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Abstract. We study a particle system naturally associated to the 2-dimensional Keller–Segel equa-
tion. It consists of N Brownian particles in the plane, interacting through a binary attraction in
�=.Nr/, where r stands for the distance between two particles. When the intensity � of this attrac-
tion is greater than 2, this particle system explodes in finite time. We assume thatN > 3� and study
in detail what happens near explosion. There are two slightly different scenarios, depending on the
values of N and � , here is one: at explosion, a cluster consisting of precisely k0 particles emerges,
for some deterministic k0 � 7 depending on N and � . Just before explosion, there are infinitely
many .k0 � 1/-ary collisions. There are also infinitely many .k0 � 2/-ary collisions before each
.k0 � 1/-ary collision. And there are infinitely many binary collisions before each .k0 � 2/-ary
collision. Finally, collisions of subsets of 3; : : : ; k0 � 3 particles never occur. The other scenario is
similar except that there are no .k0 � 2/-ary collisions.

Keywords: Keller–Segel equation, stochastic particle systems, Bessel processes, collisions.

1. Introduction and main results

1.1. Informal definition of the model

We consider some scalar parameter � > 0 and a numberN � 2 of particles with positions
Xt D .X

1
t ; : : : ; X

N
t / 2 .R

2/N at time t � 0. Informally, we assume that the dynamics of
these particles are given by the system of SDEs

dX it D dB it �
�

N

X
j¤i

X it �X
j
t

kX it �X
j
t k
2

dt; i 2 J1;N K; (1)

where the 2-dimensional Brownian motions ..B it /t�0/i2J1;N K are independent. In other
words, we have N Brownian particles in the plane interacting through a (Coulombian)
attraction in 1=r , where r stands for the distance between two particles. Actually, this
SDE does not clearly make sense, due to the singularity of the drift, and we will use,
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as suggested by Cattiaux–Pédèches [4], the theory of Dirichlet spaces (see Fukushima–
Oshima–Takeda [11]).

1.2. Brief motivation and informal presentation of the main results

This particle system is very natural from the physical point of view, because, as we will see,
there is a tight competition between the Brownian excitation and the Coulombian attrac-
tion. It can also be seen as an approximation of the famous Keller–Segel equation [16];
see also Patlak [20]. This nonlinear PDE has been introduced to model the collective
motion of cells, which are attracted by a chemical substance that they emit. It is well-
known that a phase transition occurs: if the intensity of the attraction is small, then there
exist global solutions, while if the attraction is large, the solution explodes in finite time.

We will show that this phase transition already occurs at the level of the particle
system (1): there exist global (very weak) solutions if � 2 .0; 2/ (subcritical case, see Pro-
position 3 below), but solutions must explode in finite time if � � 2 (supercritical case).

To our knowledge, the supercritical case has not been studied in detail, and we aim to
describe precisely the explosion phenomenon. Informally, we will show the following (see
Theorem 5 below). We assume that � � 2 andN > 3� , and we set k0 D d2N=�e 2 J7;N K.
There exists a (very weak) solution .Xt /t2Œ0;�/ to (1), with � < 1 a.s. and such that
X�� D limt!�� Xt exists. Moreover, there is a cluster containing precisely k0 particles
in the configuration X��, and no cluster containing strictly more particles. Such a cluster
containing k0 particles is inseparable, so that (1) is meaningless (even in a very weak
sense) after �. Just before explosion, there are infinitely many k1-ary collisions, where
k1 D k0 � 1. If .k0 � 3/.2 � .k0 � 2/�=N / < 2, we set k2 D k1 � 2 and just before
each k1-ary collision, there are infinitely many k2-collisions. Else, we set k2 D k1. In any
case, there are infinitely many binary collisions just before each k2-ary collision. During
the whole time interval Œ0; �/, there are no k-ary collisions, for any k 2 J3; k2 � 1K.

This phenomenon seems surprising and original, in particular because of the gap
between binary and k2-ary collisions.

1.3. Sets of configurations

We introduce, for all K � J1;N K and all x D .x1; : : : ; xN / 2 .R2/N ,

SK.x/ D
1

jKj

X
i2K

xi 2 R2;

RK.x/ D
X
i2K

kxi � SK.x/k
2
D

1

2jKj

X
i;j2K

kxi � xj k2 � 0:

Here jKj is the cardinality of K and k � k stands for the Euclidean norm in R2. Observe
that RK.x/D 0 if and only if all the particles indexed inK are at the same place. We also
set, for k � 2,

Ek D ¹x 2 .R
2/N W 8K � J1;N K with jKj D k; RK.x/ > 0º;
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which represents the set of configurations with no cluster of k (or more) particles. Observe
that Ek D .R2/N for all k > N .

1.4. Bessel processes

We recall that a squared Bessel process .Zt /t�0 of dimension ı 2 R is a nonnegative
solution, killed when it reaches 0 if ı � 0, of the equation

Zt D Z0 C 2

Z t

0

p
Zs dWs C ıt;

where .Wt /t�0 is a 1-dimensional Brownian motion. We then say that .
p
Zt /t�0 is a

Bessel process of dimension ı. This process has the following property (see Revuz–Yor
[21, Chapter XI]):

� if ı � 2, then a.s., Zt > 0 for all t > 0;
� if ı 2 .0; 2/, then a.s., Z is reflected infinitely often at 0;
� if ı � 0, then Z a.s. hits 0 and is then killed.

Applying informally the Itô formula, one finds that Yt D
p
Zt should solve

Yt D Y0 CWt C
ı � 1

2

Z t

0

ds
Ys
;

which resembles (1) in that we have Brownian excitation in competition with attraction
by 0, or repulsion by 0, depending on the value of ı, proportional to 1=r . This formula
rigorously holds true only when ı > 1 (see [21, Chapter XI]).

1.5. Some important quantities

Consider a (possibly very weak) solution .Xt /t�0 to (1). As we will see, when fixing a
subset K � J1; N K and neglecting the interactions between the particles indexed in K
and the other ones, one finds that the process .RK.Xt //t�0 behaves like a squared Bessel
process of dimension d�;N .jKj/, where

d�;N .k/ D .k � 1/

�
2 �

k�

N

�
: (2)

Similar computations already appear in Haškovec–Schmeiser [12]; see also [9]. A little
study (see Appendix A; see also Figure 1 and Section 1.8 for numerical examples) shows
the following facts. For r 2 RC, we set dre D min ¹n 2 N W n � rº.

Lemma 1. Fix � > 0 and N � 2 such that N > � . For k0 D d2N=�e � 3, we have

d�;N .k/ > 0 if k 2 J2; k0 � 1K and d�;N .k/ � 0 if k � k0: (3)

Also define k1 D k0 � 1, and

k2 D

´
k0 � 2 if d�;N .k0 � 2/ < 2;

k0 � 1 if d�;N .k0 � 2/ � 2:

If � � 2 and N > 3� , then k0 2 J7;N K and
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k0 D 8, k1 D 7, k2 D 7 k0 D 8, k1 D 7, k2 D 6

Fig. 1. Plot of d�;N .k/ as a function of k 2 J2; N K with N D 9 and with � D 2:35 (left) and
� D 2:42 (right).

� d�;N .2/ 2 .0; 2/;
� d�;N .k/ � 2 if k 2 J3; k2 � 1K;
� d�;N .k/ 2 .0; 2/ if k 2 ¹k2; k1º;
� d�;N .k/ � 0 if k � k0.

We thus expect that there may be some nonsticky k-ary collisions for k 2 ¹2; k2; k1º,
some sticky k-ary collisions when k � k0, but no k-ary collision for k 2 J3; k2 � 1K.

1.6. Generator and invariant measure

As we will see in Section 3.13, the SDE (1) cannot have a solution in the classical sense,
at least when d�;N .k1/ 2 .0; 1/, because the drift term cannot be integrable in time. We
will thus define a solution through the theory of Dirichlet spaces.

For x D .x1; : : : ; xN / 2 .R2/N and for dx the Lebesgue measure on .R2/N , we set

m.x/ D
Y

1�i¤j�N

kxi � xj k��=N and �.dx/ D m.x/dx; (4)

where the product is over the set ¹.i; j / 2 J1;N K2 W i ¤ j º.
Informally, the generator of the solution to (1) is given by LX , where for ' 2

C 2..R2/N /,

LX'.x/ D
1

2
�'.x/ �

�

N

X
1�i¤j�N

xi � xj

kxi � xj k2
� rxi'.x/

D
1

2m.x/
divŒm.x/r'.x/�I (5)

see (11) for the last equality. The generator is well-defined for all x 2 E2 and �-
symmetric. Indeed, integration by parts shows that

8'; 2 C 2c .E2/;

Z
.R2/N

'LX d� D �
1

2

Z
.R2/N

r' � r d�

D

Z
.R2/N

 LX' d�: (6)
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As we will see in Proposition A.1, the measure � is Radon on .R2/N in the subcritical
case � 2 .0;2/, while it is Radon onEk0 (and not onEk0C1) in the supercritical case � � 2.
This will allow us to use some results found in Fukushima–Oshima–Takeda [11] and to
obtain the following existence result.

Proposition 2. Fix N � 2 and � > 0 such that N > � and recall that k0 D d2N=�e. Set
X D Ek0 and X4 D X [ ¹4º, where 4 is a cemetery point. There exists a diffusion
X D .�X ;MX ; .Xt /t�0; .PXx /x2X4/ with values in X4, which is �-symmetric, with
regular Dirichlet space .EX ;F X / on L2..R2/N ; �/ with core C1c .X/ defined by

EX .'; '/ D
1

2

Z
.R2/N

kr'k2 d� D �
Z
.R2/N

'LX' d� for all ' 2 C1c .X/;

and such that for all x 2E2 and t > 0, the law ofXt under Px has a density with respect to
the Lebesgue measure on .R2/N . We call such a process a KS.�; N /-process and denote
by � D inf ¹t � 0 W Xt D 4º its life-time.

We refer to Section B.1 for a quick summary of the notions used in this proposi-
tion: diffusion (i.e. continuous Hunt process), link between its generator, semigroup and
Dirichlet space, definition of the one-point compactification topology on X4, etc. Let us
mention that by definition, 4 is absorbing, i.e. Xt D 4 for all t � �. Also, t 7! Xt is
a priori continuous on Œ0;1/ only for the one-point compactification topology on X4,
which precisely means that it is continuous for the usual topology of .R2/N during Œ0; �/,
and � D limn!1 inf ¹t � 0 W Xt …Knº for any increasing sequence .Kn/n�1 of compact
subsets of Ek0 such that

S
n�1 Kn D Ek0 .

As we will see in Remark 29, for all x 2 E2, under PXx , Xt solves (1) during Œ0; �/,
where � D inf ¹t � 0 W Xt … E2º. By the Markov property, this implies Xt solves (1)
during any open time interval on which it does not visit X nE2.

When � < 2, we have k0 > N and thus Ek0 D .R2/N . We will easily prove the
following nonexplosion result, which is almost contained in Cattiaux–Pédèches [4], who
treat the case where � 2 .0; 2.N � 2/=.N � 1//.

Proposition 3. Fix � 2 .0; 2/ and N � 2. Consider the KS.�; N /-process X introduced
in Proposition 2. For all x 2 E2, we have Px.� D1/ D 1.

When � � 2, we will see that there is explosion. Note that any collision of a set of
k � k0 particles makes the process leave Ek0 and thus explode. However, it is not clear at
all at this point that the explosion is due to a precise collision: the process could explode
because it tends to infinity (which is not hard to exclude) or to the boundary of Ek0 with
possibly many oscillations.

1.7. Main result

To avoid any confusion, let us define precisely what we call a collision.

Definition 4. (i) ForK � J1;N K, we say that there is aK-collision in the configuration
x 2 .R2/N if RK.x/ D 0 and RK[¹iº.x/ > 0 for all i 2 J1;N K nK.
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(ii) For an .R2/N -valued process .Xt /t2Œ0;�/, we say that there is a K-collision at time
s 2 Œ0; �/ if there is a K-collision in the configuration Xs .

The main result of the present paper is the following description of the explosion
phenomenon.

Theorem 5. Assume that � � 2 and N > 3� , and recall that k0 2 J7; N K, k1 D k0 � 1
and k2 2 ¹k0 � 1; k0 � 2º were defined in Lemma 1. Consider the KS.�; N /-process X
introduced in Proposition 2. For all x 2 E2, the following properties hold Px-a.s.:

(i) � is finite and X�� D limt!��Xt exists for the usual topology of .R2/N ;

(ii) there is K0 � J1; N K with jK0j D k0 such that there is a K0-collision in the con-
figuration X��, and for all K � J1; N K such that jKj > k0, there is no K-collision
in X��;

(iii) for all t 2 Œ0; �/ and allK �K0 with jKj D k1, there are infinitely manyK-collisions
during .t; �/ and none of these instants of K-collision is isolated;

(iv) if k2 D k0 � 2, then for all L � K � K0 such that jLj D k2 and jKj D k1, for
all instants t 2 .0; �/ of K-collision and all s 2 Œ0; t/, there are infinitely many L-
collisions during .s; t/ and none of these instants of L-collision is isolated;

(v) for all K � J1;N K with jKj 2 J3; k2 � 1K, there is no K-collision during Œ0; �/;

(vi) for all L � K � K0 such that jLj D 2 and jKj D k2, all instants t 2 .0; �/ of K-
collision and all s 2 Œ0; t/, there are infinitely many L-collisions during .s; t/ and
none of these instants of L-collision is isolated.

The condition � � 2 is crucial to guarantee that k0 �N . On the other hand, we impose
N > 3� just for simplicity, because Lemma 1 does not hold true without this assumption.
The other cases may also be studied, but we believe this is not very restrictive: N is
thought of to be very large compared to � , at least as far as the approximation of the
Keller–Segel equation is concerned.

1.8. Comments

Let us mention that the very precise values of N and � influence the value k2:

(a) If N D 200 and � D 4:04, we have k0 D 100, k1 D 99 and k2 D 98.

(b) If N D 200 and � D 4:015, we have k0 D 100 and k1 D k2 D 99.

Let us describe informally, in the chronological order, what happens e.g. in case (b)
above. We start with 200 particles at 200 different places. During the whole story, there is
no k-ary collision for k D 3; : : : ; 98. Here and there, two particles meet, they collide an
infinite number of times, but manage to separate. Then at some time, we have 98 particles
close to each other and there are many binary collisions. Then, if a 99-th particle arrives
in the same zone (and this eventually occurs), there are infinitely many 99-ary collisions,
with infinitely many binary collisions of all possible pairs before each. These 99 particles
may manage to separate forever, or for a large time, but if a 100-th particle arrives in the
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zone (and this situation eventually occurs), then there are infinitely many 99-ary collisions
of all the possible subsets and, finally, a 100-ary collision producing explosion, and the
story is finished. Informally, the resulting cluster is not able to separate, because attraction
dominates Brownian excitation, since a Bessel process of dimension d�;N .100/ � 0 is
absorbed when it reaches 0. We hope to be able, in future work, to propose and justify a
model describing what happens after explosion.

1.9. References

In many papers about the Keller–Segel equation, the parameter � D 4�� is used, so that
the transition at � D 2 corresponds to the transition at � D 8� . As already mentioned,
this nonlinear PDE has been introduced to model the collective motion of cells, which are
attracted by a chemical substance that they emit. It describes the density ft .x/ of particles
(cells) with position x 2R2 at time t � 0 and reads, in the so-called parabolic-elliptic case,

@tft .x/C � divx..K ? ft /.x/ft .x// D
1
2
�xft .x/; where K.x/ D �

x

jxj2
: (7)

Informally, this solution should be the mean-field limit of the particle system (1) as
N !1.

We refer to the recent review paper on (7) by Arumugam–Tyagi [1]. The best result
on existence of a global solution to (7), including all the subcritical parameters � 2 .0; 2/,
is due to Blanchet–Dolbeault–Perthame [2]. The blow-up of solutions to (7), in the super-
critical case � > 2, have been studied e.g. by Fatkullin [7] and Velázquez [24,25]. Closer
to our study, Suzuki [23] has shown, still in the supercritical case, the appearance of a
Dirac mass with a precise (critical) weight, at explosion. This is the equivalent, in the
limit N !1, to the fact that limt!�� Xt exists and corresponds to a K-collision, for
someK � J1;N K with precise cardinality k0. Let us finally mention Dolbeault–Schmeiser
[6], who propose a post-explosion model in the supercritical case.

Concerning particle systems associated with (7), Stevens [22] studies a physically
more complete particle system with two types of particles, for cells and chemo-attractant
particles, with a regularized attraction kernel. Haškovec–Schmeiser [12, 13] study a
particle system closer to (1), but with, again, a regularized attraction kernel.

Cattiaux–Pédèches [4], as well as [9], study the system (1) without regularization in
the subcritical case: existence of a global solution to (1) has been shown in [9] when
� 2 .0; 2.N � 2/=.N � 1//, and uniqueness of this solution has been established in [4].
Also, the theory of Dirichlet spaces has been used in [4] to build a solution to (1). Finally,
the limit as N !1 to a solution of (7) is proved in [9] in the very subcritical case where
� 2 .0; 1=2/, up to extraction of a subsequence. This last result has been improved by
Bresch–Jabin–Wang [3], who remove the necessity of extracting a subsequence and con-
sider the (still very subcritical) case where � 2 .0; 1/. Olivera–Richard–Tomašević [18]
have recently established the N !1 convergence of a smoothed version of (1), for all
the subcritical cases � 2 .0;2/. Informally, in view of the mean distance between particles,
the regularization used in [18] is not far from being physically reasonable. There is also a
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related paper of Jabir–Talay–Tomašević [14] about a 1-dimensional but more complicated
parabolic-parabolic model.

Let us finally mention the seminal paper of Osada [19] (see also [8] for a more recent
study), which concerns the vortex model: this is very close to (1), but the attraction
�x=jxj2 is replaced by a rotating interaction x?=jxj2, so that particles never encounter.

1.10. Originality and difficulties

To our knowledge, this is the first study of the supercritical Keller–Segel particle system
near explosion. We hope that this model, which makes compete diffusion and Coulomb
interactions, is very natural from the physical point of view, beyond the Keller–Segel
community. The phenomenon we discovered seems surprising and original, in particular
because of the gap between binary and k2-ary collisions. We are not aware of other works,
possibly dealing with other models, showing such behavior.

In Section 3, we give the main arguments of the proofs, with a fairly high level of
precision, but ignoring the technical issues. While it is rather clear, intuitively, that the
process explodes in finite time when � � 2 and that no K-collisions may occur for jKj 2
J3; k2 � 1K, the continuity at explosion is delicate, and some rather deep arguments are
required to show that each k2-ary collision is preceded by many binary collisions, that
each k1-ary collision is preceded by many k2-ary collisions, that explosion is preceded
by many k1-ary collisions, and that explosion is due to the emergence of a cluster with
precise size k0 (which more or less says that a possible .k0 C 1/-ary collision would
necessarily be preceded by a k0-collision).

Actually, the rigorous proofs are made technically much more involved than those
presented in Section 3, because we have to use the theory of Dirichlet spaces. Due to the
singularity of the interactions and to the occurrence of many collisions near explosion,
we unfortunately cannot, as already mentioned, deal at the rigorous level directly with the
SDE (1). We thus have to use suitable heavy versions of some usual tools such as Itô’s
formula, Girsanov’s theorem, time-change, etc.

1.11. Plan of the paper

In Section 2, we introduce some notation of constant use. In Section 3, we explain the
main ideas of the proofs, with a high level of precision, but without speaking of the heavy
technical issues related to the use of the theory of Dirichlet spaces. Section 4 is devoted
to the existence of a first version of the Keller–Segel process, namely without the prop-
erty that PXx ı X

�1
t has a density, and we introduce a spherical Keller–Segel process. In

Section 5, we show that the Keller–Segel process enjoys a crucial and remarkable decom-
position in terms of a 2-dimensional Brownian motion, a squared Bessel process and
a spherical process. Section 6 consists in building some smooth approximations of some
indicator functions that behave well under the action of the generator LX . In Section 7, we
make use of the Girsanov theorem to prove that when two sets of particles of a KS-process
are not too close to each other, they behave as two independent smaller KS-processes. In
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Section 8, we study explosion and continuity (in the usual sense) at the explosion time.
Section 9 is devoted to establishing some parts of Theorem 5 for some particular ranges
of values of N and � . Using the results of Section 7, we reduce the general study to the
special cases of Section 9 and we prove, in Section 10, that the conclusions of Theorem 5
hold true quasi-everywhere. Finally, in Section 11, we remove the “quasi-everywhere”
restriction and conclude the proofs of Propositions 2 and 3 and of Theorem 5.

Appendix A contains a few elementary computations: proof of Lemma 1, proof that
� is Radon on Ek0 , and study of a similar measure on a sphere. We end the paper with
Appendix B that summarizes all the notions and results about Dirichlet spaces and Hunt
processes we shall use.

2. Notation

We introduce the spaces

H D ¹x 2 .R2/N W SJ1;N K.x/ D 0º; S D
°
x 2 .R2/N W

NX
iD1

kxik2 D 1
±
;

S D H \ S:

For u 2 S, we have SJ1;N K.u/ D 0 and RJ1;N K.u/ D 1. We consider the (unnormalized)
Lebesgue measure � on S, as well as (recall (4)),

ˇ.du/ D m.u/�.du/: (8)

We define 
 WR2! .R2/N by 
.z/D .z; : : : ; z/ and‰ WR2�R�C �S!EN � .R2/N

by

‰.z; r; u/ D 
.z/C
p
ru; i.e. .‰.z; r; u//i D z �

p
rui for i 2 J1;N K: (9)

We have SJ1;N K.‰.z; r; u// D z and RJ1;N K.‰.z; r; u// D r .
The orthogonal projection �H W .R2/N ! H is given by

�H .x/ D x � 
.SJ1;N K.x//; i.e. .�H .x//
i
D xi � SJ1;N K.x/ for i 2 J1;N K;

and we introduce ˆS W EN ! S defined by

ˆS.x/ D
�Hx

k�Hxk
; i.e. .ˆS.x//

i
D
xi � SJ1;N K.x/p

RJ1;N K.x/
for i 2 J1;N K: (10)

For x 2 .R2/N n ¹0º, the projections �x? W .R
2/N ! x? and �x W .R2/N ! span.x/ are

given by
�x?.y/ D y �

x � y

kxk2
x and �x.y/ D

x � y

kxk2
x;

where x � y D
PN
iD1 x

i � yi .
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We denote by b WE2! .R2/N the drift coefficient of (1): for x D .x1; : : : ; xN / 2E2,

b.x/ D
rm.x/
2m.x/

D
r log m.x/

2
2 .R2/N ; i.e. bi .x/ D �

�

N

X
j¤i

xi � xj

kxi � xj k2
2 R2

(11)

for i 2 J1;N K. Indeed, since log m.x/ D � �
2N

P
1�i¤j�N log kxi � xj k2, we have e.g.

rx1 log m.x/
2

D �
�

4N
rx1

h NX
iD2

log kxi � x1k2 C
NX
jD2

log kx1 � xj k2
i

D �
�

2N
rx1

NX
jD2

log kx1 � xj k2;

whence
rx1 log m.x/

2
D �

�

N

NX
jD2

x1 � xj

kx1 � xj k2
:

Finally, we introduce the natural operators defined for ' 2 C 1.S/ and u 2 S by

rS'.u/ D rŒ' ıˆS�.u/ 2 .R
2/N and �S'.u/ D �Œ' ıˆS�.u/ 2 R; (12)

where r and � stand for the usual gradient and Laplacian in .R2/N . Since S �
EN � .R2/N , with EN open, and since ˆS is smooth on EN , we can indeed define
rŒ' ı ˆS�.u/ and �Œ' ı ˆS�.u/ for all u 2 S. Similarly, for ' 2 C 1.S; .R2/N / and
u 2 S, we set

divS '.u/ D divŒ' ıˆS�.u/ 2 R: (13)

To conclude this subsection, we note that for all ' 2 C1..R2/N / and all u 2 S,

rS.'jS/.u/ D �H .�u?.r'.u///: (14)

Indeed, it suffices to observe that setting G.x/ D x=kxk for all x 2 .R2/N n ¹0º, we
have ˆS D G ı �H , dxG D �x?=kxk and dx�H D �H , and also for u 2 S, we have
�H .u/ D u and k�H .u/k D 1.

3. Main ideas of the proofs

Here we explain the main ideas of the proofs of Proposition 3 and Theorem 5. The argu-
ments below are completely informal. In particular, we act as if our KS.�; N /-process
.Xt /t2Œ0;�/ was a true solution to (1) until explosion and we apply Itô’s formula without
care. We always assume at least that N � 2, � > 0 and N > � , which implies that
k0 D d2N=�e � 3.

3.1. Existence

The existence of the KS.�;N /-process .Xt /t2Œ0;�/, with values in Ek0 , is an easy applica-
tion of [11, Theorem 7.2.1]. The only difficulty is to show that the invariant measure � is



Collisions of the supercritical Keller–Segel particle system 4093

Radon on Ek0 ; see Proposition A.1. The process may explode, i.e. get out of any compact
subset of Ek0 in finite time. Observe that a typical compact subset of Ek0 is of the form,
for " > 0,

K" D ¹x 2 .R
2/N W kxk � 1=" and for all K � J1;N K such that jKj D k0; RK.x/ � "º:

3.2. Center of mass and dispersion process

One can verify, using Itô’s formula, that the center of mass SJ1;N K.X/ is a 2-dimensional
Brownian motion with diffusion constant N�1=2, the dispersion process RJ1;N K.X/ is a
squared Bessel process of dimension d�;N .N / (recall (2)), and these two processes are
independent.

Consequently, if � <1, the limits limt!�� SJ1;N K.Xt / and limt!��RJ1;N K.Xt / a.s.
exist, and this implies that lim supt!�� kXtk<1: the process cannot explode to infinity,
it can only explode because it tends to the boundary of Ek0 . If moreover k0 > N (i.e.
� < 2), this is sufficient to show that � D1, since then Ek0 D .R

2/N .

3.3. Behavior of distant subsets of particles

Consider a partition K1; : : : ; Kp of J1; N K. If we neglect interactions between particles
whose indices are not in the same subset, we have, for each ` 2 J1; pK, setting Q�` D
� jK`j=N ,

dX it D dB it �
Q�`

jK`j

X
j2K`n¹iº

X it �X
j
t

kX it �X
j
t k
2

dt; i 2 K`;

and we recognize a KS. Q�`; jK`j/-process.
During time intervals where particles indexed in different subsets are far enough

from each other, we can indeed bound the interaction between those particles, so that
the Girsanov theorem tells us that .X it /i2K1 ; : : : ; .X

i
t /i2Kp behave similarly, in the sense

of trajectories, as independent KS. Q�1; jK1j/; : : : ;KS. Q�p; jKpj/-processes.

