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On the prehistory of growth of groups
Pierre de la Harpe

Abstract. The subject of growth of groups has been active in the former Soviet Union since the
early 1950s and in the West since 1968, when articles of Svarc and Milnor have been published
independently. The main purpose of this note is to quote a few articles showing that, before 1968
and at least retrospectively, growth of groups has already played some role in various subjects.

The fundamental notions in the theory of the growth of groups can be defined as follows.
Let I be a finitely generated group and S a finite generating set of I'. The word length
function £5 : I' — N is defined by £5(y) = min{k > 0|y € (SUS™H*}. Let o (T, S; k)
denote the cardinal of the sphere {y € I" | £5(y) = k} and B(T, S; k) denote the car-
dinal of the ball B(T', S;k) = {y € I' | £s(y) < k}. It is straightforward to check that
o(T,S:k) <|SUSTY(S US| —1)*! forall k > I;in particular, (T, S; k) < a*
for a constant ¢ and for all k > 0. If T is another finite generating set of I', there exists a
constant ¢ > 0 such that B(T', S;k) C B(T', T,ck) and B(T', T; k) C B(T, S, ck), hence
B, S;k) < B(I, T,ck) and (T, T; k) < B(T, S, ck) for all k > 0; it follows that the
next definitions do not depend on the choice of S. The group I is said to be of expo-
nential growth if there exists a constant b > 1 such that (T, S; k) > b¥ for all k > 0,
of subexponential growth otherwise, of polynomial growth if there exist constants ¢ > 0
and d > 0 such that (T, S; k) < ck? for all k > 0, and of intermediate growth if it is of
subexponential growth and not of polynomial growth.

Here are some of the most basic questions: What are the groups in each class, expo-
nential, polynomial, and intermediate growth? For a given group I', what are the more
accurate properties of the functions B(I", S; k)? What are the functions which are of the
form B(--- ; k)? What are the implications of the theory with other subjects?

In this paper, we first describe shortly the very beginning of the subject, and we men-
tion a few of the most spectacular later results. However, our main focus is on the results
published before 1968, and for some even before 1955, which can be seen retrospectively
as showing how notions of group growth have been used early for various purposes.
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1. The beginning, Svare, Milnor, and a few others (1955-1968)

The notion of growth for finitely generated groups appears in articles published by
Efremovich and Svarc in the early 1950s and independently by Milnor in 1968 [Efre—53,
Svar—55, Miln—68a, Miln—68b]. (Svarc left the Soviet Union in 1989, and now his name
is rather written Schwarz.) Very soon after his first paper, Milnor in [Miln—-68c] called
attention to the fact that [Svar—55] “contains many ideas utilized in [3]” (where [3] is
our [Miln—-68b]).

Before 1968, the paper [Svar—55], written by Svarc during his undergraduate years,
was essentially ignored outside the former Soviet Union. Concerning the period between
1955 and 1968, we quote two extracts from [Avez—76, Definition 1.6] and [Grom-93,
Item 0.5].

After having defined exponential growth and non-exponential growth, Avez writes:
“This notion is due to V. Arnold (oral communication, 1965), Svarc [Svar-55], and
Milnor [Miln—68b]. Finite extensions of finitely generated nilpotent groups are the only
known examples of groups of non-exponential growth [Wolf-68].”

In what he calls some random historical remarks, Gromov writes: “The ideas of the
growth of balls, Folner sets and sets of conjugacy classes in groups (especially in funda-
mental groups of manifolds of negative curvature, see [Marg—67, Marg—69]) were quite
popular in the sixties among ergodic theorists in Moskow and Leningrad. (Much of these
ideas I learned at the time from A. Vershik, D. Kazhdan and G. Margulis.) Then the geo-
meters took a part in the story and related the growth to curvature. The first results here
for non-negative curvature are due to A. Svarc [Svar—55]. Similar results were obtained
independently by J. Milnor [Miln—-68b].”

For a description of the results of Efremovich and Svarc, we quote the following lines
from [Svar-08]. “My first serious work was inspired by Efremovich’s remark that the
‘volume invariant’ of universal covering of a compact manifold is a topological invariant
of the manifold. (If two compact manifolds are homeomorphic, then the natural homeo-
morphism between universal coverings is uniformly continuous. Efremovich proved that
under certain conditions the growth of the volume of a ball with radius tending to infin-
ity is an invariant of uniformly continuous homeomorphisms.) I proved that the volume
invariant of universal covering can be expressed in terms of the fundamental group of the
original manifold; in modern language it is determined by the growth of the fundamental
group. I also gave estimates for volume invariants of manifolds with non-positive and with
negative curvature. Thirteen years later J. Milnor published a paper containing the same
results with the only difference that Milnor was able to use in his proofs some theorems
derived after the appearance of my paper. At the moment of writing his first paper in this
direction Milnor did not know about my work, but his second paper contained corres-
ponding references. The notion of growth of a group (volume invariant of a group in my
terminology) was studied later in numerous papers (one should mention, in particular, the
results by Gromov and Grigorchuk). A new interesting field — geometric group theory —
was born from these papers.”

