
Groups Geom. Dyn. 19 (2025), 477–493
DOI 10.4171/GGD/884

© 2025 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Cone types and spectral radius of hyperbolic triangle
groups and hyperbolic tessellations

Megan Howarth and Tatiana Nagnibeda

Abstract. This paper is devoted to the study of tessellations of the hyperbolic plane, especially the
ones associated to hyperbolic triangle groups�.l;m;n/. We give a full description of the cone types
of these graphs and show that their number depends only on the defining parameters of the group.
We then use the cone type structure to provide estimates of the spectral radius for the simple random
walk on these tessellations, from above and from below.

To Slava Grigorchuk, with admiration

1. Introduction

An important characteristic of a random walk on a graph of uniformly bounded degree
is its spectral radius, which measures the rate of decay of probabilities of return to the
starting point. By the celebrated theorem of Kesten and by its subsequent extensions, the
graph is amenable, that is, fails the strong isoperimetric inequality, if and only if the spec-
tral radius of the simple random walk on it is equal to 1. In the non-amenable case, the
exact value of the spectral radius is typically quite difficult to compute, and explicit com-
putations have only been carried out for certain types of trees and tree-like graphs. The
spectral radius of the infinite d -regular tree is equal to 2

p
d � 1=d . It is an intriguing

problem to understand the nature of the spectral radius on infinite graphs which are not
trees or quasi-trees.

Regular tessellations of the plane appear in various areas of science since the nine-
teenth century and lead not only to beautiful pictures but also to deep mathematical results.
A ¹k; dº-tessellation, with k and d positive integers, is, according to Schlegel, as cited by
Coxeter [10], an “infinite collection of regular k-gons, d at each vertex, filling the whole
plane just once”. In order for the tessellation to be hyperbolic, the parameters must satisfy
the condition that

.k � 2/.d � 2/ > 4: (1.1)
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Among the extensive literature on the subject, more recent papers relevant to our study
include [4, 7, 12, 15, 25].

In this paper, we concentrate our attention on hyperbolic tessellations which are
Cayley graphs of hyperbolic triangle groups. By construction, the latter tile the hyper-
bolic plane in such a way that three polygons meet per vertex and they may have one, two
or three different numbers of sides, depending on the group.

The notion of cone types was introduced by Cannon in the 80s. He used it to compute
growth functions of surface groups and some triangle groups [7,9] and ultimately to prove
rationality of growth functions for all Gromov hyperbolic groups [8]. Beside Gromov
hyperbolic groups, Coxeter groups with Coxeter generating sets provide another class of
Cayley graphs that have finitely many cone types, as was proven by Brink and Howlett [6].
A finite automaton describing the structure of cone types is a valuable combinatorial tool,
enabling the study of infinite objects with only finite information. They have been used
for example to compute the growth series of groups and graphs with finitely many cone
types [4, 7, 15, 16]. Another interesting application is to the study of random walks and to
the spectral theory [4, 13, 14, 18, 19, 22–24, 26].

The main objective of this paper is to describe combinatorially the cone types of
hyperbolic triangle groups and subsequently make use of them to estimate the spectral
radius of the simple random walk on these groups. This approach has been applied to
the surface groups by the second author and by Gouëzel in [14, 23] to estimate the spec-
tral radius, respectively, from above and from below. Different methods for estimating
the spectral radius on surface groups from above were explored in [3]. Bartholdi and
Ceccherini-Silberstein [4] analysed cone types of ¹k;dº-tessellations with k� 3 and d > 3
and suggested a method to estimate the spectral radius from below. In slightly different
but related directions, estimates for the drift of the simple random walk on these graphs
were obtained by dynamical methods by Pollicott and Vytnova [28], and connected con-
stants of self-avoiding random walks on them were estimated by Madras and Wu [20] and
Panagiotis [25].