3.4. Brownian and Bessel behaviors of isolated subsets of particles

Consider K � J1; N K. As seen just above, during time intervals where the particles
indexed in K are far from all the other ones, the system .X it /i2K behaves, in the sense of
trajectories, like a KS.� jKj=N; jKj/-process. Hence (see Section 3.2), SK.Xt / behaves
like a 2-dimensional Brownian motion with diffusion constant jKj�1=2, while RK.Xt /
behaves like a squared Bessel process of dimension d� jKj=N;jKj.jKj/, which is nothing
but d�;N .jKj/ (recall (2)).

3.5. Continuity at explosion

Here we assume that N > � � 2, so that k0 2 J2; N K, and we explain why a.s., � <1
and X�� D limt!��Xt exists, in the usual sense of .R2/N .
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(a) We first show that � < 1 a.s. On the event where � D 1, the squared Bessel
process RJ1;N K.X/ is defined for all times. Recall that d�;N .N / � 0 (because � � 2)
and a squared Bessel process of negative dimension can be defined on the whole time
half-line and a.s. becomes negative in finite time. Since RJ1;N K.X/ � 0 by definition, this
contradicts the fact that � D1.

Similarly, one can show that a KS.�; N /-process has no chance to be defined after
the first hitting time �K of 0 by RK.Xt /, where jKj D k0: this makes the choice of the
space Ek0 very natural. Indeed, assume that X is defined during Œ0; �0/ with �0 > �K .
Consider the maximal subset L of J1; N K containing K and such that RL.X�K / D 0.
Then there is " > 0 such that during Œ�K ; �K C "� � Œ0; �0/, the particles labeled in L
are far from the ones labeled outside L. By Section 3.4, .RL.X�KCt //t2Œ0;"� behaves like
a squared Bessel process of dimension d�;N .jLj/, issued from 0. But such a process is
instantaneously negative, because d�;N .jLj/ � 0 (since jLj � k0). Since RL.X/ � 0, this
contradicts the fact that �K 2 Œ0; �0/.

(b) We next show by reverse induction that a.s. for all K � J1;N K with jKj � 2,

either lim
t!��

RK.Xt / D 0 or lim inf
t!��

RK.Xt / > 0: (15)

If K D J1; N K, limt!�� RK.Xt / exists by continuity of the (true) squared Bessel pro-
cess RK.Xt / and this implies the result. We now fix n 2 J3; N K and assume that (15)
holds true for all K such that jKj � n. We consider K � J1; N K with jKj D n � 1; by
induction assumption, either there is i … K such that limt!��RK[¹iº.Xt / D 0 and then
limt!��RK.Xt /D 0, or for all i 2 J1;N K nK, lim inft!��RK[¹iº.Xt / > 0. In this last
case, and when

lim sup
t!��

RK.Xt / > 0 and lim inf
t!��

RK.Xt / D 0

(which is the negation of (15)), there are ˛; " > 0 such that (i) RK.Xt / upcrosses Œ"=2; "�
infinitely often during Œ� � ˛; �/ and (ii) for all t 2 Œ� � ˛; �/ such that RK.Xt / < ", the
particles indexed in K are far from all the other ones (because RK.Xt / is then small and
RK[¹iº.Xt / is large for all i … K), so that RK.Xt / behaves like a squared Bessel process
of dimension d�;N .jKj/; see Section 3.4. Points (i) and (ii) are in contradiction, since
a squared Bessel process is continuous and thus cannot upcross Œ"=2; "� infinitely often
during a finite time interval.

(c) We now show that limt!�� Xt exists. Using (b) and the (random) equivalence
relation on J1;N K defined by i � j if and only if limt!��R¹i;j º.Xt / D 0, one can build
a partition K D .Kp/p2J1;`K of J1;N K such that for all p 2 J1; `K, limt!��RKp .Xt / D 0

and lim inft!�� mini…Kp RKp[¹iº.Xt / > 0. Hence, there is ˛ 2 Œ0; �/ such that for all
p ¤ q, the particles labeled in Kp are far from the ones labeled in Kq during Œ˛; �/.
As seen in Section 3.4, we conclude that for all p 2 J1; `K, SKp .Xt / behaves like a
Brownian motion during Œ˛; �/, and thusMp D limt!�� SKp .Xt / exists. Since moreover
limt!��RKp .Xt /D 0, we deduce that for all i 2 Kp , limt!��X

i
t DMp . In conclusion,

limt!��X
i
t exists for all i 2 J1;N K.
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3.6. A spherical process

We recall that S, �H , �u? and b were defined in Section 2 and introduce the possibly
exploding (with life-time �) process .Ut /t2Œ0;�/ with values in S\Ek0 , informally solving
(we will also use here the theory of Dirichlet spaces), for some given U0 2 S \ Ek0 and
some .R2/N -valued Brownian motion .Bt /t�0, the equation

Ut D U0 C

Z t

0

�U?s �H dBs C
Z t

0

�U?s �Hb.Us/ ds �
2N � 3

2

Z t

0

Us ds:

We call it an SKS.�;N /-process.
One can check that this process is ˇ-symmetric, where ˇ is defined in (8), and that ˇ is

Radon on S \Ek0 ; see Proposition A.3. And we will see that if k0 � N , then ˇ.S/ <1,
so that the process .Ut /t�0 is nonexploding and positive recurrent.

3.7. Decomposition of the process

We assume that N � 2 and � > 0 are such d�;N .N / < 2 and, as usual, N > � . We con-
sider a 2-dimensional Brownian .Mt /t�0 with diffusion constantN�1=2, a squared Bessel
process .Dt /t2Œ0;�D/ of dimension d�;N .N / killed when it hits 0, with life-time �D , and
an SKS.�;N /-process .Ut /t2Œ0;�/, these three processes being independent. We introduce
the time-change

At D

Z t

0

ds
Ds
; t 2 Œ0; �D/:

Since �D < 1 (because d�;N .N / < 2) and D�D D 0 and since, roughly, the paths of
.
p
Dt /t2Œ0;�D/ are 1=2-Hölder continuous, we have A�D D 1 a.s. We introduce the

inverse function � W Œ0;1/! Œ0; �D/ of A W Œ0; �D/! Œ0;1/.
We also set �0 D �� and observe that �0 � �D , since � is Œ0; �D/-valued, and that

�0 < �D if and only if � <1. A fastidious but straightforward computation shows that,
recalling (9), the process

Xt D ‰.Mt ;Dt ; UAt /; i.e. X it DMt C
p
DtU

i
At
; i 2 J1;N K;

which is well-defined during Œ0; �0/, solves (1).
This decomposition of the KS.�; N /-process, which is remarkable in that U satisfies

an autonomous SDE and thus is Markov, is at the basis of our analysis.
In other words, .Xt /t2Œ0;� 0/ is the restriction to the time interval Œ0; �0/ of a KS.�;N /-

process .Xt /t2Œ0;�/. Moreover, we have �0 D � ^ �D: if � is finite, then U gets out of
S\Ek0 at time � , so thatX gets out ofEk0 at time �0D �� <�D , whence �D �0D � ^ �D;
and if � D1, then �0 D �D and U remains in Ek0 for all times, so that X remains in Ek0
during Œ0; �D/, whence � � �D .

We have SJ1;N K.Xt / DMt and RJ1;N K.Xt / D Dt for all t 2 Œ0; � ^ �D/, because U
is S-valued. By definition of S, the process U cannot have any J1; N K-collision. But for



N. Fournier, Y. Tardy 4096

any K � J1;N K of cardinality at most N � 1,

U has a K-collision at t 2 Œ0; �/ if and only if X has a K-collision at �t 2 Œ0; � ^ �D/:
(16)

Moreover, as seen a few lines above, � <1 is equivalent to � < �D . In other words, since
RJ1;N K.Xt / D Dt for all t 2 Œ0; � ^ �D/ and �D D inf ¹t > 0 W Dt D 0º, we have

� <1 if and only if inf
t2Œ0;�/

RJ1;N K.Xt / > 0: (17)

3.8. Some special cases

Using the Girsanov theorem (see Section 3.4), we will manage to reduce a large part of
the study to the special cases that we examine in the present subsection. Here we explain
the following facts, for N � 2 and � > 0 with N > � :

(a) if d�;N .N � 1/ 2 .0; 2/, then a.s., �D D inf ¹t > 0 W RJ1;N K.Xt / D 0º � � and for all
r 2 Œ0; �D/ and all K � J1; N K with jKj D N � 1, .Xt /t2Œ0;�/ has infinitely many
K-collisions during Œr; �D/;

(b) if d�;N .N � 1/ � 0 (whence k0 � N � 1), then a.s., inft2Œ0;�/RJ1;N K.Xt / > 0.

We keep the same notation as in the previous subsection.

(i) We first verify that in (a), �D � �. Since d�;N .N � 1/ 2 .0; 2/, we have k0 � N .
If k0 > N , then � D1 by Section 3.2 and we are done. If k0 D N , then � <1 and X��
exists by Section 3.5. Moreover, X�� cannot belong to Ek0 D EN by definition of � and
thus has its N particles at the same place, i.e. RJ1;N K.X��/ D 0: we have � D �D .

(ii) In (b), � <1 by Section 3.5 because d�;N .N � 1/ � 0 implies that � � 2.

(iii) We consider, in any case, the spherical process .Ut /t2Œ0;�/ and assume that � D1.
An Itô computation shows that forK � J1;N K, for some 1-dimensional Brownian motion
.Wt /t�0,

dRK.Ut / D 2
p
RK.Ut /.1 �RK.Ut //dWt C d�;N .jKj/dt � d�;N .N /RK.Ut /dt

�
2�

N

X
i2K;j…K

U it � U
j
t

kU it � U
j
t k

2
� .U it � SK.Ut //dt:

We fix " > 0 to be chosen later. During time intervals where mini2K;j…K kU it �U
j
t k � ",

we thus have, for some constant C",

dRK.Ut / � 2
p
RK.Ut /.1 �RK.Ut //dWt C d�;N .jKj/dt C C"

p
RK.Ut /dt; (18)

where we have used the Cauchy–Schwarz inequality and the fact that RK.Ut / is uni-
formly bounded (because U is S-valued). Hence, still during time intervals where
mini2K;j…K kU it � U

j
t k � ", by comparison, RK.Ut / is smaller than St , the solution

to
dSt D 2

p
St .1 � St /dWt C d�;N .jKj/dt C C"

p
Stdt: (19)
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And an examination involving scale functions/speed measures shows that this process hits
zero in finite time if and only if d�;N .jKj/ < 2, exactly as a squared Bessel process of
dimension d�;N .jKj/.

(iv) We end the proof of (a). In this case k0 � N , so that U is nonexploding, as seen
in Section 3.6. Hence � D 1 and we can use (iii). Moreover, U is recurrent, still by
Section 3.6. We fix K with jKj D N � 1 and we choose " > 0 small enough that

ˇ
�°
u 2 S W min

i2K;j…K
kui � uj k � "

±�
> 0;

where ˇ is the invariant measure (8) of U . Hence the process mini2K;j…K kU it � U
j
t k

visits the zone .";1/ infinitely often, and each time RK.U / has a (uniformly) positive
probability of hitting 0 by (iii) and since d�;N .jKj/ D d�;N .N � 1/ < 2. Consequently,
for any s > 0, .Ut /t�0 has infinitely manyK-collisions during Œs;1/. Recalling (16) and
that � ^ �D D �D by (i), we conclude that for any r 2 Œ0; �D/, .Xt /t2Œ0;�/ has infinitely
many K-collisions during Œr; �D/.

(v) We finally complete the proof of (b). By (17), it is sufficient to show that � <1
a.s. Assume that U is recurrent (and thus nonexploding). Then we take K D J2; N K and
apply the same reasoning as in (iv): since d�;N .jKj/ � 0 < 2, RK.U / hits zero in finite
time and this makes U get out of EN�1 and thus explode, since U is .Ek0 \ S/-valued
and k0 � N � 1. We thus have a contradiction.

Hence U is transient and it eventually gets out of the compact subset ofEk0 \ S given
by

K D ¹u 2 S W 8K � J1;N K with jKj D k0; we have RK.u/ � "º;

for any fixed " > 0. Hence on the event that � D 1, limt!1 minjKjDk0 RK.Ut / D 0

a.s. Recalling now that k0 � N � 1 and U is S-valued (whence RJ1;N K.Ut / D 1), we
can a.s. find K with jKj 2 Jk0; N � 1K satisfying lim inft!1 RK.Ut / D 0 but such
that lim inft!1 mini…K RK[¹iº.Ut / > 0. It is then not too hard to find ˛; " > 0 such
that each time RK.Ut / < ˛ (which happens often), all the particles indexed in K are
farther than " > 0 from all the other ones. We conclude from (iii), since d�;N .jKj/ � 0
(because jKj � k0), that each time RK.Ut / < ˛, U has a (uniformly) positive probability
to hit zero. On the event � D 1, this will eventually happen, so that the process U will
have a K-collision and thus will leave Ek0 in finite time. Hence U will explode, so that
� <1.

3.9. Size of the cluster

We assume thatN > 3� � 6. Hence � <1 and X�� exists, by Section 3.5. Moreover, by
definition of �, we know that X�� … Ek0 . We want now to show that X�� 2 Ek0C1, i.e.
the cluster causing explosion is composed of precisely k0 particles. If k0 D N , there is
nothing to do, since then Ek0C1 D .R2/N . Now if k0 � N � 1, we assume for con-
tradiction that there is K � J1; N K with jKj � k0 C 1 such that RK.X��/ D 0 and
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mini…K RK[¹iº.X��/ > 0. Then there is ˛ > 0 such that during Œ� � ˛; �/, the particles
indexed in K are far from the other ones, so that the process .X it /t2Œ0;�/; i2K behaves like
a KS.� jKj=N; jKj/-process by Section 3.3. Observe now that d� jKj=N;jKj.jKj � 1/ D
d�;N .jKj � 1/ � 0 because jKj � 1 � k0, and jKj > � jKj=N because N > � . We thus
know from the special case (b) of Section 3.8 that inft2Œ��˛;�/ RK.Xt / > 0, which con-
tradicts RK.X��/ D 0.

3.10. Collisions before explosion

We fix againN > 3� � 6. We recall that k1 D k0 � 1 and we show that there are infinitely
many k1-ary collisions just before explosion. By the previous subsection, there exists
K0 � J1; N K such that jK0j D k0 and RK0.X��/ D 0 and mini…K0 RK0[¹iº.X��/ > 0.
Then there is ˛ > 0 such that during Œ� � ˛; �/, the particles indexed in K0 are far from
the other ones, so that .X it /i2K0 behaves like a KS.�k0=N; k0/-process by Section 3.3.
Observe now that d�k0=N;k0.k0 � 1/D d�;N .k0 � 1/ 2 .0; 2/ thanks to Lemma 1 and that
k0 > �k0=N because N > � . We thus know from the special case (a) of Section 3.8 that
.X it /i2K0 has infinitely many .K0 n ¹iº/-collisions just before �, for all i 2 K0.

When k2 D k1 � 1, one can show in the same way that for all K with jKj D k1, and
all i 2 K, there are infinitely many .K n ¹iº/-collisions just before each K-collision. We
may also use Section 3.8 (a), since d�k1=N;k1.k1 � 1/D d�;N .k2/ 2 .0; 2/; see Lemma 1.

3.11. Absence of other collisions

We want to show that whenN > 3� � 6, forK � J1;N K with jKj 2 J3;k2 � 1K there is no
K-collision during .0; �/. Suppose for contradiction that there is K � J1;N K with jKj 2
J3; k2 � 1K and t 2 .0; �/ such that RK.Xt / D 0 and RK[¹iº.Xt / > 0 for all i … K. Then
there is ˛ > 0 such that during Œt � ˛; t �, the particles indexed in K are far from the other
ones, so thatRK.Xt / behaves like a squared Bessel process of dimension d� jKj=N;jKj.jKj/
(see Section 3.4). Since d� jKj=N;jKj.jKj/D d�;N .jKj/� 2 because jKj 2 J3;k2 � 1K (see
Lemma 1), such a Bessel process cannot hit zero, which is a contradiction.

3.12. Binary collisions

We still assume that N > 3� � 6, we suppose that there is a K-collision for some
K � J1; N K such that jKj D k2 at some time t 2 .0; �/, and we want to show that
there are infinitely many binary collisions just before t . There is ˛ > 0 such that the
particles indexed in K are far from all the other ones during Œt � ˛; t �, so that Sec-
tion 3.3 tells us that .X it /i2K behaves like a KS.�k2=N; k2/-process. We observe that
k2 � 5, d�k2=N;k2.k2 � 1/ D d�;N .k2 � 1/ � 2 and d�k2=N;k2.k2/ D d�;N .k2/ 2 .0; 2/
by Lemma 1.

We are reduced to showing that a KS.�;N /-process, still denoted by .X it /i2J1;N K;t�0,
such that N � 5, d�;N .N � 1/ � 2 and d�;N .N / 2 .0; 2/, a.s. has infinitely many binary
collisions before the first instant �D of J1;N K-collision. Such a process does not explode,
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because k0 > N (since d�;N .N / > 0; see Section 3.2). Hence using (16) (which is licit
since d�;N .N / < 2), we only have to show that e.g. U 1 collides infinitely often with U 2

during Œ0;1/.
First, one easily sees that the probability that e.g. X1 collides with X2 before �D is

positive, because the probability that all the particles are pairwise far from each other,
except X1 and X2, during the time interval Œ0; 1�, is positive. On this kind of event, by
Section 3.4, R¹1;2º.Xt / behaves like a squared Bessel process of dimension d�;N .2/ 2
.0; 2/ and thus hits zero during Œ0; 1� (and thus before �D) with positive probability.

Using again (16), we conclude that the probability that U 1 collides with U 2 in finite
time is positive. Since now U is positive recurrent (recall Section 3.6 and that k0 > N ,
because d�;N .N / > 0), we conclude that U 1 collides infinitely often with U 2 during
Œ0;1/ as desired.

3.13. Nonintegrability of the drift term

Here we check that when d�;N .k1/ 2 .0; 1/, the SDE (1) cannot have a solution in the
classical sense, because the drift term is not integrable in time. More precisely, recall that
there is some K-collision at some time � strictly before explosion, for some K � J1;N K
of cardinality k1. We now show that a.s., for a > 0,Z �Ca

��a

NX
iD1





X
j¤i

X is �X
j
s

kX is �X
j
s k
2





 ds D1;

which indeed shows the nonintegrability of the drift term. Since � is an instant of K-
collision, there exists a > 0 small enough that during Œ� � a; � C a� � Œ0; �/, the particles
labeled in K are far from the particles labeled in Kc . It clearly suffices to show that
Z D1 a.s., where

Z D

Z �Ca

��a

X
i2K





 X
j2K;j¤i

X is �X
j
s

kX is �X
j
s k
2





 ds:

But

Z D

Z �Ca

��a

f .Vs/p
RK.Xs/

ds; where Vs D .V
i
s /i2K is defined by V is D

X is � SK.Xs/p
RK.Xs/

;

so that Vs a.s. belongs to SK D ¹.vi /i2K 2 .R2/jKj W
P
i2K v

i D 0;
P
i2K kv

ik2 D 1º,
and where

f .v/ D
X
i2K





 X
j2K;j¤i

vi � vj

kvi � vj k2






for each v 2 SK . Since the invariant measure m of X satisfies m.Ec2/ D 0, it is a.s. true
that Xs 2 E2 for a.e. s 2 Œ0; �/ (at least for a.e. initial condition), so that a.s., f .Vs/ is
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well-defined for a.e. s 2 Œ0; �/. We now show that f is bounded from below on SK . We
have

f .v/ � max
i2K





 X
j2K;j¤i

vi � vj

kvi � vj k2





 �
vuut 1

jKj

X
i2K





 X
j2K;j¤i

vi � vj

kvi � vj k2





2:
Using now the Cauchy–Schwarz inequality and the fact that

P
i2K kv

ik2 D 1, we find
that

f .v/ �
1p
jKj

X
i2K

X
j2K;j¤i

vi � vj

kvi � vj k2
� vi

D
1

2
p
jKj

X
i;j2K;j¤i

vi � vj

kvi � vj k2
� .vi � vj / D

jKj.jKj � 1/

2
p
jKj

:

To conclude that Z D 1 a.s., it remains to verify that
R �Ca
��a

ŒRK.Xs/�
�1=2 ds D 1 a.s.

By Section 3.4, RK.X/ behaves like a squared Bessel process of dimension d�;N .k1/
during Œ� � a; � C a�. Since d�;N .k1/ 2 .0; 1/ andRK.X� /D 0, we conclude that indeed,R �Ca
��a

ŒRK.Xs/�
�1=2 dsD1 a.s.: this can be shown by comparison with the 1-dimensional

Brownian motion.

4. Construction of the Keller–Segel particle system

The aim of this section is to build a first version of the Keller–Segel particle system using
the book of Fukushima–Oshima–Takeda [11]. We also build an S-valued process for later
use.

Proposition 6. Fix N � 2 and � > 0 such that N > � , recall that k0 D d2N=�e and
that � and ˇ were defined in (4) and (8). Set X D Ek0 and X4 D X [ ¹4º, as well as
U D S \Ek0 and U4 D U [ ¹4º, where4 is a cemetery point.

(i) There exists a unique diffusion X D .�X ;MX ; .Xt /t�0; .PXx /x2X4/ with values in
X4, which is �-symmetric, with regular Dirichlet space .EX ;F X / onL2..R2/N ;�/
with core C1c .X/ defined by

EX .'; '/ D
1

2

Z
.R2/N

kr'k2 d� for all ' 2 C1c .X/:

We call such a process a QKS.�;N /-process and denote by � D inf ¹t � 0 W Xt D4º
its life-time.

(ii) There exists a unique diffusion U D .�U ;MU ; .Ut /t�0; .PUu /u2U4/ with values in
U4, which is ˇ-symmetric, with regular Dirichlet space .EU ;F U / on L2.S; ˇ/ with
core C1c .U/ defined by

EU .'; '/ D
1

2

Z
S
krS'k

2 dˇ for all ' 2 C1c .U/:
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We call such a process a QSKS.�;N /-process and denote by � D inf ¹t � 0 WUt D4º
its life-time.

The proof that we can build a KS.�; N /-process, i.e. a QKS.�; N /-process such that
PXx ıX

�1
t has density for all x 2 E2 and all t > 0, will be given in Section 11.

We refer to Section B.1 for some explanations of the notions used in this proposition:
link between a diffusion (i.e. a continuous Hunt process), its generator, semigroup and
its Dirichlet space, definition of the one-point compactification topology, i.e. the topo-
logy endowing X4 and U4, and about the “quasi-everywhere” notion. The state 4 is
absorbing, i.e. Xt D 4 for all t � � and Ut D 4 for all t � �.

Remark 7. By definition of the one-point compactification topology, for any increasing
sequence .Kn/n�1 of compact subsets of X such that

S
n�1 Kn D X, we have � D

limn!1 inf ¹t � 0 W Xt …Knº.
Similarly, for any increasing sequence .Ln/n�1 of compact subsets of U such thatS

n�1 Ln D U, we have � D limn!1 inf ¹t � 0 W Ut … Lnº.

The uniqueness stated e.g. in Proposition 6 (i) has to be understood in the fol-
lowing sense (see [11, Theorem 4.2.8, p. 167)]: if we have another diffusion process
Y D .�Y ;MY ; .Yt /t�0; .PYx /x2X/ enjoying the same properties, then quasi-everywhere,
the law of .Yt /t�0 under PYx equals the law of .Xt /t�0 under PXx . The quasi-everywhere
notion depends on the Hunt process under consideration but, as recalled in Section B.1,
two Hunt processes with the same Dirichlet space share the same quasi-everywhere
notion.

Proof of Proposition 6. We start with (i). We consider the bilinear form EX on C1c .X/
defined by EX .'; '/ D 1

2

R
.R2/N kr'k

2 d�. It is well-defined, since � is Radon on
X D Ek0 by Proposition A.1.

We first show that it is closable (see [11, p. 2]), i.e. if .'n/n�1 � C1c .X/ is
such that limn 'n D 0 in L2..R2/N ; �/ and limn;m EX .'n � 'm; 'n � 'm/ D 0, then
limn EX .'n; 'n/ D 0. Since r'n is a Cauchy sequence in L2..R2/N ; �/, it converges
to a limit g and it suffices to prove that g D 0 a.e. For  2 C1c .E2; .R

2/N /, we haveR
.R2/N g �  d� D limn

R
.R2/N r'n �  d�. But, recalling (4),Z

.R2/N
r'n �  d� D

Z
.R2/N

r'n.x/ �  .x/m.x/ dx

D �

Z
.R2/N

'n.x/ div.m.x/ .x// dx:

Thus by the Cauchy–Schwarz inequality,ˇ̌̌̌Z
.R2/N

r'n �  d�
ˇ̌̌̌
�

�Z
.R2/N

'2n d�
�1=2�Z

.R2/N

j div.m.x/ .x//j2

m.x/
dx
�1=2

;

which tends to 0 since limn 'n D 0 in L2..R2/N ;�/ and  2 C1c .E2; .R
2/N /, and since

m is smooth and positive on E2. Thus
R
.R2/N g �  d� D 0 for all  2 C1c .E2; .R

2/N /,
so that g D 0 a.e.
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We can thus consider the extension of EX to F X D C1c .X/
EX
1 , where we have set

EX1 .'; '/ D
R
.R2/N .'

2 C
1
2
kr'k2/ d� for ' 2 C1c .X/.

Next, .EX ; F X / is obviously regular with core C1c .X/ (see [11, p. 6]), because
C1c .X/ is dense in F X for the norm associated to EX1 by definition of F X , and C1c .X/
is dense, for the uniform norm, in Cc.X/. It is also strongly local (see [11, p. 6]), i.e.
EX .'; /D 1

2

R
.R2/N r' � r d�D 0 if '; 2 C1c .X/ with ' constant on a neighbor-

hood of supp .
Then [11, Theorems 7.2.2, p. 380, and 4.2.8, p. 167] imply the existence and unique-

ness of a Hunt process X D .�X ;MX ; .Xt /t�0; .PXx /x2X4/, with values in X4, which
is �-symmetric, has Dirichlet space is .EX ;F X /, and t 7! Xt is PXx -a.s. continuous on
Œ0; �/ for all x 2 X, where � D inf ¹t � 0 W Xt D 4º.

Furthermore, since EX is strongly local, we know from [11, Theorem 4.5.3, p. 186]
that we can choose X (modifying PXx only on a properly exceptional set) in such a way
that Px.� <1; X�� D 4/ D 1 for all x 2 X. This implies that for all x 2 X, Px-a.s.,
the map t 7! Xt is continuous from Œ0;1/ to X4 endowed with the one-point compacti-
fication topology recalled in Section B.1. Hence X is a diffusion.

For (ii), the same strategy applies. The only difference is the integration by parts to be
used for closability: for ' 2 C 1c .U/ and  2 C 1c .S \E2; .R

2/N /, classically,Z
S
.rS'/ �  dˇ D

Z
S
.rS'.u// �  .u/m.u/ �.du/

D �

Z
S
'.u/ divS.m.u/ .u// �.du/: (20)

This can be shown naively using Lemma A.2.

We now make explicit the generators of X and U when applied to some functions
enjoying a few properties. See Section B.1 for a precise definition of the generator of a
Hunt process. We have to introduce some notation.