There is a short description of the work and life of Efremovich in [Efremovich].
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2. Some later developments, Gromov (1981), Grigorchuk (1983), and
growth beyond finitely generated groups

The importance of the subject of group growth was largely recognized with results of
Gromov and Grigorchuk.

A finitely generated group I which has a nilpotent subgroup N of finite index has
polynomial growth [Wolf—68]. More precisely, let

CY(N)=N>DC?*N)=[N,N]D---DC/TY{N)=[N,C/(N)]D---

be the descending central series of N, let r be its class, namely the smallest integer such
that C"*!(N) = {e}, and let A(N) = Y7 _, rank(C/ (N)/C/*+1(N)) be its Hirsch length.
Then there exist two constants Cy, C, such that C; k") < B, S;k) < Co k") for all
k > 0; this is due independently to Guivarc’h [Guiv—71, Guiv—73], Brian Hartley (unpub-
lished), and Bass [Bass—72]. Moreover, the limit ¢ = limy_, o B( h(‘f\,)k) exists [Pans—83].
It is a long-standing conjecture that S(T', S; k) = ck"™) 4+ o(kh(jv) 1); some progress in
this direction can be found in [Stol-98, BrLD—13].

Gromov showed the converse of Wolf’s theorem: any finitely generated group of poly-
nomial growth has a nilpotent subgroup of finite index [Grom—81]. The paper is sometimes
cited as the starting point of geometric group theory. There are now several proofs and
various refinements of this fundamental theorem; see [LMTT-23] and references there.

It took some time to discover groups of intermediate growth. For example, a finitely
generated solvable group has either polynomial or exponential growth (established
in [Miln—68c, Wolf-68], see also [Rose—74]), and the same holds for a finitely generated
linear group (as a consequence of [Tits—72]). It was Grigorchuk who showed the existence
of finitely generated groups of intermediate growth [Grig—83, Grig—84]. These papers are
at the origin of new domains for group theory: branch groups and self-similar groups.

The volume growth of balls in the universal covering of a compact Riemannian man-
ifold M is equivalent to the volume growth of the fundamental group 71 (M), so that
growth of groups is of interest in differential geometry. An early result in this direction
appears already in [Miln—68b]: if a compact manifold M can be given a Riemannian
structure with negative sectional curvature, then the fundamental group 1 (M) is of expo-
nential growth. More recently, motivated by results of Jgrgensen and Thurston establishing
that the set of volumes of hyperbolic 3-manifolds, a subset of R, is well ordered of
ordinal type w®, Fujiwara and Sela showed the following in [FuSe—23]: let I" be a finitely
generated group and let Exp(I") be the set of positive real numbers which are exponential
growth rates of T, that is, which are of the form e(T', S) = limsup;_,, B(L, S; k)l/k
for some finite generating set S of I' (in fact, e(T', §) = limg_ o B(T, S; k)l/k =
infy o B(T, S; k)l/k because B(I, S; k +¢) < B(T, S; k)B(T, S; £) for all k,£ >0
and also e(I', §) = limg o 0 (T, S; k)l/k when T is infinite); if I" is a non-elementary
hyperbolic group, then Exp(T") is a well-ordered set, hence in particular it has a minimum;
moreover, for every r € Exp(T"), there are finitely many equivalence classes of generating
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sets S such that e(I", S) = r (two generating sets are equivalent if one is the image of the
other by an automorphism of I').

Growth of groups extends naturally to the setting of locally compact groups. In partic-
ular, Guivarc’h and Jenkins [Guiv—73, Jenk—73] have characterized connected Lie groups
of polynomial growth as those of type (R), that is, as those for which ad(x) has purely ima-
ginary eigenvalues for all x in the Lie algebra of the group (this is considerably easier to
prove than Gromov’s characterization of finitely generated groups of polynomial growth).
More generally, Losert has characterized locally compact groups (not necessarily Lie
groups) of polynomial growth in a series of papers, the first being [Lose—87]. Breuillard
has obtained nice results on the geometry of locally compact groups of polynomial growth
and the shape of large balls [Breu—14]. The world of compactly generated locally com-
pact groups of intermediate growth is more mysterious, even if we know a few examples
of such groups which are “not too close to discrete groups” [Corn—19].

