� D vdk Œc1; v�d Œd; v�

D vdkC1Œc1; v�Œd; v� D vd
kC1Œc1d; v�;

the last equality comes from property (3.3), that the map �v is a homomorphism on G0.
Now one can finish the claim by induction on k as follows (here elements ci 2 G0

appear as the result of application of the induction step and the claim above):

.vd/kC1 D .vd/kvd D vkdk Œc2; v�vd D v
kdkvŒc2; v�ŒŒc2; v�; v�d

D vkvdk Œc3; v�Œc2; v�ŒŒc2; v�; v�d D v
kC1dkC1Œc3c2Œc2; v�; v�

D vkC1dkC1Œc; v�;

where the second to last equality comes again from property (3.3), and c D c3c2Œc2; v�.
This proves the claim.

Lemma 3.2 ([9, Lemma 4.23]). Let d 2 G0. If for any v 2 G n G0, there exists c 2 G0

such that d D Œc; v�, then d D 1.
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3.2. Normal forms of elements

Fix a finite set of generators X D ¹x1; : : : ; xnº.
We denote byxW G ! G=G0 the canonical epimorphism g ! xg D gG0 from the

group G onto its abelianization xG D G=G0. Put a1 D xx1; : : : ; an D xxn. The group G acts
by conjugation on G0, which gives an action of the abelianization xG on G0. This action
extends linearly to an action of the group ring Z xG on G0 and turns G0 into a Z xG-module.
Since a1; : : : ;an generate xG, then the identity map ai! ai ; i D 1; : : : ;n, extends to an epi-
morphism � WA!Z xG from the ring of Laurent polynomialsADZŒa1; a�11 ; : : : ; an; a

�1
n �

onto Z xG, which provides an action ofA ontoG0 and turnsG0 intoA-module. If a1; : : : ; an
forms a basis of G0, then � is an isomorphism, and we can identify Z xG with A. For the
action of A on G0, we use exponential notation, that is, for u 2 G0 and a 2 A, we denote
by ua the result of the action of a on u. We use this notation throughout the paper.

Using the standard commutator identities, which hold in every group, one can write
every element u 2 G0 in the form

u D …1�j<i�nŒxi ; xj �
Qi;j ; (3.4)

where Qi;j are Laurent polynomials from A. Hence, the set of commutators

CX D ¹Œxi ; xj � j 1 � j < i � nº

generates G0 as an A-module. Note that G, as well as any metabelian group, satisfies the
Jacobi identity, that is, for every u; v;w 2 G,

Œu; v; w�Œv; w; u�Œw; u; v� D 1: (3.5)

In particular, for u D xi ; v D xj ; w D xk , one gets (in the module notation)

Œxi ; xj �
ak�1Œxj ; xk �

ai�1Œxk ; xi �
aj�1 D 1;

hence
Œxi ; xj �

ak�1 D Œxk ; xj �
ai�1Œxk ; xi �

1�aj ; (3.6)

so CX is not a free generating set of the module G0. However, there are nice normal forms
of elements of the moduleG0 (see [9,13]). To deal with normal forms inG, we need a few
preliminary results.

Remark 3.3. Let 1¤ xg 2 xG and ı 2 Z. Then xg � 1 divides xgı � 1 in the ring Z. xG/, that
is, the element xg

ı�1
xg�1

is uniquely defined in Z. xG/. Indeed, if ı > 0, then

xgı � 1 D .xg � 1/.xgı�1 C � � � C xg C 1/:

If ı < 0, then xgı D .xg�1/jıj and the formula above applies.

The following generalizes equality (3.6).
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Lemma 3.4. Let 1 � j < i < k � n and ı 2 Z. Then

Œxi ; xj �
aı
k
�1
D Œxk ; xj �

.ai�1/
aı
k
�1

ak�1 Œxk ; xi �
.1�aj /

aı
k
�1

ak�1 : (3.7)

Proof. Note that

Œxi ; xj �
aı
k
�1
D Œxi ; xj �

.ak�1/
aı
k
�1

ak�1 :

Now we apply (3.6) to Œxi ; xj �
.ak�1/ and multiply the result (in the module G0) by

aı
k
�1

ak�1
.

Lemma 3.5. Let z; g 2 G nG0 and 
; ı 2 Z, then

(1) Œz; gı � D Œz; g�
xgı�1
xg�1 ;

(2) Œz
 ; gı � D Œz; g�.
xz
�1
xz�1 /.

xgı�1
xg�1 /.

Proof. The Jacobi identity

Œz; gı ; g�Œgı ; g; z�Œg; z; gı � D 1

reduces to
Œz; gı ; g� D Œg; z; gı ��1;

since Œgı ; g; z� D 1. After rewriting it in the module notation, we get

Œz; gı �xg�1 D Œz; g�xg
ı�1:

This proves (1). (2) follows from (1).

Proposition 3.6. LetX D¹x1; : : : ;xnº be a generating set ofG and a1D xx1; : : : ;anD xxn.
Then every element u 2 G0 can be presented as the following product:

u D …1�j<i�nŒxi ; xj �
ˇij .a1;:::;ai /; (3.8)

where ˇij .a1; : : : ; ai / 2 ZŒa1; a�11 ; : : : ; ai ; a
�1
i �.

Proof. We showed above that every element u 2 G0 can be written in the form (3.4):

u D …1�j<i�nŒxi ; xj �
Qi;j ;

where Qi;j are Laurent polynomials from A. Note that this can be done algorithmically.
Now we describe a collecting process that transforms products in the form (3.4) to prod-
ucts of the form (3.8), which we term collected forms. SinceG0 is commutative, it suffices
to show how to collect an element Œxi ; xj �Q, where Q 2 A. Similarly, since Q is a sum
of the type †i
iMi , where Mi 2 xG and 
i 2 Z, it suffices to collect Œxi ; xj �M , where
M 2 xG. Decompose M into a product M DM1a

ı
k
M2, where M1 2 ha1; : : : ; ai i, k > i ,
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ı 2 Z, and M2 2 hakC1; : : : ; ani. Note that Œxi ; xj �M1 is collected. To collect Œxi ; xj �a
ı
k ,

write it as
Œxi ; xj �

aı
k D Œxi ; xj �

aı
k
�1Œxi ; xj �

and apply (3.7) from Lemma 3.4. This results in a collected form w, where

w D …1�j<i�k Œxi ; xj �
fij .a1;:::;ai /;

for some fij .a1; : : : ; ai / 2 ZŒa1; a�11 ; : : : ; ai ; a
�1
i �. Note that

wM1 D …1�j<i�k Œxi ; xj �
fij .a1;:::;ai /M1

is also collected. Since Œxi ; xj �M D .wM1/M2 , the argument above shows that to collect
Œxi ; xj �

M , it suffices to collect elements of the type Œxi ; xj �M2 , where 1 � j < i � k. Now
we can repeat the collecting process above. This shows that every element u 2 G0 can be
written in the form (3.8).

Corollary 3.7. LetX D ¹x1; : : : ; xnº be a generating set ofG. Then every element g 2G
can be presented as the following product:

g D x

1
1 � � � x


n
n …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /; (3.9)

where 
i 2 Z; 1 � i � n, ˇij .a1; : : : ; ai / 2 ZŒa1; a�11 ; : : : ; ai ; a
�1
i �.

Proposition 3.8. Let X D ¹x1; : : : ; xnº be a basis of G as a free metabelian group. Then
every element u 2 G0 can be uniquely presented as the following product:

u D …1�j<i�nŒxi ; xj �
ˇij .a1;:::;ai /; (3.10)

where ˇij .a1; : : : ; ai / 2 ZŒa1; a�11 ; : : : ; ai ; a
�1
i �.