For ' 2 C1..R2/N /, ˛ 2 .0; 1� and x 2 .R2/N , we set

LX
˛ '.x/ D

1

2
�'.x/ �

�

N

X
1�i¤j�N

xi � xj

kxi � xj k2 C ˛
� .r'.x//i

D
1

2m˛.x/
divŒm˛.x/r'.x/�; (21)

where
m˛.x/ D

Y
1�i¤j�N

.kxi � xj k2 C ˛/��=.2N/:

This is in accordance with (4), in the sense that m0 D m. Formula (21) makes sense for
x 2 E2 when ˛ D 0 (with m˛ replaced by m) and we recall that for ' 2 C1..R2/N / and
x 2 E2, LX'.x/ was defined in (5) by LX'.x/ D LX

0 '.x/. We will often use the fact
that for all '; 2 C1..R2/N /, and all x 2 .R2/N and ˛ 2 .0; 1�,

LX
˛ .' /.x/ D '.x/L

X
˛  .x/C  .x/L

X
˛ '.x/Cr'.x/ � r .x/: (22)
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For ' 2 C1.S/, ˛ 2 .0; 1� and u 2 S, we set

LU
˛ '.u/ D

1

2
�S'.u/ �

�

N

X
1�i¤j�N

ui � uj

kui � uj k2 C ˛
� .rS'.u//

i

D
1

2m˛.u/
divSŒm˛.u/rS'.u/�: (23)

This formula makes sense for u 2 S \ E2 when ˛ D 0 (with m˛ replaced by m) and we
set LU'.u/ D LU

0 '.u/ for ' 2 C1.S/ and u 2 S \E2.

Remark 8. (i) Denote by .AX ; DAX / the generator of the process X of Proposi-
tion 6 (i). If ' 2 C1c .X/ satisfies sup˛2.0;1� supx2.R2/N jL

X
˛ '.x/j < 1, then ' 2

DAX and AX' D LX'.

(ii) Denote by .AU ;DAU / the generator of the process U of Proposition 6 (ii). If ' 2
C1c .U/ satisfies sup˛2.0;1� supu2S jL

U
˛ '.u/j<1, then ' 2DAU and AU'DLU'.

Proof. To check (i), it suffices by (B.1) to verify that (a) ' 2 F X , (b) LX' 2 L2.X; �/

and (c) for all  2 F X , we have EX .';  / D �
R

X
.LX'/ d�.

Point (a) is clear, since ' 2 C1c .X/. Point (b) follows from the facts that � is Radon
on X, that ' is compactly supported in X and that LX' 2 L1..R2/N ; dx/, because
LX'.x/ D lim˛!0 LX

˛ '.x/ for all x 2 E2. Concerning (c) it suffices, by definition
of .EX ;F X / and since LX' 2 L2.X; �/, to show that for all  2 C1c .X/, we have
1
2

R
.R2/N r' � r d� D �

R
.R2/N .L

X'/ d�. But for ˛ 2 .0; 1�, by a standard integra-
tion by parts, since '; and m˛ are smooth,

1

2

Z
.R2/N

r'.x/ � r .x/m˛.x/ dx D �
1

2

Z
.R2/N

div.m˛.x/r'.x// .x/ dx

D �

Z
.R2/N

ŒLX
˛ '.x/� .x/m˛.x/ dx:

Letting ˛ ! 0 we conclude the proof by dominated convergence, since m˛ ! m
and LX

˛ ' ! LX' a.e., since jr'.x/ � r .x/m˛.x/j C jŒL
X
˛ '.x/� .x/m˛.x/j �

C1¹x2Kºm.x/ for some constant C and K D supp which is compact in X, and since
�.K/ D

R
K

m.x/ dx <1.
The proof of (ii) is exactly the same, using the fact that if '; 2 C1.S/, then

1

2

Z
S
rS' � rS m˛ d� D �

1

2

Z
S

divS.m˛rS'/ d� D �
Z

S
ŒLU
˛ '� m˛ d�;

which can be shown naively using the projection ˆS (see (10)) and Lemma A.2.

We end the section with an irreducibility/recurrence/transience study of the spherical
process; see Section B.1 again for definitions.

Lemma 9. Fix N � 2 and � > 0 such that N > � and consider the process U and its
Dirichlet space .EU ;F U / as in Proposition 6 (ii).
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(i) .EU ;F U / is irreducible and either

� .EU ;F U / is recurrent and in particular nonexploding and for all measurable A�
U such that ˇ.A/ > 0, we have PUu .lim supt!1¹Ut 2 Aº/D 1 quasi-everywhere;
or

� .EU ;F U / is transient and in particular for all compact subsets K of U, we have
PUu .lim inft!1¹Ut 2Kº/ D 0 quasi-everywhere.

(ii) If d�;N .N � 1/ > 0, then .EU ;F U / is recurrent.

In the transient case, one might also prove that PUu .lim supt!1¹Ut 2 Kº/ D 0, but
this would be useless for our purpose.

Proof of Lemma 9. (i) We first show that in any case, .EU ;F U / is irreducible. By [11,
Corollary 4.6.4, p. 195] and since EU .'; '/ D 1

2

R
S krS'k

2m d� with m bounded from
below by a constant (on S), it suffices to prove that the � -symmetric Hunt process with
regular Dirichlet space .E; F / on L2.U; �/ with core C1c .U/ such that E.'; '/ D
1
2

R
S krS'k

2 d� for all ' 2 C1c .U/ is irreducible. But this Hunt process is nothing but an
S-valued Brownian motion. This Brownian motion is a priori killed when it gets out of U,
but a.s. this never occurs since such a Brownian motion never has two (bi-dimensional)
coordinates equal. This S-valued Brownian motion is of course irreducible. We conclude
from [11, Lemma 1.6.4, p. 55] that .EU ;F U / is either recurrent or transient.

When .EU ;F U / is recurrent, [11, Theorem 4.7.1 (iii), p. 202] gives us the result.
When .EU ; F U / is transient, we fix a compact set K of U and we know from

Lemma A.3 that ˇ.K/ < 1, so that by definition of transience, for ˇ-a.e. u 2 U, we
have EUu Œ

R1
0

1K.Us/ ds� <1. Setting �Kc D inf ¹t � 0 W Ut …Kº, we see in particular
that PUu .�Kc <1/D 1 for ˇ-a.e. u2U. But, by [11, (4.1.9), p. 155], u 7!PUu .�Kc <1/

is finely continuous. Using [11, Lemma 4.1.5, p. 155], we deduce that PUu .�Kc <1/D 1

quasi-everywhere. The Markov property allows us to conclude the proof.
(ii) We recall from Proposition A.3 that ˇ.S/ <1, because d�;N .N � 1/ > 0 implies

that k0 � N (see Lemma 1). Moreover, k0 � N implies that Ek0 � EN � S, whence
U D Ek0 \ S D S is compact; the process cannot explode, i.e. � D 1. Consequently,
.EU ; F U / is recurrent, since ' � 1 belongs to L1.U; ˇ/ and EUu Œ

R1
0
'.Us/ ds� D

EUu Œ�� D 1. Indeed, as recalled in Section B.1, if .EU ;F U / was transient, we would
have EUu Œ

R1
0
'.Us/ds� <1 for all ' 2L1.U;ˇ/, with the convention that '.4/D 0.

5. Decomposition

The goal of this section is to prove the following decomposition of the Keller–Segel
particle system defined in Proposition 6 (i). This decomposition is remarkable and cru-
cial for our purpose.

Proposition 10. Fix N � 2 and � > 0 such that N > � , and recall that k0 D d2N=�e,
X D Ek0 and U D S \Ek0 .
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For x 2 EN , set r D RJ1;N K.x/ > 0, z D SJ1;N K.x/ 2 R2 and u D .x � 
.z//=
p
r

2 S and consider three independent processes:

� .Mt /t�0, a 2-dimensional Brownian motion with diffusion constant N�1=2 starting
from z,

� .Dt /t�0, a squared Bessel process of dimension d�;N .N / starting from r and killed
when it gets out of .0;1/, with life-time �D D inf ¹t � 0 W Dt D 4º,

� .Ut /t�0, a QSKS.�;N /-process starting from u, with life-time � D inf¹t � 0 WUt D4º.

Set At D
R t^�D
0

D�1s ds, with generalized inverse �t D inf ¹s > 0 W As > tº. Define Yt D
‰.Mt ; Dt ; UAt /, where we recall from (9) that ‰.z; r; u/ D 
.z/ C

p
ru 2 EN when

.z; r; u/ 2 R2 � .0;1/ � S, and ‰.z; r; u/ D 4 when r D 4 or u D 4. Observe that
the life-time of Y equals �0 D �� ^ �D .

Consider also a QKS.�;N /-process X D .�X ;MX ; .Xt /t�0; .PXx /x2X4/, with life-
time �, and X� D .�X ;MX ; .X�t /t�0; .P

X
x /x2.X\EN /[¹4º/, where X�t D Xt1¹t<�º C

41¹t��º and where � D inf ¹t � 0 W RJ1;N K.Xt / … .0;1/º. In other words, X� is the
version of X killed when it gets out of EN . The life-time of X� is � .

The law of .Yt /t�0 is the same as that of .X�t /t�0 under PXx , quasi-everywhere in
X \EN .

We make the convention that RJ1;N K.4/ D 0, so that � 2 Œ0; ��. Since RJ1;N K.Yt /

D Dt and SJ1;N K.Yt / D Mt for all t 2 Œ0; �0/, Proposition 10 in particular implies that
.RJ1;N K.Xt //t�0 and .SJ1;N K.Xt //t�0 are a squared Bessel process and a Brownian
motion, independent until the first time .RJ1;N K.Xt //t�0 vanishes. This actually holds
true until explosion, as shown in Lemma 11 below. The quasi-everywhere notion refers to
the Hunt process X. Observe that when � � 2, we have k0 � N , so that X \ EN D X

and X D X�.

Proof of Proposition 10. We divide the proof into several steps. The first two steps are
more or less classical, even if we give all the details: we determine the Dirichlet spaces
of the three processes .Mt /t�0, .Dt /t�0 and .Ut /t�0 involved in the construction of
.Yt /t�0; then we compute the Dirichlet space of .D�t /t�0; next we identify the Dirichlet
space of .D�t ; Ut /t�0, which allows us to find the one of .Dt ; UAt /t�0 by a second time-
change; by concatenation, we deduce the Dirichlet space of .Mt ;Dt ; UAt /t�0. The main
computations are handled in Steps 3 and 4, where we find the Dirichlet space of .Yt /t�0,
which allows us to conclude the proof in Step 5 by uniqueness.

Step 1. First, take U D .�U ;MU ; .Ut /t�0; .PUu /u2U4/ as in Proposition 6 (ii). Next,
consider a 2-dimensional Brownian motion M D .�M ;MM ; .Mt /t�0; .PMz /z2R2/ with
diffusion constant N�1=2. We know from [11, Example 4.2.1, p. 167] that M is a dz-
symmetric (here dz is the Lebesgue measure on R2) diffusion with regular Dirichlet space
.EM ;F M / on L2.R2; dz/ with core C1c .R

2/, and for all ' 2 C1c .R
2/,

EM .'; '/ D
1

2N

Z
R2
krz'.z/k

2 dz: (24)
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Finally, let D D .�D;MD; .Dt /t�0; .PDr /r2R�
C
[¹4º/ be a squared Bessel process of

dimension d�;N .N / killed when it gets out of R�C D .0;1/, and set � D d�;N .N /=2� 1
(see Revuz–Yor [21, p. 443]). Fukushima [10, Theorem 3.3] tells us that D is an r�dr-
symmetric diffusion (here dr is the Lebesgue measure on R�C) with regular Dirichlet space
.ED;F D/ on L2.RC; r�dr/ with core C1c .R

�
C/, where for all ' 2 C1c .R

�
C/,

ED.'; '/ D 2

Z
RC

j'0.r/j2r�C1 dr: (25)

Together with [10, Theorem 3.3], this uses the fact that the scale function and the speed
measure of .Dt /t�0 are respectively r 7! r�� and�Œr�=.2�/�dr . Actually, we do not take
the speed measure as reference measure but r�dr , which is the same up to a constant.

Step 2. We apply Lemma B.3 to D with g.r/ D 1=r , i.e. with At D
R t
0
D�1s ds DR t^�D

0
D�1s ds thanks to the convention 4�1 D 0 and recall that � is its generalized

inverse; setting D�t D D�t 1¹�t<1º C41¹�tD1º, we find that

D� D .�
D;MD; .D�t /t�0; .P

D
r /r2R�

C
/

is an r��1dr-symmetric .R�C [ ¹4º/-valued diffusion with Dirichlet space .ED� ;F D�/

on L2.RC; r��1dr/, regular with core C1c .R
�
C/ such that for all ' 2 C1c .R

�
C/,

ED�.'; '/ D ED.'; '/ D 2

Z
RC

j'0.r/j2r�C1 dr D 2
Z

RC

jr'0.r/j2r��1 dr: (26)

We use Lemma B.5 and the notation therein: recalling that by definition, M.D;U / D

�..D�t ; Ut / W t � 0/, with the convention that .r;4/ D .4; u/ D .4;4/ D 4, and
P .D;U /
.r;u/

D PDr ˝ PUu if .r; u/ 2 R�C �U and P .D;U /
4

D PD
4
˝ PU

4
, we find that

.D;U/ D
�
�D ��U ;M.D;U /; .D�t ; Ut /t�0; .P

.D;U /

.r;u/
/.r;u/2.R�

C
�U/[¹4º

�
is an r��1drˇ.du/-symmetric .R�C �U/ [ ¹4º-valued diffusion with regular Dirichlet
space .E.D�;U /;F .D�;U // on L2.RC � S; r��1drˇ.du// with core C1c .R

�
C �U/, and

for all ' 2 C1c .R
�
C �U/,

E.D�;U /.'; '/ D

Z
RC

EU .'.r; �/; '.r; �//r��1 dr C
Z

S
ED�.'.�; u/; '.�; u// ˇ.du/:

We now apply Lemma B.3 to .D;U/ with g.r; u/ D r for all r 2 R�C and all u 2 U.
We consider the time-change ˛t D

R t
0
g.D�s ;Us/ds, with the convention that g.r;u/D 0

as long as .r; u/D4. We also set Bt D inf ¹s > 0 W ˛s > tº. As we will see in a few lines,

.D�Bt ; UBt / D .Dt ; UAt / for all t � 0: (27)

Hence Lemma B.3 tells us that

.D;UA/ D
�
�D ��U ;M.D;U /; .Dt ; UAt /t�0; .P

.D;U /

.r;u/
/.r;u/2.R�

C
�U/[¹4º

�
is an r�drˇ.du/-symmetric .R�C � U/ [ ¹4º-valued diffusion with regular Dirichlet
space .E.D;UA/;F .D;UA// on L2.RC � S; r�drˇ.du// with core C1c .R

�
C �U/ and for
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all ' 2 C1c .R
�
C �U/,

E.D;UA/.'; '/ D E.D�;U /.'; '/

D

Z
RC

EU .'.r; �/; '.r; �//r��1 dr C
Z

S
ED�.'.�; u/; '.�; u// ˇ.du/: (28)

We now check (27). Recall that D explodes at time �D , At D
R t^�D
0

D�1s ds, and � is
the generalized inverse of A. Hence .�t /t2Œ0;A�D / is the true inverse of .At /t2Œ0;�D/ and
we have �0t D D�t , whence �t D

R t
0
D�sds for t 2 Œ0; A�D /. We also have �t D 1 for

t � A�D . Next, ˛t D
R t
0
D�sds D �t for t 2 Œ0; A�D ^ �/, because g.D�s ; Us/ D D�s

if .D�s ; Us/ ¤ 4, i.e. if s < A�D ^ � . Hence B , the generalized inverse of ˛, equals A
during Œ0; �D ^ ��/, thus in particular �Bt D t for t 2 Œ0; A�D ^ �/. In conclusion, (27)
holds true for t 2 Œ0; A�D ^ �/. If now t � �D ^ �� , then Bt D 1, because B is the
generalized inverse of ˛ and because for all t � 0,

˛t � ˛A�D^� D �A�D^� D �D ^ �� :

Hence, still if t � �D ^ �� , we have .D�Bt ; UBt / D 4, while .Dt ; UAt / D 4 because
either t � �D and thus Dt D 4, or t � �� and thus At � � so that UAt D 4. We have
proved (27).

Thanks to Lemma B.5, setting M.M;D;U/ D �..Mt ; Dt ; UAt / W t � 0/ with the con-
vention that .z;4/ D 4 and setting P .M;D;U/

.z;r;u/
D PMz ˝ P .D;U /

.r;u/
in the case where

.z; r; u/ 2 R2 �R�C �U and P .M;D;U/
4

D PM
4
˝ P .D;U /

4
, we conclude that

.M;D;UA/ D
�
�M ��D ��U ;M.M;D;U/; .Mt ;Dt ; UAt /t�0;

.P .M;D;U/
.z;r;u/

/.z;r;u/2.R2�R�
C
�U/[¹4º

�
is a dzr�drˇ.du/-symmetric .R2 �R�C �U/[¹4º-valued diffusion with regular Dirich-
let space .E.M;D;UA/;F .M;D;UA// on L2.R2 � RC � S; dzr�drˇ.du//, and its core is
C1c .R

2 �R�C �U/. Moreover, for all ' 2 C1c .R
2 �R�C �U/,

E.M;D;UA/.'; '/

D

Z
RC�S

EM .'.�; r; u/; '.�; r; u//r� dr ˇ.du/C
Z

R2
E.D;UA/.'.z; �; �/; '.z; �; �// dz

D

Z
RC�S

EM .'.�; r; u/; '.�; r; u//r� dr ˇ.du/

C

Z
R2�S

ED�.'.z; �; u/; '.z; �; u// dz ˇ.du/

C

Z
R2�RC

EU .'.z; r; �/; '.z; r; �// dz r��1 dr

D

Z
R2�RC�S

�
1

2N
krz'.z; r; u/k

2
C 2r j@r'.z; r; u/j

2

C
1

2r
krS'.z; r; u/k

2

�
dz r� dr ˇ.du/: (29)
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For the second line, we have used (28). For the last line, we have used (24), (26) and the
expression of EU (see Proposition 6 (ii)).

Step 3. We recall that Yt D‰.Mt ;Dt ;UAt /, where‰.z; r;u/D 
.z/C
p
ru for .z; r;u/

2 R2 � R�C �U and ‰.z; r; u/ D 4 for .z; r; u/ D 4. One easily checks that ‰ is a
bijection from .R2 � R�C �U/ [ ¹4º to .X \ EN / [ ¹4º; recall that X D Ek0 and
U D Ek0 \ S.

We now study

Y D .�Y ;MY ; .Yt /t�0; .P
Y
y /y2.X\EN /[¹4º/;

where �Y D �M ��D ��U , MY DM.M;D;U/ and PYy D P .M;D;U/
.z;r;u/

for .z; r; u/ D
‰�1.y/.

First, Y is an .X \EN /[ ¹4º-valued diffusion, because the bijection‰, which maps
.R2 � R�C �U/ [ ¹4º onto .X \ EN / [ ¹4º, is continuous, both sets being endowed
with the one-point compactification topology; see Section B.1.

Next, we prove that Y is �-symmetric: if ';  are nonnegative measurable functions
on X \EN and t � 0, we have, thanks to Lemma A.2 (recall that � D d�;N .N /=2 � 1),Z

.R2/N
ŒP Yt '.y/� .y/�.dy/

D
1

2

Z
R2�RC�S

Œ.P Yt '/.‰.z; r; u//� .‰.z; r; u//r
� dz dr ˇ.du/:

But .P Yt '/.‰.z; r; u// D E.z;r;u/Œ'.‰.Mt ;Dt ; UAt //� D P
.M;D;UA/
t .' ı‰/.z; r; u/, so

that Z
.R2/N

ŒP Yt '.y/� .y/�.dy/

D
1

2

Z
R2�RC�S

ŒP
.M;D;UA/
t .' ı‰/.z; r; u/�Œ. ı‰/.z; r; u/� r� dz dr ˇ.du/:

Using the fact that .M;D;UA/ is dzr�drˇ.du/-symmetric and then the same computation
in reverse order, one concludes that

R
.R2/N ŒP

Y
t '� d� D

R
.R2/N 'ŒP

Y
t  � d� as desired.

Thus Y has a Dirichlet space .EY ;F Y / on L2..R2/N ;�/ that we now determine. For
' 2 L2..R2/N ; �/, using as above Lemma A.2 and the fact that .P Yt '/.‰.z; r; u// D
P
.M;D;UA/
t .' ı‰/.z; r; u/, we find

1

t

Z
.R2/N

.P Yt ' � '/' d� D

1

2t

Z
R2�R�

C
�S
ŒP

.M;D;UA/
t .' ı‰/.z; r;u/� .' ı‰/.z; r;u/�Œ' ı‰.z;r;u/�r� dz dr ˇ.du/:

Since ‰ is bijective, we deduce (see [11, Lemma 1.3.4, p. 23]) that

F Y
D ¹' 2 L2..R2/N ; �/ W ' ı‰ 2 F .M;D;UA/º (30)
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and
EY .'; '/ D 1

2
E.M;D;UA/.' ı‰; ' ı‰/ for ' 2 F Y : (31)

Step 4. We now compute EY .'; '/ for ' 2 C1c .X \ EN /. Observe that ' ı ‰ 2
C1c .R

2 �R�C �U/. Thanks to (29) and (31), we have

EY .'; '/ D
1

2

Z
R2�RC�S

I.z; r; u/ dz r� dr ˇ.du/; (32)

where

I.z; r; u/ D
1

2N
krz.' ı‰/.z; r; u/k

2
C 2r j@r .' ı‰/.z; r; u/j

2

C
1

2r
krS.' ı‰/.z; r; u/k

2:

We recall that for ' W .R2/N ! R, we call r'.x/ D ..r'.x//1; : : : ; .r'.x//N /

2 .R2/N the total gradient of ' at x 2 .R2/N , and we have .r'.x//i 2 R2 for each
i 2 J1;N K. And for � WO!Rp , whereO is open in Rn, we denote by dz� the differential
of � at z 2 O .

We start with the study of ‰.z; r; u/ D 
.z/ C
p
ru, where we recall that 
 was

introduced in Section 2 and ˆS.x/ D �Hx=k�Hxk is defined on a neighborhood of S in
.R2/N (see (10)). For all .z; r; u/ 2 R2 �R�C � S and all h 2 R2, k 2 R and ` 2 .R2/N ,
we have

dz‰.�; r; u/.h/ D 
.h/; dr‰.z; �; u/.k/ D
k

2
p
r
u;

duŒ‰.z; r;ˆS.�//�.`/ D
p
r�u?.�H .`//:

For the first equality, it suffices to use the fact that 
 is linear, so that dz‰.�; r; u/.h/ D
dz
.h/ D 
.h/. The second equality is obvious. For the third equality, which is the dif-
ferential at u 2 S of the function F.x/ D 
.z/C

p
rˆS.x/ defined for x in EN (which

is open in .R2/N and contains S), we write duF D
p
rduˆS. But ˆS D G ı �H , where

G.x/ D x=kxk, and we have du�H D �H and d�H .u/G D duG D �u? for u 2 S. All in
all, duF D

p
r�u? ı �H .

First, rz.' ı‰/.z; r; u/ D
PN
iD1Œr'.‰.z; r; u//�

i . Indeed, for all h 2 R2,

dz.' ı‰.�; r; u//.h/ D .d‰.z;r;u/'/Œ.dz‰.�; r; u//.h/�

D .d‰.z;r;u/'/.
.h// D r'.‰.z; r; u// � 
.h/;

which, by definition of 
 , equals h �
PN
iD1Œr'.‰.z; r; u//�

i .
This implies that

1

2N
krz.' ı‰.z; r;u//k

2
D

1

2N




 NX
iD1

Œr'.‰.z; r;u//�i



2 D 1

2
k�H?.r'.‰.z; r;u///k

2:

(33)
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Indeed, recalling the expression of �H (see Section 2), it suffices to note that for every
x 2 .R2/N , k�H?.x/k

2 D k
.SJ1;N K.x//k
2 D N kSJ1;N K.x/k

2 D N�1k
PN
iD1 x

ik2.
Next, @r .' ı‰/.z; r; u/ D .r'/.‰.z; r; u// � u=.2

p
r/. Indeed, for k 2 R,

dr .' ı‰.z; �; u//.k/ D .d‰.z;r;u/'/Œ.dr‰.z; �; u//.k/� D .d‰.z;r;u/'/.u/ �
k

2
p
r
;

which is nothing but .r'/.‰.z; r; u// � u � k=.2
p
r/.

This implies, recalling that �u is the orthogonal projection on span.u/ � .R2/N , that

2r j@r .' ı‰/.z; r; u/j
2
D

1
2
k�u..r'/.‰.z; r; u///k

2
D

1
2
k�H .�u..r'/.‰.z; r; u////k

2

(34)
since u 2 S, so that kuk D 1 and u 2 H .

Finally, rS.' ı ‰/.z; r; u/ D
p
r�H .�u?.r'.‰.z; r; u////. Indeed, for all `

in .R2/N ,

du..' ı‰/.z; r;ˆS.�///.`/ D .d‰.z;r;u/'/.duŒ‰.z; r;ˆS.�//�.`//

D
p
r.d‰.z;r;u/'/.�u?.�H .`///

D
p
rr'.‰.z; r; u// � �u?.�H .`//

D
p
r�H .�u?.r'.‰.z; r; u//// � `

as desired, since rS.' ı ‰/.z; r; u/ D rx..' ı ‰/.z; r; ˆS.�///.u/ by definition of rS

(see (12)).
This implies that

1

2r
krS.' ı‰/.z; r; u/k

2
D
1

2
k�H .�u?.r'.‰.z; r; u////k

2: (35)

Gathering (33)–(35), we see that I.z; r; u/ D 1
2
kr'.‰.z; r; u//k2, since for

x 2 .R2/N ,

k�H?.x/k
2
C k�H .�u.x//k

2
C k�H .�u?.x//k

2
D kxk2

because u 2 S � H .
Injecting the value of I in (32) and using Lemma A.2, we obtain

EY .'; '/ D
1

4

Z
R2�R�

C
�S
kr'.‰.z; r; u//k2 dz r� dr ˇ.du/ D

1

2

Z
.R2/N

kr'k2 d�:

Step 5. As a last technical step, we verify that .EY ;F Y / is a regular Dirichlet space on
L2..R2/N ; �/ with core C1c .X \EN /, i.e. for all ' 2 F Y , there is 'n 2 C1c .X \EN /
such that limn k'n � 'kL2..R2/N ;�/ C EY .'n � '; 'n � '/ D 0.

