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On the growth of actions of free products

Adrien Le Boudec, Nicolás Matte Bon, and Ville Salo

Abstract. IfG is a finitely generated group andX aG-set, the growth of the action ofG onX is the
function that measures the largest cardinality of a ball of radius n in the (possibly non-connected)
Schreier graph �.G; X/. We consider the following stability problem: if G;H are finitely gener-
ated groups admitting a faithful action of growth bounded above by a function f , does the free
product G � H also admit a faithful action of growth bounded above by f ? We show that the
answer is positive under additional assumptions, and negative in general. In the negative direction,
our counter-examples are obtained with G either the commutator subgroup of the topological full
group of a minimal and expansive homeomorphism of the Cantor space, or G a Houghton group. In
both cases, the group G admits a faithful action of linear growth, and we show that G �H admits
no faithful action of subquadratic growth provided H is non-trivial. In the positive direction, we
describe a class of groups that admit actions of linear growth and is closed under free products and
exhibit examples within this class, among which the Grigorchuk group.

Dedicated with admiration to Slava Grigorchuk on the occasion of his 70th birthday

1. Introduction

LetG be a finitely generated group, equipped with some finite symmetric generating set S
(implicit in what follows). For a G-set X , we denote by �.G; X/ the Schreier graph of
the action, with vertex set X and edges .x; sx/ for x 2 X and s 2 S . Note that we do
not assume the action of G on X to be transitive, so that the graph �.G;X/ need not be
connected. Let volG;X WN ! N be the function that measures the volume of the largest
ball appearing in �.G;X/:

volG;X .n/ D max
x2X
jBG.n/ � xj;

whereBG.n/ denotes the ball of radius n around the identity inG with respect to the word
metric associated to S . For two functions f1; f2WN!N, we write f1.n/ 4 f2.n/ if there
exists C > 0 such that f1.n/ � Cf2.Cn/, and f1.n/ ' f2.n/ if f1.n/ 4 f2.n/ 4 f1.n/.
The function volG;X .n/ does not depend on the choice of the generating set S up to the
equivalence relation'.
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Definition 1.1. Given a function f WN ! N, we denote by C.f / the class of finitely
generated groups G such that there exists a faithful G-set X such that volG;X .n/ 4 f .n/.

It is not hard to see that the class C.f / is stable under taking finitely generated sub-
groups, and under passing to a finite index overgroup [7, Section 1.3]. We use the special
notation C.lin/ for the distinguished case f .n/ ' n, which is the slowest possible growth
for a faithful action of an infinite group. The class C.lin/ is richer than it might look at
first sight. It is not hard to check that it contains all virtually abelian groups. The fact
that non-abelian free groups belong to C.lin/ is well known and can be traced back to
Schreier [17]. A famous example of a group in C.lin/ is the Grigorchuk group (and all
Grigorchuk groups G! from [4]), see Bartholdi and Grigorchuk [3]. Many other inter-
esting groups of dynamical origin are naturally given by an action of linear growth (and
hence belong to C.lin/): topological full groups of homeomorphisms of the Cantor set,
and Nekrashevych’s fragmentation of dihedral groups [12]. More examples of groups in
C.lin/ include the lamplighter group Cp o Z, the Houghton groups, or Neumann’s groups
from [15] (the latter are defined by an action whose orbits are all finite, yet having linear
growth).

In [16], the third author investigated the class of subgroups of the topological full
group of full shifts over Z (which is contained in C.lin/) and gave sufficient conditions
under which graph products of such groups remain inside that class [16, Theorem 3]. That
result implies in particular that the class C.lin/ contains all right-angled Artin groups [16,
Theorem 1], and hence all their subgroups as well. Combined with results of many authors,
this is a vast source of examples of groups in C.lin/, as many groups are known to
embed (upon to passing to a finite index subgroup) in some right-angled Artin group.
For example, this is the case for instance surface groups, and more generally any hyper-
bolic group acting geometrically on a CAT(0) cube complex, as follows from Agol’s final
step in the solution of the virtual Haken conjecture [1] combined with the previous results
of Haglund and Wise [5].

Motivated by this last class of examples, we consider here the question whether the
class C.lin/ (or the classes C.f / for more general f ) is closed under free products, or
more generally graph products. There is a natural strategy to attempt to answer that ques-
tion affirmatively. Given two groups G1 and G2 and Xi a Gi -set, i D 1; 2, one may con-
sider any set X D X1

F
A1Š�A2

X2 obtained by identifying suitable subsets A1 � X1 and
A2 �X2 via a bijection �WA1!A2. The action of eachGi extends toX as a trivial action
outside of the copy of Xi in X . This defines an action of the free product G D G1 � G2.
On the one hand, if the subsets along which the Xi are glued are chosen wisely, one can
hope to control the growth function volG;X .n/ in terms of volGi ;Xi .n/; i D 1; 2. On the
other hand, if the gluing is sufficiently generic, the action of G on X is likely to be faith-
ful. The question therefore becomes whether, for G1; G2 in C.f /, the tension between
these two conditions can be conciliated. A naive implementation of this strategy (suitably
adapted to more general graph products) gives the following. We refer to Section 2.1 for
the definition of graph products.
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Proposition 1.2 (Proposition 2.7). Let k � 1 and G1; : : : ; Gk 2 C.f /. Then the free
product G D G1 � � � � � Gk belongs to C.g/, where g.n/ D nf .n/. More generally, any
graph product of the Gi ’s belongs to C.g/.

Proposition 1.2 is very often not optimal. In many cases, appropriate choices allow
us to show that a graph product of groups in C.f / remains in C.f /. In Section 2.3, we
discuss a sufficient condition for this to be the case. That condition is an elaboration of a
condition considered in [16]. Proposition 2.13 provides in particular a direct and element-
ary proof of the fact that right-angled Artin groups belong to C.lin/ (which essentially
follows the same lines as the proof in [16], but avoids the technicalities coming from
the full group setting). More generally, Proposition 2.13 allows us to exhibit examples of
graph products in the class C.lin/.

Proposition 1.3. For k � 1, the free product G1 � � � � � Gk belongs to C.lin/ whenever
each free factor Gi is isomorphic to one of the following:

• a finite group;

• a finitely generated abelian group;

• a finitely generated subgroup of a right-angled Artin group;

• the Grigorchuk group;

• the lamplighter group .Z=pZ/ o Z for p � 2.

More generally, the graph product of any finite family of groups in the list above belongs
to C.lin/.

1.1. The main results

The main goal of this paper is to provide examples that show that the bound obtained from
the simple construction from Proposition 1.2 is sharp in general, even for free products.
We consider two families of examples.