The outline of the paper is the following. We start with Section 2 where we describe
the framework and give the necessary background on graphs, cone types, hyperbolic
tessellations, triangle groups and random walks. The main contribution of Section 3 is
Theorem 3.1, describing the cone types of hyperbolic triangle groups. Section 4 utilises
these cone types to give upper and lower bounds for the spectral radius of the simple ran-
dom walks on the associated Cayley graphs. We illustrate our method with the groups
�.4; 4; 4/ and �.2; 3; 7/. Finally, we summarise our numerical estimates in Section 5
and compare them to the combinatorial curvature of the corresponding graphs and to the
estimates of the drift of the random walk from [28].
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2. Preliminaries

2.1. Cone types

The graphs studied in this work are all assumed to be locally finite, infinite, connected and
simple, although the definitions that follow are also applicable in a more general setting.
To set the notation, let � D .V; E/ be such a graph, with vertex set V , edge set E and
fixed base point x0 2 V .

Let x; y 2 V and denote by jxj the distance from x0 to x. We say that x is a prede-
cessor of y if they are connected by an edge and jxj < jyj. In this case, y is a successor
of x.

The degree of x 2 V , deg.x/, is the number of edges emanating from x.

Definition 2.1. Let x 2 V . The (graph) cone at the vertex x, denoted C.x/, is the induced
subgraph of � rooted at x such that its vertices form the set

V.C.x// D ¹y 2 V j x belongs to a geodesic joining x0 to yº

and its edges are those of � that join two vertices of V.C.x//.
Two vertices x; y 2 V have the same cone type if their cones are isomorphic as rooted

graphs. If the number of isomorphism classes of the cones C.x/; x 2 V , is finite, then �
is said to have finitely many cone types.

Remark 2.2. Cannon introduced the notion of cone type for Cayley graphs [8]; see
also [11] where he defines the cone as a set of words in the generators, and the isomorph-
ism between the cones has to be realised by the group multiplication. These cone types are
sometimes called word cone types, and in general they define a finer equivalence relation
on the set of vertices than the graph cone types that we defined above and that we will use
in this paper.

It follows from Definition 2.1 that each vertex belongs to exactly one cone type and
the latter determines both the number of its successors and their cone type. These cone
types can be encoded in a matrix, defined as follows.

Definition 2.3. The adjacency matrix of the set of cone types of � is a square matrix such
that for all cone types i; j , one has

Mi;j D j¹y 2 S.x/ j y has cone type j ºj; (2.1)

where the vertex x has cone type i and S.x/ � V is the set of successors of x.

It follows thatM n encodes the number of paths of finite length n between each pair of
vertices. If furthermore this matrix is Perron–Frobenius, that is, if M n has only positive
entries for some power n, then the set of cone types is said to be irreducible. This property
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is equivalent to the cone of each vertex containing vertices of each type. It may happen
that finitely many vertices in the vicinity of the base point x0 do not satisfy this property;
we discard them. The reduced set of cone types is denoted by T .

Another way to describe the adjacency of the cone types is to encode the information
into a directed graph, with the cone types as vertices and such that two vertices i; j are
joined by Mi;j oriented edges from i to j . Since two vertices of same cone type have
same degree, denoted by di , the number of predecessors of a vertex of type i , ri , is well
defined:

ri D di �
X
j

Mi;j : (2.2)

For each i such that ri ¤ 1, we index the corresponding vertex by this number. For an
example, see Figure 2. Notice also that some vertices (0 and 1 here) are not reachable
from any other state; they correspond to the ones we delete to get the irreducible set of
cone types.

2.2. Tessellations of the hyperbolic plane

Recall that a regular tessellation ¹k;dº of the hyperbolic plane partitions it into congruent
k-gons, called tiles, in such a way that exactly d polygons meet at one vertex or along
precisely one edge, with no gaps or overlapping, and satisfying (1.1).