Proof. Observe that the images of X in xG form a basis of xG, hence Z xG ' A. By Propo-
sition 3.6, every element u 2 G0 has some decomposition of the form (3.10). To prove
uniqueness of the form (3.8), we use induction on n. Let

u D …1�j<i�nŒxi ; xj �
ˇij .a1;:::;ai /;

where ˇij .a1; : : : ; ai / 2 ZŒa1; a�11 ; : : : ; ai ; a
�1
i �. Assume that u D 1. We need to show

that ˇij D 0 for all 1 � j < i � n.
For nD 2, the ZŒa˙11 ; a˙12 �-moduleG0 is free with basis Œx2; x1� (see [3]), so the result

follows.
For n > 2, consider the canonical epimorphism �n W G ! H D G=ncl.xn/, where

ncl.xn/ is the normal closure of xn in G, so �n.xi / D xi ; 1 � i < n, �n.xn/ D 1. Note
that H is a free metabelian group of rank n � 1. Clearly,

�n.u/ D …1�j<i�n�1Œxi ; xj �
ˇij .a1;:::;ai /:
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Hence, by induction, ˇij D 0 for 1 � j < i � n � 1. Therefore,

u D Œxn; x1�
ˇn1.a1;:::;an/ � � � Œxn; xn�1�

ˇn;n�1.a1;:::;an/:

For an integer N > 0, consider a homomorphism �N W G ! K D hx2; : : : ; xni � G such
that �N .x1/ D xN2 ; �N .xi / D xi for 2 � i � n. Clearly, �N induces the corresponding
endomorphism on xG, hence on the ring A and on the A-moduleG0. We continue to denote
it by �N . Note that K is a free metabelian group or rank n � 1.

If xgD aı11 � � �a
ın
n , then �N .xg/D a

ı1NCı2
2 a

ı3
3 � � �a

ın
n . One can choose a large enoughN

such that �n is injective on all the monomials that occur in ˇnj , j D 1; : : : ; n � 1. This
implies that if ˇnj ¤ 0, then �N .ˇij / ¤ 0. Now

�N .u/ D Œxn; x
N
2 �
�N .ˇn1/Œxn; x2�

�n.ˇn2/ � � � Œxn; xn�1�
�N .ˇn;n�1/:

By Lemma 3.5, Œxn; xN2 � D Œxn; x2�
aN2 �1

a2�1 . By induction, we get

aN2 � 1

a2 � 1
�N .ˇn1/ D 0; �n.ˇn2/ D 0; : : : ; �N .ˇn;n�1/ D 0:

Hence, ˇn1 D 0; : : : ; ˇn;n�1 D 0. This proves uniqueness.

Corollary 3.9. Let X D ¹x1; : : : ; xnº be a basis of G as a free metabelian group. Then
every element g 2 G can be uniquely presented as the following product, termed the
normal form of g relative to X :

g D x

1
1 � � � x


n
n …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /; (3.11)

where 
i 2 Z; 1 � i � n, ˇij .a1; : : : ; ai / 2 ZŒa1; a�11 ; : : : ; ai ; a
�1
i �.

Our next task is to describe the multiplication in G in terms of normal forms. We need
some notation. Let X D ¹x1; : : : ; xnº be a finite subset of G, order X as x1 < � � � < xn,
and form a tuple x D .x1; : : : ; xn/. Similarly, order the set CX D ¹Œxi ; xj � j 1 � j <
i � nº, say by introducing the lexicographical order on pairs of indices .i; j /, and
form a tuple cx D .Œx2; x1�; Œx3; x1�; : : : ; Œxn; xn�1�/. Denote by zx the concatenation
x � cx D .x1; : : : ; xn; Œx2; x1�; : : : ; Œxn; xn�1�/ of x and cx . If X is a basis of G as a
free metabelian group, then zx is termed a normal form basis, or a module basis of G, and
its length nC n.n � 1/=2 is denoted by dim.G/.

For 
 D .
1; : : : ; 
n/ 2 Zn, put

x
 D x

1
1 � � � x


n
n ;

and for polynomials

ˇij .a1; : : : ; ai / 2 ZŒa1; a
�1
1 ; : : : ; ai ; a

�1
i �;
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where a1 D xx1; : : : ; an D xxn, form a tuple ˇ D .ˇ2;1; : : : ; ˇn;n�1/ and put

cˇx D Œx2; x1�
ˇ2;1 ; : : : ; Œxn; xn�1�

ˇn;n�1 :

If g 2 G and g D x
cˇx , then the tuple tzx.g/ D 
 � ˇ is called the tuple of coordinates
(or zx-coordinates) of g with respect to zx. We write tzx.g/ D .t1.g/; : : : ; td .g//, where
d D dim.G/. For g;h 2G, the multiplication inG completely determines the coordinates
tzx.gh/ of the product gh in terms of the coordinates tzx.g/ and tzx.h/. Hence, in this sense,
ti .gh/ can be viewed as a function of tzx.g/ and tzx.h/. Our next goal is to describe these
functions.

Denote by "`.z/ the function Z! Z xG defined by "`.z/D
az
`
�1

a`�1
, `D 1; : : : ; n. Let F

be the set of all formal expressions obtained from variables V D ¹z1; z2; : : :º, symbols 0
and 1, and functions "1; : : : ; "n (in the variables from V ) by finitely many operations of
addition C and multiplication �. Note that every function "`, and hence every expression
f .z1; : : : ; zn/ 2 F , naturally defines a function f W Rn ! R in every integral domain R
(we denote the expression and the corresponding function by the same symbol). Since R
is associative, commutative, and unitary, every such function f can be presented in the
form

f D p.z1; : : : ; zm; "`1.y1/; : : : ; "`s .ys//; (3.12)

where p D p.z1; : : : ; zm; u1; : : : ; us/ is a polynomial with integer coefficients and where
each variable ui is replaced by the function "`i .yi / with 1 � `i � n and yi 2 V . We are
going to prove now that the coordinate functions ti .gh/ are defined by some functions
from F uniformly in the set X D ¹x1; : : : ; xnº, that is, for every i; 1 � i � d , there is a
function fi 2 F (we may assume fi is in the form (3.12)) such that for every n-element
subset X D ¹x1; : : : ; xnº � G (n is fixed upfront) if tzx.g/ and tzx.h/ are coordinates
of some elements g; h 2 G with respect to zx (which may not be a module basis), then
ti .gh/ D fi .tzx.g/; tzx.h//. To prove this, we need two technical results.

Lemma 3.10. Suppose that X D ¹x1; : : : ; xnº is a set of elements of G. Then for any

1; : : : ; 
n; ı1; : : : ; ın 2 Z,

x

1
1 � � � x


n
n x

ı1
1 � � � x

ın
n D x


1Cı1
1 � � � x
nCınn …;

where

… D …j<i Œxi ; xj �

.a

i
i
�1/.a


j
j
�1/

.ai�1/.aj �1/
a
ıjC1
jC1 ���a

ın
n
:

Proof. In the product
x

1
1 � � � x


n
n x

ı1
1 � � � x

ın
n ;

we move every xıjj to the left, using the formulas

x

i
i x

ıj
j D x

ıj
j x


i
i Œx


i
i ; x

ıj
j �;
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and also the formulas

Œxi ; xs�
Qx

ıj
j D x

ıj
j Œxi ; xs�

Qa
ıj
j

whenever xıjj meets a commutator Œxi ; xs�Q, Q 2 A, on its immediate left. We do it
until xıjj reaches x
jj . When all xıjj moved to the left, the result will be

x

1Cı1
1 � � � x
nCınn … D …j<i Œx


i
i ; x

ıj
j �

a
ıjC1
jC1 ���a

ın
n :

Now the result follows from Lemma 3.5.