The first are topological full groups of minimal group actions on the Cantor set, more
precisely their alternating subgroups in the sense of Nekrashevych [13] (see Section 3.4
for definitions). Following [7], we shall say that a finitely generated groupG has a Schreier
growth gap f .n/ if every faithful G-set X satisfies volG;X .n/ < f .n/.

Theorem 1.4. Let G Õ X be a minimal expansive action of a finitely generated group
on the Cantor set, and set f .n/ D volG ;X .n/. Let G be the alternating full group of the
action (so that G is finitely generated and belongs to C.f .n//, see Section 3.4). Then for
every non-trivial finitely generated group H , the group G �H has a Schreier growth gap
nf .n/.

A relevant special case in the previous theorem is G DZ (in that caseG coincides with
the commutator subgroup of the topological full group, by the results of Matui [10]). In
that case we obtain examples of groupsG 2 C.lin/ such thatG �H has a Schreier growth
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gap n2 for any non-trivial group H . The quadratic gap is optimal in general, as Propos-
ition 1.2 says that G �H has a faithful action of growth ' n2, for instance, when H is
cyclic and non-trivial.

Our second family of examples is the family of Houghton groups Hr ; r � 2. Recall
that the groupH2 is defined as the group of permutations of Z that coincide with a transla-
tion outside a finite set; see Section 3.3 for the definition of Hr . Each group Hr is finitely
generated and belongs to C.lin/.

Theorem 1.5. Let G D Hr be the Houghton group on r � 2 rays. Then for every
non-trivial finitely generated group H , the group G �H has a Schreier growth gap n2.

1.2. Outline of the proof of Theorems 1.4 and 1.5

These two results share the same proof mechanism. It relies on the description of the con-
fined subgroups of the groupsG in their statements, obtained in previous works of the first
two authors. Recall that a subgroup H of a group G is confined if the set of conjugates
ofH does not accumulate on the trivial subgroup in the space Sub.G/ of subgroups of G,
endowed with the Chabauty topology. When G is finitely generated, convergence in the
space Sub.G/ can be interpreted in the space of marked Schreier graphs on the corres-
ponding coset spaces G=H . The study of confined subgroups of a group G leads (among
other applications) to results on the growth function volG;X .n/ of G-actions, such as the
existence of a Schreier growth gap [7–9]. For G as in Theorem 1.4 or 1.5, a classifica-
tion of the confined subgroups of G has been obtained, respectively, in [9] and [7]. Using
these results, we show that every faithful action of G whose growth is close to the growth
of the natural defining action of G (respectively on the Cantor set or on the bouquet of
rays) must be “almost” conjugate to it. A common feature of the two situations is that the
group G contains elements whose support is a very sparse subset of the Schreier graph
of the natural action. We exploit this fact and the previous result about actions of small
growth of G to show that in the graph for any faithful action of G � H , there must be
short jumps between regions that are far in the graph of the restricted action of G. This is
that phenomenon that forces an additional factor n in the growth. The detailed proofs are
given in Section 3.

It is worth comparing the case of the Grigorchuk group in Proposition 1.3 with
Theorem 1.4. The Grigorchuk group and topological full groups share various common
features: in particular, they appear through a micro-supported action on a compact space,
a condition which plays an important role in the study of confined subgroups (indeed, the
confined subgroups of the Grigorchuk group are also understood [8]). Also, Theorem 1.4
is applicable to many fragmentations of dihedral groups in the sense of Nekrashevych [12]
(a family of groups to which the Grigorchuk group also belongs). Despite these similar-
ities, here they exhibit an opposite behaviour. The main reason for this difference is the
fact that the action of the Grigorchuk group on the vertices of the binary tree satisfies
a condition that we call orbits of controlled diameter (Definition 2.9), which means that
every non-trivial element of the group must move some vertex of the tree by a distance
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comparable to the total diameter of the Schreier graph of the action on the corresponding
level of the tree (Proposition 2.14). Although the proof of this fact is not difficult, it relies
on rather specific features of the Grigorchuk group.

2. Stability results

2.1. Graph products

Let I be a set, and let � denote the diagonal in I 2. Let c be a map I 2 n�! ¹0; 1º such
that c.i; j / D c.j; i/ for all i ¤ j . Note the data of c are equivalent to the data of an
undirected graph with vertex set I with no loop and simple edges. If .Gi /i2I is a family
of groups indexed by I , the graph product P D GP..Gi /I I c/ of the family .Gi /i2I asso-
ciated to c is the quotient of the free product �IGi by the relations ŒGi ; Gj � for all i; j
such that c.i; j / D 1. We say that P is a finite graph product if I is finite.

2.2. Preliminaries

Definition 2.1. Let q � 1. Let .X1; : : : ; Xq/ D .Xk/k�q be a q-tuple of graphs, and
for every k � q let .ek ; sk/ be two distinct points of Xk . The gluing of the q-tuple
.Xk ; ek ; sk/k�q is the graph obtained by taking the disjoint union X1 t � � � t Xq and
identifying sk and ekC1 for every 1 � k � q � 1. It is denoted G ..Xk ; ek ; sk/k�q/.

(The points e1 and sq do not play any role, but we keep two based points inX1 andXq
as well in order to simplify notation.) Note that for every k � q the map from Xk to
G ..Xk ; ek ; sk/k�q/ is a graph isomorphism onto its image. In the sequel we identify Xk
with its image in G ..Xk ; ek ; sk/k�q/. Note also that the condition ek ¤ sk ensures that
the images of Xk and XkCr in G ..Xk ; ek ; sk/k�q/ are disjoint for all r � 2.

Lemma 2.2. Let .Xk/k�q be a q-tuple of graphs, and suppose that every ball of radius
n � 1 in Xk has cardinality at most f .n/ for every k � q. Then every ball of radius n in
G ..Xk ; ek ; sk/k�q/ has cardinality at most .2nC 1/ � f .n/.

Proof. Every ball B of radius n in G ..Xk ; ek ; sk/k�q/ intersects at most 2nC 1 mem-
bers of .Xk/k�q and is covered by 2nC 1 balls of radius at most n within these Xk . The
statement follows.

In the sequel, we fix a set I , a function c W I 2 n�! ¹0; 1º such that c.i; j / D c.j; i/
for all i ¤ j , and a family of graphs F such that F admits a partition indexed by I , with
blocks denoted Fi , i 2 I . For X 2 F , we write i.X/ for the unique element of I such
that X 2 Fi.X/.

Definition 2.3. A q-tuple .Xk/k�q of elements of F is c-admissible if i.Xk/ ¤ i.XkC1/
and c.i.Xk/; i.XkC1// D 0 for every k D 1; : : : ; q � 1. By extension, we also say that
.Xk ; ek ; sk/k�q is c-admissible if .Xk/k�q is c-admissible.
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Definition 2.4. We let G .F ; c/ be the disjoint union of all G ..Xk ; ek ; sk/k�q/, where
q � 1 is any positive integer, .Xk/k�q is any c-admissible q-tuple, and .ek ; sk/k�q is any
sequence such that ek ; sk are distinct elements of Xk for every k � q.