A family of examples of such tessellations is given by the triangular tessellations,
where the tiles are triangles (so, k D 3) whose angles are �

l
, �
m

and �
n

. In this case, we see
by (1.1) that a triangular tessellation exists for each d � 7. Taking the planar dual tiling
of this tessellation yields a tessellation of the hyperbolic plane by polygons, namely 2l-,
2m- and 2n-gons. Its 1-skeleton is the Cayley graph of the corresponding triangle group
�.l; m; n/; see, for instance, Figure 1 where �.4; 4; 4/ is illustrated. In fact, it has been
shown by Magnus [21] that such a triangle is indeed the fundamental domain of the group
�.l; m; n/ and that the symmetry group of this tessellation is generated by reflections in
the sides of a triangle as above [10].

Definition 2.4. Let l; m; n 2 Z�2 and denote by � a triangle defined by the angles �
l
; �
m

and �
n

. Embed� into the appropriate space according to the nature of the sum of its angles
? D �

l
C

�
m
C

�
n

: the sphere (if ? > �), the Euclidean plane (if ? D �) or the hyperbolic
plane (if ? < �). Let L;M;N be the sides of�, situated, respectively, opposite the angles
�
l
; �
m
; �
n

and letL;M;N be the reflections with respect to the sidesL;M;N , respectively.
The triangle group �.l;m; n/ is the group generated by the three reflections L;M;N .

It can be shown that any triangle group �.l;m; n/ admits the following presentation

�.l;m; n/ D hL;M;N j L2 DM 2
D N 2

D .LM/n D .MN/l D .NL/m D ei (2.3)

and moreover belongs to the class of Coxeter groups of finite rank, which we know to
have finitely many cone types.
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Figure 1. The two dual tessellations associated to �.4; 4; 4/, ¹3; 8º and ¹8; 3º.

2.3. Random walks and spectral radius

Let � D .V;E/ be a graph as in Subsection 2.1. Starting from a fixed base point x0 2V , we
successively take a step from a vertex x 2 V along one of the incident edges, towards one
of its neighbouring vertices y 2 V ; this is the nearest neighbour random walk (NNRW).
In the particular case when each edge is chosen with equal probabilities 1

deg.x/ , it is called
the simple random walk (SRW) on � . These probabilities can be encoded in a stochastic
transition matrix:

P D .p.x; y//x;y2V ; where p.x; y/ � 0 and
X
w2V

p.x;w/ D 1 8x 2 V:

More generally, we can also consider p.n/.x; y/, the probability of reaching the ver-
tex y from the vertex x in n steps, which is encoded in the n-th power of the transition
matrix, P .n/. The generating function of the transition probabilities is called the Green
kernel:

G.x; y j z/ WD

1X
nD0

p.n/.x; y/zn;

where x; y 2 V and z 2 C. We are interested in determining its radius of convergence,
denoted byRGk , which is independent of x;y when � is connected and hence it is enough
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to study that of G.x0; x0 j z/. We already know that RGk � 1 since for all jzj < 1,

1X
nD0

p.n/.x0; x0/z
n
�

1X
nD0

zn <1;

as p.n/.x0; x0/ � 1. The inverse of RGk is called the spectral radius of the random walk

� D
1

RGk
D lim sup

n!1

n

q
p.n/.x0; x0/: (2.4)

In d -regular graphs, � is indeed the spectral radius of P viewed as a bounded self-adjoint
operator on the Hilbert space l2.V /.

Similarly to the Green kernel, we may consider the generating function of q.n/.x; y/,
the probability of reaching y 2 V from x 2 V for the first time after exactly n steps, given
by

F.x; y j z/ D

1X
nD1

q.n/.x; y/zn:

By definition, F.x; x j 0/ D 0 for x 2 V and an important property of the function
F.x; x j z/ is that it is analytic (thus continuous) in its disc of convergence. It is naturally
related with the Green kernel within its disc of convergence by the formula

G.x; x j z/ D
1

1 � F.x; x j z/
: (2.5)

Since for every x;y 2 V and n � 0, q.n/.x; y/ � p.n/.x; y/, the opposite inequality holds
for the radii of convergence of their respective generating functions, RF � RGk . More
precisely, we deduce from above that they are related by [23]

RGk D

´
RF if F.x; x j RF / � 1I

z0 otherwise;
(2.6)

where z0 2 R�C is the unique value for which F.x; x j z0/ D 1.