Since .E.M;D;UA/;F .M;D;UA// on L2.R2 � RC � S; dzr�drˇ.du// is regular with
core C1c .R

2 �R�C �U/, and recalling (30), there is gn 2 C1c .R
2 �R�C �U/ such that

kgn � ' ı‰kL2.R2�RC�S;dzr�drˇ.du// C E.M;D;UA/.gn � ' ı‰; gn � ' ı‰/! 0:
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Setting 'n D gn ı‰�1, we have 'n 2 C1c .X \EN /, and by (31),

EY .'n � '; 'n � '/ D
1
2
E.M;D;UA/.gn � ' ı‰; gn � ' ı‰/! 0;

as well as, by Lemma A.2,

k'n � 'kL2..R2/N ;�/ D
1
2
kgn � ' ı‰kL2.R2�RC�S;dzr�drˇ.du// ! 0:

Step 6. By Steps 3–5, Y is a �-symmetric .X \ EN / [ ¹4º-valued diffusion with
regular Dirichlet space .EY ; F Y / with core C1c .X \ EN / and with EY .'; '/ D
1
2

R
.R2/N kr'k

2 d� for ' 2 C1c .X \EN /.
Now, applying Lemma B.6 to X defined in Proposition 6 (i) with the set X \EN , we

see that X�, i.e. X killed when getting outside X \ EN , is a �-symmetric .X \ EN /
[ ¹4º-valued diffusion process with regular Dirichlet space .EX

�

; F X�/ with core
C1c .X \EN / and with EX

�

.'; '/ D 1
2

R
.R2/N kr'k

2 d� for ' 2 C1c .X \EN /.
This implies, as recalled in Section B.1, that .EX

�

;F X�/ D .EY ;F Y /. The conclu-
sion follows by uniqueness (see [11, Theorem 4.2.8, p. 167]).

Actually, .RJ1;N K.Xt //t�0 and .SJ1;N K.Xt //t�0 are a squared Bessel process and
a Brownian motion independent until explosion (and not only until the first time that
RJ1;N K.Xt / D 0, as shown in Proposition 10), a fact that we shall often use.

Lemma 11. Fix N � 2 and � > 0 such that N > � and consider a QKS.�; N /-process
X D .�X ; MX ; .Xt /t�0; .PXx /x2X4/. Quasi-everywhere, there are a 2-dimensional
Brownian motion .Mt /t�0 with diffusion constant N�1=2 issued from SJ1;N K.x/ and a
squared Bessel process .Dt /t�0 of dimension d�;N .N / issued from RJ1;N K.x/ .killed
when it leaves .0;1/ if d�;N .N / � 0/ independent of .Mt /t�0 such that PXx -a.s.,
SJ1;N K.Xt / DMt and RJ1;N K.Xt / D Dt for all t 2 Œ0; �/.

Proof. If � � 2, this is a consequence of Proposition 10: introducing the stopping time
� D inf ¹t > 0 W RJ1;N K.Xt / … .0;1/º, we have � D �. Indeed, on ¹� < �º, we have X� …
EN , whence X� … X since X D Ek0 with k0 � N (because � � 2), which contradicts
� < �.

We now suppose that � < 2, so that k0 > N and thus X D .R2/N . We introduce the
shortened notation R.x/ D RJ1;N K.x/, S.x/ D SJ1;N K.x/ and split the proof into three
parts.

Step 1. First, one can show similarly to the proof of Proposition 10 (but much more
easily) that there exists a 2-dimensional Brownian motion .Mt /t�0, which is independent
of .Xt � 
.S.Xt ///t�0, such that S.Xt / D Mt for all t 2 Œ0; �/. This moreover shows
that .Mt /t�0 is independent of .R.Xt //t�0, because R.Xt / D kXt � 
.S.Xt //k2.

Step 2. We consider some function gm 2 C1c ..R
2/N / such that gm D 1 on B.0;m/ and

sup˛2.0;1� supx2.R2/N jL
X
˛ gm.x/j <1. Such a function exists by Remark 14. For ' 2

C1c .RC/, we set  .x/ D '.R.x// and show that  gm 2 DAX and for all x 2 B.0;m/,

AX . gm/.x/ D 2R.x/'
00.R.x//C d�;N .N /'

0.R.x//: (36)
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To this end, we apply Remark 8. Since  gm 2 C1c ..R
2/N / and X D .R2/N ,

we have to show that sup˛2.0;1� supx2.R2/N jL
X
˛ . gm/.x/j < 1, and we will deduce

that AX . gm/ D LX . gm/. By (22), we have LX
˛ . gm/ D gmLX

˛  C  LX
˛ gm C

r � rgm. The only difficulty consists in showing sup˛2.0;1� supx2.R2/N jL
X
˛  .x/j<1.

Using rxiR.x/ D 2.x
i � S.x//, we find rxi .x/ D 2.x

i � S.x//'0.R.x//: Hence, by
symmetry,

�

N

X
1�i¤j�N

xi � xj

kxi � xj k2 C ˛
� rxi .x/ D

2�

N
'0.R.x//

X
1�i¤j�N

xi � xj

kxi � xj k2 C ˛
� xi

D
�

N
'0.R.x//

X
1�i¤j�N

kxi � xj k2

kxi � xj k2 C ˛
: (37)

Moreover, �xi .x/ D 4.1 � 1=N/'
0.R.x//C 4kxi � S.x/k2'00.R.x//; whence

� .x/ D 4.N � 1/'0.R.x//C 4R.x/'00.R.x//: (38)

By combining (37) and (38) we conclude that

LX
˛  .x/ D 2R.x/'

00.R.x//C

�
2.N � 1/ �

�

N

X
1�i¤j�N

kxi � xj k2

kxi � xj k2 C ˛

�
'0.R.x//:

Since ' is compactly supported, we deduce that sup˛2.0;1� supx2.R2/N jL
X
˛  .x/j <1,

whence sup˛2.0;1� supx2.R2/N jL
X
˛ . gm/.x/j <1. Hence  gm 2DAX and AX . gm/

DLX . gm/. Moreover, recalling that LX DLX
˛  with ˛D 0, and gmD 1 onB.0;m/,

we conclude that AX . gm/.x/ D LX
0  .x/ for x 2 B.0;m/. This implies (36), because

2.N � 1/ � �.N � 1/ D d�;N .N /.

Step 3. We define �m D inf ¹t > 0 W Xt … B.0; m/º. By Lemma B.2 and Step 1, for all
' 2 C1c .RC/, quasi-everywhere in B.0;m/,

'.R.Xt^�m// � '.R.x// �

Z t^�m

0

LX'.R.Xs// ds

is a PXx -martingale. Recalling (36), we classically conclude that there is a Brownian
motion W such that R.Xt / D R.x/C 2

R t
0

p
R.Xs/dWs C d�;N .N /t during Œ0; �n�. We

recognize the SDE of a squared Bessel process of dimension d�;N .N / (see Revuz–Yor
[21, Chapter XI]). Since we know from Remark 7 that � D limm �m, the proof is com-
plete.

6. Some cutoff functions

We will need several times to approximate indicator functions by smooth functions, on
which the generator LX (or LU ) is bounded. This does not seem obvious, due to the
singularity of LX . We recall that LX

˛ and LU
˛ were defined in (21) and (23).
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Lemma 12. FixN � 2 and � > 0, and recall that k0 D d2N=�e and X D Ek0 . Consider
a partition K D .Kp/p2J1;`K of J1;N K and define, for " 2 Œ0; 1� .with the convention that
B.0; 1=0/ D .R2/N /,

GK;" D
°
x 2 X W min

1�p¤q�`
min

i2Kp ; j2Kq
kxi � xj k2 > "

±
\ B.0; 1="/:

(i) For all " 2 .0; 1�, there is a family of open relatively compact subsets GnK;" of GK;0

such that [
n�1

GnK;" � GK;" and GnK;" � G
nC1
K;" for each n � 1

and a family of Œ0; 1�-valued functions �nK;" 2 C
1
c .GK;0/ such that for some � 2 .0; 1�

and all n � 1,

supp�nK;" � GK;�; �nK;" D 1 on GnK;"; sup
˛2.0;1�

sup
x2.R2/N

jLX
˛ �

n
K;".x/j <1:

(ii) With the same sets GnK;" as in (i), there exist functions �S;n
K;" 2 C

1
c .S \ GK;0/ with

values in Œ0; 1� such that for all n � 1,

�
S;n
K;" D 1 on S \GnK;" and sup

˛2.0;1�

sup
u2S
jLU
˛ �

S;n
K;" .u/j <1:

The section is devoted to the proof of this lemma. We start with the following technical
result.

Lemma 13. Define a family .c`/`2J1;N K by c0 D 1 and c`C1 D .2 C 4`/c` for all ` 2
J1;N � 1K. For all K ¨ J1;N K, and all " 2 .0; 1� and x 2 .R2/N such that

RK.x/ � 2cjKj" and min
j…K

RK[¹j º.x/ � cjKjC1";

we have kxi � xj k2 � cjKj" for all i 2 K and j … K.

Proof. We fix K ¨ J1;N K, " 2 .0; 1� and x 2 .R2/N as in the statement and assume for
contradiction that there are i0 2 K and j0 … K such that kxi0 � xj0k2 < cjKj". Then for
all i 2 K,

kxj0 � xik2 � 2kxi0 � xj0k2 C 2kxi0 � xik2 � 2kxi0 � xj0k2 C 2jKjRK.x/

< .2C 4jKj/cjKj":

This implies that

RK[¹j0º.x/ D
1

2.jKj C 1/

�
2jKjRK.x/C 2

X
i2K

kxj0 � xik2
�

�RK.x/C
1

jKj C 1

X
i2K

kxj0 � xik2;
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whence

RK[¹j0º.x/ < 2cjKj"C
2C 4jKj

jKj C 1
jKjcjKj" < .2C 4jKj/cjKj" D cjKjC1";

which is a contradiction.

Proof of Lemma 12. We introduce a nondecreasing C1 function % W RC ! Œ0; 1� such
that % D 0 on Œ0; 1=2� and % D 1 on Œ1;1/. We divide the proof into three steps.

Step 1. We fix n � 1 and define, for K � J1; N K, using the family .c`/`2J1;N K of
Lemma 13,

QEK;n D ¹x 2 .R
2/N W 8L � K; RL.x/ > cjLj=nº; Q�K;n.x/ D

Y
L�K

%.nRL.x/=cjLj/;

where ¹L � Kº D ¹L � J1;N K W K � Lº. We have

Q�K;n 2 C
1..R2/N /; supp Q�K;n � QEK;2n; Q�K;n D 1 on QEK;n: (39)

Since RK.x/ > 0 implies that RL.x/ > 0 for all L � K, we also have[
n�1

QEK;n D QEK ; where QEK D ¹x 2 .R
2/N W RK.x/ > 0º: (40)

We now show, and this is the main difficulty of this step, that for all A > 0 and K �
J1; N K with jKj � 2, we have sup˛2.0;1� supx2B.0;A/ jL

X
˛
Q�K;n.x/j < 1. Observe that

since supx2B.0;A/ j� Q�K;n.x/j <1, it suffices that sup˛2.0;1� supx2B.0;A/ jIK;n;˛.x/j <
1, where

IK;n;˛.x/ D
X

1�i¤j�N

xi � xj

kxi � xj k2
� rxi

Q�K;n.x/

D

X
L�K

fK;L;n.x/
X

1�i¤j�N

xi � xj

kxi � xj k2
� rxiRL.x/;

with

fK;L;n.x/ D
n

cjLj
%0
�
nRL.x/

cjLj

� Y
M�K;M¤L

%

�
nRM .x/

cjM j

�
:

Using rxiRL.x/ D 2.x
i � SL.x//1¹i2Lº, we now write

IK;n;˛.x/ D 2
X
L�K

fK;L;n.x/.AL;˛.x/C BL;˛.x//;

where

AL;˛.x/ D
X

i;j2L; i¤j

.xi � xj / � .xi � SL.x//

kxi � xj k2 C ˛
;

BL;˛.x/ D
X

i2L; j2Lc

.xi � xj / � .xi � SL.x//

kxi � xj k2 C ˛
:
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We have sup˛2.0;1� supx2B.0;A/ jfK;L;n.x/AL;˛.x/j <1 because fK;L;n is bounded and

AL;˛.x/ D
X

i;j2L; i¤j

.xi � xj / � xi

kxi � xj k2 C ˛

D
1

2

X
i;j2L; i¤j

kxi � xj k2

kxi � xj k2 C ˛
2

h
0;
jLj.jLj � 1/

2

i
:

Next, assume that L ¨ J1; N K (else BL;˛.x/ D 0) and observe that fK;L;n.x/ ¤ 0

implies that RL.x/ < cjLj=n (since %0 D 0 on Œ1;1/) and that mini…L RL[¹iº.x/ >
cjLjC1=.2n/ (as % D 0 on Œ0; 1=2�). By Lemma 13, this gives mini2L;j2Lc kxi � xj k2 �
cjLj=.2n/. We immediately conclude that sup˛2.0;1� supx2B.0;A/ jfK;L;n.x/BL;˛.x/j<1.

Step 2. We can now prove (i). We fix " 2 .0; 1� and a partition KD .Kp/p2J1;`K of J1;N K.
For some m � 1 to be chosen later (as a function of "), for each n � 1 we set

GnK;" D B.0;m/ \
� \
K�J1;N KW jKjDk0

QEK;n

�
\

� \
1�p¤q�`

\
i2Kp ; j2Kq

QE¹i;j º;m

�
;

�nK;".x/ D gm.x/
� Y
K�J1;N KW jKjDk0

Q�K;n.x/
�� Y
1�p¤q�`

Y
i2Kp ; j2Kq

Q�¹i;j º;m.x/
�
;

where gm.x/ D %.m=kxk/ with the extension gm.0/ D 1.
First, GnK;" is clearly included in GnC1K;" and relatively compact in GK;0. We deduce

from (40) that, setting HK;m D B.0;m/ \
T
1�p¤q�`

T
i2Kp ; j2Kq

QE¹i;j º;m,[
n�1

GnK;" D
� \
K�J1;N KW jKjDk0

QEK

�
\HK;m D Ek0 \HK;m D X \HK;m:

By (40) again, we can choose m large enough that HK;m contains GK;". Next, by (39),
�nK;" 2 C

1..R2/N /, �nK;" D 1 on GnK;" and

supp�nK;" � B.0; 2m/ \
� \
K�J1;N KW jKjDk0

QEK;2n

�
\

� \
1�p¤q�`

\
i2Kp ; j2Kq

QE¹i;j º;2m

�
;

which is compact in GK;0. Moreover, supp �nK;" � HK;2m. Since there exists � 2 .0; 1�
such that HK;2m � GK;� , we conclude that supp�nK;" � GK;� .

It remains to show that sup˛2.0;1� supx2.R2/N jL
X
˛ �

n
K;".x/j <1. Introducing

�nK;".x/ D
� Y
K�J1;N KW jKjDk0

Q�K;n.x/
�� Y
1�p¤q�`

Y
i2Kp ; j2Kq

Q�¹i;j º;m.x/
�
;

which belongs to C1..R2/N / by Step 1, we have �nK;" D gm�
n
K;".x/ (with the chosen

value of m), and thus by (22),

LX
˛ �

n
K;".x/ D gm.x/L

X
˛ �

n
K;".x/C �

n
K;"L

X
˛ gm.x/Crgm.x/ � r�

n
K;".x/:



N. Fournier, Y. Tardy 4116

The first term is uniformly bounded because gm is bounded and supported inB.0;2m/ and
because sup˛2.0;1� supx2B.0;2m/ jL

X�nK;".x/j <1 by Step 1 and (22). The third term is
also uniformly bounded, since �nK;" 2 C

1..R2/N / and rgm is bounded and supported in
B.0;2m/. Finally, the middle term is bounded because �nK;" is bounded by 1 and LX

˛ gm is
uniformly bounded, as we now show:�gm is obviously bounded since gm 2C1c ..R

2/N /,
and since rxigm.x/ D �m%

0.m=kxk/xi=kxk3, we haveX
1�i;j�N

xi � xj

kxi � xj k2 C ˛
� rxigm.x/ D �

m%0.m=kxk/

kxk3

X
1�i; j�N

xi � xj

kxi � xj k2 C ˛
� xi

D �
m%0.m=kxk/

2kxk3

X
1�i; j�N

kxi � xj k2

kxi � xj k2 C ˛
:

This last quantity is uniformly bounded, since %0 is bounded and vanishes on Œ1;1/.

Step 3. We now prove (ii), by showing that the restriction �S;n
K;" D �nK;"jS satisfies the

required conditions. Obviously �S;n
K;" 2 C

1
c .S \ GK;0/ and �S;n

K;" D 1 on S \ GnK;". It

remains to show that sup˛2.0;1� supu2S jL
U
˛ �

S;n
K;" j<1 (recall (23)). Since �S;n

K;" 2C
1.S/,

�S�
S;n
K;" is bounded. We thus only have to verify that sup˛2.0;1� supu2S jT˛.u/j < 1,

where

T˛.u/ D �
�

N

X
1�i;j�N

ui � uj

kui � uj k2 C ˛
� .rS�

S;n
K;" .u//

i :

Setting bi˛.u/ D �
�
N

PN
jD1

ui�uj

kui�uj k2C˛
and using (14), we obtain

T˛.u/ D b˛.u/ � rS�
S;n
K;" .u/ D b˛.u/ � �H .�u?.r�

S;n
K;" .u///:

Since now b.u/ 2H and since �H and �u? are self-adjoint, being orthogonal projections,
we get

T˛.u/ D �u?.b˛.u// � r�
S;n
K;" .u/ D b˛.u/ � r�

S;n
K;" .u/ � .b˛.u/ � u/.u � r�

S;n
K;" .u//:

But b˛.u/ � r�
S;n
K;" .u/DLX

˛ �
S;n
K;" .u/�

1
2
��

S;n
K;" .u/ is uniformly bounded by (i) and since

��
S;n
K;" .u/ is bounded on S. Next, u � r�S;n

K;" .u/ is smooth and thus bounded on S. Finally,

b˛.u/ � u D �
�

N

X
1�i;j�N

.ui � uj / � ui

kui � uj k2 C ˛
D �

�

2N

X
1�i;j�N

kui � uj k2

kui � uj k2 C ˛

is also uniformly bounded.

Remark 14. We have proved in Step 2 that for each m > 0, gm 2 C1c ..R
2/N / satisfies

gm D 1 on B.0;m/ and sup˛2.0;1� supx2.R2/N jL
X
˛ gm.x/j <1.

7. A Girsanov theorem for the Keller–Segel particle system

In this section, we prove a rigorous version of the intuitive argument presented in Sec-
tion 3.4.
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For x 2 .R2/N andK � J1;N K, we set xjK D .xi /i2K . For KD .Kp/p2J1;`K a parti-
tion of J1;N K, for y1 2 .R2/jK1j; : : : ; y` 2 .R2/jK`j, we abusively denote by .yp/p2J1;`K
the element y of .R2/N such that yjKi D yi for all i 2 J1; `K.

We adopt the convention that for any � > 0, a QKS.�; 1/-process is a 2-dimensional
Brownian motion. This is natural in view of (1).

Proposition 15. Let N � 2 and � > 0 be such that N > � and set k0 D d2N=�e. Fix
some partition KD .Kp/p2J1;`K of J1;N K with `� 2. Consider the state spaces X DEk0
and, for each p 2 J1; `K,

Yp D
°
y 2 .R2/jKp j W 8K � J1; jKpjK with jKj � k0,

jKp jX
i;jD1

kyi � yj k2 > 0
±
:

Consider

� a QKS.�;N /-process X D .�X ;MX ; .Xt /t�0; .PXx /x2X4/,

� a QKS.� jKpj=N; jKpj/-process Yp D .�p; Mp; .Yp;t /t�0; .P
p
y /y2Y

p

4
/ for all

p 2 J1; `K.

Set �Y D
Q`
pD1�

p and Yt D .Yp;t /p2J1;`K, with the convention that Yt D 4 as long as
Yp;t D 4 for some p 2 J1; `K. Also set MY D �.Yt W t � 0/ and PYy D ˝

`
pD1P

p
yp for all

y D .yp/p2J1;`K 2 .R
2/N .

Fix " 2 .0; 1�, recall that

GK;" D
°
x 2 X W min

1�p¤q�`
min

i2Kp ;j2Kq
kxi � xj k2 > "

±
\ B.0; 1="/;

and set

�K;" D ¹t � 0 W Xt … GK;"º and Q�K;" D ¹t � 0 W Yt … GK;"º:

Fix T > 0. Quasi-everywhere in GK;", there is a probability measure QT;";K
x on

.�X ;MX /, equivalent to PXx , such that the law of the process .Xt^T^�K;"/t�0 under
QT;";K
x is the same as that of .Yt^T^Q�K;"/t�0 on .�Y ;MY / under PYx .

Furthermore, the Radon–Nikodym density dQT;";Kx

dPXx
is MX

T^�K;"
-measurable, where as

usual MX
t D �.Xs; s � t /, and there is a deterministic constant CT;";K > 0 such that

quasi-everywhere in GK;",

C�1T;";K �
dQT;";K

x

dPXx
� CT;";K:

The quasi-everywhere notion refers to the process X. Let us mention that for � being
the life-time of X, we have �K;" 2 Œ0; �� when � <1 because 4 … GK;". Although this
is not clear at this point of the paper, the event ¹�K;" D �º has a positive probability if
maxpD1;:::;` jKpj � k0.
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Proof of Proposition 15. We only consider the case where ` D 2. The general case is
heavier in terms of notation but contains no additional difficulty. We fix a nontrivial par-
tition K D .K1; K2/ of J1; N K. The main idea is to apply Lemma B.7 to X with the
function

%.x/ D exp.u.x//; where u.x/ D
�

N

X
i2K1; j2K2

log kxi � xj k: (41)

Unfortunately, this is not licit because u … F X .

Step 1. Set Y D .�Y ;MY ; .Yt /t�0; .PYy /y2.Y1�Y2/[¹4º/ and fix " 2 .0; 1� and n � 1.
We first compute the Dirichlet space of Y killed when it outside GnK;" (recall Lemma 12).
Consider the measures

�1.dy/D
Y

i;j2K1; i¤j

kyi � yj k��=N dy and �2.dy/D
Y

i;j2K2; i¤j

kyi � yj k��=N dy

on .R2/jK1j and .R2/jK2j, with �i .dy/ D dy if jKi j D 1. Recall that �.dx/ D m.x/dx
(see (4)) and by definition (see (41)), %.x/ D

Q
i2K1;j2K2

kxi � xj k�=N ; we deduce that

�1 ˝ �2 D %
2�:

By Proposition 6, for p D 1; 2, Yp is a Y
p
4

-valued �p-symmetric diffusion (since
.� jKpj=N/=jKpj D �=N ) with regular Dirichlet space .Ep; Fp/ with core C1c .Yp/,
and Ep.'; '/ D

1
2

R
.R2/jKp j kr'k

2 d�p for ' 2 C1c .Yp/. This also holds true if e.g.
jK1j D 1 (see [11, Example 4.2.1, p. 167]), since then �1 is nothing but the Lebesgue
measure on R2. Since now �1 ˝ �2 D %

2�, by Lemma B.5, Y is a %2�-symmetric X4-
valued diffusion with regular Dirichlet space .EY ;F Y / on L2.Y1 � Y2; %

2d�/ with core
C1c .Y1 � Y2/ and, for ' 2 C1c .Y1 � Y2/,

EY .'; '/ D

Z
.R2/jK1j

E2.'.y; �/; '.y; �// �1.dy/C
Z
.R2/jK2j

E1.'.�; z/; '.�; z// �2.dz/

D
1

2

Z
.R2/N

kr'k2%2 d�:

Finally, we apply Lemma B.6 to Y with the open set GnK;" � X � Y1 � Y2, to find that
the resulting killed process

Yn;"
D .�Y ;MY ; .Y

n;"
t /t�0; .P

Y
y /y2GnK;"[¹4º/

is a %2�jGnK;" -symmetric GnK;" [ ¹4º-valued diffusion, and its regular Dirichlet space
.EY;n;";F Y;n;"/ has core C1c .G

n
K;"/ and is such that for all ' 2 C1c .G

n
K;"/,

EY;n;".'; '/ D
1

2

Z
GnK;"

kr'k2%2 d�:

Step 2. We now fix "2 .0;1� and introduce, for each n� 1, un;".x/D u.x/�nK;".x/ (recall
(41) and Lemma 12), and %n;"D exp.un;"/. We check here that the functions un;" and %n;"
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satisfy the assumptions of Lemma B.7 (to be applied to X), that AX Œ%n;" � 1� D LX%n;"
and that

sup
n�1

sup
x2X

jun;".x/j <1 and sup
n�1

sup
x2GnK;"

jLX%n;".x/j <1: (42)

First, un;" 2 F X because un;" 2 C1c .X/, and jun;"j is bounded, uniformly in n � 1,
because �nK;" is bounded by 1 and vanishes outside GK;� (see Lemma 12), while u is
smooth on GK;� . To show that AX Œ%n;" � 1� D LX%n;", it suffices by Remark 8 to verify
that %n;" � 1 2 C1c .X/, which is clear, and sup˛2.0;1� supx2.R2/N jL

X
˛ %n;".x/j <1. We

have
LX
˛ %n;".x/ D e

un;".x/LX
˛ un;".x/C

1
2
eun;".x/krun;".x/k

2:

Since un;"2C1c ..R
2/N /, it suffices to show that sup˛2.0;1� supx2.R2/N jL

X
˛ un;".x/j<1.

By (22),

LX
˛ un;".x/ D �

n
K;".x/L

X
˛ u.x/C u.x/L

X
˛ �

n
K;".x/Cr�

n
K;".x/ � ru.x/:

Again, the only difficulty is in the first term, because LX
˛ �

n
K;" is uniformly bounded by

Lemma 12 and vanishes outside GK;� , while u is smooth on GK;� . Since supp �nK;" �
GK;� , the task is reduced to showing that sup˛2.0;1� supx2GK;� jL

X
˛ u.x/j <1. But

LX
˛ u D

1

2
�u �

�

N
S˛; where S˛.x/ D

X
1�i;j�N

xi � xj

kxi � xj k2 C ˛
� rxiu.x/;

and we only have to verify that

sup
˛2.0;1�

sup
x2GK;�

jS˛.x/j <1:

For k 2 K1 and ` 2 K2, we have

rxku.x/ D
X
j2K2

�

N

xk � xj

kxk � xj k2
and rx`u.x/ D

X
i2K1

�

N

x` � xi

kx` � xik2
:

Hence S˛ D S1;˛ C S2;˛ C S3;˛ C S4;˛ , where

S1;˛.x/ D
�

N

X
i;j2K1

xi � xj

kxi � xj k2 C ˛
�

X
k2K2

xi � xk

kxi � xkk2
;

S2;˛.x/ D
�

N

X
i2K2;j2K1

xi � xj

kxi � xj k2 C ˛
�

X
k2K1

xi � xk

kxi � xkk2
;

and S3;˛ (resp. S4;˛) is defined as S1;˛ (resp. S2;˛) with the roles of K1 and K2
exchanged. First, S2;˛ (and S4;˛) is obviously uniformly bounded on GK;� . Next, by
symmetry,

S1;˛.x/ D
�

2N

X
i;j2K1

xi � xj

kxi � xj k2 C ˛

X
k2K2

�
xi � xk

kxi � xkk2
�

xj � xk

kxj � xkk2

�
:
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Moreover, there is C� > 0 such that for all x 2GK;� , all i; j 2K1 distinct, and all k 2K2,



 xi � xk

kxi � xkk2
�

xj � xk

kxj � xkk2





 � C�kxi � xj k;
so that S1;˛ (and S3;˛) is bounded on GK;� , uniformly in ˛ 2 .0; 1�, as desired.