Lemma 3.11. Let X D ¹x1; : : : ; xnº be a set of elements of G and elements g; h 2 G be
given as products

g D x

1
1 � � � x


n
n …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /

and
h D x

ı1
1 � � � x

ın
n …1�j<i�nŒxi ; xj �

�ij .a1;:::;ai /:

Then

gh D x

1Cı1
1 � � � x
nCınn ……1�j<i�nŒxi ; xj �

a
ı1
1 ���a

ın
n ˇij .a1;:::;ai /C�ij .a1;:::;ai /; (3.13)

where x… is defined in Lemma 3.10.

Proof. To prove this, we use the same argument as in Lemma 3.10 and the result itself
from Lemma 3.10.

Now we are ready to describe the coordinate functions t1.gh/; : : : ; td .gh/.

Proposition 3.12. For every 1 � j < i � n, there is a function fij 2 F (we may assume
fij is in the form (3.12)) such that for any subset X D ¹x1; : : : ; xnº of G and for any
g; h 2 G given as products

g D x

1
1 � � � x


n
n …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /

and
h D x

ı1
1 � � � x

ın
n …1�j<i�nŒxi ; xj �

�ij .a1;:::;ai /;

the following equality holds:

gh D x

1Cı1
1 � � � x
nCınn …1�j<i�nŒxi ; xj �

fij .tzx.g/;tzx.h//; (3.14)

where tzx.g/ and tzx.h/ are the coordinates of elements g;h 2G with respect to the tuple zx.

Proof. We take the product gh in the form (3.13). The product there that belongs to G0 is
not in the normal form yet. We apply inductively equation (3.7) from Lemma 3.4 to this
product and bring it to the normal form (3.14).
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Now we are ready to give a description of a basis of G as a free metabelian group.

Theorem 3.13. A setZD ¹z1; : : : ; znº �G forms a basis ofG if and only if every element
g 2 G has a unique representation as the following product:

g D z

1
1 � � � z


n
n …1�j<i�nŒzi ; zj �

ˇij .xz1;:::;xzi /;

where ˇij .xz1; : : : ; xzi / 2 ZŒxz1; xz�11 ; : : : ; xzi ; xz
�1
i �.

Proof. Let X D ¹x1; : : : ; xnº be a basis of G as a free metabelian group. Then a map
x1 ! z1; : : : ; xn ! zn extends to a bijection

� W x

1
1 � � � x


n
n …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai / ! z

1
1 � � � z


n
n …1�j<i�nŒzi ; zj �

ˇij .xz1;:::;xzi /

onG. This bijection is a homomorphism since by Proposition 3.12 the multiplication inG
is given by the same functions fi 2 F in terms of coordinates tzx and tzz .

The following statement follows from the normal forms of elements in G0.

Proposition 3.14 ([9, Proposition 4.4]). The group G0 has the structure of a free module
over ZŒa1; a�11 ; a2; a

�1
2 � with the basis

¹Œxi ; xj �
a
ı3
3 ���a

ıj
j º

for all 1 � i < j � n, ı3; : : : ; ıj 2 Zj�2.

Now we describe briefly the method of Fox derivatives that we use in the sequent.
Let Fn be the free group of rank n with the basis ¹z1; : : : ; znº, let � W Fn ! xg. A partial
Fox derivative associated with zi is the linear map Di W Z.Fn/! Z.Fn/ satisfying the
conditions

Di .zi / D 1; Di .zj / D 0; i ¤ j

and
Di .uv/ D Di .u/C uDi .v/

for all u; v 2 Fn. The main identity is D1.w/.z1 � 1/C � � � CDn.w/.zn � 1/ D w � 1.
The derivative Di induces a linear map di W ZG ! Z xG. We briefly explain the details.
One can compute

Di .Œu
�1; v�1�/ D .1 � uvu�1/Di .u

�1/C .u � uvu�1v�1/Di .v/

for all u; v 2 Fn. It follows that for � 0 W ZFn! Z xG, for all w 2 Fn00, w 2 ker� 0. Hence,
Di induces a linear map di W ZG ! Z xG (that we will also call Fox derivative).

From the definition, we have

di .xi / D 1; di .xj / D 0; i ¤ j;

di .uv/ D di .u/C .u�/di .v/
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for all u; v 2 G. The main identity is d1.w/.a1 � 1/C � � � C dn.w/.an � 1/ D w� � 1,
where w is an arbitrary element of G.

It can be verified that for w 2 G0 and a 2 xG, di .wa/ D a�1di .w/. Also note that for
w 2 G0 and u 2 G, we have

di .wu/ D di .w/C di .u/:

If
a D ˛1a1 C � � � C ˛kak 2 Z xG

with ˛i 2 Z; ai 2 xG, we denote by

ainv D ˛1a1
�1
C � � � C ˛kak

�1:

Then
di .w

a/ D ainvdi .w/:

For u 2 G; ˛ 2 Z,

di .u
˛/ D

u˛ � 1

u � 1
di .u/:

3.3. Z is absolutely interpretable in G

Let A and B be abelian groups, and let f W A � A! B be a bilinear map between them.
We associate with such f a two-sorted structure .A; BI f / (here A and B are groups,
and f is the predicate for the graph of f ). The map f is said to be non-degenerate if
for a 2 A f .a; A/ D 0 if and only if a D 0, and similarly, f .A; a/ D 0 implies a D 0.
The map f is called full ifB is generated by f .A;A/. An associative commutative unitary
ringR is a ring of scalars of f if there exist faithful actions ofR onA andB , which turnA
and B into R-modules and such that f is R-bilinear with respect to these actions. There
is a canonical embedding of R into End.A/. R is termed the largest ring of scalars of f if
for any other ring of scalarsR0 of f , one hasR0 � R when viewed as subrings of End.A/.
If f is full and non-degenerate, then the maximal ring of scalars of f exists, and it is
unique [16]; we denote it by R.f /. Moreover, it was shown in [16] that if f W A�A! B

is a full non-degenerate bilinear map between finitely generated abelian groups A and B ,
then the largest ring of scalars R.f / of f and its actions on A and B are absolutely
interpretable in the structure .A; BI f /. Here, the actions of R.f / on A and on B are
absolutely interpretable in .A; BI f / if the two-sorted structures .A; R.f /I sA.x; y; z//
and .B; R.f /I sB.x; y; z//, where A; B are groups, R.f / is a ring, and sA.x; y; z/ and
sB.x; y; z/ are predicates that define the scalar multiplications of R.f / on A and B ,
respectively, are absolutely interpretable in .A; BI f /. We use these facts to describe an
absolute interpretation of Z in G.

Note that every verbal subgroup ofG has finite verbal width [20], hence it is absolutely
definable in G (see, e.g., [6]). It follows that all the terms of the lower central series of G,
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in particular, the commutant G0 and G3 D ŒG;G0�, are absolutely definable in G. Hence,
the free nilpotent group G=G3 is absolutely interpretable in G, as well as the bilinear map

fG W G=G
0
�G=G0 ! G0=G3; (3.15)

the commutation in G=G3, defined by .xG0; yG0/ 7! Œx; y�. The map fG is non-
degenerate and full, while the abelian groups G=G0 and G0=G3 are finitely generated,
hence by the result mentioned above, there is a largest ring of scalars R.fG/ of fG , such
that R.fG/, and its actions on G=G0 and G0=G3 are absolutely definable in the structure
.G=G0;G0=G3IfG/, hence in G. To get an absolute interpretation of Z in G, it suffices to
note that, as was shown in [6] and earlier by other means in [19],R.fG/'Z. Thus, Z and
its actions on G=G0 and G0=G3 are absolutely interpretable in G. We denote this inter-
pretation of Z in G by Z�. We remark that this interpretation of Z in G is never injective,
because the interpretation of the group G=G3 in G is based on a non-trivial equivalence
relation modG3 in G. We will describe in Section 3.5 another, not absolute but regular,
interpretation of Z in G which is injective.