Now suppose that .Gi /i2I is a family of groups, and for every i 2 I there is an action
of Gi on X for every X 2 Fi . Let P D GP..Gi /I I c/ be the graph product of .Gi /I
associated to c. For every c-admissible .Xk ; ek ; sk/k�q , there is a natural Gi -action on
G ..Xk ; ek ; sk/k�q/ that extends the Gi -action on each Xk such that i.Xk/ D i , that is
defined by declaring thatGi acts trivially onXk n ¹ek ; skº for every k such that i.Xk/¤ i .
This is well defined because of the property that no two consecutiveXk can be in Fi , guar-
anteed by the assumption i.Xk/¤ i.XkC1/ in Definition 2.3. This defines an action of the
free product �IGi on G ..Xk ; ek ; sk/k�q/. The fact that .Xk ; ek ; sk/k�q is c-admissible
ensures that if c.i; j /D 1, then the groups Gi and Gj act on G ..Xk ; ek ; sk/k�q/ with dis-
joint support. Hence the action of �IGi on G ..Xk ; ek ; sk/k�q/ factors through the graph
product P D GP..Gi /I I c/.

Remark 2.5. Suppose for every i 2 I the group Gi is generated by a subset Si , and that
the graph structure on each X 2 Fi is the Schreier graph of the Gi -action on X . Then the
graph G ..Xk ; ek ; sk// is essentially the Schreier graph of the action of P D GP..Gi /I I c/
associated to the generating subset

S
I Si . The only difference is that loops should be

added at the places where the action of the Gi ’s has been extended in a trivial way.

Lemma 2.6. Suppose that for every i 2 I , the Gi -action on
F
X2Fi

X is faithful. Then
the action of the graph product P D GP..Gi /I I c/ on G .F ; c/ is faithful.

Proof. Let g be a non-trivial element of P . Consider the decompositions of the form

g D gn � � �g1;

where for each s we have that gs is non-trivial and there is a (necessarily unique) is 2 I
such that gs 2 Gis . Among all such decompositions, we choose one such that n is min-
imal. Since g is non-trivial, n� 1. We define a sequence .r1; : : : ; rq/ inductively by setting
r1 D 1 and defining rkC1 as the smallest s � rk C 1 such that c.i.s/; i.rk//D 0 (equival-
ently,Gi.s/ does not commute withGi.rk/). We also define rqC1 D nC 1. Minimality of n
implies that for every 1 � k � q and every rk C 1 � s � rkC1 � 1, we have gs … Gi.rk/.
Let 
k D grkC1�1 � � �grk for 1 � k � q, so that g D 
q � � � 
1.

Since Gi acts faithfully on
F
X2Fi

X for every i 2 I , for every k � q one can find
Xk 2 Firk and xk 2 Xk such that grk .xk/ ¤ xk . We set ek D xk , sk D grk .xk/. We look
at how the element g acts on G ..Xk ; ek ; sk/k�q/. Since gs does not belong to Gi.rk/ for
every rk C 1 � s � rkC1 � 1, gs acts trivially on sk . Hence 
k.ek/ D sk for every k � q,
and hence it follows that g.e1/ D sq . So if q D 1, then g acts non-trivially since e1 ¤ s1.
If q � 2, then Xq and X1 are either disjoint (when q � 3) or intersect only along s1 D e2
if q D 2. Hence in all cases the element g moves e1. So for every non-trivial element g
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of P , there exists a G ..Xk ; ek ; sk/k�q/ on which g acts non-trivially. So P acts faithfully
on G .F ; c/.

Recall that the class C.f / has been defined in the introduction (Definition 1.1).

Proposition 2.7. Let f WN ! N, and let .Gi /I be a finite collection of groups in the
class C.f /. Then any graph product P D GP..Gi /I I c/ belongs to C.g/ with g.n/ D
nf .n/.

Proof. For each i 2 I , there is a Gi -set Xi such that the Gi -action on Xi is faithful and
verifies volGi ;Xi .n/ 4 f .n/. The statement then follows from Lemmas 2.2 and 2.6 (and
Remark 2.5), applied to Fi D ¹Xiº and F D

F
I FI .

2.3. A subclass closed under graph products

In this section, we prove that, under a mild assumption on the function f , a certain sub-
class of C.f / is closed under finite graph products (Proposition 2.13). The definition of
this subclass is inspired by the work of the third author [16], and Proposition 2.13 elab-
orates on [16, Theorem 3]. In particular, Proposition 2.13 provides an elementary proof
of the result from [16] that finitely generated right-angled Artin groups admit a faithful
action with linear growth. (Actually, [16, Theorem 3] is stronger than that.)

For an increasing function f W RC ! RC, consider the following condition:

9C1 > 0I 8k � 18�1; : : : ; �k � 0;
X
i�k

f .�i / � C1f

�
C1
X
i�k

�i

�
: (2.1)

It is a rather mild condition. A sufficient condition for (2.1) to hold is that n 7! f .n/=n

is increasing. For instance, f .n/ D n˛ satisfies (2.1) for every ˛ � 1.

Lemma 2.8. Let .Xk/k�q be a q-tuple of finite graphs, and ek ; sk distinct elements of Xk
for every k � q. Suppose that there is an increasing function f W RC ! RC and C > 0

such that

(1) every ball of radius n in Xk has cardinality at most Cf .Cn/ for every k � q.

(2) f satisfies (2.1).

(3) diam.Xk/ � Cd.ek ; sk/ for every k � q.

Then there is a constant C 0 > 0 depending only on C and f such that every ball of
radius n in G ..Xk ; ek ; sk/k�q/ has cardinality at most C 0f .C 0n/.