From the 1960s, the point of view of growth was not restricted to groups. In par-
ticular, finitely generated algebras give rise to growth functions; their growth rates are
called Gelfand—Kirillov dimensions because of the first papers where this notion appears;
see [GeKi-66, KrLe—00]. Given a field k, a finitely generated group I' is of polynomial
growth if and only if the Gelfand—Kirillov dimension of its group algebra k[I'] is finite.

Several reviews of the subject of group growth have appeared, of which we men-
tion [GrHa-97, Grig—14M], and there is a nice exposition of the theory in the book by
Mann [Mann-12].

3. Three open problems: The growth of finitely presented groups,
the gap conjecture, and the search for groups with small stretched
exponential growth rates

It is still unknown whether there exists any finitely presented group of intermediate
growth. This is one of the major open problems of the subject.

The following problem is almost 30 years old and fascinating. Let " be a group gen-
erated by a finite set S. Suppose that the growth of I is strictly dominated by e‘/’;; that
is, suppose that B(T", S; k) < ceV¥ for some constant ¢ > 0 and for all k > 0, and that
there does not exist an integer N > 0 such that eVk < NB(T, S; Nk) for all kK > 0. Does
it follow that I' is virtually nilpotent and therefore of polynomial growth? The gap con-
Jecture is that the answer is positive; this would be a strong reinforcement of Gromov’s
theorem. The answer is positive if G is assumed to be residually a finite p-group for some
prime p [Grig—89], and more generally if G is residually nilpotent (equivalently if G
is residually a finite nilpotent group) [LuMa-91]; see [Grig—14g] for a fuller discussion
of the question. But it is known that a finitely generated group of intermediate growth
need not be residually finite [Ersc—04] (those of polynomial growth are residually finite
by [Grom-81]).
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It has long been known that there exists a function b such that any group I" generated
by a finite set S with growth function strictly dominated by b is a group of polynomial
growth and therefore a virtually nilpotent group; see [Grom—-81, Question, p. 72] for a
hint on this, [DrWi-84, Theorem 7.6] for something more explicit, and [ShTa—10, Corol-

lary 1.10] for b(k) = Re(oeloeb)® for some sufficiently small constant ¢ and for R > %

The gap conjecture claims that this holds with b(k) = ek,

There is related ongoing research of small rates of the following kind. Let I be
a group generated by a finite generating set S, say a group of intermediate growth
to avoid trivialities. The stretched exponential growth rates are defined by p_(I") =
liminfy_, o W and p4(I") = limsupy_, loglog]f#;k); they do not depend

g

on the choice of §. The problem is to find groups of intermediate growth with py as
small as possible (of course not smaller than % if the gap conjecture is true). Let Ay be
the positive root of the polynomial X3 — X2 —2X — 4 and set ag = llooggfo; we have
Ao ~ 2.4675 and a9 ~ 0.7674. For any a_, a4 with og < o— < a4 < 1, there exists a
finitely generated group of intermediate growth I" such that p_(T") = a— and p4 (I") = a4
[Brie—14, BaEr—14]. For the first Grigorchuk group, that of [Grig—83], there have been
several estimates before the final result: p—(I") = p4+(I") = a [ErZh-20]. At the time of
writing, there is not any known example of group I" with p4 (I") < «; but several experts
believe that they will be found.

In the following sections, we discuss older results which show some flavour of group

growth.

4. Carl Friedrich Gauss and the growth of Z? (1834)

The free abelian group of rank two, 72, can be seen as the lattice of integer points in the
Euclidean plane; this has been so even before the concept of group was made precise.
Consider the length function on Z? given by the Euclidean norm and the growth of Z? as
the function R defined by

R(t) = |{(a,b) € Z* | a®> + b* < t}| forallt >0,

that is, R(t) is the number of points of Z? in the disc of radius /7 centred at the origin.
The function R(?) is interesting in number theory, more precisely in the study of integers
which are sums of two squares; but we like to view R(¢) also as a function describing the
growth of Z2. The circle problem is to estimate the difference R(¢) — m¢ for large ¢. In
1843, Gauss showed that

|R(t) — mt| < 27(1 + ~/21) = O(V1).

In [Gauss, pp. 271 and 280], Gauss wrote thirty values of R(k), including R(10000) =
31417 and R(100000) = 314197.