3. Cone types of hyperbolic triangle groups

We will exploit the symmetries of the hyperbolic tessellations to describe their cone types.
Depending on the parameters l; m and n, there are different cases to consider; so for an
accurate analysis, we partition the hyperbolic triangle groups into three families: when all
three parameters are equal, l D m D n; when only two of them coincide; and when all
three are different. It is interesting to note that in each case, the dependence of the number
of cone types is linear in the parameters.

Theorem 3.1. The number of cone types of a hyperbolic triangle group �.l; m; n/ with
standard presentation (2.3) is as follows:
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(i) �.n; n; n/ has nC 2 cone types,

(ii.1) �.l; n; n/ has l C 2nC 1 cone types if l � 3,

(ii.2) �.2; n; n/ has 2nC 5 cone types,

(iii.1) �.l;m; n/ has 2.l CmC n/ � 2 cone types if l � 3,

(iii.2) �.2;m; n/ has 2mC 2nC 7 cone types if m � 4,

(iii.3) �.2; 3; n/ has 2nC 21 cone types,

where l , m and n are distinct integers � 2, satisfying 1
l
C

1
m
C

1
n
< 1.

Proof. We proceed1 by analysing case by case.

(i) This first family with one defining parameter corresponds to the triangle groups of
the form �.n; n; n/, yielding a regular ¹2n; 3º-tessellation of the hyperbolic plane. Since
the graph is bipartite, no two adjacent vertices have the same norm. Consequently, each
2n-gon has a vertex of minimal norm (its base) and one of maximal norm (its summit).
The summit being the only vertex that is not also the base vertex of any 2n-gon, it is
the only vertex with two predecessors and one successor. This yields one cone type for
the identity, n � 1 cone types placed symmetrically around the 2n-gon, one cone type
for the summit of the 2n-gon and finally one cone type for its unique successor. Their
corresponding adjacency matrix is0BBBBBBBBBBBB@

0 3 0 0 � � � 0 0 0

0 0 2 0 � � � 0 0 0

0 0 1 1 � � � 0 0 0

0 0 1 0 � � � 0 0 0
:::

: : :
:::

0 0 1 0 � � � 0 1 0

0 0 0 0 � � � 0 0 1

0 0 0 2 � � � 0 0 0

1CCCCCCCCCCCCA
:

(ii) The triangle groups �.l; n; n/ defined by two parameters tile the hyperbolic plane
with two sorts of polygons, 2l-gons and 2n-gons, with one 2l-gon and two 2n-gons
meeting at each vertex. To accurately describe the cone types in this situation, we must
distinguish two subcases: l D 2 and l � 3.

Case 1 .�.l;n;n/; l � 3/: We study the graph inductively and start by looking at the three
polygons (one 2l-gon and two 2n-gons) around the identity, which has its own unique
cone type. It is clear that the cone types around the 2l-gon, except that of its summit,
should come in pairs, placed symmetrically around the polygon; this yields l new cone

1We could follow the geometric approach of [27] as was done by the first author in [17], but it is better
suited to describe the word cone types, whereas for us it is enough to consider the graph cone types.
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types. The cone types around the 2n-gons are however not symmetrical, since half of the
edges separate a 2l-gon and a 2n-gon and the other half separate two 2n-gons. We thus
have 2n � 2 new cone types (as the identity and the one at the intersection of the 2l-gon
and 2n-gon have already been counted). Searching further for new cone types to arise,
we see that only vertices that are the successors of the summits of each of the two kinds
of polygons add a new type each. Hence, in total we get 1C l C 2n cone types, and we
deduce the corresponding adjacency matrix in the same way as above.