Now, we may use in our formulas expressions of the type y D xm mod G0 for
x; y 2 G n G0, as well as pm D q modG3 for p; q 2 G0, and m 2 Z, viewing them as
notation for the corresponding formulas of group theory language which come from the
interpretations of Z� and its actions on G=G0 and G0=G3. More precisely, the interpre-
tation Z� is given by a definable in G subset U � � Gk together with a definable in G
equivalence relation � on U � and formulas  C.xx; xy; xz/;  ı.xx; xy; xz/ with k-tuples of
variables xx; xy; xz, which define binary operations on the factor-set U �= � (denoted by C
and ı), and the structure hU �= �IC; ıi is a ring that is isomorphic to Z. For m 2 Z, by
m� we denote the image of m in Z� under the isomorphism Z! Z�. Furthermore, as
we mentioned, the exponentiation by Z� on G=G0 and on G0=G3 is also 0-interpretable,
which means that there are formulas in the group language, say expnil1.u; v; xx/ and
expnil2.u; v; xx/, such that for g; h 2 G and m 2 Z, one has gm D h.modG0/ if and
only if expnil1.g; h;m

�/ holds in G and also for elements p; q 2 G0 pm D q.modG3/ if
and only if expnil2.p; q;m

�/ holds in G.

3.4. Interpretation of Z-exponentiation in G

Now, in the notation above, we construct a formula exp.u; v; xx/ of the group language,
where xx is a k-tuple of variables, such that for g; h 2 G and m 2 Z, the following holds:

g D hm” G ˆ exp.g; h;m�/:

To construct the formula exp.u; v; xx/, we consider two cases, for each of them build the
corresponding formula expi .u; v; xx/, and then use them to build exp.u; v; xx/.

Case 1. Let g 2 G nG0. In Section 3.3, we described a formula expnil1.u; v; xx/ of group
language such that for g; h 2 G and m 2 Z, one has

gm D h.modG0/” G ˆ expnil1.g; h;m
�/:
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Now put
exp1.u; v; xx/ D .Œu; v� D 1 ^ expnil1.u; v; xx//:

Then the formula exp1.g; h; m
�/ holds in G on elements g; h 2 G and m� 2 Z� if and

only if h D gm.modG0/ and h 2 CG.g/. Since the centralizer CG.g/ is cyclic, there is
only one such h, and in this case, h D gm.

Case 2. Let 1¤ g 2G0. Then as was shown in Section 3.1, for any w 2G nG0 and every
m 2 Z, there exists c 2 G0 such that the following equality holds:

.wg/m D wmgmŒc; w�: (3.16)

Consider the following condition on elements g; h 2 G0; m 2 Z:

C2.g; h;m/ D 8w.w 2 G nG
0
! 9 c.c 2 G0 ^ ..wg/m D wmhŒc; w�///: (3.17)

Equation (3.16) shows that h D gm satisfies C2.g; h; m/. We claim that h D gm is the
only element inG0 that satisfies C2.g; h;m/ inG. Indeed, suppose C2.g; h;m/ holds inG
for some h 2 G0. Then for any w 2 G nG0, there exists c1 2 G0 such that

.wg/m D wmhŒc1; w�:

Then wmgmŒc; w� D wmhŒc1; w�, so

h�1gm D Œc; w�Œc1; w�
�1
D Œc; w�Œc�11 ; w� D Œcc�11 ; w�:

Now by Lemma 3.2, one gets h�1gm D 1, so h D gm, as claimed. To finish the proof,
it suffices to show that the condition C2.g; h; m/ can be defined by some formula
exp2.u; v; xx/ of group theory in G. Note that in C2.g; h; m/, the elements w and wg
are in G n G0, hence we can use the formula exp1.u; v; xx/ to write down the equality
.wg/m D wmuhŒc; w�, and then the whole formula exp2.u; v; xx/.

Finally, the formula

exp.u; v; xx/ D .u … G0 ! exp1.u; v; xx// ^ .u 2 G
0
! exp2.u; v; xx//

defines Z-exponentiation on the whole group G.

3.5. Regular injective interpretation of Z in G

Let exp.u; v; xx/ be the formula from Section 3.4. Then for every g ¤ 1, formula
exp.g; v; xx/ from Section 3.4 defines a bijection �g W Z� ! hgi defined by m ! gm,
m 2 Z�. This bijection allows one to transfer the operations of addition C and multipli-
cation ı in the ring Z� defined in G by the formulas  C.xx; xy; xz/ and  ı.xx; xy; xz/ (see
Section 3.3) from the set Z� to the set hgi. The resulting definable operations Cg and ıg
give an interpretation Z�g D hhgiI Cg ; ıgi of the ring Z on the cyclic subgroup hgi in G
with the coordinate map defined by �g W gm ! m. This interpretation is uniform in g,
that is, it has the same formulas for every 1¤ g 2 G; therefore, since the condition g ¤ 1
is definable in G, the interpretations Z�g give a regular interpretation of Z in G, which is
injective by construction.
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3.6. Absolute and regular interpretations of ZŒa1; a�1
1

; : : : ; an; a�1
n � in G

We proved above that the ring Z is absolutely interpretable in G as Z� (Section 3.3)
and also it is regularly injectively interpretable in G via the interpretations Z�g , 1 ¤
g 2 G (Section 3.5). By transitivity of interpretations to show that the ring R D

ZŒa1; a�11 ; : : : ; am; a
�1
m � is absolutely (or regularly injectively) interpretable in G, it suf-

fices to show that R is absolutely interpretable in Z and then compose this interpretation
with the interpretations Z� and Z�g .

To see thatR is absolutely interpretable in Z, note thatR is computable (since the word
problem in R is decidable), hence there exists a computable injective function � W R! N
such that the set �.R/ is computable in N and the images under the map � of the ring
operations of the ring R are computable in N, that is, the following operations on �.R/
(here Qi 2 R, i D 1; 2; 3) are computable in N:

k1 ˚ k2 D k3”

3̂

iD1

.ki D �.Qi // ^ .Q1 CQ2 D Q3/;

k1 ˇ k2 D k3”

3̂

iD1

.ki D �.Qi // ^ .Q1 �Q2 D Q3/:

This is a general fact on computable algebraic structures. Nevertheless, it is conve-
nient to give a sketch of a particular such enumeration � W R ! N. Every polynomial
P 2 ZŒa1; : : : ; an� can be uniquely presented as an integer linear combination of pairwise
distinct monomials on commuting variables a1; : : : ; an:

P D †diD1
ia
˛i1
1 � � � a

˛in
n ;

where 0 ¤ 
i 2 Z and ˛i 2 N. Hence, the polynomial P is uniquely presented by a tuple

u D .
1; ˛11; : : : ; ˛1n; : : : ; 
d ; ˛d1; : : : ; ˛dn/: (3.18)

If Q 2 R, then Q can be uniquely presented in the form Q D P

xa
x̌ for some P 2

ZŒa1; : : : ; an� and some monomial xa x̌ D aˇ11 � � � a
ˇn
n ; ˇi 2 N, such that gcd.P; xa x̌/ D 1.