Proof. Let C1 be as in (2.1). Let n � 1. Let x be a vertex in G ..Xk ; ek ; sk/k�q/, and
let ` be such that x belongs to X`. Let B.n/ denote the ball of radius n around x in
G ..Xk ; ek ; sk/k�q/. Let X`�`1 ; : : : ;X`; : : : ;X`C`2 be the members of .Xk/k�q that B.n/
intersects. Certainly, we have

d.e`C1; s`C1/C � � � C d.e`C`2�1; s`C`2�1/ � n



A. Le Boudec, N. Matte Bon, and V. Salo 668

and
d.e`�1; s`�1/C � � � C d.e`�`1C1; s`�`1C1/ � n;

and B.n/ is contained in the union of X`�`1C1; : : : ; X`�1; X`C1; : : : ; X`C`2�1 and the
intersection between B.n/ and X` [X`�`1 [X`C`2 :

jB.n/j �

`1�1X
kD1

jX`�kj C

`2�1X
kD1

jX`Ckj C jBX`.x; n/j

C jBX`�`1 .s`�`1 ; n/j C jBX`C`2 .e`C`2 ; n/j:

Conditions (1) and (3) ensure jXkj � Cf .C diam.Xk// � Cf .C 2d.ek ; sk// for every
k � q. Hence we obtain

jB.n/j � C

`1�1X
kD1

f .C 2d.e`�k ; s`�k//C C

`2�1X
kD1

f .C 2d.e`Ck ; s`Ck//C 3Cf .Cn/

� C1Cf

�
C1C

2
X

k�`1�1

d.e`�k ; s`�k/

�
C C1Cf

�
C1C

2
X

k�`2�1

d.e`Ck ; s`Ck/

�
C 3Cf .Cn/

� 2C1Cf .C1C
2n/C 3Cf .Cn/;

where in the second inequality we have used that f satisfies (2.1), and the third inequality
follows from the above upper bounds

P
d.e`�k ; s`�k/;

P
d.e`Ck ; s`Ck/ � n.

Definition 2.9. Let G be a finitely generated group, and X a G-set. We say that the G-
action on X has orbits of controlled diameter if all the G-orbits in X are finite, and if
there is C > 0 such that for every non-trivial element g 2 G, there is a G-orbit O in X
and x 2 O such that gx ¤ x and diam.�.G;O// � Cd.x; gx/.

Here, by �.G; O/, we mean the Schreier graph of the G-action on O (which is a
connected component in the larger graph �.G;X/), with respect to a finite symmetric gen-
erating set S . It is easily checked that this condition does not depend on the choice of S
(although the constant C can depend on S ). Note that the definition forces in particular
the group G to be residually finite.

Definition 2.10. We denote by CCD.f / � C.f / the class of groups admitting an action
with orbits of controlled diameter and of growth at most f .n/.

Example 2.11. Here are some simple examples of actions having orbits of controlled
diameter.

(1) Every faithful action of a finite group has orbits of controlled diameter.
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(2) The action of Z on
F
n�1 Z=nZ has orbits of controlled diameter. Hence Z

belongs to CCD.lin/.

(3) If G1; : : : ; Gk admit actions with orbits of controlled diameter, respectively, on
X1; : : : ; Xk , then the action of G1 � � � � � Gk on X1 t � � � t Xk has orbits of
controlled diameter. Hence each class CCD.f / is closed under direct products.

Here is a slightly more elaborated example.

Proposition 2.12. For every d � 1 and p � 2, the wreath product G D .Z=pZ/ o Zd

belongs to CCD.f / for f .n/ D nd .

Proof. We denote elements of G as pairs .f; u/, with f WZd ! Z=pZ of finite support
and u 2 Zd . For m � 2, set Hm D

®
.f; u/ W

P
v2.mZ/d f .v/ D 0; u 2 .mZ/d

¯
. Then Hm

is a finite index subgroup of G of index pmd . Set Xm WD G=Hm and X D
F
m Xm.

We check that the action of G on X has orbits of controlled diameter and satisfies
volG;X .n/' nd . Consider the standard generating set S D ¹.ı0; 0/; .0; ei /; i D 1; : : : ; dº,
where ı0WZd !Z=pZ takes the value 1 on 0 and 0 elsewhere, and e1; : : : ; ed is the stand-
ard basis of Zd . Note first that the map G ! .Z=pZ/ � .Z=mZ/d that sends .f; u/ 2 G
to
�P

v2mZd f .v/; u mod m
�

descends to a bijection of the coset space G=Hm with
.Z=pZ/ � .Z=mZ/d , so that we may identify Xm with .Z=pZ/ � .Z=mZ/d . Under
this identification, the action of G on Xm coincides with the standard wreath product
action of the natural quotient .Z=pZ/ o .Z=mZ/d . Explicitly, the action of elements in
the generating set S is described as follows: the lamp generator .ı0; 0/ permutes cyclic-
ally .Z=pZ/� ¹0º and acts trivially elsewhere; each element .0; ei /maps .r; u mod m/ to
.r; uC ei mod m/. In particular, the Schreier graph of the G-action on Xm is isomorphic
(ignoring loops) to the graph obtained taking a cycle of length p and gluing to each point
a copy of the standard Cayley graph of .Z=mZ/d . It follows that volG;X .n/ ' nd and
that C1m � diam.Xm/ � C2m for some constants C1; C2. To check that the action has
orbits of controlled diameter, let g D .f; v/ be a non-trivial element of G. Suppose first
that v ¤ 0, and choosemD 2jvj, where j�j denotes the standard word metric of Zd . Then,
since the natural projection of Xm to .Z=mZ/d is equivariant, for every x 2 Xm, we have
d.x; gx/ � jvj � 1

2
C1 diam.Xm/. Suppose now that v D 0. Let u be such that f .u/ ¤ 0

and with juj maximal, and choose again m > 2juj. Let x 2 Xm ' .Z=pZ/ � .Z=mZ/d

be the point x D .0; u mod m/. Then gx D .f .u/; u mod m/. From the description of the
graph �.G;Xm/, one can see that d.x; gx/ � 2juj � C1 diam.Xm/.

Our main motivation for considering the class CCD.f / is the following.

Proposition 2.13. If f WRC!RC is increasing and satisfies (2.1), then the class CCD.f /

is closed under finite graph products.

Proof. Let .Gi /I be a finite collection of groups in CCD.f /. For every i 2 I , let Yi be
a Gi -set such that the Gi -action on Yi has orbits of controlled diameter and growth at
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most f .n/. Let Si be a finite generating subset ofGi andCi a constant as in Definition 2.9.
Let P D GP..Gi /I I c/ be a graph product, generated by S D

S
Si . Set C D maxi Ci .

For i 2 I , let Fi be the set of Gi -orbits in Yi , and F the disjoint union of the Fi .
We consider the subset of G .F ; c/, denoted by Y , consisting of the disjoint union of all
G ..Xk ; ek ; sk/k�q/, where q � 1, .Xk/k�q is a c-admissible q-tuple of elements of F ,
and ek ; sk are distinct elements of Xk with the condition that diam.Xk/ � Cd.ek ; sk/ for
every k � q. The group P acts on Y , and every P -orbit in Y is finite because all the mem-
bers of F are finite. Moreover, Lemma 2.8 ensures volP;Y .n/ 4 f .n/. Hence to conclude
the proof, it suffices to see that the P -action on Y has orbits of controlled diameter.