Case 2 .�.2; n; n//: The parameter l being equal to 2 introduces two extra cone types
that do not arise in Case (ii.1), which are due to the vertices that are both the summit of a
4-gon and the successor of a summit of a 2n-gon.

(iii) This third family corresponds to the tessellations of the hyperbolic plane asso-
ciated to the groups �.l; m; n/ defined by three different parameters, hence using three
different polygons: 2l-gons, 2m-gons and 2n-gons; we partition them into three subcases.

Case 1 .�.l; m; n/; l � 3/: This case can be treated analogously to Case (ii.1), except
that here we get 2l cone types (counting that of the identity) instead of l coming from the
2l-gon due to the loss of symmetry. Similarly, the 2n- and 2m-gons give rise to 2n� 2 and
2m � 3 cone types, respectively, taking care not to count any twice. The only new cone
types remaining are again the successors of the summits of the three polygons, thus yield-
ing 2.l C mC n/ � 2 cone types, which may naturally be described by their adjacency
matrix.

Case 2 .�.2;m; n/;m � 4/: We use the same method as for Case (ii.2) and find that the
parameter l D 2 yields the same particularities.

Case 3 .�.2; 3; n//: This is the most technical case, due to the fact that l D 2 and
jl �mj D 1. It is treated analogously to the previous one but yields an even higher number
of cone types, induced by the fact that many vertices are simultaneously the summit of a
polygon and the successor of the summit of another.

Example. The Cayley graph of �.4; 4; 4/ has 6 cone types, which are described by the
adjacency matrix 0BBBBBBB@

0 3 0 0 0 0

0 0 2 0 0 0

0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 2 0 0

1CCCCCCCA ;
where the emboldened part corresponds to the reduced set of cone types, and by the
associated digraph, shown in Figure 2. In fact, further work, as was done by the first
author in [17], leads to the geometric representation of the cone types of such groups (see
Figure 3).
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Figure 2. The digraph associated to the set of cone types of the group�.4; 4; 4/. The reduced set T
of cone types contains only the emboldened vertices.
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Figure 3. The 6 cone types of �.4; 4; 4/.

4. Estimating the spectral radius

The two methods we use to bound the spectral radius on a tessellation from above and
from below are inspired by the work on surface groups, respectively, by the second
author [23] and by Gouëzel [14]. We presently implement their methods to our considered
tessellations of the hyperbolic plane associated to hyperbolic triangle groups.

4.1. Upper bound

The method presented here was introduced in [23] and can in principle apply in the context
of locally finite graphs that have finitely many cone types. The idea is to reduce the study
of the SRW on such a graph � to that of an NNRW on the tree of geodesics associated
to � , whose structure we will see is compatible with the cone types of � . The spectral
radius in such trees is computable [24].
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Definition 4.1 ([23]). The tree of geodesics T� of � has the set of vertices V.T�/ in one-
to-one correspondence with the set of geodesic segments in � of the shape ¹Œx0; x�x2V º,
and two such vertices 
1; 
2 2 V.T�/ are connected by an edge if one of the corresponding
geodesic segments in � is a one-step extension of the other. Its base vertex 
0 corresponds
to the empty geodesic segment Œx0; x0� in � .

By construction, there is a projection from T� onto � , given by � W Œx0; x� 7! x. Since
�.C.
//D C.�.
// for every 
 2 V.T�/, one can derive a set of cone type for the vertices
of T� from the one defined on the vertices on � , showing in particular that both graphs �
and T� have the same number of cone types. In what follows, suppose that � has K C 1
cone types with respect to the base point x0.