After Gauss, it has been shown that |R(t) — wt| = O(t*) for values o < %, in par-
ticular for o = % (Sierpinski, 1906, see [Sier—88, Page 385]). Considerable effort has
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been devoted to improve a (see [BeKZ-18]); for example, |R(¢) — wt| = O(t*+¢) for
% ~ 0.31371 and for all € > 0 [BoWa]. It is conjectured that the estimate holds for
every o > %; in 1915, Landau and Hardy showed that % is a lower bound for the best «.
For k a non-negative integer, set r5(k) = |{(a.b) € Z* | a* + b? = k}|, so that
R(k) = Z?:o r2(j). Values of rp(k) and R(k) for small k and relevant references are
given in [OEIS, A004018 and A057655]. The growth series Y po, ra(k)zF is (65(2))2,

where 03 is the third Jacobi theta function [CoSI-99, Chapter IV, Section 5].

o =

5. Word lengths, spheres, and balls

Word lengths, spheres, and balls can be found in the literature much before the theory
of group growth. For example, £s(y) appears as the “exponent of the substitution y”
in [Poin—82, p. 11], the paper in which Poincaré shows a presentation of a Fuchsian group
in terms of one of its fundamental polygons in the hyperbolic plane. The word metric on I',
defined by ds(y, y’) = £s(y~'y), has been used systematically by Dehn in his first paper
on decision problems in group theory; see [Dehn—11] and [DeSt-87, pp. 130 and 143].
Spheres and balls, noted respectively 'y and U?:o I';, appear in [ArKr—63], where the
authors establish equidistribution in the unit sphe're of Euclidean space R3 of the points of
the orbit of a semigroup generated by two appropriate rotations.

6. Waclaw Sierpiyski (1946), Georgii Adel’son—Vel’skii and Yuli
Anatoljevitch Sreider (1957), Joseph Rosenblatt (1974),
and the supramenability of groups of subexponential growth

In the 1929 paper which created the subject of amenability [Neum-29], John von
Neumann considers actions of a group I on a set X given with a non-empty subset E.
Such an action is amenable if there exists a finitely additive positive measure p on X
normalized by w(E) = 1 and invariant by I' (the measure need not be finite, except of
course when E = X). The group I itself is amenable (eine messbare Gruppe in [Neum—
29]) if every action of I" on every set X given with £ = X is amenable, and this holds
as soon as the left action of I' on itself is amenable (with £ = X = I'). The group I
is supramenable (a terminology due to Rosenblatt [Rose—74]) if every action of I" on a
set X given with any subset £ # ) is amenable, and this holds as soon as the left action
of T on itself, with any subset E, is amenable. The I'-set E has a paradoxical decompos-
ition if there exists a partition of E in disjoint sets Ay, ..., Ag, By, ..., By and elements
g1,--->8ksh1,...,hg in T such that £ is equal to both the disjoint unions |_|f~€:1 giA;
and |_|f:1 hj B;. A paradoxical decomposition of E is an obstruction to the existence of
as above [Neum-29, p. 82]. Remarkably, Tarski has shown that it is the only obstruction:
either £ has a paradoxical decomposition or there exists a I'-invariant finitely additive
positive measure i on X normalized by n(E) = 1 [Tars—36].
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For example, the action on X = R¢ of the isometry group of the Euclidean space R¥
given with the unit ball E is amenable when d = 1 and d = 2 and is not when d > 3. In
dimension 3, Hausdorff, Banach, and Tarski have obtained famous results which express
non-amenability in a spectacular way: the action of the rotation group SO(3) on the unit
ball in R3? is non-amenable; see [Haus—14, Appendix to Chapter X, p. 469]. Moreover,
two bounded subsets 4 and B of R3 with non-empty interiors are equidecomposable; this
means that there exist partitions A = |_|f-€:l A, B = |_|f~€:1 B;, and isometries g1, ..., gk
of R3 such that g1 A1 = B, ..., gxAx = By; see [BaTa—24].

In [Sier—46], Sierpinski saw that any finitely generated subgroup of the isometry group
of R is of subexponential growth (indeed of polynomial growth), and that this implies that
the action of this isometry group on R is not paradoxical. The argument shows essentially
that the isometry group of R is supramenable and much more (see below).

In [AdSr—57, Theorem 2], it is shown that a finitely generated group of subexponential
growth is amenable.

Later, Rosenblatt showed much more. He introduced the terminology “supramen-
able”, and he defined a group to be exponentially bounded if all its finitely generated
subgroups are of subexponential growth. He showed that exponentially bounded groups
are supramenable. Moreover, a finitely generated solvable group either has a nilpotent
subgroup of finite index, and thus is of polynomial growth and supramenable, or is not
supramenable and contains a free semigroup on two generators, and thus is of exponen-
tial growth [Rose—74]. Rosenblatt also conjectured that an amenable group which has
no subsemigroup free on two generators should be supramenable, but this was disproved
by examples of Grigorchuk: for each prime p, there exists a finitely generated amenable
p-group which is not supramenable [Grig—87].