It follows that Q can be uniquely presented by a pair of tuples .uQ; vQ/, where uQ D
u; vQ D x̌. Fix an arbitrary computable bijection

� W
[
i2N

Zi ! N

which enumerates all finite tuples of integers. Then Q is uniquely presented by the pair
.�.uQ/; �.vQ// 2 N2, and the set of all such pairs is a computable subset of N2. For a
fixed computable bijection �2 W N2 ! N, put

�.Q/ D �2..�.uQ/; �.vQ///:

By construction, the subset �.R/ is computable in N, and given a number k 2 �.R/, one
can algorithmically find the corresponding Laurent polynomial Q such that k D �.Q/.
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Then it is easy to see that the operations ˚ and ˇ on �.R/ are computable in N. To fin-
ish the proof, it suffices to note that all the computable operations or predicates on N are
definable in N, and N is definable in Z (every non-negative integer is a sum of squares
of four integers). This shows that R is absolutely interpretable in Z. Hence, it is abso-
lutely interpretable in G via Z� and we denote this interpretation by R�. For Q 2 R by
��.Q/ 2 R�, we denote the image of �.Q/ under the isomorphism Z! Z�. Similarly, R
is regularly injectively interpretable in G via the interpretations Z�g ; g ¤ 1, which we
denote by R�g . The image of �.Q/ in R�g under the isomorphism Z ! Z�g we denote
by ��g.Q/. Finally, we need to mention the coordinate maps of these interpretations. Let
xa D .a1; : : : ; an/ be an arbitrary fixed basis of G, then the map �xa W R� ! R that maps
��.Q/ 2 R� ! Q 2 ZŒa1; a�11 ; : : : ; an; a

�1
n � is the coordinate map for the interpretation

R�, and the map �xa W R�g ! R that maps ��g.Q/ 2 R
�
g ! Q 2 ZŒa1; a�11 ; : : : ; an; a

�1
n �

is the coordinate map of R�g .

3.7. Interpretation of Z xG -module G 0 in G

In this section, for a fixed basis xa D .a1; : : : ; an/ of G, we interpret in G the action of
the ring R D ZŒa1; a�11 ; : : : ; an; a

�1
n � on G0. More precisely, we describe an interpreta-

tion of the R-module G0 (viewed as a two-sorted structure G0R D .G0; RI s/ where G0

is an abelian group, R is a ring, and s is the predicate for scalar multiplication or R
on G0, see Section 3.3) in G with parameters xa. In fact, we interpret G0R in G as
.G0R/

� D .G0; R�I s�/, where R� is the interpretation of R in G from Section 3.6, and
s� is the predicate for the action of R� on G0. We need parameters xa to interpret s�. This
interpretation is uniform in xa (the same formulas work for other bases xb of G). A similar
argument gives an injective interpretation of the module G0R in G as .G0; R�g I s

�/ in G
with parameters xa and g.

To interpret the module G0R D .G
0; RI s/ in G for a given basis xa of G, we interpret

the subgroup G0 as G0 (which is a definable subgroup of G) and the ring R by R�, so it
suffices to show how to interpret the predicate s in G. We need two preliminary results.

For a tuple x̨ D .˛1; : : : ; ˛m/ 2 Zm, m � n, denote by �x̨ the homomorphism
�x̨ W ZŒa1; : : : ; an�! ZŒamC1; : : : ; an� such that ai ! ˛i ; i D 1; : : : ; m. The kernel Ix̨
of �x̨ is the ideal generated in ZŒa1; : : : ; an� by ¹a1 � ˛1; : : : ; am � ˛mº. Notice that for
every polynomial P D P.a1; : : : ; am/ 2 ZŒa1; : : : ; an�, one has �x̨.P /D P.˛1; : : : ; ˛m/,
so

P.a1; : : : ; am/ D P.˛1; : : : ; ˛m/C†
m
iD1.ai � ˛i /fi ;

for some fi 2 ZŒa1; : : : ; an�.
Let A and B be rings and ƒ a set of homomorphisms from A into B . Recall that A is

discriminated into B by a set ƒ if for any finite subset A0 � A, there is a homomorphism
� 2 ƒ which is injective on A0.

The following result is known, but we need the proof itself.
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Claim 3.15. The ring ZŒa1; : : : ; an� is discriminated into Z by the set of homomorphisms
¹�x̨ j x̨ 2 Znº.

Proof. Since ZŒa1; : : : ; an� is an integral domain it suffices to show ƒ separates
ZŒa1; : : : ;an� into Z, that is, for every non-zero polynomialQ 2ZŒa1; : : : ;an�, there exists
� 2ƒ such that �.Q/¤ 0. Indeed, letA0 D ¹P1; : : : ;Ptºwith Pi ¤ Pj for 1� j < i � t .
Put Qij D Pi � Pj and Q D …1�j<i�tQij . Then Q ¤ 0. If for some � 2 ƒ �.Q/ ¤ 0,
then � is injective on A0.

Now we prove by induction on n thatƒ separates ZŒa1; : : : ; an� into Z. If P 2 ZŒa1�,
then �˛1 for each sufficiently large ˛1 separates P into Z. If P 2 ZŒa1; : : : ; an�, then for
some m 2 N

P D Qma
m
n CQm�1a

m�1
n C � � � CQ1an CQ0;

where Qi 2 ZŒa1; : : : ; an�1� and Qm ¤ 0. By induction, there is x̌ D .ˇ1; : : : ; ˇn�1/ 2
Zn�1 such that the homomorphism � x̌ discriminates Qm into Z. Then

� x̌.Qm/a
m
n C � x̌.Qm�1/a

m�1
n C � � � C � x̌.Q1/an C � x̌.Q0/

is a non-zero polynomial in ZŒan�. Now one can separate this polynomial into Z by
sending an to a large enough integer ˛n, as above. This proves the claim.

For x̨ D .˛1; : : : ; ˛m/ 2 Zm, denote by .G0/Ix̨ the submodule of the module G0

obtained from G0 by the action of the ideal Ix̨. The group .G0/Ix̨ is an abelian subgroup
of G generated by the set ¹gQ j g 2 G0;Q 2 Ix̨º, hence by the set ¹gai�˛i j g 2 G0; i D
1; : : : ; mº.

Claim 3.16. For any basis .a1; : : : ; an/ of G and any tuple .˛1; : : : ; ˛m/ 2 Zm, the sub-
group .G0/Ix̨ � G0 is definable in G uniformly in .a1; : : : ; an/ and .˛1; : : : ; ˛m/. More
precisely, let Z� be 0-interpretation of Z in G from Section 3.3. Then there is a formula
'.y; y1; : : : ; yn;xz1; : : : ;xzm/ of group theory such that for any basis .a1; : : : ; an/ of G and
any tuple .xk1; : : : ; xkm/ 2 .Z�/n, the formula '.y; x1; : : : ; xn; xk1; : : : ; xkm/ defines inG the
subgroup .G0/Ix̨ , where ˛i D xki 2 Z�; i D 1; : : : ; m.

Indeed, the abelian group .G0/Ix̨ is generated by the set ¹gai�˛i j g 2G0; i D 1; : : : ;mº.
It follows that every element u 2 .G0/Ix̨ can be presented as a product

u D g
a1�˛1
1 � � �gam�˛mm ;

for some g1; : : : ; gm 2 G0, or, equivalently, in the form

u D g
a1
1 g
�˛1
1 � � �gamm g�˛mm ; (3.19)

where gaii is a conjugation of gi by ai , and g�˛ii is the standard exponentiation of gi by
the integer �˛i , i D 1; : : : ;m. It was shown that there exists a formula exp2.u; v; xz/ such
that for any g; h 2 G0 and ˛ D xk 2 Z�, the formula exp2.g; h; xk/ holds in G if and only
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if g D h˛ . Using formula exp2.u; v; xz/ and definability of the commutant G0 in G (see
Section 3.3), one can write down condition (3.19) by a group theory formula uniformly in
.a1; : : : ; an/ and .˛1; : : : ; ˛m/, as claimed.