Finally, the above computations, together with the facts that �nK;" D 1 on GnK;", also
show that for x 2 GnK;",

LX%n;".x/ D e
u.x/

�
1

2
�u.x/ �

�

N
S˛.x/

�
C
1

2
eu.x/kru.x/k2;

which is bounded on GK;� . Since GnK;" � GK;� , this gives supn�1 supx2GnK;" jL
X%n;".x/j

<1 and finishes the step.

Step 3. We apply Lemma B.7 to the process X with un;" and %n;" defined in Step 2.
Recalling that AX Œ%n;" � 1� D LX%n;" and using the conventions %n;".4/ D 1 and
LX%n;".4/ D 0, we set

L
n;"
t D

%n;".Xt /

%n;".X0/
exp

�
�

Z t

0

LX%n;".Xs/

%n;".Xs/
ds
�
: (43)

Set MX
t D �.Xs; s � t /. By Lemma B.7, there is a family .Qn;"

x /x2X[¹4º of probability
measures such that

Qn;"
x D L

n;"
t � P

X
x on MX

t

for all t � 0 and quasi-everywhere in X [ ¹4º, and such that

Xn;" D .�X ;MX ; .Xt /t�0; .Q
n;"
x /x2X4/

is a %2n;"�-symmetric X [ ¹4º-valued diffusion with regular Dirichlet space .En;";F n;"/

with core C1c .X/ such that for all ' 2 C1c .X/,

En;".'; '/ D
1

2

Z
.R2/N

kr'k2%2n;" d�:

Next, we apply Lemma B.6 to Xn;" with the open set GnK;"; the resulting killed process

X�;n;" D
�
�X ;MX ; .X

�;n;"
t /t�0; .Q

n;"
x /x2GnK;"[¹4º

�
is a %2n;"�jGnK;" -symmetric GnK;" [ ¹4º-valued diffusion, its regular Dirichlet space
.E�;n;";F �;n;"/ has core C1c .G

n
K;"/, and for all ' 2 C1c .G

n
K;"/,

E�;n;".'; '/ D
1

2

Z
GnK;"

kr'k2%2n;" d�:

Comparing this Dirichlet space with the one found in Step 1, using %n;" D % on GnK;"
and a uniqueness argument (see [11, Theorem 4.2.8, p. 167]), we conclude that quasi-
everywhere in GnK;", the law of X�;n;" under Qn;"

x equals the law of Y n;" under PYx .
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Step 4. We fix T > 0 and " 2 .0; 1� and complete the proof. Since Qn;"
x D L

n;"
T � P

X
x

on MX
T , we know from Step 3 that for all n � 1, quasi-everywhere in GnK;", for all con-

tinuous bounded ˆ W C.Œ0; T �;X4/! R (observe that NGnK;" � X � X4),

EXx Œˆ.X�^�K;n;"^T /L
n;"
T � D EYx Œˆ.Y�^Q�K;n;"^T /�;

where �K;n;" D inf ¹t > 0 W Xt … GnK;"º ^ �K;" and Q�K;n;" D inf ¹t > 0 W Yt … GnK;"º ^ Q�K;".
Since .Ln;"t /t�0 is a PXx -martingale by Lemma B.7, we deduce that quasi-everywhere
in GnK;",

EXx Œˆ.X�^�K;n;"^T /L
n;"
�K;n;"^T

� D EYx Œˆ.Y�^Q�K;n;"^T /�: (44)

Recall that GK;" �
S
n�1 G

n
K;" (see Lemma 12). Hence limn �K;n;" D �K;", limn Q�K;n;"

D Q�K;", and for each x 2 GK;", there is nx � 1 such that x 2 GnK;" for all n � nx . We
deduce from (44) that q.e. in GK;", the process .Ln;"�K;n;"^T

/n�nx is an .MX
�K;n;"^T

/n�nx -
martingale under PXx . Moreover, recalling the expression (43) ofLn;", the equality %n;" D
exp.un;"/ and the bound (42), we conclude that there is a constant CT;";K > 0 such that
quasi-everywhere in GK;",

C�1T;";K � L
n;"
�K;n;"^T

� CT;";K PXx -a.s., for all n � nx :

Hence the martingale .Ln;"�K;n;"^T
/n�nx is closed by some M�K;"^T -measurable random

variable JT;";K that satisfies C�1T;";K � JT;";K � CT;";K, and (44) implies that for n � nx ,

EXx Œˆ.X�^�K;n;"^T /JT;";K� D EYx Œˆ.Y�^Q�K;n;"^T /�:

Letting n!1, we find that quasi-everywhere in GK;", for ˆ 2 Cb.C.Œ0; T �;X4/;R/,

EXx Œˆ.X�^�K;"^T /JT;";K� D EYx Œˆ.Y�^Q�K;"^T /�:

Setting QT;";K
x D JT;";K � PXx completes the proof.

8. Explosion and continuity at explosion

In this section we consider a QKS.�;N /-process X with life-time �. We show that � D1
when � 2 .0; 2/, and � <1 when � � 2. In the latter case, we also prove that limt!��Xt
a.s. exists, for the usual topology of .R2/N : the Keller–Segel process is continuous at
explosion. This is not clear at all at first sight: we know that limt!��Xt D 4 a.s. for the
one-point compactification topology, which means that the process escapes from every
compact subset of X, but it could either go to infinity, which is not difficult to exclude,
or tend to the boundary of X without converging, e.g. because it could alternate very fast
between having its particles labeled in J1; k0K very close and having its particles labeled
in J2; k0 C 1K very close. The goal of this section is to prove the following result.

Proposition 16. Fix � > 0 and N � 2 such that N > � , set k0 D d2N=�e and X D Ek0
and consider a QKS.�; N /-process X D .�X ;MX ; .Xt /t�0; .PXx /x2X[¹4º/ with life-
time �.
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(i) If � < 2, then quasi-everywhere, PXx .� D1/ D 1.

(ii) If � � 2, then quasi-everywhere, PXx -a.s., � <1 and X�� D limt!� Xt exists for
the usual topology of .R2/N and does not belong to Ek0 .

We first show that the process does not explode in the subcritical case and cannot go
to infinity at explosion in the supercritical case.

Lemma 17. (i) If � < 2 and N � 2, then quasi-everywhere, PXx .� D1/ D 1.

(ii) If � � 2 and N > � , then quasi-everywhere,

PXx

�
� <1 and sup

t2Œ0;�/

kXtk <1
�
D 1:

Proof. The arguments below only apply quasi-everywhere, since we use Proposition 10.
In both cases, for all i 2 J1;N K and all t 2 Œ0; �/ we have

kXtk
2
� 2

NX
iD1

�
kX it � SJ1;N K.Xt /k

2
C kSJ1;N K.Xt /k

2
�

D 2RJ1;N K.Xt /C 2N kSJ1;N K.Xt /k
2:

By Lemma 11, there are a Brownian motion .Mt /t�0 and a squared Bessel process
.Dt /t�0 of dimension d�;N .N / (killed when it gets out of .0;1/ if d�;N .N / � 0) such
that SJ1;N K.Xt / D Mt and RJ1;N K.Xt / D Dt for all t 2 Œ0; �/. These processes being
locally bounded, we conclude that

sup
t2Œ0;�^T /

kXtk <1 a.s., for all T > 0: (45)

(i) When � < 2 andN � 2, we have k0Dd2N=�e>N , so that XD .R2/N . Hence on
the event ¹� <1º, we necessarily have lim supt!�� kXtk D1, and this is incompatible
with (45) with T D �.

(ii) When N > � � 2, we have d�;N .N / � 0, so that .Dt /t�0 is killed at some
finite time � . Moreover, � � � . Indeed, on the event that � < �, we have RJ1;N K.X� / D

limt!��RJ1;N K.Xt / D limt!��Dt D 0, so that X� … Ek0 (since k0 � N ), which is not
possible since � < �. Hence � is also a.s. finite and supt2Œ0;�/ kXtk <1 a.s. by (45) with
the choice T D �.

To show the continuity at explosion in the supercritical case, we need to prove the
following delicate lemma.

Lemma 18. Assume thatN > � � 2. Quasi-everywhere, for allK � J1;N K with jKj � 2,

PXx -a.s.; lim
t!��

RK.Xt / D 0 or lim inf
t!��

RK.Xt / > 0:

Proof. We proceed by reverse induction on the cardinality of K. If K D J1; N K, the
result is clear because .RJ1;N K.Xt //t2Œ0;�/ is a (killed) squared Bessel process on Œ0; �/
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by Lemma 11 (and since � � � exactly as in the proof of Lemma 17 (ii)), hence it has
a limit in RC as t ! �. Now, we assume that the property is proved if jKj � n where
n 2 J3;N K, we takeK � J1;N K such that jKj D n� 1, and we show in several steps that
a.s., either limt!��RK.Xt / D 0 or lim inft!��RK.Xt / > 0.

Step 1. We fix " 2 .0; 1� and introduce Q�"0 D 0 and, for k � 1,

�"k D inf ¹t 2 . Q�"k�1; �/ W RK.Xt / � "º and Q�"k D inf ¹t 2 .�"k ; �/ W RK.Xt / � 2"º;

with the convention that inf ; D �. We show in this step that for all deterministic A > 0,
there exists a constant pA;" > 0 such that for all k � 1, quasi-everywhere, on ¹�"

k
< �º,

PXx
�
¹ Q�"k � .�

"
k C A/ ^ �º [ Bk;"

ˇ̌
MX
�"
k

�
� pA;";

where MX
t D �.Xs W s 2 Œ0; t �/ and, with a" D cjKjC1"=cjKj (recall Lemma 13),

Bk;" D
°

sup
t2Œ�"

k
;Q�"
k
/

kXtk � 1=" or inf
t2Œ�"

k
;Q�"
k
/
min
i…K

RK[¹iº.Xt / � a"

±
:

By the strong Markov property of X, on ¹�"
k
< �º,

PXx
�
¹ Q�"k � .�

"
k C A/ ^ �º [ Bk;"

ˇ̌
MX
�"
k

�
D g.X�"

k
/;

where

g.y/ D PXy
�
¹ Q�"1 � .�

"
1 C A/ ^ �º [ B1;"

�
D PXy .¹ Q�

"
1 � A ^ �º [ C1;"/

and
C1;" D

°
sup

t2Œ0;Q�"
1
/

kXtk � 1=" or inf
t2Œ0;Q�"

1
/
min
i…K

RK[¹iº.Xt / � a"

±
:

We have used the fact that RK.X�"
k
/ � " on ¹�"

k
< �º by definition of �"

k
, so that �"1 D 0

under PXX�"
k

. Using again RK.X�"
k
/ � " on ¹�"

k
< �º, it suffices to show that there is a

constant pA;" > 0 such that g.y/ � pA;" quasi-everywhere in ¹y 2 X W RK.y/ � "º.
If kyk � 1=" or mini…K RK[¹iº.y/ � a", then clearly g.y/ D 1.
Otherwise, y 2 GK;", where

GK;" D ¹x 2 X W kxi � xj k2 > " for all i 2 K and j … Kº \ B.0; 1="/

as in Proposition 15 with KD .K;Kc/, because kyk < 1=" and becauseRK.y/ � " < 2"
and mini…K RK[¹iº.y/ > a" D cjKjC1"=cjKj imply that kxi � xkk2 > " for all i 2K and
j … K by Lemma 13. For the same reasons and by definition of Q�"1 ,

C c1;" � ¹Xt 2 GK;" for all t 2 Œ0; Q�"1/º: (46)

We now apply Proposition 15 with T D A (and ") and we find that quasi-everywhere
in GK;",

g.y/ � C�1A;";KQA;";K
y .¹ Q�"1 � A ^ �º [ C1;"/

D C�1A;";KQA;";K
y .¹ Q�"1 � A ^ �º \ C

c
1;"/C C

�1
A;";KQA;";K

y .C1;"/: (47)
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But we know from Proposition 15 and Lemma 11 that under QA;";K
y , .RK.Xt //t2Œ0;�K;"^A�

is a squared Bessel process of dimension d� jKj=N;jKj.jKj/ D d�;N .jKj/, issued from
RK.y/ � ", stopped at time �K;" ^A, where �K;" D inf ¹t > 0 W Xt … GK;"º. Hence there
exists, under QA;";K

y , a squared Bessel process .St /t�0 of dimension d�;N .jKj/ such that
St D RK.Xt / for all t 2 Œ0; �K;" ^ A�. We introduce �" D inf ¹t > 0 W St � 2"º and we
observe that

¹�" � A ^ �º \ C
c
1;" D ¹Q�

"
1 � Aº \ C

c
1;":

Indeed, we have used the fact that onC c1;", we have �K;" � Q�
"
1 by (46) so thatRK.Xt /D St

for all t 2 Œ0; Q�"1 ^ A/, from which we deduce that �" � A ^ � if and only if Q�"1 � A ^ �.
Coming back to (47), we get

g.y/ � C�1A;";KQA;";K
y .¹�" � A ^ �º \ C

c
1;"/C C

�1
A;";KQA;";K

y .C1;"/

D C�1A;";KQA;";K
y .�" � A ^ �/:

The step is complete, since QA;";K
y .�" �A/ is the probability that a squared Bessel process

of dimension d�;N .jKj/ issued from RK.y/ � " remains below 2" during Œ0; A� and is
thus strictly positive, uniformly in y (such that y 2 GK;" and RK.y/ � ").

Step 2. We prove here that for all " 2 .0; 1� all A > 0, quasi-everywhere,

PXx

�
lim sup
t!��

kXtk � 1=" or lim inf
t!��

min
i…K

RK[¹iº.Xt / � a" or 9k � 1; �"k � � ^ A
�
D 1:

All the arguments below only hold quasi-everywhere, even if we do not mention it expli-
citly during this step. For k � 1, we introduce, with Bk;" defined in Step 1,

�kC1 D ¹�
"
kC1 < � ^ Aº \ B

c
k;";

and we first show that PXx .lim infk �k/ D 0. To this end, it suffices to check that for all
` � 1, PXx .

T1
kD`�k/ D 0. Since �k is M�"

k
-measurable, for all m � ` � 1,

PXx

�mC1\
kD`

�k

�
D EXx Œ1TmkD`�kPXx .�mC1 jM�"m

/�:

Since moreover
Tm
kD` �k � ¹�

"
m < �º and �"mC1 � Q�

"
m � Q�

"
m � �

"
m, we deduce that

on
Tm
kD`�k ,

PXx .�mC1 jM�"m
/ D 1 � PXx .¹�

"
mC1 � � ^ Aº [ Bm;" jM�"m

/

� 1 � PXx .¹ Q�
"
m � .�

"
m C A/ ^ �º [ Bm;" jM�"m

/;

so that PXx .�mC1 jM�"m
/ � 1 � pA;" by Step 1. Hence we conclude that

PXx

�mC1\
kD`

�k

�
� .1 � pA;"/P

X
x

� m\
kD`

�k

�
for all m � ` � 1,

so that PXx .
T1
kD`�k/ D 0 as desired.
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Hence PXx .lim infk�k/D 0, so that a.s., an infinite number of�c
k

are realized. Recall-
ing that

�ckC1 D
°
�"kC1 � � ^ A or inf

t2Œ�"
k
;Q�"
k
/
min
i…K

RK[¹iº.Xt / � a" or sup
t2Œ�"

k
;Q�"
k
/

kXtk � 1="
±
;

we find the following alternative: either

� there is k � 1 such that �"
k
� � ^ A; or

� for all k � 1, we have �"
k
< � and inft2Œ�"

k
;Q�"
k
/ mini…K RK[¹iº.Xt / � a" for infinitely

many k’s, which implies that lim inft!�� mini…K RK[¹iº.Xt / � a" because lim1 �"k
D � by definition of .�"

k
/k�1 and by continuity of t 7! RK.Xt / on Œ0; �/; or

� for all k � 1, we have �"
k
< � and there are infinitely many k’s for which

supt2Œ�"
k
;Q�"
k
/ kXtk � 1="; note that this implies that lim supt!�� kXtk � 1=", because

lim1 �"k D � as previously.

Step 3. We conclude the proof. Applying Step 2, we find that quasi-everywhere, PXx -a.s.,
for all A 2 N and all " 2 Q \ .0; 1�,

lim sup
t!��

kXtk � 1=" or lim inf
t!��

min
i…K

RK[¹iº.Xt / � a" or 9k � 1; �"k � � ^ A:

By Lemma 17 (ii), we know that � < 1, so that choosing A D d�e, we conclude that
quasi-everywhere, PXx -a.s., for all " 2 Q \ .0; 1�,

lim sup
t!��

kXtk � 1=" or lim inf
t!��

min
i…K

RK[¹iº.Xt / � a" or 9k � 1; �"k D �: (48)

And by Lemma 17 (ii) again, lim supt!�� kXtk � 1="0 for some (random) "0 2 .0; 1�.
On the event where lim inft!��mini…K RK[¹iº.Xt / D 0, there exists some (random)

i0 … K such that lim inft!�� RK[¹i0º.Xt / D 0, whence limt!�� RK[¹i0º.Xt / D 0 by
induction assumption, and this obviously implies that limt!��RK.Xt / D 0.

On the complementary event, we consider "1 2 .0; "0� enjoying the property that
lim inft!�� mini…K RK[¹iº.Xt / > a"1 and we conclude from (48) and the inequality
lim supt!�� kXtk � 1="0 that for all " 2 Q \ .0; "1�, there exists k" � 1 such that
�"
k"
D �. Recalling the definition of .�"

k
/k�1, we deduce that for all " 2 Q \ .0; "1�,

RK.Xt / upcrosses the segment Œ"; 2"� a finite number of times during Œ0; �/. Hence for
all " 2 .0; "1� \Q, there exists t" 2 Œ0; �/ such that either RK.Xt / > " for all t 2 Œt"; �/
or RK.Xt / < 2" for all t 2 Œt"; �/. If there is " 2 Q \ .0; "1� such that RK.Xt / > "

for all t 2 Œt"; �/, then lim inft!�� RK.Xt / � " > 0. If for all " 2 Q \ .0; "1�, we have
RK.Xt / < 2" for all t 2 Œt"; �/, then limt!��RK.Xt / D 0.

Hence in any case, we have either

lim
t!��

RK.Xt / D 0 or lim inf
t!��

RK.Xt / > 0:

Proof of Proposition 16. Point (i), which concerns the subcritical case, has already been
checked in Lemma 17 (i). As for (ii), which concerns the supercritical case � � 2, we
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already know that quasi-everywhere, PXx .� <1/ D 1 by Lemma 17 (ii), and it remains
to prove that PXx -a.s., limt!��Xt exists and does not belong to Ek0 . We divide the proof
into four steps.

Step 1. For a partition K D .Kp/p2J1;`K of J1; N K and " 2 .0; 1� we consider, as in Pro-
position 15

GK;" D
°
x 2 X W min

1�p¤q�`
min

i2Kp ;j2Kq
kxi � xj k2 > "

±
\ B.0; 1="/

and �K;" D inf ¹t � 0 W Xt … GK;"º 2 Œ0; ��. We show here that for each T > 0, q.e. in
GK;", PXx -a.s., for all T > 0 all p 2 J1; `K, SKp .Xt / has a limit in R2 as t ! .�K;" ^ T /

�.
If ` D 1, the result is obvious since SJ1;N K.Xt / is a Brownian motion during Œ0; �/

by Lemma 11. If ` � 2, Proposition 15 and Lemma 11 tell us that under QT;";K
x , which

is equivalent to PXx , the processes SKp .Xt / are Brownian motions on Œ0; �K;" ^ T /, and
thus have limits as t ! .�K;" ^ T /�.

Step 2. For " 2 .0; 1� and a partition KD .Kp/p2J1;`K of J1;N K, we set Q�K;"
0 D 0, and for

k � 0,

�
K;"
kC1
D inf ¹t � Q�K;"

k
W Xt 2 GK;2"º and Q�

K;"
kC1
D inf ¹t � �K;"

kC1
W Xt … GK;"º;

with the convention that inf ; D �. Using Step 1 and the strong Markov property, we
conclude that quasi-everywhere, PXx -a.s., for all " 2 .0;1�\Q, and all k � 1 and T 2NC,
on ¹�K;"

k
< �º, for all p 2 J1; `K, SKp .Xt / admits a limit in R2 as t ! . Q�

K;"
k
^ T /�.

Choosing T D d�e, we conclude that quasi-everywhere, PXx -a.s., on ¹�K;"
k

< �º, for all
" 2 .0; 1� \Q, and all k � 1 and p 2 J1; `K,

SKp .Xt / has a limit in R2 as t ! Q�K;"
k
�:

Step 3. We now check that q.e., PXx -a.s., there is a partition K D .Kp/p2J1;`K of

J1; N K, some " 2 .0; 1� \ Q and some k � 1 such that (i) �K;"
k

< � and Q�K;"
k
D � and

(ii) limt!��RKp .Xt / D 0 for all p 2 J1; `K.
By Lemma 18, we know that for allK � J1;N K, we have either limt!��RK.Xt /D 0

or lim inft!��RK.Xt / > 0. Hence the partition K D .Kp/p2J1;`K of J1;N K consisting of
the classes of the equivalence relation defined by i � j if and only if limt!� R¹i;j º.Xt /

D 0 satisfies, for all p 2 J1; `K,

lim
t!��

RKp .Xt / D 0 and lim inf
t!��

min
i…Kp

RKp[¹iº.Xt / > 0:

Since moreover lim supt!�� kXtk<1 according to Lemma 17, we deduce that there
are ˛ 2 .0; �/ and "2 .0;1�\Q such thatXt 2GK;2" for all t 2 Œ˛; �/. Finally, we consider
k D max ¹m � 1 W �K;"

m � ˛º, which is finite by continuity of t 7! Xt on Œ0; ˛�, and we
have �K;"

k
� ˛ < � and Q�K;"

k
D �.

Step 4. We consider the (random) partition K D .Kp/p2J1;`K introduced in Step 3. By
Step 2 and since �K;"

k
< � and Q�K;"

k
D �, we know that quasi-everywhere, PXx -a.s.,

for all p 2 J1; `K, Mp D limt!�� SKp .Xt / exists in R2. By Step 3, we know that
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limt!� RKp .Xt / D 0 for all p 2 J1; `K. We easily conclude that quasi-everywhere,
PXx -a.s., for all p 2 J1; `K and i 2 Kp , limt!�� X

i
t D Mp . This shows that quasi-

everywhere, PXx -a.s., X�� D limt!��Xt exists in .R2/N . Moreover, X�� cannot belong
to X D Ek0 , because limt!��Xt D 4 when Ek0 [ ¹4º is endowed with the one-point
compactification topology (see Section B.1).

9. Some special cases

During a K-collision, the particles labeled in K are isolated from the other ones. Thanks
to Proposition 15, it will thus be possible to describe what happens in a neighborhood of
the instant of this K-collision, by studying a QKS.� jKj=N; jKj/-process. In other words,
we may assume that jKj D N , so that the following special cases, which are the purpose
of this section, will be crucial.

Proposition 19. LetN � 4 and � > 0 be such thatN >� . Consider a QKS.�;N /-process
X as in Proposition 6. Recall that � D inf ¹t � 0 W Xt D 4º and introduce the stopping
time � D inf ¹t � 0 W RJ1;N K.Xt / … .0;1/º with the convention that RK.4/ D 0, so that
� 2 Œ0; ��.

(i) If d�;N .N � 1/ � 0 and d�;N .N / < 2, then quasi-everywhere,

PXx

�
inf

t2Œ0;�/
RJ1;N K.Xt / > 0

�
D 1:

(ii) If d�;N .N � 1/ 2 .0; 2/ and d�;N .N / < 2, then quasi-everywhere, PXx -a.s, for all
K � J1;N K with jKj D N � 1, there is t 2 Œ0; �/ such that RK.Xt / D 0.

(iii) If 0 < d�;N .N / < 2 � d�;N .N � 1/, then quasi-everywhere, PXx -a.s, for all K �
J1;N K with jKj D 2, there is t 2 Œ0; �/ such that RK.Xt / D 0.

The proof of this proposition is very long. First, we recall some notation about the
decomposition of X obtained in Proposition 10 and we study the time-change involved.
We then derive a formula describing RK.Ut /, valid on certain time intervals, for anyK �
J1; N K. This formula is of course not closed, but it allows us to compare RK.Ut /, when
it is close to 0, to some process resembling a squared Bessel process, whose behavior
near 0 is easily established. Finally, we prove Proposition 19, unifying points (i) and (ii)
somewhat and treating point (iii) separately.

9.1. Notation and preliminaries

We recall the decomposition of Proposition 10, which holds true quasi-everywhere in
X \EN . Consider a Brownian motion .Mt /t�0 with diffusion coefficientN�1=2 starting
from SJ1;N K.x/, a squared Bessel process .Dt /t�0 starting from RJ1;N K.x/ > 0 killed
when leaving .0;1/with life-time �D D inf ¹t � 0 WDt D4º, and a QSKS.�;N /-process
.Ut /t�0 starting from ˆS.x/ with life-time � D inf ¹t � 0 W Ut D 4º, all these processes
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being independent. For t 2 Œ0; �D/, we put At D
R t
0

ds
Ds

. We also consider the inverse
� W Œ0; A�D /! Œ0; �D/ of A.

Lemma 20. If d�;N .N / < 2, then �D <1 and A�D D1 a.s.

Proof. Since .Dt /t�0 is a (killed) squared Bessel process of dimension d�;N .N / < 2, we
have �D <1 a.s according to Revuz–Yor [21, Chapter XI]. Moreover, there is a Brownian
motion .Bt /t�0 such thatDt D r C 2

R t
0

p
Ds dBs C d�;N .N /t for all t 2 Œ0; �D/, where

r D RJ1;N K.x/ > 0. A simple computation shows the existence of a Brownian motion
.Wt /t�0 such that for all t 2 Œ0; A�D /,

D�t D r C 2

Z t

0

D�s dWs C d�;N .N /
Z t

0

D�s ds:

HenceD�t D r exp.2Wt C .d�;N .N /� 2/t/ for all t 2 Œ0;A�D /. On the event A�D <1,
we have

0 D D�D� D lim
t!A�D

D�t D exp
�
2WA�D C .d�;N .N / � 2/A�D

�
> 0:

Hence A�D D1 a.s.