Let us consider the NNRW on this tree defined as follows. Recall that in a tree rooted
at x0, each vertex x 2 V n ¹x0º has exactly one predecessor, denoted pr.x/, and any two
vertices are joined by a unique path. Furthermore, we impose compatibility with the cone
types so that p.x; pr.x// depends only on the cone type of x 2 V and p.x; y/ depends
solely on the cone types of x 2 V and any successor y 2 S.x/. This way, we may denote
the above probabilities, respectively, by p�i for a vertex x of type i � 1 and by pi;j for ver-
tices x of type i and y 2 S.x/ of type j . Using these notations, the transition probabilities
of the NNRW PT are8̂<̂

:
pi;j D

1

di
; for i D 0; : : : ; KI j D 1; : : : ; KI

p�i D
ri

di
; for i D 1; : : : ; K;

(4.1)

where di and ri , defined in (2.2), are taken relatively to the original graph � . The following
equalities then hold: 8̂̂̂̂

<̂̂
ˆ̂̂̂:
p�i C

KX
jD1

Mi;jpi;j D 1; for i D 1; : : : ; KI

KX
jD1

M0;jp0;j D 1;

where Mi;j are the entries of the adjacency matrix of the cone types.
We now state the following theorem from [23], without proof.

Theorem 4.2. Let � be a graph as above, that is also bipartite. Denote by � the spec-
tral radius of the simple random walk on � and by �T the spectral radius of the nearest
neighbour random walk PT on its tree of geodesics. Then,

� � �T :

In a similar way to the transition probabilities p.x; pr.x// above, one can show that
q.n/.x; pr.x// depends only on the cone type of x 2 V n ¹x0º for any n 2 N, so we can
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unambiguously denote by q.n/
�i the probability of returning to x0 for the first time after n

steps, starting from a vertex of type i . The corresponding generating function is then given
by, for a vertex x of type i D 0; : : : ; K,

F�i .z/ WD F.x; pr.x/ j z/ D
1X
nD0

q
.n/
�i z

n:

These power series satisfy [23] the following system of polynomial equations for i D
1; : : : ; K:

F�i .z/ D p�iz C z

KX
jD1

Mi;jpi;jF�i .z/F�j .z/: (4.2)

This means that for each i D 1; : : : ; K, there exist polynomials Pi .w; z/ such that

Pi .F�i .z/; z/ D 0: (4.3)

These functions F�i .z/ are thus solutions of a polynomial functional equation, and it
follows that each one can be continued to an algebraic function for which its radius of
convergence RF�i is a singularity. So, for each index i 2 ¹1; : : : ; Kº, denote by

Pi .w; z/ D a
.i/
0 .z/w

n
C a

.i/
1 .z/w

n�1
C � � � C a.i/n .z/

the corresponding polynomial for which (4.3) holds. In practice, it is obtained by perform-
ing the elimination of all variables bar one, say wj , from the system of equations (4.2).
As the radius of convergence of the function F�j .z/ is a (real and positive) singular point,
it is known [2] that it is found either among the (real positive) roots of the polynomial
a
.j /
0 .z/ or among the (real positive) roots of the discriminant of Pj .F�j .z/; z/. Moreover,

when the set of cone types is irreducible, which we can always assume to be the case in
the class of graphs that we consider, via a relabelling of the cone types, the radii of conver-
gence RF�i all coincide for i 2 ¹1; : : : ; Kº. Finally, we deduce the radius of convergence
of the Green kernel, first using the fact that the generating function F.x0; x0 j z/ can be
expressed in terms of these functions, by

F.x0; x0 j z/ D

KX
jD1

M0;jp0;j zF�j .z/; (4.4)

and then applying the relation (2.6). We conclude by taking its inverse to get the spectral
radius as in (2.4).

Examples. We illustrate this method with two hyperbolic triangle groups, �.4; 4; 4/ and
�.2; 3; 7/. We choose these two examples as the first illustrates the simpler case of a
regular tiling and the latter is the extreme hyperbolic case, in the sense that it maximises
the sum 1

l
C

1
m
C

1
n
< 1. The first step is to use the description of the cone types from

Section 3 to construct their trees of geodesics, both depicted in Figure 4, respectively. We
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Figure 4. Parts of the trees of geodesics of �.4; 4; 4/ (left) and �.2; 3; 7/ (right).

then reduce the sets of cone types, before determining the transition probabilities for the
NNRW on the tree of geodesics following equation (4.1). Given these data, we follow the
steps explained above to compute their spectral radius.