Lemma 3.17 ([9, Lemma 4.24]). Let g; h 2 G0 and P 2 ZŒa1; : : : ; am�, m � n. Then
gP D h if and only if the following condition holds:

8˛1; : : : ; ˛m 2 Z.gP.˛1;:::;˛m/ D hmod.G0/Ix̨ /: (3.20)

Corollary 3.18. Let g; h 2 G0 and

Q D P.a1; : : : ; am/.a
k1
1 � � � a

km
m /�1 2 ZŒa1; a

�1
1 ; : : : ; an; a

�1
n �:

Then gQ D h if and only if

9f 2 G0 8 x̨ 2 Zm.gP.x̨/ D f mod.G0/Ix̨ / ^ .h˛
k1
1 ���˛

km
m D f mod.G0/Ix̨ /:

Lemma 3.19. The following are true in G:

(1) There is a formula E.x; y; xu; xv/ of group language such that for any basis xa of G
for any g; h 2 G0 and any Q 2 ZŒa1; : : : ; am�, one has

G ˆ E.g; h; ��.Q/; xa/” gQ D h:

(2) There is a formula D.x; y; u; xv; z/ of group language such that for any basis xa
of G, for any 1 ¤ f 2 G, for any g; h 2 G0, and anyQ 2 ZŒa1; : : : ; am�, one has

G ˆ D.g; h; ��f .Q/; xa; f /” gQ D h:

Proof. We prove (1); the argument for (2) is similar. In view of Lemma 3.17 and Corol-
lary 3.18, it suffices to show that condition (3.20) can be written by a formula of group
language. By Claim 3.16, the subgroup .G0/Ix̨ � G0 is definable in G uniformly in
xa D .a1; : : : ; an/ and x̨ D .˛1; : : : ; ˛m/, hence the relation u D v mod.G0/Ix̨ is defin-
able in G uniformly in xa and x̨. In Section 3.4, we showed that the exponentiation in G
by elements from Z� is definable in G by the formula exp.u; v; xx/. To finish the proof, it
suffices to show that there is a formula M.xu; xu1; : : : ; xum; xw/ of group language such that
for any P 2 ZŒa1; a�11 ; : : : ; am; a

�1
m �, ˛1; : : : ; ˛m 2 Z, and ˇ 2 Z, one has

G ˆM.��.P /; ˛�1 ; : : : ; ˛
�
m; ˇ

�/” P.˛�1 ; : : : ; ˛
�
m/ D ˇ

�: (3.21)

Note that given ��.P /; ˛�1 ; : : : ; ˛
�
m, one can compute in Z� the value P.˛�1 ; : : : ; ˛

�
m/.

Indeed, from ��.P /, one can recover by formulas in Z� the tuple

u� D .
�1 ; ˛
�
11; : : : ˛

�
1n; : : : ; 


�
d ; ˛

�
d1; : : : ; ˛

�
dn/

from (3.18) in Section 3.6 that describes in Z� the polynomial P (since Z� ' Z, one
can use the same formulas that recover P from u in Z). Having u� and ˛�1 ; : : : ; ˛

�
m,
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one can compute in Z� the number P.˛�1 ; : : : ; ˛
�
m/. Since every computable predicate in

Z� is definable in Z�, there exists a formula in the ring language that defines the predi-
cate P.˛�1 ; : : : ; ˛

�
m/ D ˇ

� in Z�. But Z� is absolutely interpretable in G, hence there is
the required formula M.xu; xu1; : : : ; xum; xw/ of group language which satisfies (3.21). This
proves (1).

Proposition 3.20. Let xa be a basis of G. Then the following are true:

(1) The module G0R D .G0; RI s/ is interpretable in G with parameters xa as
.G0; R�I s�/, where R� is the interpretation of R in G from Section 3.6, and s� is
the predicate for the action of R� on G0 defined by the formula E.x; y; xu; xv/ from
Lemma 3.19. This interpretation is uniform in bases xa.

(2) The module G0R D .G
0; RI s/ is injectively interpretable in G with parameters xa

and 1 ¤ g 2 G as .G0; R�g I s
�/, where R�g is the interpretation of R in G from

Section 3.6, and s� is the predicate for the action of R� on G0 defined by the for-
mula D.x; y; u; xv; z/ from Lemma 3.19. This interpretation is uniform in bases xa
and 1 ¤ g 2 G.

Proof. As we mentioned above,G0 is absolutely definable inG, the ringR is interpretable
in G via interpretations R� and R�g , where g 2 G; g ¤ 1. By Lemma 3.19, the predi-
cates s� from .G0; R�I s�/ and .G0; R�g I s

�/ are definable in G by formulas E.x; y; xu; xv/
andD.x;y;u; xv; z/with parameters xa and xa;g uniformly in these parameters. This proves
the theorem.

3.8. Regular bi-interpretability of Z and G

Theorem 3.21. The following hold in G:

(1) The set of all free bases x D .x1; : : : ; xn/ of G is absolutely definable in G.

(2) There is a formula F.u; w; xv; xy; xz/, where xv and xy are tuples of variables of
length n, and xz is a tuple of variables of length n.n � 1/=2 such that for any
h 2 G, any g 2 G;g ¤ 1, any basis x D .x1; : : : ; xn/ ofG, any tuple 
 2 Zn, and
any tuple ˇ D .ˇ2;1; : : : ; ˇn;n�1/, where ˇi;j 2 ZŒa1; a�11 ; : : : ; ai ; a

�1
i �, ai D xxi ,

the following equivalence holds:

G ˆ F.h; g; x; 
�; �.ˇ/�/” h D x
cˇx ;

that is, tzx.h/D 
 �ˇ (see Section 3.2). Herem!m� is the isomorphism Z!Z�g .

Proof. It follows from Theorem 3.13 and interpretation of Z-exponentiation on G

(Section 3.4) and interpretation of Z. xG/-exponentiation on G0 (Section 3.7).

Proposition 3.22. The group G is absolutely and injectively interpretable in Z.
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Proof. Fix a basis xx D .x1; : : : ; xn/ in G. Then any element g 2 G can be written in the
canonical form (relative to xx)

g D x

1
1 � � � x


n
n …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /; (3.22)

where ai D xiG
0 2 G=G0, ˇij .a1; : : : ; ai / 2 ZŒa1; a�11 ; : : : ; ai ; a

�1
i �. Hence, g can be

uniquely represented by a tuple of integers

t .g/ D .
1; : : : ; 
n; �.ˇ21/; : : : ; �.ˇn;n�1//; (3.23)

which are the coordinates of g in the normal form relative to the basis xx (here �.ˇij / is
the code of the polynomial ˇij under the computable bijection � from Section 3.6).

The set SG D ¹t .g/ j g 2 Gº is clearly definable in ZnCn.n�1/=2. For a tuple xs 2 SG ,
denote by �xx.xs/ the unique element g 2 G with coordinates t .g/ with respect to xx. This
gives a bijection � W SG ! G.

Observe that the multiplication and inversion in G (as operations on the canonical
forms of elements) are computable, since the word problem in G is decidable. It follows
that the multiplication and inversion in G when elements g of G are given through their
codes �G.g/ are computable in N; therefore, their graphs are computably enumerable,
and hence definable in arithmetic N, as well as in Z. This gives an interpretation � of G
in Z, G ' �.Z/, with the coordinate map �xx .