From now on, we assume that d�;N .N / < 2. HenceA W Œ0; �D/! Œ0;1/ is an increas-
ing bijection, as also is � W Œ0;1/ ! Œ0; �D/. By Proposition 10, quasi-everywhere in
X \ EN , we can find a triple .Mt ; Dt ; Ut /t�0 as above such that for our QKS.�; N /-
process X starting from x, for all t 2 Œ0; �D ^ ��/, and actually for all t 2 Œ0; ��/ because
�� � �D since � is Œ0; �D/-valued,

Xt D ‰.Mt ;Dt ;UAt /; i.e. Mt D SJ1;N K.Xt /; Dt D RJ1;N K.Xt / and UAt D ˆS.Xt /:

We recall that‰.m;r;u/D 
.m/C
p
ru if .m;r;u/2R2 � .0;1/�U, and‰.m;r;u/D

4 if .m; r; u/ D 4. Observe that � D �D ^ �� D �� , where

� D inf ¹t � 0 W RJ1;N K.Xt / … .0;1/º 2 Œ0; ��:

We note that if � <1, then �� < �D , because � is an increasing bijection from Œ0;1/

into Œ0; �D/. Hence, still if � <1, then X explodes at time �� strictly before �D , whence

¹� <1º �
°

inf
t2Œ0;�/

RJ1;N K.Xt / > 0
±
: (49)

Finally, note that since U is S-valued, it cannot have a J1; N K-collision. But for any
K � J1;N K with jKj � N � 1,

U has a K-collision at t 2 Œ0; �/ if and only if X has a K-collision at �t 2 Œ0; �/; (50)

which follows from the facts that

� for all .m; r; u/ 2 R2 � .0;1/ �U, RK.‰.m; r; u// D 0 if and only if RK.u/ D 0;

� � is an increasing bijection from Œ0; �/ into Œ0; �/, because �� D � .
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We conclude this subsection with a remark about the quasi-everywhere notions of X
and U , in the case where they are related as above. See Section B.1 for a short reminder
on this notion.

Remark 21. Fix B 2 MU such that PUu .B/ D 1 quasi-everywhere (here q.e. refers to
the Hunt process U ). Then PU

ˆS.x/
.B/D 1 quasi-everywhere (here q.e. refers to the Hunt

process X�, which is X killed when it leaves EN ).

Proof. By definition, there exists a properly exceptional set N U relative to U such that
PUu .B/ D 1 for all u 2 U nN U . Thus PU

ˆS.x/
.B/ D 1 for all x 2 ˆ�1S .U nN U /.

By Proposition 10, there exists a properly exceptional N X set relative to X� such
that for all x 2 .X \ EN / n N X , the law of .Xt /t�0 under PXx is equal to the law of
.Yt D ‰.Mt ; Dt ; UAt //t�0 under QY

x D PM
�
H?

.x/
˝ PD

k�H .x/k2
˝ PU

ˆS.x/
, with obvious

notation.
Hence we only have to prove that N D ˆ�1S .N U / [ N X is properly exceptional

for X�.
First, PXx .X

�
t …N for all t � 0/D 1 for all x 2X nN . Indeed, since x 2X nN , the

law of .X�t /t�0 under PXx equals the law of .Yt /t�0 under QY
x . Since PUu .Ut … N U for

all t � 0/D 1 for all u 2U nN U , and sinceˆS.Yt /DUAt , we have QY
x .Yt …ˆ

�1
S .N U /

for all t � 0/ D 1 for all x 2 X nˆ�1S .N U /. Consequently, PXx .X
�
t … ˆ

�1
S .N U / for all

t � 0/ D 1 for all x 2 X n .ˆ�1S .N U / [N X /. Finally, PXx .X
�
t … ˆ

�1
S .N U / [N X for

all t � 0/ D 1 for all x 2 X n .ˆ�1S .N U / [N X / because N X is properly exceptional
for X�.

We have �.N / D 0. Indeed, �.N X / D 0 by definition, and using Lemma A.2,

�.ˆ�1S .N U // D
1

2

Z
R2�R�

C
�S

1
¹‰.z;r;u/2ˆ�1S .NU /ºr

� dz dr ˇ.du/

D
1

2

Z
R2�R�

C

ˇ.N U /r� dz dr D 0;

since ˇ.N U / D 0. We have used the fact that ‰.z; r; u/ 2 ˆ�1S .N U /, u 2 N U , since
ˆS.‰.z; r; u// D u.

9.2. An expression of dispersion processes on the sphere

We now study the dispersion process .RK.Ut //t�0 for K � J1;N K. The equation below
can be informally established assuming that (1) rigorously holds true, after a time-change
and several Itô computations.

Lemma 22. FixN � 2 and � > 0 such thatN >� and recall that k0Dd2N=�e. Consider
a QSKS.�; N /-process U with life-time � , fix K � J1; N K such that jKj � 2, and set
K D .K;Kc/. Recall that GK;" was introduced in Lemma 12, and observe that

GK;0 \ S D
°
u 2 U W min

i2K;j…K
kui � uj k > 0

±
:
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Quasi-everywhere inGK;0 \S, enlarging the probability space .�U ;MU ; .MU
t /t�0;P

U
u /

if necessary, there exists a 1-dimensional .MU
t /t�0-Brownian motion .Wt /t�0 under PUu

such that

RK.Ut / D RK.u/C 2

Z t

0

p
RK.Us/.1 �RK.Us// dWs C d�;N .jKj/t

� d�;N .N /

Z t

0

RK.Us/ ds �
2�

N

X
i2K;j…K

Z t

0

U is � U
j
s

kU is � U
j
s k

2
� .U is � SK.Us// ds (51)

for all t 2 Œ0; �K/, where �K D inf ¹t � 0 W Ut … GK;0º.

As usual, �K � � because4 … GK;0. Note also that ifK D J1;N K, then RK.Ut / D 1
for all t 2 Œ0; �/, and that the constant process 1 indeed solves (51).

Proof of Lemma 22. We divide the proof into several steps. The main idea is to compute
LURK and LU .RK/

2 and to use RK.Ut /D RK.u/C
R t
0

LURK.Us/ ds CMt for some
martingale .Mt /t�0 whose bracket we can compute. However, we need to regularize RK
and to localize space in a zone where the last term of (51) is bounded.

Step 1. We fix n � 1 and " 2 .0; 1� and recall that �S;n
K;" 2 C

1.S/, compactly supported

in GK;0 \ S, was defined in Lemma 12. We want to apply Remark 8 to RK�
S;n
K;" and

.RK�
S;n
K;" /

2. We thus have to show that RK�
S;n
K;" and .RK�

S;n
K;" /

2 belong to C1c .U/ for all
n � 1, which is clear, and that

sup
˛2.0;1�

sup
u2S

�
jLU
˛ ŒRK�

S;n
K;" �.u/j C jL

U
˛ Œ.RK�

S;n
K;" /

2�.u/j
�
<1

for all n � 1. Since

LU
˛ .fg/ D fLU

˛ g C gLU
˛ f CrSf � rSg (52)

for all f;g2C1.S/ and recalling that sup˛2.0;1� supu2S jL
U
˛ �

S;n
K;" .u/j<1 by Lemma 12,

and �S;n
K;" is compactly supported in GK;0 \ S, the only issue is to verify that, for A com-

pact in GK;0 \ S,
sup

˛2.0;1�

sup
u2A

jLU
˛ RK.u/j <1: (53)

Step 2. Here we prove that

LU
˛ RK.u/ D 2.jKj � 1/ � 2.N � 1/RK.u/C

�

N
RK.u/

X
1�i;j�N

kui � uj k2

kui � uj k2 C ˛

�
�

N

X
i2K;j2K

kui � uj k2

kui � uj k2 C ˛
�
2�

N

X
i2K;j…K

ui � uj

kui � uj k2 C ˛
� .ui � SK.u//; (54)

and this will imply (53): the first four terms are obviously uniformly bounded on S, and
the last one is uniformly bounded on A (because A is compact in GK;0 \ S).
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This will also imply, taking ˛ D 0 and observing that 2.jKj � 1/� �
N
jKj.jKj � 1/D

d�;N .jKj/ and 2.N � 1/ � �
N
N.N � 1/ D d�;N .N /, that for all u 2 S \E2,

LURK.u/ D d�;N .jKj/ � d�;N .N /RK.u/ �
2�

N

X
i2K;j…K

ui � uj

kui � uj k2
� .ui � SK.u//:

(55)

Step 2.1. We first verify that for all u 2 S,

.rSRK.u//
i
D 2.ui � SK.u//1¹i2Kº � 2RK.u/ui ; i 2 J1;N K; (56)

�SRK.u/ D 4.jKj � 1/ � 4.N � 1/RK.u/: (57)

First, a simple computation shows that for x 2 .R2/N and i 2 J1;N K,

rxiRK.x/ D 2.x
i
� SK.x//1¹i2Kº and �xiRK.x/ D

4.jKj � 1/

jKj
1¹i2Kº; (58)

so that in particular rRK.x/ 2 H and

rRK.x/ � x D 2
X
i2K

.xi � SK.x// � x
i

D 2
X
i2K

.xi � SK.x// � .x
i
� SK.x// D 2RK.x/: (59)

Next, proceeding as in (14), we find that for all x 2 EN ,

rŒRK ıˆS�.x/ D k�H .x/k
�1�H .�.�H .x//?.rRK.ˆS.x////

D

�H
�
rRK.ˆS.x// �

�H .x/�rRK .ˆS.x//

k�H .x/k2
�H .x/

�
k�H .x/k

D

rRK.x/ � 2RK.x/
�H .x/

k�H .x/k2

k�H .x/k2
:

We have used the facts that rRK.ˆS.x// D rRK.x/=k�H .x/k thanks to (58),
rRK.x/ 2 H by (58), and �H .x/ � rRK.x/ D x � rRK.x/ D 2RK.x/ by (59).

We first conclude that for u 2 S, since �H .u/ D u and kuk D 1,

rSRK.u/ D rŒRK ıˆS�.u/ D rRK.u/ � 2RK.u/u; (60)

which implies (56) by (58).
Second, we deduce that for x 2 EN ,

�ŒRK ıˆS�.x/

D
1

k�H .x/k2

�
�RK.x/ � 2rRK.x/ �

�H .x/

k�H .x/k2
� 2RK.x/

div�H .x/
k�H .x/k2

C
4RK.x/

k�H .x/k2

�
�

2�H .x/

k�H .x/k4
�

�
rRK.x/ � 2RK.x/

�H .x/

k�H .x/k2

�
:
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Using div �H .x/ D 2.N � 1/, we conclude that for u 2 S, since �H .u/ D u, kuk D 1
and u � rRK.u/ D 2RK.u/ by (59), we have

�SRK.u/ D �ŒRK ıˆS�.u/ D �RK.u/ � 4RK.u/ � 4.N � 1/RK.u/C 4RK.u/:

Since finally �RK.u/ D 4.jKj � 1/ by (58), this leads to (57).

Step 2.2. We fix u 2 S and set

I˛.u/ D �
�

N

X
1�i;j�N

ui � uj

kui � uj k2 C ˛
� .rSRK.u//

i :

Here we show that

I˛.u/ D �
�

N

X
i;j2K

kui � uj k2

kui � uj k2 C ˛
C
�

N
RK.u/

X
1�i;j�N

kui � uj k2

kui � uj k2 C ˛

�
2�

N

X
i2K;j…K

ui � uj

kui � uj k2 C ˛
� .ui � SK.u//: (61)

By (56), we may write I˛ D I1;˛ C I2;˛ , where

I1;˛.u/ D �
2�

N

X
i2K;j2J1;N K

ui � uj

kui � uj k2 C ˛
� .ui � SK.u//;

I2;˛.u/ D
2�

N
RK.u/

X
1�i;j�N

ui � uj

kui � uj k2 C ˛
� ui :

First, by symmetry,

I1;˛.u/ D �
2�

N

X
i;j2K

ui � uj

kui � uj k2 C ˛
� .ui � SK.u//

�
2�

N

X
i2K;j…K

ui � uj

kui � uj k2 C ˛
� .ui � SK.u//

D �
2�

N

X
i;j2K

ui � uj

kui � uj k2 C ˛
� ui �

2�

N

X
i2K;j…K

ui � uj

kui � uj k2 C ˛
� .ui � SK.u//

D �
�

N

X
i;j2K

kui � uj k2

kui � uj k2 C ˛
�
2�

N

X
i2K;j…K

ui � uj

kui � uj k2 C ˛
� .ui � SK.u//:

Second, by symmetry,

I2;˛.u/ D
�

N
RK.u/

X
1�i;j�N

kui � uj k2

kui � uj k2 C ˛
:

Step 2.3. Since LU
˛ RK.u/ D

1
2
�SRK.u/C I˛.u/, (54) follows from (57) and (61).
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Step 3. By Steps 1 and 2, we can apply Remark 8 and Lemma B.2: quasi-everywhere, for
all n � 1, there exist .MU

t /t�0-martingales .M 1;n;"
t /t�0 and .M 2;n;"

t /t�0 under PUu such
that

.RK�
S;n
K;" /.Ut / D .RK�

S;n
K;" /.u/CM

1;n;"
t C

Z t

0

LU .RK�
S;n
K;" /.Us/ ds;

.RK�
S;n
K;" /

2.Ut / D .RK�
S;n
K;" /

2.u/CM
2;n;"
t C

Z t

0

LU .RK�
S;n
K;" /

2.Us/ ds;

for all t � 0. We recall that �K D inf ¹t � 0 W Ut … GnK;0º and introduce

�K;n;" D inf ¹t � 0 W Ut … GnK;"º ^ �K :

Since
S
n�1 G

n
K;" � GK;" and GK;" increases to GK;0 as " ! 0 (see Lemma 12), we

conclude that lim"!0 limn!1 �K;n;" D �K . Next, since �S;n
K;" D 1 on GnK;" \ S, we have,

for all t 2 Œ0; �K;n;"�,

RK.Ut / D RK.u/CM
1;n;"
t C

Z t

0

LURK.Us/ ds; (62)

.RK.Ut //
2
D .RK.u//

2
CM

2;n;"
t C

Z t

0

LU .R2K/.Us/ ds: (63)

Applying the Itô formula to compute .RK.Ut //2 from (62), recalling from (52) that
LU .R2K/D2RKLURK CkrSRKk

2 and comparing to (63), we see that for t2Œ0;�K;n;"�,

hM 1;n;"
it D

Z t

0

krSRK.Us/k
2 ds:

Hence, enlarging the probability space if necessary, we can find a Brownian motion
.Wt /t�0, which is defined by Wt D

R t
0
krSRK.Us/k

�1 dM 1;n;"
s for t 2 Œ0; �K;n;"� and

then extended to RC, such thatM 1;n;"
t D

R t
0
krSRK.Us/k dWs during Œ0; �K;n;"�. Hence,

still for t 2 Œ0; �K;n;"�,

RK.Ut / D RK.u/C

Z t

0

krSRK.Us/k dWs C
Z t

0

LURK.Us/ ds: (64)

But rSRK.u/ D rRK.u/ � 2RK.u/u by (60), whence

krSRK.u/k
2
D krRK.u/k

2
� 4RK.u/rRK.u/ � uC 4.RK.u//

2:

Since krRK.u/k2 D 4RK.u/ by (58) and rRK.u/ � u D 2RK.u/ by (59), we have

krSRK.u/k
2
D 4RK.u/ � 4.RK.u//

2
D 4RK.u/.1 �RK.u//:

Inserting this, as well as the expression (55) of LURK , in (64) shows thatRK.Ut / satisfies
the desired equation on Œ0; �K;n;"�. Since lim"!0 limn!1 �K;n;" D �K a.s., the proof is
complete.
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9.3. A squared Bessel-like process

The equation obtained in the previous lemma will be studied by comparison with the
process we now introduce. This process behaves, near 0, like a squared Bessel process.

Lemma 23. Fix ı 2R and a;b > 0 such that ıC a
p
b <2. For a 1-dimensional Brownian

motion .Wt /t�0 and x 2 Œ0; 1/, consider the unique solution .St /t�0 of

St D x C

Z t

0

2
p
jSs.1 � Ss/j dWs C ıt C a

Z t

0

p
b C jSsj ds: (65)

For z 2 R, set �z D inf ¹t > 0 W St D zº. For all y 2 .x; 1/, we have P .�0 < �y/ > 0.

Proof. This equation is classically well-posed: the diffusion coefficient is 1=2-Hölder
continuous and the drift coefficient is Lipschitz continuous (see Revuz–Yor [21, The-
orem 3.5, p. 390]). As in Karatzas–Shreve [15, (5.42), p. 339], we introduce the scale
function

f .z/ D

Z z

1=2

exp
�
�

Z u

1=2

ı C a
p
b C jvj

2jv.1 � v/j
dv
�

du:

This function is obviously continuous on .0; 1/, and for example approximating
.ı C a

p
b C jvj/=.2jv.1 � v/j/ by .ı C a

p
b/=.2jvj/, we see that it is also continuous

at 0 because ı C a
p
b < 2. By [15, (5.61), p. 344], we have

P .�0 < �y/ D
f .y/ � f .x/

f .y/ � f .0/
(66)

for all y 2 .x; 1/. This last quantity is nonzero (which would not be the case if ı C a
p
b

� 2, since then f .0/ D �1).

9.4. Collisions of large clusters

Proof of Proposition 19 (i, ii). We fix N � 4 and � > 0 such that N > � . We always
assume that d�;N .N / < 2 and we use the notation of Section 9.1.

Step 1. We consider " 2 .0; 1� and K � J1; N K such that jKj 2 J2; N � 1K and
d�;N .jKj/ < 2. We introduce the constant aK D cjKjC1=.2cjKj/ with .c`/`2J1;N K defined
in Lemma 13. We prove in this step that there are constants pK;"; TK;" > 0 such that, if
we set

Q�K;" D inf
°
t > 0 W RK.Ut / � " or min

i…K
RK[¹iº.Ut / � aK"

±
^ TK;";

with the convention that inf; D �, then q.e. on ¹u 2 U W RK.u/ � "=2º,

PUu

�
Q�K;" D � or inf

t2Œ0;Q�K;"/
min
i…K

RK[¹iº.Ut / � 2aK"

or RK.Ut / D 0 for some t 2 Œ0; Q�K;"/
�
� pK;":
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We introduce ZK;" D inft2Œ0;Q�K;"/ mini…K RK[¹iº.Ut /. For all t 2 Œ0; Q�K;"/, we have
RK.Ut / � " and ZK;" � aK" so that mini2K;j…K kU it �U

j
t k � "=2 thanks to the defini-

tion of aK and Lemma 13. This implies that Q�K;"� �K , where �K D inf¹t � 0 WUt …GK;0º

was defined in Lemma 22, and GK;0 \ S D ¹u 2 U W mini2K;j…K kui � uj k > 0º.
By the Cauchy–Schwarz inequality, and since RK is bounded on U, there exists a

deterministic constant CK;" > 0, allowed to change from line to line, such that for all
t 2 Œ0; Q�K;"/,

� d�;N .N /RK.Ut / �
2�

N

X
i2K;j…K

U it � U
j
t

kU it � U
j
t k

2
� .U it � SK.Ut //

� CK;"
p
RK.Ut /C CK;"

�X
i2K

kU it � SK.Ut /k
2
�1=2

� CK;"
p
RK.Ut / � CK;"

p
b CRK.Ut /;

where b > 0 is chosen small enough that d�;N .jKj/C CK;"
p
b < 2. Actually, b is only

introduced to make the drift coefficient of (65) Lipschitz continuous.
Recalling that RK.U0/ � "=2 and the formula describing RK.Ut / 2 Œ0; 1� for t 2

Œ0; �K/ � Œ0; Q�
K;"/ in Lemma 22, considering the process .St /t�0 solving (65) with

x D "=2, ı D d�;N .jKj/, a D CK;" and with b introduced a few lines above, driven by
the same Brownian motion .Wt /t�0, and using the comparison theorem, we find that
RK.Ut / � St for all t 2 Œ0; Q�K;"/.

Setting �z D inf ¹t � 0 W St D zº for z 2 R and recalling the definition of Q�K;", we
conclude that ¹ZK;" > 2aK"º � ¹ Q�K;" � �" ^ TK;"º: Indeed, note that on the event that
inft2Œ0;Q�K;"/ mini…K RK[¹iº.Ut / > 2aK", either Q�K;" D TK;", or .RK.Ut //t�0 reaches
" at time Q�K;" and then �" � Q�K;". In both cases, Q�K;" � �" ^ TK;". Hence, using again
RK.Ut / � St for all t 2 Œ0; Q�K;"/, we have

¹ Q�K;" < � and ZK;" > 2aK" and St D 0 for some t 2 Œ0; �" ^ TK;"�º

� ¹ Q�K;" < � and ZK;" > 2aK" and RK.Ut / D 0 for some t 2 Œ0; Q�K;"/º:

ButAc \B 0 �Ac \B gives P .A[B/D P .A/C P .Ac \B/� P .A/C P .Ac \B 0/D
P .A [ B 0/. Hence

PUu
�
Q�K;" D � or ZK;" � 2aK" or RK.Ut / D 0 for some t 2 Œ0; Q�K;"/

�
� PUu

�
Q�K;" D � or ZK;" � 2aK" or St D 0 for some t 2 Œ0; �" ^ TK;"/

�
� PUu .St D 0 for some t 2 Œ0; �" ^ TK;"//:

This last quantity equals P .�0 < �" ^ TK;"/ and does not depend on u such that RK.u/ �
"=2. But P .�0 < �"/ > 0 by Lemma 23 and since d�;N .jKj/C CK;"

p
b < 2. Hence there

exists TK;" > 0 with P .�0 < �" ^ TK;"/ > 0, and this finishes this step.

Step 2. We prove (ii), i.e. if d�;N .N � 1/ 2 .0; 2/, then for any K � J1; N K with
jKj D N � 1, quasi-everywhere, PXx -a.s., RK.Xt / vanishes during Œ0; �/. By (50) and
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Remark 21, and since PUu .� D 1/ D 1 quasi-everywhere by Lemma 9 (ii), it suffices to
check that quasi-everywhere, PUu -a.s., .RK.Ut //t�0 vanishes at least once during Œ0;1/.

We fix K � J1;N K with jKj D N � 1, set "0 D 1=.4aK/ and introduce Q�K0 D 0 and
for all k � 0,

�KkC1 D inf ¹t � Q�Kk W RK.Ut / � "0=2º;

Q�KkC1 D inf ¹t � �KkC1 W RK.Ut / � "0º ^ .�
K
kC1 C TK;"0/;

with TK;"0 defined in Step 1. All these stopping times are finite since .EU ;F U / is recur-
rent by Lemma 9 (ii). We also put, for k � 1,

�Kk D ¹RK.Ut / D 0 for some t 2 Œ�Kk ; Q�
K
k �º:

We now prove that PUu .
T
k�1.�

K
k
/c/ D 0 quasi-everywhere, and this will complete the

proof of (ii).
For ` � 1, since

T`
kD1.�

K
k
/c is MU

�K
`C1

-measurable, the strong Markov property tells

us that

PUu

�`C1\
kD1

.�Kk /
c
�
D EUu

h�Ỳ
kD1

1.�K
k
/c

�
PUU

�K
`C1

..�K1 /
c/
i
:

We now prove that PUu .�
K
1 / � pK;"0 quasi-everywhere on ¹u 2U W RK.u/ � "0=2º.

For such a u, we have �K1 D 0. Moreover, for all i …K, we haveRK[¹iº.u/DRJ1;N K.u/D

1 > 2aK"0 thanks to our choice of "0. Hence Q�K1 D Q�
K;"0 (recall Step 1). Since finally

Q�K;"0 <1 D � and since RK[¹iº.Ut / D RJ1;N K.Ut / D 1 > 2aK"0 for all t � 0 and all
i … K, we have

�K1 D ¹RK.Ut / D 0 for some t 2 Œ0; Q�K;"0 �º

D

°
Q�K;"0 D � or inf

t2Œ0;Q�K;"0 /

min
i…K

RK[¹iº.Ut / � 2aK"0

or RK.Ut / D 0 for some t 2 Œ0; Q�K;"0 �
±
:

Hence Step 1 tells us that PUu .�
K
1 / � pK;"0 quasi-everywhere on the set ¹u 2 U W

RK.u/ � "0=2º.
Since RK.U�K

`C1
/ � "0=2, we have proved that for all ` � 1,

PUu

�`C1\
kD1

.�Kk /
c
�
� .1 � pK;"0/P

U
u

�\̀
kD1

.�Kk /
c
�
:

This allows us to conclude that indeed PUu .
T1
kD1.�

K
k
/c/ D 0.

Step 3. We prove (i), i.e. if d�;N .N � 1/ � 0, then PXx .infŒ0;�/ RJ1;N K.Xt / > 0/ D 1

quasi-everywhere. By Remark 21 and (49), it suffices to show that quasi-everywhere,
PUu .� <1/ D 1.
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For all K � J1;N K and " 2 .0; 1�, we introduce Q�K;"0 D 0 and for all k � 0,

�
K;"
kC1
D inf

°
t � Q�

K;"
k
W RK.Ut / � "=2 and min

i…K
RK[¹iº.Ut / � 2aK"

±
;

Q�
K;"
kC1
D inf

°
t � �

K;"
kC1
W RK.Ut / � " or min

i…K
RK[¹iº.Ut / � aK"

±
^ .�

K;"
kC1
C TK;"/;

with TK;" defined in Step 1 and with the convention that inf; D �.

Step 3.1. We fix " 2 .0; 1� and assume that jKj � k0, so that d�;N .jKj/ � 0 by
Lemma 1. We prove here that quasi-everywhere, PUu -a.s., either there is t 2 Œ0; �/ such
that RK.Ut / D 0 or there is k � 1 such that either �K;"

kC1
D � or there is k � 1 such that

inf
t2Œ�

K;"
k

;Q�
K;"
k

/
mini…K RK[¹iº.Ut / � 2aK".

It suffices to prove that PUu .
T
k�1.�

K;"
k
/c/ D 0, where

�
K;"
k
D

°
�
K;"
kC1
D � or inf

t2Œ�
K;"
k

;Q�
K;"
k

/

min
i…K

RK[¹iº.Ut / � 2aK"

or RK.Ut / D 0 for some t 2 Œ�K;"
k
; Q�
K;"
k
/
±
:

But for all ` � 1,
T`
kD1.�

K;"
k
/c is MU

�
K;"
`C1

-measurable, whence, by the strong Markov

property,

PUu

�`C1\
kD1

.�
K;"
k
/c
�
D EUu

h�Ỳ
kD1

1
.�
K;"
k

/c

�
PUU

�
K;"
`C1

..�
K;"
1 /c/

i
� .1 � pK;"/P

U
u

�\̀
kD1

.�
K;"
k
/c
�
:

We have used Step 1, the fact that RK.U�K;"
`C1

/ � "=2 on the event .�K;"
`
/c � ¹�

K;"
`C1

< �º,

as well as the inclusion ¹ Q�K;"
k
D �º � ¹�

K;"
kC1
D �º. One easily concludes the proof.

Step 3.2. For all K � J1;N K such that jKj � k0, quasi-everywhere, PUu -a.s., there is no
t 2 Œ0; �/ such thatRK.Ut /D 0. Indeed, on the contrary event, there is t 2 Œ0; �/ such that
Ut … Ek0 , whence Ut … U, which contradicts the fact that t 2 Œ0; �/.