Let us give the detailed computations for�.4; 4; 4/. As we consider the reduced set of
cone types T D ¹2; 3; 4; 5º, thus having in particular deleted type 0, we must pick a new
starting point e
0 in such a way that its successors’ cone types take value in the reduced
set. We conveniently choose it to have cone type 4, so the generating function becomes

F.e
0; e
0 j z/ (4.4)
D

1

3
zF�5.z/; (4.5)

from which we deduce by (2.5) the expression of the Green kernel in its disc of conver-
gence. Then, the functions F�i .z/ for i 2 ¹2;3;4;5º satisfy the recursive relations of (4.2),
which together lead to the system of equations (using the notation F�i .z/Dwi for clarity)8̂̂̂̂

<̂
ˆ̂̂:
z C zw22 C zw2w3 � 3w2 D 0

z C zw2w3 C zw3w4 � 3w3 D 0

2z C zw4w5 � 3w4 D 0

z C 2zw3w5 � 3w5 D 0:
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Using the program CoCoA5 [1], we perform the elimination of the variables w2; w3
and w4 as only w5 appears in (4.5). It results that w5 satisfies the polynomial equation

P5.w5; z/ WD 729w
3
5 � 729w

2
5z � 486w

4
5z C 243w5z

2
� 324w35z

2
C 81w5

5z2

� 27z3 C 324w25z
3
C 297w45z

3
� 72w5z

4
C 117w35z

4
�36w5

5z4

C 6z5 � 69w25z
5
� 84w45z

5
C 6w5z

6
C 16w35z

6
C 8w5

5z6
D 0;

of which we study the real positive roots of a.5/0 .z/ (emboldened) and those of the dis-
criminant of P5.w5; z/. There are several numerical candidates for RF�5 , that all come
from the roots of the discriminant of P5.w5; z/, so we use Mathematica to visualise loc-
ally the real parts of the solutions to P5.w5; z/D 0. From the picture, we determine which
branch corresponds to F�5.z/, by comparing each one against the known properties of the
F�j .z/ functions. We conclude that its radius of convergence is equal to

RF�5 D 1:0321531591:

As this is also the radius of convergence RF of F.e
0; e
0 j z/, it remains to deduce
that of the Green kernel. We verify that F.e
0; e
0 j RF / < 1, so by (2.6) we have
RF�5 D RF D RGk and thus finally, (2.4) implies

�T�.4;4;4/ D
1

RGk
D 0:9688484613:

We proceed in the same way for the other group �.2; 3; 7/ and get the following result:

�T�.2;3;7/ D 0:9460344380:

4.2. Lower bound

As every group on d generators is a quotient of the free group with the same number of
generators, there is a trivial lower bound to its spectral radius, � � 2

p
d�1
d

. In the case
of hyperbolic triangle groups, d D 3, hence � � 0:942809. To improve this lower bound
estimate of the spectral radius, we use the method developed by Gouëzel in [14] that can
in principle apply to graphs with finitely many cone types.

Let sn.i/ be the number of vertices of cone type i on the n-sphere, then it is clear that
it satisfies the following recurrence formula

snC1.i/ D
X
j

1

ri
Mj;isn.j /;

where Mj;i are the entries of the adjacency matrix (2.1) of the set of cone types. This
suggests to consider the matrix zM , defined by

zMi;j D
1

ri
Mj;i ;
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so that snC1 D zMsn. Define also the matrices

M 0 D D�
1
2M TD

1
2 ;

where D is the diagonal matrix with entries Ai , a positive Perron–Frobenius eigenvector
of zM , and

M 00 D
M 0 CM 0T

2
:

We now state without proof the following theorem from [14].