It is unknown whether there exist finitely generated groups of exponential growth
which are supramenable.

We reproduce now Sierpinski’s argument, cast in the more general situation of a
group I' acting on a set X (instead of the affine group of R acting on R) and a non-
empty subset £ of X. Suppose that there exists a paradoxical decomposition of E:
there exist as above subsets A1, ..., Ag, B1,..., By of E and a subset S of elements
1>+, 8k N1, ..., e of T (not necessarily distinct from each other) such that

14

j=1 i=1

The following argument shows that the subgroup of I' generated by S has exponential
growth.
k ¥ .. . . .

Set A = |l;_, Ai, B = |l;—, B;. Define bijections ¢: £ — A4 and y: E — B
by ¢(x) = gi_l(x) when x € g;A; and ¥(x) = hj_l(x) when x € h; Bj. Choose
Xxo € E. Observe first that ¢(xg) # ¥ (xo), because A and B are disjoint, then that
0p(x0), eV (x0), Yo(x0), Y (xo) are also distinct, because ¢ and i are injective and
AN B =0, and so on. This shows that, for any positive integer 7, the 2" words of length n
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in ¢ and ¥ are maps E — E with distinct values at xo. For any of these words, say y, the
value y(xg) is of the form 51_1 1 ---s;l(xo), for 51,52, ...,5, € S. It follows that the
subgroup of I" generated by S has at least 2" distinct elements y of word length £5(y) <n,
and this ends the argument.

Sierpinski’s argument shows that a group I which can act on a pair X D E such that E
has a paradoxical decomposition has a finitely generated subgroup of exponential growth.
By contraposition, it follows that a finitely generated group of subexponential growth is
supramenable, a result much stronger than the one in [AdSr—57], and a proof much more
direct than the one in [Rose—74].

S

7. Hans Ulrich Krause and finitely generated abelian groups
with isomorphic Cayley graphs (1953)

In his thesis [Krau—-53, Satz 16.1], Krause shows that two finitely generated abelian
groups have isomorphic Cayley graphs with respect to well-chosen generating sets if
and only if the two following conditions are satisfied: (i) the two groups have the same
rank, and (ii) their torsion groups have the same order. In the proof, it is shown that the
rank of an abelian group I' generated by a finite set S is the polynomial growth rate

lim supy _, o (%) (In fact, this lim sup is a limit.)

8. Jacques Dixmier and polynomial growth of nilpotent connected
Lie groups (1960, 1966)

Lemma 3 of [Dixm—60] is the following. Let G be a nilpotent connected Lie group, i a
Haar measure on G, and S a compact subset of G. Then there exists an integer N (which
depends on G but not on S) such that u(5¥) = O(k™) when k — oo; in the particular
case of a generating compact subset S, this means that G is a group of polynomial growth.

The lemma is used by Dixmier in the proof of the following result. Consider a loc-
ally compact group G, the group algebra L!(G), and the two-sided ideal I of those
elements f € L'(G) such that, for every irreducible unitary representation 7 of G, the
operator 7 ( f) is of finite rank. If G is a nilpotent connected Lie group, then [ is dense
in L1(G). (The same property of I was established earlier for semisimple Lie groups by
Harish-Chandra.)

Polynomial growth has been established later for solvable connected Lie groups of
type (R) in [Dixm—-66].

9. Henry Dye and orbital equivalence (1963)

The following is established by [Dye—63, Theorem 1]. Let I" be a finitely generated group,
generated by a finite subset F. The notation of Dye is ; = |F| and hy = |Fk \ Fk=1|
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fork > 2.1If
inf "% _
k>1hy + -+ hy
then I' is approximately finite. In particular, finitely generated groups of polynomial
growth are approximately finite.

To define approximate finiteness, consider actions of countable groups on non-atomic
standard probability spaces by measure preserving transformations. Two such actions
of I'1 on X; and I'; on X, are orbit equivalent if there exists a measure preserving Borel
isomorphism f: X; — X5 such that f(I';x) coincides with the orbit I'; f(x) for almost
all x in X;. Consider some ergodic measure preserving action of the infinite cyclic group Z
on a non-atomic standard probability space; a basic example is the Bernoulli shift action 8
of Z on (Z/2Z)%. A countable group I" is approximately finite in the sense of Dye if, for
every ergodic measure preserving action « of I" on a non-atomic probability space X, the
actions « and § are orbit equivalent.

It is now known that an infinite countable group is approximately finite if and only if
it is amenable [OrWe-80, Hjor-05].