Let g be a non-trivial element of P . We repeat verbatim the argument in the proof of
Lemma 2.6. We find a decomposition g D 
q � � � 
1 and a c-admissible .Xk ; ek ; sk/k�q
such that 
k.ek/ D sk for every k � q (so that g.e1/ D sq). The assumption that the
Gi -action on Yi has orbits of controlled diameter allows us to ensure that diam.Xk/ �
Cd.ek ; sk/ for every k � q. Hence if we write X D G ..Xk ; ek ; sk/k�q/, then X 2 Y and

diam.X/ �
qX
kD1

diam.Xk/ � C
qX
kD1

d.ek ; sk/ D Cd.e1; sq/:

2.4. The Grigorchuk group

In this section, we prove that the Grigorchuk group belongs to CCD.lin/. We denote by
T D ¹0; 1º� the rooted tree of finite binary words, where each word w is connected by an
edge to wx; x 2 ¹0; 1º. Recall that the Grigorchuk group G is the subgroup of the auto-
morphism group Aut.T / generated by the set of automorphisms S D ¹a; b; c; dº given by
the recursive rules

a.0w/ D 1w; a.1w/ D 0wI

b.0w/ D 0a.w/; b.1w/ D 0c.w/I

c.0w/ D 0a.w/; c.1w/ D 1d.w/I

d.0w/ D 0w; d.1w/ D 1b.w/:

We denote by �n the Schreier graph of the action of G on the level ¹0; 1ºn of the tree.
We recall basic properties of the structure of these graphs; see [3] for a more detailed
description. Each �n is isometric to an interval of length 2n � 1 in Z (with loops and
multiple edges, which will not be important for us). Along these segments, binary words
are ordered following the Gray code ordering, namely each w 2 ¹0; 1ºn is connected by
an edge in �n to the word obtained by changing its first digit and to the word obtained by
changing the digit that follows the first appearance of 0 in w (if the latter exists). Thus all
words have exactly two neighbours, with the exception of the words 11 � � �11 and 11 � � �10,
which lie at the extreme points of �n (we shall picture this with 11 � � � 11 as the leftmost
point and 11 � � � 10 as the rightmost point). Let us denote by dn the associated distance on
¹0; 1ºn. The map pnW ¹0; 1ºn! ¹0; 1ºn�1 that erases the last digit induces a covering map
pnW�n ! �n�1, which corresponds to folding �n around its middle edge.
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Proposition 2.14. Let G be the Grigorchuk group and retain the above notation. Then
for every non-trivial element g 2 G, there exists n � 1 and w 2 ¹0; 1ºn such that
dn.gw;w/ �

1
8

diam.�n/. In particular, G belongs to CCD.lin/.

Recall that portrait of an element g 2 G is the collection permutations .�w/w2T ,
where each �w 2 Sym.2/ specifies the action of g on the two children of w. In formulas,
we have g.wx/ D g.w/�w.x/ for x 2 ¹0; 1º. We say that w is an active vertex of g if �w
is non-trivial. We will rely on a result in [2], where Arzhantseva and Šunić provide an
explicit list of all the restrictions of portraits of elements of Grigorchuk groups to finite
subtrees of depth 3 (and show that this characterises the closure of G in Aut.T /).

Proof. Let g 2 G be non-trivial. Let m be the smallest level containing active vertices.
We can suppose that G fixes ¹0; 1ºn for all n � 3, or the conclusion holds true trivially
for g, since diam.�n/ � 7 for n � 3 and any point which is not fixed by g is moved at
distance at least 1. Hencem � 3. Choose w 2 ¹0; 1ºm active, let w0 be the projection of w
at levelm� 3 (i.e., the word obtained by removing the last three digits from w), and T0 be
the finite rooted at w0 and containing all its descendants up to 3 levels. Hence w is a leaf
of T0, and all active vertices for g on T0 must be leaves, by minimality of m. It follows
from [2, Theorem 1] that at least another leaf of T0, distinct from w, must be active. It fol-
lows that we can find two distinct active verticesw;v 2 ¹0;1ºm having the same projection
at levelm� 3. Consider now the action on levelmC 1. Since g fixes levelm, it must pre-
serve all fibres of the covering map pmC1W�mC1! �m, which consist each of two points,
and it acts non-trivially on each of the two fibres p�1mC1.w/; p

�1
mC1.v/. Let I � �m be

the interval ending at the rightmost points of length 2m�3 � 1
8

diam.�m/. For any vertex
u … I , the two points in p�1mC1.u/ are at distance at least 2jI j � 1

8
diam.�mC1/ in �mC1.

On the other hand, the projection map from �m ! �m�3 is injective on I , and since w; v
have the same image, they cannot both belong to I . Hence the desired conclusion follows,
for n D mC 1.

2.5. The proof of Proposition 1.3

Note that Proposition 1.3 from the introduction follows from Proposition 2.13, together
with the fact that all groups in the list belong to CCD.lin/, which has been established in
Example 2.11 and Propositions 2.12 and 2.14.

3. Schreier growth gaps for free products

3.1. A criterion

Let G be a finitely generated group endowed with a finite symmetric generating set S .
If X is a G-set, we endow X with its Schreier graph structure. The associated simplicial
distance is denoted dG;X (we adopt the convention that dG;X .x; y/ D C1 for points in
distinct G-orbits). We denote by BG;X .x; n/ the corresponding balls. The support of an



A. Le Boudec, N. Matte Bon, and V. Salo 672

element g 2 G in X is the set suppX .g/ D ¹x 2 X W gx ¤ xº. Given R > 0, we shall
say that two subsets A; B � X are R-separated if dG;X .a; b/ � R for every a 2 A and
b 2 B . Finally, the R-coarse connected components of a subset A � X are the equival-
ence classes of the equivalence relation on A generated by the pairs .a1; a2/ such that
dG;X .a1; a2/ � R.

Definition 3.1. Let G be a finitely generated group endowed with a finite symmetric
generating set S . Let ˛; ˇWN ! N be functions such that ˛.n/ 4 ˇ.n/. We say that G
satisfies the sparse support condition at scale .˛; ˇ/, if for every faithful G-set X such
that volG;X .n/ 6< ˇ.n/, there exist constants C;D > 0 such that for every R > 0, there
exists a non-trivial element g 2 G satisfying the following:

(C1) We have dG;X .x; gx/ � D for every x 2 X .

(C2) Every D-coarse connected component of suppX .g/ has diameter at most C .

(C3) Any two distinctD-coarse connected components of suppX .g/ areR-separated.

(C4) For every x 2 suppX .g/, we have jBG;X .x;R/j � 1
C
˛
�
1
C
R
�
.