Step 3.3. We show by decreasing induction that for every n 2 Jk0; N K,

P .n/ W q.e., PUu -a.s. on the event ¹� D1º, bn D min¹jKjDnº inft�0RK.Ut / > 0:

The result is clear when n D N , because for all t 2 Œ0; �/, RJ1;N K.Ut / D 1.
We next assume P .n/ for some n 2 Jk0 C 1;N K and we show that P .n � 1/ is true.

We fix K � J1; N K with jKj D n � 1 and we apply Step 3.1 with K and some " 2
.0; bn=.4aK// (bn is random but we may apply Step 3.1 simultaneously for all " 2 Q�C \
.0; 1�) and Step 3.2. We find that on the event ¹� D1º, either there exists k � 1 such that
�
K;"
kC1
D 1 or there exists k � 1 such that inf

t2Œ�
K;"
k

;Q�
K;"
k

/
mini…K RK[¹iº.Ut / � 2aK".

This second choice is not possible, since by induction assumption, RK[¹iº.Ut / � bn for
all t > 0 and all i … K. Hence there is k � 1 such that �K;"

kC1
D1.
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By definition of �K;"
kC1

, this implies that, still on the event ¹� D1º, there exists t0 � 0
such that for all t � t0, eitherRK.Ut /� "=2 or mini2K RK[¹iº.Ut /� 2aK". Using again
the induction assumption, we see that the second choice is never possible, so that actually
RK.Ut / � "=2 for all t � t0. Since .RK.Ut //t�0 is continuous and positive on Œ0; t0�
according to Step 3.2, this finishes this step.

Step 3.4. We conclude from Step 3.3 that quasi-everywhere, PUu -a.s. on the event
¹� D1º, Ut 2K for all t � 0, where

K D ¹u 2 U W RK.u/ � bn for all n 2 Jk0; N K and all K � J1;N K with jKj D nº:

This (random) set is compact in U, so that Lemma 9 (i) tells us, both when .EU ;F U /

is recurrent and when .EU ;F U / is transient, that this happens with probability 0. Hence
quasi-everywhere, PUu .� D1/ D 0 as desired.

9.5. Binary collisions

Proof of Proposition 19 (iii). Assume that N � 4 and 0 < d�;N .N / < 2 � d�;N .N � 1/
and observe that � < 2 and k0 > N , so that X D .R2/N and U D S. The QKS.�; N /-
process X is nonexploding by Proposition 16 (i), and the QSKS.�; N /-process U is irre-
ducible recurrent by Lemma 9 (ii). In particular, � D � D1 a.s. We divide the proof into
four steps. First, we prove that X may have some binary collisions with positive prob-
ability. Then we check that this implies that U may also have some binary collisions
with positive probability. Since U is recurrent, it will then necessarily be a.s. subjected to
(infinitely many) binary collisions. Finally, we conclude the proof using (50).

Step 1. We set K D .¹1; 2º; ¹3º; : : : ; ¹N º/ and

K D
°
x 2 B.0; C / W kx1 � x2k < 1 and min

i2J1;N K; j2J3;N K; i¤j
kxi � xj k > 10

±
;

with C large enough so that �.K/ > 0. We show in this step that PXx .A/ > 0 quasi-
everywhere in K , where

A D
°
X1t D X

2
t for some t 2 Œ0; 1� and min

t2Œ0;1�
RJ1;N K.Xt / > 0

±
:

To this end, we fix x 2K and introduce the set

O D

²
y 2 .R2/2 W R¹1;2º.y/ < 2;





y1 C y22
�
x1 C x2

2





 < 1³;
and Bi D ¹y 2 R2 W ky � xik2 < 1º for i 2 J3;N K. Clearly, there is some " 2 .0; 1� such
that

L D ¹y 2 .R2/N W .y1; y2/ 2 O and yi 2 Bi for all i 2 J3;N Kº � GK;";

where as usualGK;"D ¹y 2B.0;1="/ W 8i 2 J1;N K; 8j 2 J3;N K n ¹iº; kyi � yj k2 > "º;
recall that X D .R2/N because k0 > N .
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Since GK;" is obviously included in ¹y 2 .R2/N W RJ1;N K.y/ > 0º, we conclude that

PXx .A/ � PXx .X
1
t D X

2
t for some t 2 Œ0; 1� and Xt 2 L for all t 2 Œ0; 1�/

� C�11;";KQ1;";K
x .X1t D X

2
t for some t 2 Œ0; 1� and Xt 2 L for all t 2 Œ0; 1�/

by Proposition 15 with T D 1. We now set �K;" D inf ¹t > 0 W Xt … GK;"º. Proposition 15
tells us that, quasi-everywhere in K � GK;", the law of .Xt /t2Œ0;�K;"� under Q1;";K

x equals
the law of Yt D .Y 1t ; : : : ; Y

N
t /t2Œ0;Q�K;"� where .Y 1t ; Y

2
t /t�0 is a QKS.2�=N; 2/-process

issued from .x1; x2/; for all i 2 J3; N K, .Y it /t�0 is a QKS.�=N; 1/-process, i.e. a 2-
dimensional Brownian motion, issued from xi ; and all these processes are independent.
We have set Q�K;" D inf ¹t > 0 W Yt … GK;"º. This implies, together with the fact that ¹Xt 2
L for all t 2 Œ0; 1�º � ¹�K;" > 1º, that

PXx .A/ � C
�1
1;";K p

NY
iD3

qi

quasi-everywhere in K , where

p D P
�

min
s2Œ0;1�

R¹1;2º..Y
1
s ; Y

2
s // D 0 and .Y 1t ; Y

2
t / 2 O for all t 2 Œ0; 1�

�
;

and qi D P .Y it 2 Bi for all t 2 Œ0; 1�/. Of course, qi > 0 for all i 2 J3;N K, since .Y it /t�0
is a Brownian motion issued from xi . Moreover, we know from Lemma 11 that .Mt D

.Y 1t C Y
2
t /=2/t�0 is a 2-dimensional Brownian motion with diffusion coefficient 2�1=2

issued from m D .x1 C x2/=2, .Rt D R¹1;2º..Y 1t ; Y
2
t ///t�0 is a squared Bessel process

of dimension d2�=N;2.2/ D d�;N .2/ issued from r D kx1 � x2k2=2 2 .0; 1=2/, and these
processes are independent. Hence, recalling the definition of O ,

p D P
�

min
s2Œ0;1�

Rs D 0 and max
s2Œ0;1�

Rs < 2
�
P
�

max
s2Œ0;1�

kMt �mk < 1
�
:

This last quantity is clearly positive, because a squared Bessel process of dimension
d�;N .2/ 2 .0; 2/ (see Lemma 1) does hit zero (see Revuz–Yor [21, Chapter XI]).

Step 2. We now deduce from Step 1 that the set F D ¹u 2U W u1 D u2º is not exceptional
for U . Indeed, if it was exceptional, we would have PUu .9t � 0 W Ut 2 F /D 0 q.e. By (50)
and Remark 21, this would imply that q.e., PXx .9t 2 Œ0; �/ W Xt 2 G/ D 0, where G D
¹x 2 X W x1 D x2º and � D inf ¹t > 0 W RJ1;N K.Xt / D 0º. But on the event A defined in
Step 1, there is t 2 Œ0; 1� such that Xt 2 G and � > 1. In conclusion, we have PXx .9t 2
Œ0; �/ W Xt 2 G/ > 0 q.e. in K , which is a contradiction, since �.K/ > 0.

Step 3. Since .EU ;F U / is irreducible-recurrent and F is not exceptional, we know from
Fukushima–Oshima–Takeda [11, Theorem 4.7.1 (iii), p. 202] that quasi-everywhere,

PUu .8r > 0; 9t � r W Ut 2 F / D 1:

Step 4. Using again (50) and Remark 21 and recalling that � D1 and � is an increasing
bijection from Œ0;1/ to Œ0; �/, we conclude that quasi-everywhere, PXx -a.s., Xt visits F
(an infinite number of times) during Œ0; �/. Of course, the same arguments apply on repla-
cing ¹1; 2º by any 2-element subset of J1;N K, and the proof is complete.
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10. Quasi-everywhere conclusion

Here we prove that the conclusions of Theorem 5 hold quasi-everywhere.

Partial proof of Theorem 5. We assume that � � 2 and N > 3� , so that k0 D d2N=�e 2
J7;N K, and consider an X4-valued QKS.�;N /-process X with life-time � as in Proposi-
tion 6, where X D Ek0 .

Preliminaries. For K � J1; N K and " 2 .0; 1�, we use the simplified notation �K;" D
inf ¹t > 0 W Xt … GK;"º 2 Œ0; �� and GK;" D ¹x 2 X W mini2K;j…K kxi � xj k2 > "º \

B.0; 1="/ instead of �K;" and GK;" with K D .K;Kc/ as in Proposition 15. We also write
QT;";K
x instead of QT;";K and recall that it is equivalent to PXx on MX

T D �.Xs W s 2 Œ0;T �/.
Setting XKt D .X it /i2K and XK

c

t D .X it /i2Kc , we know that q.e. in GK;", the law
of .XKt ; X

Kc

t /t2Œ0;�K;"^T � under QT;";K
x is the same as the law of .Yt ; Zt /t2Œ0;Q�K;"^T �,

where .Yt /t�0 is a QKS.jKj�=N; jKj/-process issued from xjK , .Zt /t�0 is a
QKS.jKc j�=N; jKc j/-process issued from xjKc , these two processes being independ-
ent, and Q�K;" D inf ¹t > 0 W .Yt ; Zt / … GK;"º. We denote by �Y and �Z the life-times
of .Yt /t�0 and .Zt /t�0. The life-time of .Yt ; Zt /t�0 is given by �0 D �Y ^ �Z and we
have Q�K;" 2 Œ0; �0�.

No isolated points. Here we prove that for allK � J1;N K with d�;N .jKj/ 2 .0; 2/, quasi-
everywhere, we have PXx .AK/ D 0, where AK D ¹ZK has an isolated pointº and

ZK D ¹t 2 .0; �/ W there is a K-collision in the configuration Xtº:

On AK , we can find u; v 2 QC such that u < v < � and there is a unique t 2 .u; v/
with RK.Xt / D 0 and mini…K RK[¹iº.Xt / > 0. By continuity, we deduce that on AK ,
there exist r; s 2 QC and " 2 Q \ .0; 1� such that r < s < �, Xt 2 GK;" for all t 2 Œr; s�,
and ¹t 2 .r; s/ W RK.Xt / D 0º has an isolated point. It thus suffices that for all r < s and
" 2 .0; 1�, fixed from now on, quasi-everywhere, PXx .AK;r;s;"/ D 0, where

AK;r;s;" D
®
Xt 2 GK;" for all t 2 .r; s/ and

¹t 2 .r; s/ W RK.Xt / D 0º has an isolated point
¯
:

By the Markov property, it suffices that PXx .AK;0;s;"/ D 0 quasi-everywhere in GK;" and,
by equivalence, that Qs;";K

x .AK;0;s;"/ D 0 quasi-everywhere in GK;". We write, recalling
the preliminaries,

Qs;";K
x .AK;0;s;"/ D Qs;";K

x

�
�K;" � s and ¹t 2 .0; s/ WRK.Xt /D 0º has an isolated point

�
D P

�
Q�K;" � s and ¹t 2 .0; s/ W RK.Yt / D 0º has an isolated point

�
�P

�
¹t 2 .0; s/ W RK.Yt / D 0º has an isolated point

�
:

But .Yt /t�0 is a QKS.jKj�=N; jKj/-process, so that by Lemma 11, .RK.Yt //t�0 is a
squared Bessel process of dimension djKj�=N;jKj.jKj/ D d�;N .jKj/ 2 .0; 2/. Such a pro-
cess has no isolated zero (see Revuz–Yor [21, Chapter XI]).
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Proof of (i). We have already seen in Proposition 16 (ii) that quasi-everywhere, PXx -a.s.,
� <1 and X�� D limt!��Xt exists in .R2/N and does not belong to Ek0 .

Proof of (ii). We want to show that quasi-everywhere, PXx -a.s., there is K0 � J1; N K
with jK0j D k0 such that there is a K0-collision and no K-collision with jKj > k0 in
the configuration X��. We already know that X�� … Ek0 , so that there is K � J1; N K
with jKj � k0 such that there is a K-collision in X��. Hence the goal is to verify that
quasi-everywhere, for all K � J1;N K with jKj > k0, PXx .BK/ D 0, where

BK D ¹there is a K-collision in the configuration X��º:

On BK , there is " 2 Q \ .0; 1� such that X�� 2 GK;2". By continuity, there also exists,
still on BK , some r 2 QC \ Œ0; �/ such that Xt 2 GK;" for all t 2 Œr; �/. Hence we only
have to prove that for all " 2 Q \ .0; 1�, all t 2 QC, and all T 2 QC such that T > r ,
quasi-everywhere, PXx .BK;r;T;"/ D 0, where

BK;r;T;" D ¹� 2 .r; T �; Xt 2 GK;" for all t 2 Œr; �/ and RK.X��/ D 0º:

By the Markov property, it suffices that PXx .BK;0;T;"/ D 0 quasi-everywhere in GK;" for
all " 2 Q \ .0; 1� and T 2 Q�C. We now fix " 2 Q \ .0; 1� and T 2 Q�C. By equival-
ence, it suffices to prove that QT;";K

x .BK;0;T;"/ D 0. Using the notation introduced in the
preliminaries, we write

QT;";K
x .BK;0;T;"/ D QT;";K

x

�
� � T; �K;" D � and RK.X��/ D 0

�
D P

�
�0 � T; Q�K;" D �

0 and RK.Y� 0�/ D 0
�

�P
�

inf
t2Œ0;�Y /

RK.Yt / D 0
�
:

But .Yt /t�0 is a QKS.jKj�=N; jKj/-process with jKj > k0 � 7 and djKj�=N;jKj.jKj � 1/
D d�;N .jKj � 1/ � 0 by Lemma 1 because jKj � 1 � k0. Also djKj�=N;jKj.jKj/ D

d�;N .jKj/ � 0. Hence Proposition 19 (i) tells us that P .inft2Œ0;�Y /RK.Yt / D 0/ D 0.

Proof of (iii). We recall that k1 D k0 � 1 and we fix L � K � J1;N K with jKj D k0 and
jLj D k1. We want to prove that quasi-everywhere, PXx -a.s., if RK.X��/D 0, then for all
t 2 Œ0; �/, the set ZL \ .t; �/ is infinite and has no isolated point. But since d�;N .k1/ 2
.0; 2/ (see Lemma 1), we already know that ZL has no isolated point. It thus suffices to
check that quasi-everywhere, for all r 2 QC, we have PXx .CK;L;r / D 0, where

CK;L;r D ¹� > r; RK.X��/ D 0; and RL.Xt / > 0 for all t 2 .r; �/º:

We have used the fact that since jLj D k1 D k0 � 1, for all x 2 X D Ek0 there is an
L-collision in the configuration x if and only if RL.x/ D 0.

On CK;L;r , thanks to (ii) , there are " 2 Q\ .0; 1�, T 2 QC and s 2 Q�C \ Œr; �/ such
that � 2 .s; T � and Xt 2 GK;" for all t 2 Œs; �/. Thus it suffices to prove that for all s < T
and " 2 .0; 1�, now fixed, quasi-everywhere, PXx .CK;L;s;T;"/ D 0, where

CK;L;s;T;" D ¹� 2 .s; T �; RK.X��/ D 0; Xt 2 GK;" and RL.Xt / > 0 for all t 2 Œs; �/º:
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By the Markov property, it suffices that PXx .CK;L;0;T;"/ D 0 quasi-everywhere in GK;"
and, by equivalence, that QT;";K

x .CK;L;0;T;"/ D 0. Recalling the preliminaries, we write

QT;";K
x .CK;L;0;T;"/

D QT;";K
x

�
� � T; RK.X��/ D 0; �K;" D � and RL.Xt / > 0 for all t 2 Œ0; �/

�
D P

�
�0 � T; RK.Y� 0�/ D 0; Q�K;" D �

0 and RL.Yt / > 0 for all t 2 Œ0; �0/
�
:

Setting �K D inf ¹t > 0 W RK.Yt / D 0º, we observe that �K D �Y . Indeed, jKj D k0 and
.Yt /t�0 is a QKS.jKj�=N; jKj/-process with state space Y4 D Y [ ¹4º, where

Y D ¹y 2 .R2/jKj W RM .y/ > 0 for all M � J1;N K with jM j � k0º,

because d2jKj=.jKj�=N/e D d2N=�e D k0. Hence ¹RK.Y� 0�/ D 0º � ¹�0 D �Kº, so
that

QT;";K
x .CK;L;0;T;"/ � P

�
RL.Yt / > 0 for all t 2 Œ0; �K/

�
:

This last quantity equals zero by Proposition 19 (ii), since we have djKj�=N;jKj.jKj � 1/D
d�;N .jKj � 1/ D d�;N .k0 � 1/ 2 .0; 2/ by Lemma 1 and jLj D k1 D jKj � 1 and since
djKj�=N;jKj.jKj/ D d�;N .jKj/ D d�;N .k0/ � 0 < 2.

Proof of (iv). We assume that k2 D k0 � 2, i.e. d�;N .k0 � 2/ 2 .0; 2/. We fix L � K �
J1; N K with jKj D k1 and jLj D k2. We want to prove that quasi-everywhere, PXx -a.s.,
for all t 2 Œ0; �/, if there is a K-collision in the configuration Xt , then for all r 2 Œ0; t/,
the set ZL \ .r; t/ is infinite and has no isolated point. We already know that ZL has no
isolated point. It thus suffices to check that quasi-everywhere, for all r 2 QC, we have
PXx .DK;L;r / D 0, where

DK;L;r D ¹� > r and there is t 2 .r; �/ such that there is a K-collision at time t

but no L-collision during .r; t/º:

We set �K;r D inf ¹t > r W there is a K-collision in Xtº. Then

DK;L;r D ¹� > r; �K;r < � and there is no L-collision during u 2 Œr; �K;r /º:

On DK;L;r , there exists " 2 Q \ .0; 1� such that X�K;r 2 GK;2", so that by continuity,
there exists v 2 QC \ Œr; �K;r / such that Xu 2 GK;" for all u 2 Œv; �K;r �. Observe that
�K;v D �K;r and for all t 2 Œv; �K;v/, there is an L-collision at time t if and only if
RL.Xt /D 0, by definition of �K;v and sinceXt 2 GK;". All in all, it suffices to prove that
for all v 2QC, and all "2Q\ .0;1� and T 2Q�C, PXx .DK;L;v;T;"/D 0 quasi-everywhere,
where

DK;L;v;T;" D ¹� 2 .v; T �; �K;v < �; Xu 2 GK;" and RL.Xu/ > 0 for all u 2 Œv; �K;v/º:

By the Markov property, it suffices to prove that PXx .DK;L;0;T;"/ D 0 quasi-everywhere
in GK;" and, by equivalence, we may use QT;";K

x instead of PXx . But recalling the



Collisions of the supercritical Keller–Segel particle system 4143

preliminaries,

QT;";K
x .DK;L;0;T;"/

D QT;";K
x

�
� � T; �K;0 < �; �K;" � �K;0 and RL.Xt / > 0 for all t 2 Œ0; �K;0/

�
D P

�
�0 � T; Q�K;0 < �

0; Q�K;" � Q�K;0 and RL.Yt / > 0 for all t 2 Œ0; Q�K;0/
�

� P
�
RL.Yt / > 0 for all t 2 Œ0; Q�K;0/

�
;

where Q�K;0 D inf ¹t > 0 W RK.Yt / D 0º. Finally, P .RL.Yt / > 0 for all t 2 Œ0; Q�K;0// D 0
by Proposition 19 (ii), because .Yt /t�0 is a QKS.jKj�=N; jKj/-process and jLj D
k2 D jKj � 1 and djKj�=N;jKj.jKj � 1/ D d�;N .jKj � 1/ D d�;N .k2/ 2 .0; 2/ and
djKj�=N;jKj.jKj/ D d�;N .jKj/ D d�;N .k1/ 2 .0; 2/.

Proof of (v). We fix K � J1;N K with jKj 2 J3; k2 � 1K, so that d�;N .jKj/ � 2. We want
to prove that quasi-everywhere, PXx -a.s., for all t 2 Œ0; �/, there is no K-collision in the
configuration Xt . We introduce �K D inf ¹t > 0 W there is a K-collision in Xtº, with the
convention that inf; D �, and we have to verify that quasi-everywhere, PXx .�K < �/D 0.

On the event ¹�K < �º, there exist " 2 Q \ .0; 1� and r 2 Q�C \ Œ0; �K/ such that
Xt 2 GK;" for all t 2 Œr; �K �. Hence it suffices to check that for all " 2 Q \ .0; 1�, all
r 2Q�C and all T 2Q�C \ .r;1/, now fixed, quasi-everywhere, PXx .FK;r;T;"/D 0, where

FK;r;T;" D ¹�K 2 .r; � ^ T / and Xt 2 GK;" for all t 2 Œr; �K �º:

By the Markov property, it suffices that PXx .FK;0;T;"/D 0 quasi-everywhere in GK;" and,
by equivalence, that QT;";K

x .FK;0;T;"/ D 0. Recalling the preliminaries, we write

QT;";K
x .FK;0;T;"/ D QT;";K

x

�
�K 2 .0; � ^ T / and �K;" � �K

�
D P

�
Q�K 2 .0; �

0
^ T / and Q�K;" � Q�K

�
�P

�
inf

t2Œ0;T �
RK.Yt / D 0

�
;

where we have set Q�K D inf ¹t > 0 W there is a K-collision in the configuration
.Yt ; Zt /º. Since .Yt /t�0 is a QKS.jKj�=N; jKj/-process, we know from Lemma 11 that
.RK.Yt //t�0 is a squared Bessel process of dimension djKj�=N;jKj.jKj/D d�;N .jKj/� 2.
Such a process a.s. never reaches 0.

Proof of (vi). The proof is exactly the same as that of (iv), replacing everywhere k1
by k2 and k2 by 2, and using Proposition 19 (iii) instead of Proposition 19 (ii), which
is licit because 0 < dk2�=N;k2.k2/ < 2 � dk2�=N;k2.k2 � 1/, dk2�=N;k2.k2/ D d�;N .k2/

and dk2�=N;k2.k2 � 1/ D d�;N .k2 � 1/ and by Lemma 1.

11. Extension to all initial conditions without two particles at the same place

We first prove Proposition 2: we can build a KS.�; N /-process, i.e. a QKS.�; N /-process
such that PXx ıX

�1
t is absolutely continuous for all x 2E2 and all t > 0. We next conclude

the proofs of Proposition 3 and Theorem 5.
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11.1. Construction of a Keller–Segel process

We fix � > 0 and N � 2 such that N > � during the whole subsection. For each n 2 N�,
we introduce �n 2 C1.RC;R�C/ such that �n.r/ D r for all r � 1=n and we set, for
x 2 .R2/N ,

mn.x/ D
Y

1�i¤j�N

Œ�n.kx
i
� xj k2/���=N and �n.dx/ D mn.x/dx:

We then consider the .R2/N -valued SDE

Xnt D x C Bt C

Z t

0

rmn.X
n
s /

2mn.Xns /
ds; (67)

which is strongly well-posed, for every initial condition, since the drift coefficient is
smooth and bounded. We denote by Xn D .�n;Mn; .Xnt /t�0; .P

n
x /x2.R2/N / the cor-

responding Markov process.

Lemma 24. For all n � 1, Xn is a �n-symmetric .R2/N -valued diffusion with regular
Dirichlet space .En;F n/ with core C1c ..R

2/N / such that for all ' 2 C1c ..R
2/N /,

En.'; '/ D
1

2

Z
.R2/N

kr'k2 d�n:

Moreover, Pnx ı .X
n
t /
�1 has a density with respect to the Lebesgue measure on .R2/N for

all t > 0 and all x 2 .R2/N .

Proof. Classically, Xn is a �n-symmetric diffusion and its (strong) generator Ln has the
property that for all ' 2 C1c ..R

2/N / and x 2 .R2/N ,

Ln'.x/ D
1

2
�'.x/C

rmn.x/

2mn.x/
� r'.x/:

Hence (see Section B.1), one easily shows that for the Dirichlet space .En;F n/ of Xn,
we have C1c ..R

2/N /� F n and, for ' 2 C1c ..R
2/N /, En.'; '/D 1

2

R
.R2/N kr'k

2d�n.
Since .En;F n/ is closed, we deduce that

C1c ..R
2/N /

En
1
� F n;

where En1 .�; �/ D En.�; �/C k � k2
L2..R2/N ;�n/

. But thanks to [11, Lemma 3.3.5, p. 136],

F n
� ¹' 2 L2..R2/N ; �n/ W r' 2 L

2..R2/N ; �n/º;

where r is understood in the sense of distributions. Since finally

C1c ..R
2/N /

En
1
D ¹' 2 L2..R2/N ; �n/ W r' 2 L

2..R2/N ; �n/º;

Xn has the announced Dirichlet space. Finally, the absolute continuity of Pnx ı .X
n
t /
�1,

for t > 0 and x 2 .R2/N , immediately follows from the (standard) Girsanov theorem,
since the drift coefficient is bounded.
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For all x 2 E2 we set dx D mini¤j kxi � xj k2. For n � 1, we introduce the open set

En2 D ¹x 2 .R
2/N W dx > 1=n and kxk < nº: (68)

We also fix a QKS.�; N /-process X D .�X ;MX ; .Xt /t�0; .PXx /x2X4/ for the whole
subsection.

Lemma 25. There exists an exceptional set N0 � E2 with respect to X such that for all
n� 1 and all x 2En2 nN0, the law of .Xnt^�n/t�0 under Pnx equals the law of .Xt^�n/t�0
under PXx , where

�n D inf ¹t > 0 W Xnt … E
n
2 º and �n D inf ¹t > 0 W Xt … En2 º:

Proof. We fix n � 1. Applying Lemma B.6 to Xn and X with the open set En2 , using
the fact that mn D m on En2 and Lemma 24, we find that the processes Xn and X killed
when leaving En2 have the same Dirichlet space. By uniqueness (see [11, Theorem 4.2.8,
p. 167]), there exists an exceptional set Nn such that for all x 2 En2 n Nn, the law of
.Xnt /t�0 killed when leaving En2 under Pnx equals the law of .Xt /t�0 killed when leaving
En2 under PXx . We conclude the proof by setting N0 D

S
n�1 Nn.

Lemma 26. For all exceptional sets N with respect to X, and all n � 1 and x 2 En2 , we
have Pnx .X

n
�n
… N / D 1.