10. Grigorii Margulis, Anosov flows, and the growth of fundamental
groups (1967)

On a compact Riemannian smooth manifold M, an Anosov flow is a smooth flow
® = {®,};er which satisfies the following conditions. There exists a ®-invariant con-
tinuous splitting TM = E* @& ET @ ES of the tangent bundle of M, where the three
terms are, respectively, the unstable (or expanding) subbundle of TM, the line bundle
tangent to @, and the stable (or contracting) subbundle of 7M, and there exist constants
v > 0, ¢ > 0, such that

(@)« @)|| = ce”|lv]] and [[(D_)«)|| < ce V*|v| forallve E*andt >0
and
(@)« < ce v and [[(P_;)«(V)] = ce’|lv|| forallv e ESandt >0

(the two inequalities for (®_;)«(v) follow from the two inequalities for (®;)«(v),
see [AnSi—67, p. 121]).

In one of his first published papers, Margulis shows that if a 3-dimensional man-
ifold M has an Anosov flow, then the fundamental group of M has exponential
growth [Marg—67]. This has been generalized to manifolds of higher dimensions and
Anosov flows with one of the subbundles E¥, E* of rank one [PITh-72].

For the contrast, let us quote the following result of Franks. On a compact Riemannian
smooth manifold M, a €' map f: M — M is expanding if there are constants A > 1 and
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¢ > Osuchthat | Tf™v]|| > cA™|v| forall v € TM and m > 1. Here is the result: if a com-
pact manifold admits an expanding self-map, then its fundamental group has polynomial
growth [Fran—70, Theorem 8.3].

11. Harry Kesten and recurrent random walks on groups (1967)

Let I' be a finitely generated group. A symmetric probability measure p on I' such that
{y € ' | u(y) > 0} is a finite generating set gives rise to a random walk on I". The group I"
is recurrent if there exists such a measure such that the associated random walk is recur-
rent (equivalently if for any such measure the associated random walk is recurrent). It is
a classical theorem of Pélya that the simple random walk on Z is recurrent if d < 2 and
transient if d > 3 [Poly-21], and it has been known since at least 1962 that an infinite
finitely generated abelian group is recurrent if and only if it is a finite extension of Z or a
finite extension of Z? [Dudl-62].

In his thesis [Kest—59], Kesten introduced the subject of random walks on count-
able groups (not necessarily abelian groups, as in the work of Pdlya and a few others).
Later, he revisited the subject once in [Kest—67]. His work is put in historical perspective
in [SCZh-21]. Kesten asked how the existence of a recurrent random walk on a group
is related to its growth type; in particular, he conjectured that a finitely generated group
of exponential growth does not have any recurrent random walk [Kest—67, Conjecture 4].
The conjecture was made more precise (the growth of a recurrent group is at most quad-
ratic) and generalized to second countable locally compact groups; see the introduction
of [GuRa—12]. For discrete groups, the final result is due to Varopoulos (1986): a finitely
generated group is recurrent if and only if it is of at most quadratic growth, if and only if
it is either finite, or a finite extension of Z, or a finite extension of Z?; see [VaSC-92]. (A
finitely generated group I' is of at most quadratic growth if there exists a constant C > 0
such that (T, S; k) < Ck2? forallk > 1.)

12. Generating functions

To encode a sequence (ag )x>o of integral numbers, several types of series or functions can
be used, and the best choice depends on the subject. One choice is the ordinary generating
Sfunction of the sequence (ax)r>o:

3(z) = Zakzk e Z[z].

k=0

When X (z) converges for z small enough and whenever possible, we like to identify the
“simple function of analysis” of which X(z) is the Taylor series at the origin. There is a
rich source of examples and theorems on these generating functions in the book [FISe—09].
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An early example occurs in a letter of Euler to Goldbach dated September 4, 1751.
The letter is reproduced partly in [FISe—09, Section I.1] and in full in [Euler, Letter 154,
pp- 489-491]. (In [Knut-97, Section 1.2.9], Knuth mentions three still earlier appearances
of generating functions by de Moivre, Stirling, and Euler in connection with numbers of
partitions of integers.) In his letter, Euler considers the number ¢ of decompositions of a
convex (k + 2)-gon in triangles; set moreover co = 1. The generating function of (cx)x>0

D erzt =142+ 227 452 + 14z% + 4227 13220 + 42927 + -

k>0
o0
2:6-10-...-(4k =2 1—41—-4
14 Z ( )zk _ v z
k:12-3-4-...- k+1) 2z
is algebraic. (Euler does not consider our cg, and writes a instead of our z, so that his
series is rather 1 + 2a + 5a2 + 144> + 424° + - = 1=24-¥1=%4 ) The numbers ¢ are

now known as Catalan numbers and are often written in terms of binomial coefficients:
k= k+—1 (Zkk ) For 214 different kinds of objects that are counted using Catalan numbers
and for a historical survey, see [Stan—15].