Theorem 3.23. Every free metabelian groupG of finite rank� 2 is regularly strongly and
injectively bi-interpretable with Z.

Proof. By Proposition 3.22, G is absolutely and injectively interpretable in Z by some
code � , that is, G ' �.Z/, and with the coordinate map �x W �.Z/! G, which depends
on a choice of a basis x of G. On the other hand, Z is injectively and regularly inter-
pretable as Z�g D hhgiI Cg ; ıgi, with a parameter g 2 G; g ¤ 1 and the coordinate map
�g W g

m!m (see Section 3.5). This gives a regular injective interpretation Z'�.G;g/.
It follows thatG ' � ı�.G;g/ and the coordinate map � ı�.G;g/!G is precisely the
map defined by the formula F.u; g; x; xy; xz/, where g 2 G; g ¤ 1, x is a tuple of param-
eters (a basis of G) that occur in the formula F.u;w; xv; xy; xz/ from Theorem 3.21 when g
is substituted for w and x is substituted for variables xv. However, the parameters x are not
part of the interpretation Z ' �.G; g/; to fix this, we add x to the set of parameters in �,
so now Z'�.G;g;x/. Note that the parameters x do not occur in any formulas in� (this
is allowed). By Theorem 3.21, the set of all bases of G is absolutely definable in G, so
the interpretation Z'�.G;g;x/ is regular and injective, and the formula F.u;g; x; xy;xz/
defines the coordinate map � ı�.G; g/! G for parameters g; x. In the other direction,
we have Z ' � ı�.Z/, and the corresponding coordinate map � ı�.Z/! Z is defined
by .g�/m!m, where g� is the image of g under the isomorphism ��1x WG! �.Z/. The
parameter g� is part of the interpretation Zg ' �.�.Z/; g�/. Since �.Z/ is computable,
the function .g�/m ! m is computable in Z, hence definable in Z with parameter g�.
This proves the theorem.
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Corollary 3.24. Every free metabelian group of finite rank � 2 has uniform elimination
of imaginaries with parameters.

4. Groups elementarily equivalent to a free metabelian group

In this section, we will describe groups elementarily equivalent to a free metabelian
group G of rank n � 2 with basis x1; : : : ; xn.

SinceG is regularly bi-interpretable with Z, we can use Theorem 2.7 withG DA and
Z D B. Then in the notation above, G D �.Z/ and Z D �.G; xg/. If H � G, then the
same formulas give the interpretation H D �.zZ/, where zZ � Z. We call zN, a structure
elementarily equivalent to N, a model of arithmetic. Notice that N and Z are absolutely
bi-interpretable. A ring zZ (resp. zN) is called a non-standard model if it is not isomorphic
to Z (resp. N) (see [8, 12]).

First, we notice that H is a so-called exponential group with exponents in zZ. Let us
recall the four axioms of exponential groups from [17]. Let A be an arbitrary associa-
tive ring with identity and � a group. Fix an action of the ring A on � , that is, a map
� � A! � . The result of the action of ˛ 2 A on g 2 � is written as g˛ . Consider the
following axioms:

(1) g1 D g, g0 D 1, 1˛ D 1.

(2) g˛Cˇ D g˛ � gˇ ; g˛ˇ D .g˛/ˇ .

(3) .h�1gh/˛ D h�1g˛h.

(4) Œg; h� D 1) .gh/˛ D g˛h˛ .

Definition 4.1. Groups withA-actions satisfying axioms (1)–(4) are calledA-exponential
groups.

These axioms can be written by first-order formulas in G and H . This implies the
following lemma.

Lemma 4.2. The group H is zZ-exponential group.

Our main goal now is to describe the structure of H . We know that G can be repre-
sented as a pair Z xG and a module G0

Z xG
with the action of Z xG on G0

Z xG
interpretable in G

by Section 3.7.
We have G !� Z !� G, where the interpretation �.Z/ is via normal forms;

therefore, H !�
zZ!� H . The element g D x
11 � � � x


n
n u 2 G, where

u D …1�j<i�nŒxi ; xj �
ˇij .a1;:::;ai /;

where ˇij .a1; : : : ; ai / 2ZŒa1; a�11 ; : : : ; ai ; a
�1
i ��Z xG is interpreted as a tuple of elements

in Z, g! .
i ; : : : ; 
n; x̌11; : : : ; x̌n�1;n/, where ˇij are tuples.
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For H , instead of Z xG we will have a non-standard Laurent polynomial ring zZ xGNS
described in [12]. This is a ring elementarily equivalent to Z xG. More precisely, regu-
lar bi-interpretation of G with Z induces the regular bi-interpretation of Z xG with Z,
Z xG D �1.Z/. Then zZ xGNS D �1.zZ/. The same formula as in the standard case says
that for h 2 H ,

h D x
z
1
1 � � � x

z
n
n u; u D …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /; (4.1)

where z
i 2 zZ, ˇij .a1; : : : ; ai / 2 zZ xGNS . It is interpreted as a non-standard tuple of tuples
of elements in zZ:

g! .z
i ; : : : ; z
n; x̌11; : : : ; x̌n�1;n/:

There is a formula connectingP Œa1; : : : ;an�2 zZ xGNS and its evaluationP Œ˛1; : : : ;˛n�,
where ˛1; : : : ; ˛n 2 zZ. Lemma 3.17 gives the interpretation of the action of the standard
Laurent polynomial ring Z xG on G0 and, therefore, the interpretation of the action of the
non-standard Laurent polynomial ring zZ xGNS on H 0, where H 0 is the zZ xGNS module
generated by ¹Œxi ; xj �º.

Lemma 3.5 implies the following.

Lemma 4.3. For any x; z 2 H and ı; 
 2 zZ,

Œz
 ; xı � D Œz; x�

�
xz
�1
xz�1

��
xxı�1
xx�1

�
;

where .xxı�1/
.xx�1/

; .xz

�1/
.xz�1/

2 zZ xGNS .

Denote by ai the image of xi 2 H in zZ xGNS .

Theorem 4.4. If H is a group elementarily equivalent to G, then H has the following
structure:

(1) Elements h 2 H have the normal form

h D x
z
1
1 � � � x

z
n
n u; u D …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /;

where z
i 2 zZ, ˇij .a1; : : : ; ai / 2 zZ xGNS .

(2) H 0 is a module over zZ xGNS with generators ¹Œxi ; xj �º.

(3) Multiplication in H is defined as follows. If g; h 2 H are given by their normal
forms

g D x
z
1
1 � � � x

z
n
n …1�j<i�nŒxi ; xj �

ˇij .a1;:::;ai /

and
h D x

zı1
1 � � � x

zın
n …1�j<i�nŒxi ; xj �

�ij .a1;:::;ai /;

then
gh D x

z
1Czı1
1 � � � xz
nC

zın
n …1�j<i�nŒxi ; xj �

fij .t.g/;t.h//; (4.2)
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where fij 2F are non-standard functions corresponding to functions from Propo-
sition 3.12, and t .g/ and t .h/ are coordinates in zZ xGNS of elements g; h 2 H in
the base x � y.

Proof. The functions "`.z/ and all functions in F are defined in the ring zZ xGNS by the
same formulas as in Z xG.

Lemma 4.5. If x;y 2H �H 0 and b is the image of y in zZ xGNS , then we have the formula
for the ı-commutator

y�ıx�ı.xy/ı D Œx; y��f .a;b/;

where f .a; b/ is a non-standard polynomial such that

.a � 1/f .a; b/ D
.aıbı � 1/

.ab � 1/
C
.1 � bı/

.b � 1/

D bı�1.aı�1 � 1/C bı�2.aı�2 � 1/C � � � C b.a � 1/:

Proof. We can write that y�ıx�ı.xy/ı is in the module generated by the commutator
Œx; y�, and we wish to see what is the non-standard polynomial f .a; b/.