It is routine to check that this condition does not depend on the choice of a finite
generating set S for G (using that a change of the generating set induces a bi-Lipschitz
equivalence of the Schreier graphs, with constant depending on the generating sets only).
Note that condition (C4) implies in particular that G satisfies a Schreier growth gap ˛.n/.
The sparse support condition implies that this gap can be improved for any non-trivial free
product with G, as follows.

Proposition 3.2. Suppose that G satisfies the sparse support condition at scale .˛; ˇ/.
Then for every non-trivial finitely generated group H , the group G �H has a Schreier
growth gap min.n˛.n/; ˇ.n//.

Proof. Set L D G �H . We fix a finite generating set of L of the form S [ T , where S
is a generating set of G and T is a generating set of H . Let t 2 T be a non-trivial gener-
ator of H . Let X be a faithful L-set. We shall consider on X the Schreier graph distance
by dL;X , as well as the distance dG;X induced by restricting the action to G. Suppose
that volG;X .n/ 6< ˇ.n/ (else, the desired conclusion is true trivially). Let C;D be as in
Definition 3.1, fix R > 0 (which we may assume is even), and let g 2 G be the corres-
ponding element. Consider the commutator h D Œg; t �. Note that suppX .h/ is contained in
the 1-neighbourhood of suppX .g/ (with respect to the distance dL;X ).

Since h has infinite order and the action is faithful, we can find x0 2 X such that the
points xn D hn.x0/ are pairwise distinct for n D 0; : : : ; R. Note that dL;X .xn; xnC1/ �
2D C 2, by condition (C1). For each point xn, we choose yn 2 suppX .g/ such that
dL;X .xn; yn/ � 1. Then all points y0; : : : ; yR belong to the ball BL;X .x0; D1R/, with
D1 D 2DC 3. Since allD-coarse connected components of suppX .g/ with respect to the
distance dG;X have diameter bounded by C , their 1-neighbourhood in the distance dL;X
has cardinality uniformly bounded by some constant C1 > 0 (not depending on R).
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Now from the fact that the points xn are all distinct, we deduce that at most C1
points y0; : : : ; yR belong to the same D-coarse connected component. It follows that
from ¹y0; : : : ; ynº we can extract a collection of points z1; : : : ; zbR=C1c belonging to
distinct D-coarse connected components. Then the balls BG;X .zi ; R=2/ are pairwise dis-
joint by (C3); moreover, they are contained in BL;X .x0; D2R/, with D2 D D1 C 1=2.
From (C4), we deduce that

jBL;X .x0;D2R/j �

bR=C1cX
iD1

jBG;X .zi ; R=2/j �
1

C2
R˛

�
1

C2
R

�
;

for some constant C2 > 0, which finishes the proof.

Remark 3.3. We point out that in the proof of Proposition 3.2, the only property of the
free product L D G � H that has been used is the following: L is an overgroup of G
containing an element t 2 L such that for every non-trivial g 2 G, the commutator Œt; g�
has infinite order.

3.2. Confined subgroups

We recall the following definition.

Definition 3.4. Let G be a group. A subgroup H of G is confined if there exists a finite
subset P � G n ¹1º such that Hg \ P ¤ ; for all g 2 G.

Equivalently, a subgroup H is confined if the closure of the set of conjugates of H in
the space Sub.G/ of subgroups of G does not contain the trivial subgroup. The following
simple lemma explains the usefulness of the notion of confined subgroups for the study of
growth of actions. See [7, Lemma 1.8] for a proof. If X is a G-set and x 2 X , we denote
by Gx the stabiliser of x in G.

Lemma 3.5. Let G be a finitely generated group, and X a G-set. Let

�.X/ D ¹Gx W x 2 Xº � Sub.G/:

Then for every H 2 �.X/, we have volG;G=H .n/ 4 volG;X .n/. In particular, if some Gx
is not confined, then volG;X .n/ ' volG.n/.

Here, volG.n/ represents the standard word growth given by the size of an n-ball in
the Cayley graph of G with respect to some finite generating subset.

We will invoke the following, which is a particular case of [7, Proposition 1.6].

Lemma 3.6. Let G be a finitely generated group, and let H � K be subgroups of G.
Then volG;G=K � volG;G=H , and if in addition H has finite index in K, then volG;G=H '
volG;G=K .
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3.3. Houghton groups

If� is a set, Sym.�/ is the group of permutations of�. We denote by Altf.�/ the group of
alternating finitely supported permutations of�. For a subgroupH � Sym.�/, write�H;f
for the union of finite orbits under H , and �H;1 for the union of infinite ones. We say
that a partition is H -invariant if every element of H sends a block of the partition to a
(possibly different) block of the partition.

The following is a special case of [6, Proposition 3.7].

Proposition 3.7. Let � be a countable set, and let G � Sym.�/ be any subgroup con-
taining Altf.�/. Then a subgroup H � G is confined if and only if �H;f is finite and
there exists an H -invariant partition �H;1 D �1 [ � � � [ �k such that H contains
Altf.�1/ � � � � � Altf.�k/.

For r � 2, let „r be the graph obtained by gluing r infinite rays `1; : : : ; `r at their
origin. The Houghton groupHr is the group of all permutations g of the vertex set of„r ,
such that there exists finite subset E;F � „r such that for every i , gj`inE is an isometry
onto `i n F . The group Hr is finitely generated for r � 2. Since the action of Hr on „r
is by permutations of bounded displacement, it satisfies volHr ;„r .n/ ' n.

In what follows, we fix r � 2. Let us denote � the vertex set of „r , and by A WD
Altf.�/. Recall that A is simple, and every non-trivial subgroup of Sym.�/ normalised
by A contains A. In particular, A is a normal subgroup of Hr .

Proposition 3.8. For r � 2, let X be a faithful Hr -set such that volG;X .n/ 6� n2. Let
X D

F
i2I Xi be the decomposition of X into Hr -orbits, and let J be the subset of i 2 I

such that the Hr -action on Xi is faithful. Then

(1) for i … J , the A-action on Xi is trivial;

(2) there exist finite Hr -sets .Yi /i2J of bounded cardinality (with respect to i ) such
that for every i 2 J , the Hr -set Xi is isomorphic to the product Hr -set � � Yi .

In particular, if Z D
S
i…J Xi is the set of A-fixed points, there exists a finite index

subgroup K of Hr such that every K-orbit in X nZ is isomorphic to � as a K-set.

Proof. Set G D Hr . First note that item (1) follows from the fact that A is contained in
every non-trivial normal subgroup of G. We will show (2), which is the content of the
statement. We fix a word metric k�k on G, associated to some symmetric generating set.
Let X be a G-set as in the statement and K be the stabiliser of a point x0 2 Xi , with
I 2 J . The groupG has exponential growth, so by Lemma 3.5,K must be confined. Thus
we can apply Proposition 3.7.