The simplest sequences are those which satisfy a linear recurrence relation; they
correspond exactly to rational generating functions. More precisely, consider a positive
integer d and complex numbers ¢1, ¢2, ..., qq with gz # 0. Set Q(z) = 1 + g1z +
G222+ Fqaz? = ]_[j=1(1 — yjz)df, where y1, ..., ye € C are distinct complex num-
bers and dy, ..., d, their multiplicities; note that Z_f=1 d; = d. Then, for a sequence
(ar)k>o0, the following conditions are equivalent:

R1) > k=0 apzk = ggg for some polynomial P(z) of degree less than d,

(R2) agta + qrax+a—1 + qaak+a—2 + -+ qaax = 0 forallk > 0,

R3) a = ijl P; (k)y]].c for all k > 0, for some polynomials P;(z) of degree less

than d; (with j =1,...,e).

For this, and for variations (when deg P > d or when Q(z) = (1 — z2)%), see [Stan—96,
Chapter 0].

The Fibonacci sequence (Fi)r>0 = (0,1,1,2,3,5,8,13,21,34,...) is a notorious
example:

(1) generating function 3 %>, Frz* = T

(2) linear recursion Fyy, — Fyy1 — Fx = O forall k > 0, and
(3) Binet’s formula Fy = —=(1£¥3)* — 1 (1=¥5)¥ published by Binet in 1845

) 5102 NE
but already in [Ber—1728, Section 7] and [Eul-1767, p. 128].

13. Growth series for finitely generated groups

Let I' be a finitely generated group and S a finite generating set of I". For k > 0, recall
that o (T, S; k) is the cardinal of the sphere of radius k and (T, S; k) is the cardinal of
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the ball of radius k in I". The growth series of the pair (', ) is the generating function

o0

(T, S;z) = ZU(F,S;k)Zk = ZZZS(”) € Z]z].
k=0 yel

The radius of convergence of this series is strictly positive and is e(G—l,S), where e(G, S) =
limg_,o0 0(T, S k)'/* is the exponential growth rate of the pair (G, §). It is sometimes
better to consider

(T, S:2)
1—z

B(.S:z) =Y B(.S:k)zk =
k=0

For example, for the infinite cyclic group I' = Z generated by S = {1}, we have

1
S(Z,{1};2) =142z 4222 4223 4224 4225 ... = 1+Z. (13.1)
—Z

More generally, for the free abelian group Z" generated by a basis S,, we have

(2", Sp:z) = i (Xn:(fz)(k +Z:f_l))2k _ th)n

k=0 \{=0

The infinite sum simplifies to Ezo:04kzk, E,‘f’zl (4k% + 2)2", E,‘z"zl WZ", when
n = 2,3, 4, respectively [OEIS, A008574, A005899, and A008412].

Growth series have been studied for several other classes of groups. For a Coxeter sys-
tem (T, S) with S finite, the growth series X (T, S'; z) is a rational function (see [Bour—68,
chap. IV, § 1, exerc. 26 and § 4, exerc. 10]). This function has interesting values; for
example, its value at 1 is rational and is the inverse of the Euler—Poincaré characteristic of
the group I' [Serr—71, Proposition 17, p. 112].

For a Gromov hyperbolic group I" and an arbitrary generating set S, Gromov has
shown that X (T, S'; z) is a rational function [Grom—87, Corollary 5.2.A’]. This generalizes
aresult of Cannon [Cann—84, Theorem 7]. There are a few other finitely generated groups
for which X (I, S; z) is known to be rational for all S: virtually abelian groups ([Bens—83],
quoted again below) and the Heisenberg group (é E %) [DuSh-19].

There are some groups I with generating sets S such that X (I", §; z) is an irrational
algebraic function [Parr—92]. The growth series of a pair (I", §) can also be transcendental;
itis always transcendental when I is of intermediate growth [Mann—12, Chapter 15]. Stoll
showed that there are 2-step nilpotent groups I' with two finite generating sets S, T such
that X (I, S; z) is rational and X (T, T'; z) transcendental [Stol-96].