We have Œx; y�ıx�ı.xy/ı � D Œx; y�f .a;b/.a�1/. At the same time,

Œx; y�ıx�ı.xy/ı � D Œx; .xy/ı �Œx; y�ıx�ı �.ab/
ı

D Œx; xy�
..ab/ı�1/
.ab�1/ Œx; y�ı �a

�ı .ab/ı

D Œx; y�
.aı bı�1/
.ab�1/

C
.1�bı /
.b�1/ :

Polynomial

.aıbı � 1/

.ab � 1/
C
.1 � bı/

.b � 1/
D bı�1.aı�1 � 1/C bı�2.aı�2 � 1/C � � � C b.a � 1/

is divisible by .a� 1/ in the standard ring of Laurent polynomials; therefore, it is divisible
by .a � 1/ in the non-standard ring. Since the rings are integral domains, f .a; b/ is the
result of this division.

5. A-metabelian groups

The question about varieties of exponential groups was discussed in [1]. Let � be an
arbitrary exponential group with exponents in A. We set

.�; �/A D h.g; h/˛ D h
�˛g�˛.gh/˛; g; h 2 �; ˛ 2 AiA:

The A-subgroup .�; �/A is called the A-commutant of the group � . By [1], a free
abelian A-group with base X is a free A-module and is A-isomorphic to the factor-
group of the free A-group with base X by its A-commutant. The A-commutant is called
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the first A-commutant and denoted by �.1;A/. The A-commutant of �.1;A/ is the sec-
ond A-commutant �.2;A/. Then � is called in [1] n-step A-solvable group if �.n;A/ D 1.
Clearly, n-step A-solvable group is n-solvable A-group. If �.2;A/ D 1, we call � an A-
metabelian group. Notice thatH that is elementarily equivalent to a free metabelian group
is zZ-metabelian because ˛-commutators belong to H 0 and commute in H .

A discretely ordered ring is an ordered ring in which there is no element between 0
and 1. Let A be a discretely ordered ring and K be a multiplicative A-module with gen-
erators a1; : : : ; an. Consider a group algebra A.K/. Let R be the A algebra generated
by A.K/ and for all positive ı 2 A, by series .aı�1/

.a�1/
D †0�˛<ıa

˛ , and †0�˛<ıb˛ a
˛�1
a�1

,
where a; b 2 K.

We define an A-metabelian exponential group M with generators x1; : : : ; xn by the
following axioms:

(1) M is an A-metabelian group.

(2) The A-commutant M 0 is an R-module.

(3) For any z; x 2M and ı 2 A, Œz; xı � D Œz; x�
.aı�1/
.a�1/ .

(4) For any x; y 2M and ı 2 A, y�ıx�ı.xy/ı D Œx; y�f .a;b/, where

f .a; b/ D Œ.aıbı � 1/=.ab � 1/C .1 � bı/=.b � 1/�=.1 � a/ 2 R:

Let nowM be a free group with generators x1; : : : ; xn in the category ofA-metabelian
exponential groups.

Lemma 5.1. The group M 0 is an R-module generated by elements Œxi ; xj �. If u belongs
to M 0, then it can be uniquely written as

u D …1�j<i�nŒxi ; xj �
ˇij .a1;:::;ai /;

where ˇij .a1; : : : ; ai / 2 R.

Proof. Consider a ı-commutator y�ıx�ı.xy/ı . We have, using identities (1) and (2),

Œx; y�ıx�ı.xy/ı � D Œx; .xy/ı �Œx; y�ıx�ı �.ab/
ı

D Œx; xy�
..ab/ı�1/
.ab�1/ Œx; y�ı �a

�ı .ab/ı

D Œx; y�
.aı bı�1/
.ab�1/

C
.1�bı /
.b�1/ :

Every commutator can be represented as Œxˇi ; .xi1 � � � xit /
˛; x

˛1
j1
; : : : ; x

˛k
jk
�. We can

assume that i � j1 � j2 � � � � jk , otherwise use the Jacobi identity. If i is greater
than or equal to all i1; : : : ; it , then the representation from Lemma 4.3 gives elements
Œxi ; xi1 � � � xit �

f .ai1 ;:::;ait /. Bringing the commutator Œxi ; xi1 � � � xit � to normal form and
acting by f .ai1 ; : : : ; ait / gives elements in normal form.
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Suppose now some of i1; : : : ; it is greater than i . Consider a general example

Œx1; .x2x3/
ı � D Œx1; .x2x3/�

..a2a3/
ı�1/

.a2a3�1/

D Œx1; x2x3�
ı…0�˛<ı Œx1; x2x3; .x2x3/

˛�

D Œx1; x2x3�
ı…0�˛<ı Œx1; x2x3; x

˛
3 �
x˛2…0�˛<ı Œx1; x2x3; x

˛
2 �

D Œx1; x2x3�
ı Œx1; x2x3; x3�

†0�˛<ı
a˛2 .a

˛
3�1/

.a3�1/

� Œx1; x2x3; x2�
†0�˛<ı

.a˛2�1/

.a2�1/ :

Using the Jacobi identity, we rewrite Œx1; x2x3; x3� D Œx3; x2x3�a1�1Œx3; x1��a2a3 . This
finally gives a representation of the commutator Œx1; .x2x3/ı � in the normal form. A
general case can be treated similarly.

To prove uniqueness of normal forms, we need the analogue of Fox derivatives from
A.M/ to R. We define a partial Fox derivative as a linear mapping di W A.M/ ! R

satisfying the properties of di from Section 3.1 and

di .g
ı/ D

gı � 1

g � 1
di .g/ D di .g/†0�˛<ıg

˛: (5.1)

A consequence of these is an equality:

Dg�ı D �g�ıDgı :

One can also compute for f .a; b/ 2 R

di .Œx; y�
f .a;b// D f .a; b/invdi .Œx; y�/: (5.2)

The uniqueness of the normal form can be proved by using Fox derivatives and the
homomorphisms "I , where I � ¹1; : : : ; nº and xi"j D xi if i 2 I and xi"j D 1 if i 62 I
(as it is done in [13] for normal forms in a free metabelian group). For example, we
have u"¹1;2º D Œx2; x1�

ˇ12.a1;a2/, hence ˇ12.a2; a1/ is defined uniquely. Multiply u by
Œx2; x1�

�ˇ21.a1;a2/ to get u0.
Then u0"¹1;2;3º D Œx3; x1�ˇ31.a1;a2;a3/Œx3; x2�ˇ32.a1;a2;a3/.
Then d1.u0"¹1;2;3º/ D ˇ31.inv/.a1; a2; a3/.a3 � 1/a

�1
1 a�13 ,

d2.u
0"¹1;2;3º/ D ˇ32.inv/.a1; a2; a3/.a3 � 1/a

�1
2 a�13 :

This allows us to compute uniquely ˇ31.a1; a2; a3/ and ˇ32.a1; a2; a3/, respectively,
and so on.

Theorem 5.2. If H � G, where G is a free metabelian group, then H contains a free
zZ-metabelian exponential group as a subgroup.
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Proof. We know that H is zZ-exponential group for some zZ � Z. And H 0 is a zZ xGNS -
module. Let M be a free zZ-metabelian exponential group defined above. Then normal
forms of elements in M are exactly normal forms (4.1) of elements in H ; therefore, M is
a subgroup of H .
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