Let us first show that j�K;fj � 1. Suppose by contradiction that this is not the case.
Let K0 � K be the pointwise stabiliser of the finite set �K;f, which has finite index in K.
Then volG;G=K0.n/' volG;Xi .n/ by Lemma 3.6. Choose two distinct points x1; x2 2�K;f
and let K1 � K0 be their pointwise stabiliser. Since volG;Xi .n/ < volG;G=K1.n/, a con-
tradiction will follow if we show that volG;G=K1.n/ < n2. Since the action of G on �
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is highly transitive (i.e., transitive on n-tuples of distinct points), upon replacing K1 by
some G-conjugate, we suppose that xi is the point at position 1 on `i for i D 1; 2 (with
the convention that the common origin is at position 0).

Now for i D 1; 2, let �i be the transposition that swaps the first and second positions
of `i . Let also ti 2G be any element such that ti j`i shifts `i inside itself by 1. For example,
these can be taken to be t; t�1, where t is the shift along a Z-isomorphic ray coming from
juxtaposing the rays `1; `2. For i D 1; 2 and n � 1, consider the element


i;n D .t
n
i �i t

�n
i /.tn�1i �i t

�nC1/ � � � �i D t
n
i �i .t

�1
i �i /

n:

Note that k
i;nk � Cn, with C D max¹k�ik;ktik W i D 1; 2º. On the other hand, each 
i;n
is a permutation with finite support contained in `i , and 
i;n.xi / is the point at position
nC 1 on `i . Hence applying products of the form 
1;m1
2;m2 to the pair .x1; x2/, with
0 � m1; m2 � n shows that volG;G=K1.n/ < n2. This is a contradiction and proves the
claim that j�K;fj � 1.

We now consider the partition �K;1 D �1 [ � � � [ �k and claim that k D 1. Sup-
pose that k � 2. By a similar reasoning as above (passing first to a finite index subgroup
of K, and then to an overgroup), we have volG;X .n/ < volG;G=K1.n/, where K1 is the
subgroup of G of elements that preserve both �1 and �2, so a contradiction will follow
if we show that volG;G=K1.n/ < n2. Fix n large enough. Again by high transitivity and
using the fact that �1; �2 are both infinite, we can find g 2 G such that the point at pos-
ition 1 on `1 is in g.�1/, and all points on `1 at positions between 2 and n are in g.�2/,
while the symmetric statement holds for `2. Now applying to g.�1/ and g.�2/ the same
elements h D 
1;m1
2;m2 defined above with 1 � mi � n, we obtain n2 different pairs
.hg.�1/; hg.�2// with khk � 2Cn. This shows that the ball of radius 2Cn around gK1
has cardinality at least n2. Hence k D 1.

It follows that K contains Alt.�K;1/. This also shows that �K;f ¤ ;, since other-
wise K would contain the normal subgroup A, contradicting that the action on XI is
faithful. Hence K \ A contains a point stabiliser for the action of A on �, and hence
is equal to it, as the latter is a maximal subgroup of A. Since K was an arbitrary point
stabiliser, we deduce that the action of A on Xi is conjugate on each of its orbits to the
standard action of A on�. For each A-orbit O �Xi , we denote by jO WO!� the unique
A-equivariant bijection (its uniqueness follows from the fact that the only A-equivariant
permutation of � is the identity).

Let Yi D Xi=A, the space of A-orbits, on which G acts since A is normal. For a
point x 2 A, we denote by O.x/ its A-orbit. Consider the map �WXi ! � � Yi given by
�.x/ D .jO.x/.x/;O.x//. This map is equivariant (this is obvious for the second com-
ponent; for the first, it follows from the observation that the map g�1 ı jO.gx/ ı g is an
A-equivariant bijection from O.x/ to �, and thus it is equal to jO.x/). The map � is also
clearly injective. To check that it is surjective, it is enough to observe that the diagonal
G-action on � � Yi is transitive: this is true because the G-action on Yi is transitive, and
the group A acts trivially on Yi and transitively on each fibre � � ¹yº.
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To conclude, we need to argue that Yi must have uniformly bounded cardinality when
i 2 J varies. Fix n and suppose that the diameter of Yi is at least n. Then we can find
a point y 2 Yi and elements s1; : : : ; sn in the generating set of G such that if we set
gm D sm � � � s1, then the points y; g1y; : : : ; gny are pairwise distinct (the point y and
sequence .si / can be found by looking at any path in the Schreier graph of Yi of length at
least n). Next consider again the elements 
i;n above. Note that for every n, the element
ın D 
1;n
2;n belongs to A and thus acts trivially on Yi and coincides with 
1;n in restric-
tion to `1 � �. Let x 2 `1 be at position 1 and consider the point .x; y/ 2 � � Yi . Then
the n2 points gm2ım1.x; y/ D .gm2
1;m1x; gm2y/ for m1; m2 � n are pairwise distinct,
showing that there are at least n2 in a ball of radius O.n2/. This cannot be true for n
arbitrarily large, showing that the cardinality of Yi must be uniformly bounded.

Finally, since the group G is finitely generated, we may choose a finite index
subgroup K which acts trivially on Yi for every i , showing the last sentence in the
statement.

Theorem 3.9. For every r � 2 and every non-trivial finitely generated groupK, the group
Hr �K has a Schreier growth gap n2.

Proof. By Proposition 3.2, it is enough to show that G D Hr satisfies the sparse support
condition at scale .n;n2/. This is an immediate consequence of Proposition 3.8. Indeed, fix
any non-trivial element g 2 A. Then for every faithful G-set X such that volG;X .n/ 6< n2,
the element g has finite support in each G-orbit, so one can find constants C;D > 0 such
that g satisfies conditions (C1)–(C3) for every R > 0, and condition (C4) is automatic,
because every infinite connected graph has at least linear growth.

Remark 3.10. We point out that in the proof of Theorem 3.9, the assumption that the
group L WD Hr � K is a free product, is only used to invoke Proposition 3.2. As a
consequence, this assumption can be relaxed as in Remark 3.3.

Remark 3.11. To prove Theorem 3.9, we could have restricted to the case r D 2, since
every Hr contains H2 as a subgroup. Note however that the previous proof provides
additional information on actions of small growth of Hr for general r (Proposition 3.8).

3.4. Topological full groups

Throughout this section we letZ be a Cantor space, and G � Homeo.Z/ be a subgroup of
its group of homeomorphisms. Recall that the topological full group of G is the group F.G /
of all homeomorphisms h of Z such that for every z 2 Z, there exist a clopen neighbour-
hood U of z and g 2 G such that hjU D gjU . When G is a cyclic group generated by a
single homeomorphism ', we write F.'/ instead of F.G /. The group F.G / is countable
provided G is countable.