The first finitely generated groups of intermediate growth of which the asymptotics of
the growth series is precisely known appear in [BaEr—12].
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14. Hilbert series

Consider again the group I' = Z" for some n > 1 and an arbitrary finite generating set .S
As already stated above, there exists a polynomial P € Z[z] such that

P(2)
(1—z2)m
Here is one way to show this. The group algebra C[I'], with linear basis (8, ),er and mul-
tiplication defined by 8,8, = 8/, has a filtration C[['] = ( ;> Bx where B is the linear
subspace generated by {8, | £s(y) < k}; set moreover B_; = {0}. The associated graded
algebra A = Py »((Bk/Bk-1) is commutative and generated by a finite set of elements
of degree 1. It is a theorem of Hilbert that the Hilbert series

Y dime(Be/Br-1)z* = £(Z.S:2)
k>0

(7", S z) =

of such an algebra is rational of the form (IP_(Q,, ; for a proof, see, for example, [AtMa—69,

Theorem 11.1]. The observation that the growth series of (I, S) is the Hilbert series of an
appropriate graded algebra, and thus in particular a rational function of the form (IP_(j ;n ,
is due to several authors, including Wagreich, quoted in [Bens—83]; see also [Bill-84].
More generally, when T" is a virtually abelian finitely generated group and S an arbit-
rary finite generating set, the series X(I', S; z) is a rational function of which all poles
are roots of unity [Bens—83]; but we do not know whether this can be proved by using
a (non-commutative!) graded algebra, as used in the proof sketched above for abelian
groups.

The “theorem of Hilbert” refers to [Hilb—90, Theorem IV, p. 512]. In fact, Hilbert
shows that the series satisfies a condition like (R3) of our Section 12, rather than (R1).
It was already standard in this time to write “Hilbert series” which are rational functions
for the dimensions of the homogeneous components of a graded algebra. I am grateful to
Hanspeter Kraft for showing me that this can be found in the work of Sylvester on the
theory of invariants, around 1880 (see, e.g., papers 38, 40, and 59 in [Sylvester]) and also
to Michel Brion for showing me an even earlier work [Cayl-56, No 28] where Cayley
uses generating functions which are in fact Hilbert series, products of terms of the form
(1 — x*)2 (with aj positive or negative), to discuss covariant algebras and the fact they
are not (or they are . ..) finitely generated.

Hilbert series are also called Poincaré series, especially when they encode dimensions
of homology spaces; see [Babe—86].

15. Eugeéne Ehrhart and the number of integral points
in the multiples of a polytope (1962)

Consider a Euclidean space V' of dimension 7, with scalar product denoted by (- | -), a
lattice " in V/, that is, a subgroup of V' isomorphic to Z" generated by a basis of V,
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and a polytope P which is the convex hull of a finite subset of I'; for each non-negative
integer k, let Ep (k) denote the number of points in kP N I'. In 1962, Ehrhart published
a note on the numbers Ep (k) and the series ZZOZO Ep (k)zk [Ehrh—62, Brio—95]. For a
polytope of non-empty interior, this series is a growth series of the group I' &~ Z” for an
appropriate choice of generating set.

For the lattice Z" in R” and the convex hull P = Conv(zey,..., *e,), where
{e1,...,en} is the standard basis of R”, we have, with the notation of Section 13,
o0 n
1 1
3 Ep(k)z* = B@".Z' N P:2) = L I
Fard l—z\1-z

Other cases are studied from this point of view in [BaHV-99]. For example, when

V= {(xl,...,xn+1) e R | Z;’Ill X; = O}, =27""1'NV aZ", and P is the convex

hull of {£(e; —ej) |1 <i < j <n+1},

> 1 " (n\? 1 14z
Ep(k)z¥ =BT, TNP,z)= — J = P ,
kX:(:) p(k)z ( z) (1—z)yn+! ;(k) z 1—z ”(1_2)

where P, is the Legendre polynomial of degree 7.

16. Theta functions

Consider again a Euclidean vector space V' of dimension n and a lattice I" in V. For ele-
ments of I', consider no longer the word length as above, but rather the norm I' — R4,
x = ||x|| = /(x| x). The theta function of I is defined by Or(z) = ) el mTIxI? g0
that Or is a holomorphic function on the upper half-plane {r € C | Im(z) > 0}. When I is
an integral lattice, namely when (x | y) € Z for all x, y € T, the theta series is alternatively

viewed as a power series in ¢ = €'”":

or@ =Y ¢"F =3 lx el | (x|x)=r}lq"
r=0

xel

For example, when I = Z is embedded the standard way in the real line V' = R, the series
is
Oz(q) = 1+ 29 +2¢* +2¢° +2¢"° +2¢*° +--- = 63(q). (16.1)

where 03 is as above the third Jacobi theta function. More generally, for Z" embedded the
standard way in the standard Euclidean space R”, we have Oz (¢) = (63(g))" [CoS1-99,
Chapter IV, Section 5].

Nonzero coefficients of the series in formula (13.1) for X(Z, {1}; z) are the same as
nonzero coefficients of the series in formula (16.1) for ®z(g); is this more than a meaning-
less coincidence? It is tempting to speculate that theta functions could be of some interest
for other groups than lattices in Euclidean spaces.
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