Theorem 4.3. Let � be a graph as above, that is also bipartite and regular of degree d.
Let T D ¹1; : : : ;Kº be its irreducible set of cone types andM the adjacency matrix of T .

Then,

� �
2�

d
p
�
; (4.6)

where � > 0 and � > 0 are the Perron–Frobenius eigenvalues of zM andM 00, respectively.

Remark 4.4. As shown in [14], this lower bound corresponds to the spectral radius of a
random walk on the space Z � T , which is, using the notations introduced above, defined
by the transition probabilities

p..n; i/; .nC 1; j // D
Mi;j

d
I p..n; i/; .n � 1; j // D e��

AjMj;i

Aid
:

Examples. We again illustrate this algorithm with the groups �.4; 4; 4/ and �.2; 3; 7/.
The description of the cone types given in Section 3 gives all the data required to apply
Theorem 4.3.

Taking the reduced set of cone types of�.4; 4; 4/; the corresponding first matrices are

M D

0BB@
1 1 0 0

1 0 1 0

0 0 0 1

0 2 0 0

1CCA and zM D

0BB@
1 1 0 0

1 0 0 2

0 1=2 0 0

0 0 1 0

1CCA :
We then derive from them the other three matrices that appear in the algorithm. Proceed-
ing in the same way for the group�.2; 3; 7/, we obtain larger matrices, of size 24. We use
Python for all the computations of the maximal eigenvalues of the matrices zM and M 00

and also to apply the final formula (4.6). The numerical results are summarised in Table 1,
in Section 5.

5. Numerical estimates for some examples

There is a natural notion of combinatorial curvature for a graph � D .V; E/ that embeds
in the (hyperbolic) plane, in such a way that it is the 1-skeleton of some (hyperbolic)
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Group Lower Bound Upper Bound Combinatorial
Curvature

�.2; 3; 7/ 0:9974952153 0:9979155005 ��=42

�.2; 4; 5/ 0:9938397191 0:9947303685 ��=20

�.3; 3; 4/ 0:9881065017 0:9896253048 ��=12

�.2; 5; 5/ 0:9883635961 0:9892337907 ��=10

�.2; 6; 6/ 0:9825162138 0:9835349956 ��=6

�.3; 4; 4/ 0:9774836673 0:9789017112 ��=6

�.3; 4; 5/ 0:9724491846 0:9736926635 �13�=60

�.4; 4; 4/ 0:9676175845 0:9688484613 ��=4

�.3; 5; 7/ 0:9642297084 0:9651708503 �34�=105

�.7; 7; 7/ 0:9455418401 0:9460344380 �4�=7

G2 0:662477 0:6628153757 �4�

Table 1. Numerical estimates of the spectral radius of some hyperbolic triangle groups and the
surface group of genus 2. The digits in bold highlight their precision, by marking the first point of
difference between the lower bound and the upper bound.

tessellation. It is a function on the vertices, calculated for v 2 V via the formula [5]

�.v/ D 2�

�
1 �

deg.v/
2
C

X
f Wv2f

1

Ef

�
;

where Ef denotes the number of edges bounding the polygonal tile f . In the particular
case when � is the Cayley graph of a hyperbolic triangle group �.l; m; n/, the value of
this curvature is negative and constant on the vertices:

�.v/ D ��

�
1 �

�
1

l
C
1

m
C
1

n

��
; 8v 2 V: (5.1)

We summarise in Table 1 our upper and lower bounds for the spectral radius for 10
examples of hyperbolic triangle groups. They are positioned in decreasing order of their
combinatorial curvature (5.1). We also include the estimates for the surface group of
genus 2 [14, 23], as the comparison of the results is interesting.

A similar table can be found in [28], where Pollicott and Vytnova compute upper
and lower bounds for the drift of the random walk on some hyperbolic triangle groups.
We notice that the general tendency is for the drift to increase and the spectral radius to
decrease, as the combinatorial curvature decreases.
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