We say that an element g 2 F.G / is a 3-cycle if g3 D 1 and its support supp.g/ WD ¹z W
g.z/ ¤ zº is clopen and can be partitioned into 3 distinct clopen subsets U1; U2; U3 such
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that g.Ui / D UiC1 (with i mod 3). Following Nekrashevych [13], the subgroup of F.G /
generated by 3-cycles is called the alternating full group of G and is denoted A.G /. It is
shown in [13] that if the action of G on Z is minimal (i.e., all its orbits are dense), then
the group A.G / is simple and contained in every non-trivial normal subgroup of F.G /. It is
also shown in [13] that if G is finitely generated and its action on Z is expansive and all
its orbits have cardinality at least 5, then A.G / is finitely generated. Recall that an action
of a finitely generated group G on the Cantor space Z is expansive if and only if it is con-
jugate to a subshift (a G -invariant subset of ¹1; : : : ; dºG for some d � 2). In many cases,
results of Matui show that A.G / coincides with the commutator subgroup of F.G / (see his
survey [11]).

It is well known (and not difficult to see) that if the group G is finitely generated, then
for every finitely generated subgroupG of F.G /, the identity map onZ defines a Lipschitz
map between the graphs of the actions �.G;Z/! �.G ;Z/. Since the groups A.G / and G

have the same topological full groups, it follows that if the action of G on Z is expansive
and has no orbits of cardinality less than 5, then the graph �.A.G /; Z/ is bi-Lipschitz
equivalent to �.G ; Z/. In particular, volA.G /;Z.n/ ' volG ;Z.n/.

For a group G acting on Z by homeomorphisms, and for a finite set Q � Z, we
denote by GQ the setwise stabiliser of Q and by G0Q its subgroup consisting of elements
fix pointwise some neighbourhood of every z 2 Q. The following is proven in [9].

Theorem 3.12 ([9]). Let G � Homeo.Z/ be a group acting minimally on Z, and let
G D A.G /. Then a subgroup H of G is confined if and only if there exists a finite set
Q � Z such that G0Q � H � GQ (the set Q is moreover unique).

Corollary 3.13. Retain the assumptions of Theorem 3.12, and assume further that G is
finitely generated and that its action on Z is expansive. Let ˛.n/ D volG ;Z.n/. Let X be
a faithful G-set such that volG;X .n/ 6< ˛.n/2, and let H be the stabiliser of a point in X .
Then there exists z 2 Z such that G0z � H � Gz .

Proof. The assumption implies that H must be confined (Lemma 3.5). Let Q � Z be the
finite subset given by Theorem 3.12. Enumerate the points of Q as z1; : : : ; zr and choose
pairwise disjoint clopen neighbourhoods Ui of zi . For each i , we choose a finitely gen-
erated subgroup Gi � G, supported on Ui , such that the inclusion map Ui ! Z defines
a quasi-isometry of graphs �.Gi ; Ui /! �.G;Z/ (one can choose Gi to be the alternat-
ing full group of the restriction of the groupoid of germs of G to Ui ; its finite generation
follows from [13, Proposition 5.4] and the quasi-isometry of the graphs from [14, Corol-
lary 2.3.4]). It follows that the action of G1 � � � � � Gr on the orbit of Q has growth
bounded below by ˛.n/r , from which it follows that volG;G=H .n/ � volG;G=GQ.n/ <
˛.n/r , which contradicts the assumption unless r D 1.

Recall that for any subgroup G � Homeo.Z/, the maps Z ! Sub.G/ defined by
z 7! Gz and z 7! G0z are, respectively, upper and lower semi-continuous. When G is
countable, a Baire argument implies that Gz D G0z for z in a dense Gı subset.
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Theorem 3.14. Assume that G is finitely generated and its action on Z is minimal
and expansive, and let ˛.n/ D volG ;Z.n/. Then for every non-trivial finitely generated
group H , the group G D A.G / �H has a Schreier growth gap n˛.n/.

Proof. We shall show that G satisfies the sparse support condition at scale .˛.n/; ˛.n/2/.
As usual, we fix once and for all a finite symmetric generating set S for G, which is
used to define all Schreier graphs and distances below. Let X be a faithful G-set with
volG;X .n/ 6< ˛.n/2. We shall show that it satisfies the conclusion of Definition 3.1 with
constants D D C D 2. To this end, fix R > 2.

By [8, Lemma 6.2], for every G-orbit O in Z, we have volG;O.n/ D ˛.n/. Hence
we can find a point z0 2 Z satisfying the generic condition that G0z0 D Gz0 and such
that jBZ.z0; R/j D ˛.R/. Choose s1; s2 2 S such that z0; s1.z0/; s2s1.z0/ are distinct.
Let .Vn/ be a system of clopen neighbourhoods of z0, and such that Vn; s1.Vn/; s2s1.Vn/
are disjoint for every n. Define accordingly the sequence .hn/ of 3-cycles given by

hn.z/ D

8̂̂̂̂
<̂
ˆ̂̂:
s1.z/ z 2 Vn;

s2.z/ z 2 s1.Vn/;

s�11 s�12 .z/ z 2 s1s1.Vn/;

z else.

Observe that dG;Z.z; hn.z// � 2 for every z 2 Z, by construction. The supports supp.hn/
decreases to ¹z0; hn.z0/; h2n.z0/º as n!1. It follows that for n is sufficiently large, we
have BZ.z0; R/ \ suppZ.hn/ D ¹z0; s1.z0/; s2s2.z0/º. This shows that for n large, the
element g D hn satisfies the conditions in Definition 3.1 for the action on Z.

Now consider the action on X and pick a point x 2 X and denote by �.x/ 2 Z
the unique point such that G0

�.x/
� Gx � G�.x/, given by Corollary 3.13. Note that

suppX .hn/ � �
�1.Vn [ s1.Vn/[ s2s1.Vn//, since hn 2 G0�.x/ for �.x/ … Vn [ s1.Vn/[

s2s1.Vn/. However, since the point z0 satisfies G0z0 D Gz0 (and so do s1.z0/; s2s1.z0/)
then it follows from semi-continuity and the inclusions G0�.x/ � Gx � G�.x/ that for n
large enough every x such that �.x/ 2 Vn, then the ball BX .x; R/ will be isomorphic
to the corresponding ball BZ.z0; R/, and similarly if �.x/ 2 s1.Vn/; s2s1.Vn/, with z0
replaced by the corresponding image. Therefore, the element g D hn satisfies all items in
Definition 3.1 for the action on X as well.
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[2] G. Arzhantseva and Z. Šunić, Construction of elements in the closure of Grigorchuk group.
2006, arXiv:math/0607778v2, an appendix to: G. Arzhantseva, P. de la Harpe, D. Kahrobaei,
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