Proof. We fix N an exceptional set with respect to X, n � 1 and x 2 En2 . For " 2 .0; 1�,
we write

Pnx .X
n
�n
2 N / � Pnx .�n � "/C Pnx .�n > ";X

n
�n
2 N /

D Pnx .�n � "/C Enx Œ1¹�n>"ºP
n
Xn"
.Xn�n 2 N /�

by the Markov property. But by Lemma 25, for all y 2 En2 nN0, the law of .Xnt^�n/t�0
under Pny is equal to the law of .Xt^�n/t�0 under PXy . Since N0 [N is exceptional for X,
we can find N 0 � N0 [ N properly exceptional for X (see Section B.1). Hence for all
y 2 En2 nN 0,

Pny .X
n
�n
2 N / � Pny .X

n
�n
2 N 0/ D PXy .X�n 2 N 0/ D 0:

Since Pnx ı .X
n
" /
�1 has a density by Lemma 25, we conclude that Pnx .X

n
" 2 N 0/ D 0

and thus Pnx -a.s., we have Pn
Xn"
.Xn�n 2 N / D 0. All in all, we have proved the inequal-

ity Pnx .X
n
�n
2 N / � Pnx .�n � "/, and it suffices to let "! 0, since Pnx .�n > 0/ D 1 by

continuity and x 2 En2 .

Using Lemmas 25 and 26, it is slightly technical but not difficult to build from X and
the family .Xn/n�1 an X4-valued diffusion QX D . Q�X ; QMX ; . QXt /t�0; . QPXx /x2X4/ such
that

� for all x 2X4 nN0, the law of . QXt /t�0 under QPXx equals the law of .Xt /t�0 under PXx ,

� for all x 2 N0, setting n D 1 C bmax.1=dx ; kxk/c (so that x 2 En2 ), the law of
. QXt^Q�n/t�0 under QPXx is the same as that of .Xnt^�n/t�0 under Pnx , and the law of
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. QXQ�nCt /t�0 under QPXx conditioned on QMX
Q�n

equals the law of .Xt /t�0 under PX
QX�n

. We

have used the notation Q�n D inf ¹t > 0 W QXt … En2 º and QMX
t D �.

QXs W s 2 Œ0; t �/.

Remark 27. For all x 2 E2, setting n D 1C bmax.1=dx ; kxk/c, the law of . QXt^Q�n/t�0
under QPXx is the same as that of .Xnt^�n/t�0 under Pnx .

Proof. This follows from Lemma 25 when x 2 E2 n N0 and from the definition of QX
otherwise.

Proof of Proposition 2. We fix N � 2 and � > 0 such that N > � and we prove that QX
defined above is a KS.�; N /-process. First, it is clear that QX is a QKS.�; N /-process
because QX is an X4-valued diffusion and for all x 2 X4 n N0, the law of . QXt /t�0
under QPXx equals the law of .Xt /t�0 under PXx , with N0 exceptional for X. It remains to
prove that for all x 2E2, all t > 0 and all Lebesgue-nullA� .R2/N , we have QPXx . QXt 2A/
D 0. We set n D 1C bmax.1=dx ; kxk/c and write, for any " 2 .0; t/,

QPXx . QXt 2 A/ � QP
X
x . Q�n > ";

QXt 2 A/C QP
X
x . Q�n � "/

D QEXx Œ1¹Q�n>"º QP
X
QX"
. QXt�" 2 A/�C QP

X
x . Q�n � "/:

Since QX is �-symmetric (because it is a QKS.�;N /-process) and QPt�"1 � 1, where QPt is
the semigroup of QX, and since A is Lebesgue-null, we haveZ

.R2/N
QPy. QXt�" 2 A/�.dy/ � �.A/ D 0:

Hence there is a Lebesgue-null subsetB of .R2/N (depending on t � ") such that we have
QPy. QXt�" 2 A/ D 0 for every y 2 .R2/N n B . We conclude that

QPXx . QXt 2 A/ � QP
X
x . Q�n > ";

QX" 2 B/C QP
X
x . Q�n � "/

D Pnx .�n > ";X
n
" 2 B/C

QPXx . Q�n � "/;

where we have used Remark 27. Since B is Lebesgue-null, we deduce from Lemma 24
that Pnx .�n > "; Xn" 2 B/ D 0. Thus QPXx . QXt 2 A/ � QP

X
x . Q�n � "/, which tends to 0 as

"! 0 because QPXx . Q�n > 0/ D 1 by continuity.

11.2. Final proofs

We fix � > 0 and N � 2 such that N > � , and a KS.�; N /-process X, which exists
thanks to Section 11.1. We recall that En2 was introduced in (68) and define, for all n � 1,
�n D inf ¹t � 0 W Xt … En2 º, as well as the � -field

G D
\
n�1

�.¹X�nCt ; t � 0º/:

Lemma 28. FixA 2 G . If PXx .A/D 0 quasi-everywhere, then PXx .A/D 0 for all x 2E2.
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Proof. We fix A 2 G such that PXx .A/ D 0 quasi-everywhere. There is an exceptional
set N such that PXx .A/ D 0 for all x 2 E2 n N . We now fix x 2 E2 and set n D 1C

bmax.1=dx ; kxk/c. For any " 2 .0; 1�,

PXx .A/ � PXx .�n � "/C PXx Œ�n > ";A�:

By the Markov property and since A 2 G � �.X�nCt ; t � 0/, we get

PXx Œ�n > ";A� D EXx Œ1¹�n>"ºP
X
X"
.A/�:

But the law of X" under PXx has a density, whence PXx .X" 2 N / D 0, and con-
sequently PXx .P

X
X"
.A/D 0/D 1. Hence PXx Œ�n > ";A�D 0 and we end up with PXx .A/�

PXx .�n � "/. As usual, we conclude that PXx .A/ D 0 by letting "! 0.

Proof of Proposition 3. Let � 2 .0; 2/ and N � 2. Since our KS.�; N /-process X is a
QKS.�;N /-process, we know from Proposition 16 (i) that PXx .� D1/D 1 q.e. We want
to prove that PXx .� D 1/ D 1 for all x 2 E2. By Lemma 28, it suffices to check that
¹� D1º belongs to G , which is not hard since for each n � 1,

¹� D1º D ¹Xt 2 X for all t � 0º D ¹Xt 2 X for all t � �nº 2 �.¹X�nCt ; t � 0º/:

For the second equality, we have used the fact that Xt 2 NEn2 � X for all t 2 Œ0; �n� by
definition.

Proof of Theorem 5. Let us fix � � 2 and N > 3� . Since our KS.�; N /-process X is a
QKS.�; N /-process, we know from Section 10 that all the conclusions of Theorem 5
hold quasi-everywhere. In other words, PXx .A/ D 1 quasi-everywhere, where A is the
event on which we have � <1, X�� D limt!��Xt 2 .R

2/N , there is K0 2 J1;N K with
jK0j D k0 such that there is a K0-collision in the configuration X��, etc. We want to
prove that PXx .A/ D 1 for all x 2 E2. By Lemma 28, it suffices to check that A belongs
to G . But for each n � 1, A indeed belongs to �.X�nCt ; t � 0/, because no collision (nor
explosion) may happen before leaving En2 .

We end this section with the following remark (which we will not use anywhere).

Remark 29. Fix � � 0 and N � 2 such that N > � . Consider a KS.�; N / process X
and define � D inf ¹t � 0 W Xt … E2º. For all x 2 E2, there is some .MX

t /t�0-Brownian
motion ..B it /t�0/i2J1;N K .of dimension 2N/ under PXx such that for all t 2 Œ0; �/ and
i 2 J1;N K,

X it D x
i
C B it �

�

N

X
j¤i

Z t

0

X is �X
j
s

kX is �X
j
s k
2

ds: (69)

Proof. It suffices to prove the result on Œ0; �n/, where �n D inf ¹t � 0 W Xt … En2 º. For
any x 2 En2 and for a given Brownian motion, the solutions to (69) and (67) classic-
ally coincide while they remain in En2 , because their drift coefficients coincide and are
smooth inside En2 . Hence, recalling the notation of Section 11.1, it suffices to prove that
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the semigroups Pt .x; �/ and P nt .x; �/ of the Markov processes X and Xn killed when
getting out of En2 coincide for all x 2 En2 .

By Lemma 25, there is an exceptional set N0 such that Pt .x; �/ D P nt .x; �/ for all
x 2En2 nN0. We next fix x 2En2 . For any " 2 .0; t/, since P".x; �/ has a density and N0 is
Lebesgue-null, we easily deduce thatPt .x; �/D .P"Pt�"/.x; �/D .P"P nt�"/.x; �/. It is then
not difficult, as P nt is Feller, to let "! 0 and conclude that indeed Pt .x; �/D P nt .x; �/.

Appendix A. A few elementary computations

We recall that d�;N .k/ D .k � 1/.2 � �k=N/ for k � 2.

Proof of Lemma 1. First, (3), which says that d�;N .k/ > 0 if and only if k < k0 D

d2N=�e, is clear. We next fixN > 3� � 6 so that k0 2 J7;N K and d�;N .2/D 2� 2�=N 2
.4=3; 2/. By concavity of x 7! .x � 1/.2 � �x=N/, it only remains to check that (i)
d�;N .3/ � 2, (ii) d�;N .k0 � 3/ � 2, and (iii) d�;N .k0 � 1/ < 2. We introduce a D
2N=� > 6 and observe that d�;N .k/ D 2a�1.k � 1/.a � k/ and k0 D dae.

For (i), we write d�;N .3/ D 4a�1.a � 3/ D 4 � 12a�1 > 2 since a > 6.
Concerning (ii), we have d�;N .k0 � 3/ D 2a�1.dae � 4/.a � dae C 3/ and we need

.dae � 4/.a � dae C 3/ � a. Writing a D nC ˛ with an integer n � 6 and ˛ 2 .0; 1�, we
need .n� 3/.2C ˛/� nC ˛, and this holds true because 2.n� 3/� n and .n� 3/˛ � ˛.

For (iii), we write

d�;N .k0 � 1/ D 2a
�1.dae � 2/.a � dae C 1/ � 2a�1.dae � 2/ < 2:

We next study the reference measure of the Keller–Segel particle system.

Proposition A.1. Let N � 2 and � > 0 be such that N > � . Recall that k0 D d2N=�e
and the definition (4) of �.dx/ D m.x/dx.

(i) The measure � is Radon on Ek0 .

(ii) If k0 � N , then � is not Radon on Ek0C1.

Proof. (i) To show that� is Radon onEk0 , we have to check that for all xD .x1; : : : ; xN /
2Ek0 , which we now fix, there is an open setOx�Ek0 such that x2Ox and �.Ox/<1.
We choose Ox D

QN
iD1 B.x

i ; dx/, where the balls are subsets of R2 and where

dx D 1 ^min ¹kxi � xj k=3 W i; j 2 J1;N K such that xi ¤ xj º > 0:

We consider the partition K1; : : : ; K` of J1; N K such that for all p ¤ q in J1; `K, all
i; j 2 Kp and all k 2 Kq , we have xi D xj and xi ¤ xk . Since x 2 Ek0 , it follows that
maxp2J1;`K jKpj � k0 � 1. By definition of Ox and dx , we see that for all y 2 Ox , all
p ¤ q in J1; `K and all i 2 Kp and j 2 Kq ,

kyi � yj k � kxi � xj k � kxi � yik � kxj � yj k � kxi � xj k � 2dx � dx :
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This implies that for some finite constant C depending on x, for all y 2 Ox ,

m.y/ D
Y

1�i¤j�N

kyi � yj k��=N � C
Ỳ
pD1

� Y
i;j2Kp ; i¤j

kyi � yj k��=N
�
:

Recall now that �.dy/Dm.y/dy and we want to show that �.Ox/ <1. Since xi D xj

for all i; j 2Kp and all p 2 J1;`K, and since jKpj � k0 � 1, dx � 1, a translation argument
reduces our task to showing that for any n 2 J2; k0 � 1K (when k0 > N , one could study
only n 2 J2;N K),

In D

Z
.B.0;1//n

� Y
1�i¤j�n

kyi � yj k��=N
�

dy1 : : : dyn <1:

We fix n 2 J2; k0 � 1K and show that In <1. Since kuk2 � ju1u2j for all u D .u1; u2/
2 R2, we have In � J 2n , where

Jn D

Z
Œ�1;1�n

� Y
1�i¤j�n

jt i � tj j��=.2N/
�

dt1 : : : dtn:

But for all t1; : : : ; tn 2 R,Y
1�i¤j�n

jt i � tj j��=.2N/ D

nY
iD1

� nY
jD1; j¤i

jt i � tj j��=.2N/
�

�
1

n

nX
iD1

nY
jD1; j¤i

jt i � tj j��n=.2N/

by the inequality of arithmetic and geometric means. Thus by symmetry,

Jn �

Z
Œ�1;1�n

� nY
jD2

jt1 � tj j��n=.2N/
�

dt1 : : : dtn

D

Z 1

�1

�Z 1

�1

jt1 � t2j��n=.2N/dt2
�n�1

dt1:

Consequently,

Jn �

Z 1

�1

�Z 2

�2

jsj��n=.2N/ ds
�n�1

dt1:

Since n� k0 � 1Dd2N=�e � 1 < 2N=� , we have �n=.2N / < 1, so that Jn <1, whence
In <1.

(ii) We next assume that k0 2 J2; N K. To prove that � is not Radon on Ek0C1, we
show that �.K/ D1 for the compact subset

K D

k0Y
iD1

xB.0; 1/ �

NY
kDk0C1

xB..2k; 0/; 1=2/

ofEk0C1. All the balls in the previous formula are balls in R2. For xD .x1; : : : ; xN / 2K,
the points xk0C1; : : : ; xN are far apart and far from x1; : : : ; xk0 , which explains thatK is
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indeed compact in Ek0C1. There is a positive constant c > 0 such that for all x 2 K,

m.x/ D
Y

1�i¤j�N

kxi � xj k��=N � c
Y

1�i¤j�k0

kxi � xj k��=N ;

whence, the value of c > 0 being allowed to vary,

�.K/ � c

Z
.B.0;1//k0

� Y
1�i¤j�k0

kxi � xj k��=N
�

dx1 : : : dxk0 :

We now observe that

A D ¹x D .x1; : : : ; xk0/ W x1; x2 2 B.0; 1=3/; 8i … ¹1; 2º; xi 2 B.x1; kx1 � x2k/º

� .B.0; 1//k0

and for x 2 A, we have kxi � xj k � kxi � x1k C kxj � x1k � 2kx1 � x2k for all
i; j D 1; : : : ; k0, which yieldsY

1�i¤j�k0

kxi � xj k��=N � ckx1 � x2k�k0.k0�1/�=N :

Consequently,

�.K/ � c

Z
B.0;1=3/2

kx1 � x2k�k0.k0�1/�=N dx1 dx2
Z
B.x1;kx1�x2k/

k0�2

dx3 : : : dxk0

� c

Z
B.0;1=3/2

kx1 � x2k�k0.k0�1/�=NC2.k0�2/ dx1 dx2

� c

Z
B.0;1=3/

kuk�k0.k0�1/�=NC2.k0�2/ du;

where we have used the change of variables u D x1 � x2 and v D x1 C x2. The last
integral diverges, because �k0.k0 � 1/�=N C 2.k0 � 2/ D d�;N .k0/ � 2 � �2; recall
that d�;N .k0/ D .k0 � 1/.2 � k0�=N/ � 0 by definition of k0.

We need a similar result on the sphere S defined in Section 2, where 
 W R2! .R2/N

and ‰ W R2 �R�C � S! EN � .R2/N were also introduced. First, we show an explicit
link between �.dx/Dm.x/dx and ˇ.du/Dm.u/�.du/ defined in (4) and (8), which we
use several times.

Lemma A.2. FixN �2, � >0 and set �Dd�;N .N /=2� 1. For all Borel ' W.R2/N!RC,Z
.R2/N

'.x/�.dx/ D
1

2

Z
R2�R�

C
�S
'.‰.z; r; u//r� dz dr ˇ.du/:

Proof. Since H D ¹y D .y1; : : : ; yN / 2 .R2/N W
PN
iD1 y

i D 0º and m is translation
invariant,Z

.R2/N
'.x/�.dx/ D

Z
.R2/N

'.x/m.x/ dx D
Z

R2�H
'.
.z/C y/m.y/ dz dy:
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We next note that S is the (true) unit sphere of the .2N � 2/-dimensional Euclidean
space H and make the substitution .`; u/ D .kyk; y=kyk/:Z

.R2/N
'.x/�.dx/ D

Z
R2�RC�S

'.
.z/C `u/m.`u/`2N�3 dz d` �.du/:

We substitute ` D
p
r to obtainZ

.R2/N
'.x/�.dx/ D

1

2

Z
R2�RC�S

'.
.z/C
p
ru/m.

p
ru/rN�2 dz dr �.du/:

But m.
p
ru/rN�2 D rN�2��.N�1/=2m.u/ by (4) and ˇ.du/ D m.u/�.du/, whenceZ

.R2/N
'.x/�.dx/ D

1

2

Z
R2�RC�S

'.‰.z; r; u//rN�2��.N�1/=2 dz dr ˇ.du/:

Since finally � D d�;N .N /=2 � 1 D N � 2 � �.N � 1/=2, the conclusion follows.

We can now study the measure ˇ on S.

Proposition A.3. Let N � 2 and � > 0 such that N > � . Recall that k0 D d2N=�e.

(i) The measure ˇ is Radon on S \Ek0 .

(ii) If k0 � N , then ˇ.S/ <1.

Proof. (i) For " 2 .0; 1�, we introduce

K" D ¹x 2 .R
2/N W 8K � J1;N K with jKj � k0; we have RK.x/ � "º

and L" D K" \ S. Since K" \ xB.0; 1/ is compact in Ek0 , where B.0; 1/ is the unit
ball of .R2/N , we know from Proposition A.1 (i) that �.K" \ B.0; 1// < 1. Now by
Lemma A.2,

�.K" \ B.0; 1// D
1

2

Z
R2�RC�S

1¹
.z/Cpru2K"\B.0;1/º
r� dz dr ˇ.du/:

But for .z; r; u/ 2 R2 �RC � S,


.z/C
p
ru 2K" \ B.0; 1/ if and only if u 2 L"=r and N kzk2 C r < 1.

Indeed, RK.
.z/ C
p
ru/ D rRK.u/ for all K � J1; N K, while k
.z/ C

p
ruk2 DPN

iD1 kz C
p
ruik2 D N kzk2 C r because

PN
iD1 u

i D 0 and
PN
iD1 ku

ik2 D 1. Thus

�.K" \ B.0; 1// D

Z
R2�RC

1¹Nkzk2Cr<1ºr
�ˇ.L"=r / dz dr:

All this implies that ˇ.L"=r / <1 for all " 2 .0; 1� and almost all r 2 .0; 1/. Since "!L"

is monotone, we conclude that ˇ.L"/ <1 for all " 2 .0; 1�. Since finally
S
"2.0;1� L" D

S \ Ek0 and since L" is compact in S \ Ek0 for each " 2 .0; 1�, we conclude as desired
that ˇ is Radon on S \Ek0 .

(ii) We have S � EN , because RJ1;N K.u/ D 1 for u 2 S. Hence if k0 � N , then
S � EN � Ek0 , whence S D S \Ek0 and thus ˇ is Radon on S by (i). Since finally S is
compact, we conclude that ˇ.S/ <1.
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Appendix B. Markov processes and Dirichlet spaces

In a first subsection, we recall some classical definitions and results about Hunt processes,
diffusions and Dirichlet spaces found in Fukushima–Oshima–Takeda [11]. In a second
subsection, we mention a few results about martingales, time-changes, concatenation,
killing and Girsanov transformation of Hunt processes found in [11] and elsewhere.

B.1. Main definitions and properties

Let E be a locally compact separable metrizable space endowed with a Radon measure
˛ such that supp ˛ D E. We set E4 D E [ ¹4º, where 4 is a cemetery point. See
[11, Section A2] for the definition of a Hunt process Y D .�;M; .Yt /t�0; .Py/y2E4/:
it is a strong Markov process in its canonical filtration, Py.Y0 D y/ D 1 for all y 2 E4,
4 is an absorbing state, i.e. Yt D 4 for all t � 0 under P4, and a few more technical
properties are satisfied. The life-time of Y is defined by � D inf ¹t � 0 W Yt D 4º.

Let us denote by Pt .y; dz/ its transition kernel. Our Hunt process is said to be ˛-
symmetric if

R
E
'Pt d˛ D

R
E
 Pt' d˛ for all measurable '; W E! RC and all t � 0

(see [11, p. 30]). The Dirichlet space .E;F / of our Hunt process on L2.E; ˛/ is then
defined (see [11, p. 23]) by

F D

²
' 2 L2.E; ˛/ W lim

t!0

1

t

Z
E

'.Pt' � '/ d˛ exists
³
;

E.';  / D � lim
t!0

1

t

Z
E

'.Pt �  / d˛ for all '; 2 F :

The generator .A;DA/ of Y is defined as follows:

DA D

²
' 2 L2.E; ˛/ W lim

t!0

1

t
.Pt' � '/ exists in L2.E; ˛/

³
;

and for ' 2 DA, we denote by A' 2 L2.E; ˛/ the above limit. By [11, pp. 20–21],

DA D

²
' 2 F W 9h 2 L2.E; ˛/ such that 8 2 F ; we have E.';  / D �

Z
E

h d˛
³
;

(B.1)
and in that case A' D h.

The one-point compactification E4 D E [ ¹4º of E is endowed with the topology
consisting of all the open subsets of E and of all the sets of the form Kc [ ¹4º with K
compact inE (see [11, p. 69]). Observe that for anE4-valued sequence .xn/n�0, we have
limn xn D x if and only if either

� x; xn 2 E for all n large enough, and limn xn D x 2 E in the usual sense; or

� x D 4 and for every compact subset K of E, there is nK 2 N such that xn … K for all
n � nK .
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We say that our Hunt process is continuous if t 7! Yt is continuous from RC into E4,
where E4 is endowed with the one-point compactification topology. A continuous Hunt
process is called a diffusion.

A Dirichlet space .E;F / on L2.E; ˛/ is said to be regular if it has a core (see [11,
p. 6]), i.e. a subset C � Cc.E/ \ F which is dense in Cc.E/ for the uniform norm and
dense in F for the norm k'k D Œ

R
E
'2 d˛ C E.'; '/�1=2.

Two regular Dirichlet spaces .E;F / and .E 0;F 0/ such that E.'; '/D E 0.'; '/ for all
' in a common core C are necessarily equal, i.e. F D F 0 and E D E 0. This follows from
the fact that by definition (see [11, p. 5]), a Dirichlet space is closed.

We say that a Borel set A of E is .Pt /t�0-invariant if for all ' 2 L2.E; ˛/ and all
t > 0 we have Pt .1A'/ D 1APt' ˛-a.e. (see [11, p. 53]). Following [11, p. 55], we say
that .E;F / is irreducible if for every .Pt /t�0-invariant set A, we have either ˛.A/ D 0
or ˛.E n A/ D 0.

We say that .E;F / is recurrent if for all nonnegative ' 2 L1.E; ˛/ and ˛-a.e. y 2 E,
we have Ey Œ

R1
0
'.Ys/ds� 2 ¹0;1º (see [11, p. 55]).

We finally say that .E;F / is transient if for all nonnegative ' 2 L1.E; ˛/ and ˛-
a.e. y 2 E, we have Ey Œ

R1
0
'.Ys/ ds� < 1, with the convention that '.4/ D 0 (see

[11, p. 55]).
By [11, Lemma 1.6.4, p. 55], if .E;F / is irreducible, then it is either recurrent or

transient.
A Borel set N �E is properly exceptional if ˛.N /D 0 and Py.9t � 0 W Yt 2N /D 0

for all y 2 E nN (see [11, p. 153]). A property is said to hold true quasi-everywhere if it
holds true outside a properly exceptional set.

Remark B.1. Two Hunt processes with the same Dirichlet space share the same quasi-
everywhere notion, up to the restriction that the capacity of every compact set is finite,
which is always the case in the present work.

Proof. We fix a Hunt process Y and explain why its quasi-everywhere notion depends
only on its Dirichlet space. A set N � E is exceptional (see [11, p. 152]) if there exists a
Borel set QN such that N � QN and Py.9t � 0 W Yt 2 QN /D 0 for ˛-a.e. y 2 E. A properly
exceptional set is clearly exceptional, and [11, Theorem 4.1.1, p. 155] tells us that any
exceptional set is included in a properly exceptional set. Thus, a property is true quasi-
everywhere if and only if it holds true outside an exceptional set. Next, [11, Theorem
4.2.1 (ii), p. 161] tells us that a set N is exceptional if and only if its capacity is 0, where
the capacity of N � E is entirely defined from the Dirichlet space. And for [11, Theorem
4.2.1 (ii), p. 161] to apply, one needs that the capacity of all compact sets is finite.

B.2. Toolbox

We start with martingales.

Lemma B.2. Let E be a locally compact separable metrizable space endowed with a
Radon measure ˛ such that supp˛DE, and .�;M; .Zt /t�0; .Pz/z2E4/ an ˛-symmetric
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E4-valued diffusion with regular Dirichlet space .E;F / on L2.E; ˛/ and generator
.A;DA/. Assume that ' W E ! R belongs to DA, and both ' and A' are bounded.
Define

M
'
t D '.Zt / � '.Z0/ �

Z t

0

A'.Zs/ ds;

with the convention '.4/DA'.4/D 0. Quasi-everywhere, .M '
t /t�0 is a Pz-martingale

in the canonical filtration of .Zt /t�0.

This can be found in [11, p. 332]. There the assumption on ' is that there is f bounded
and measurable such that ' D R1f , i.e. ' D .I � A/�1f , which simply means that
' �A' is bounded. Also, the conclusion is that .M '

t /t�0 is a MAF, which indeed implies
that .M '

t /t�0 is a martingale (see [11, p. 243]).
Next, we deal with time-changes.

Lemma B.3. Let E be a C1-manifold, ˛ a Radon measure on E such that supp˛ D E,
and .�; M; .Zt /t�0; .Pz/z2E4/ an ˛-symmetric E4-valued diffusion with regular
Dirichlet space .E;F / on L2.E; ˛/ with core C1c .E/. Fix g W E ! .0;1/ continu-
ous and let g.4/ D 0 by convention. Consider the time-change At D

R t
0
g.Zs/ ds and its

generalized inverse �t D inf ¹s > 0 W As > tº. Set

Yt D Z�t 1¹�t<1º C41¹�tD1º:

Then .�;M; .Yt /t�0; .Py/y2E4/ is a g˛-symmetric E4-valued diffusion with Dirichlet
space .E;F 0/ on L2.E; g˛/, regular with core C1c .E/, i.e. F 0 is the closure of C1c .E/
with respect to the norm Œ

R
E
'2g d˛ C E.'; '/�1=2.

Remark B.4. If we apply the preceding result to the simple case where E is an open
subset of Rd and where E.'; '/ D

R
Rd kr'k

2 d˛ for all ' 2 C1c .E/, then when E is
seen as the Dirichlet form of a g˛-symmetric process, it may be better understood as
E.'; '/ D

R
Rd kg

�1=2r'k2g d˛.

Lemma B.3 is nothing but a particular case of [11, Theorem 6.2.1, p. 316] (see also the
few pages before). We only have to check that the Revuz measure in our case is g˛, i.e.
(see [11, (5.1.13), p. 229]) for all bounded nonnegative measurable functions ';  on E
and all t > 0,Z

E

Ex

�Z t

0

'.Zs/g.Zs/ ds
�
 .x/ ˛.dx/ D

Z t

0

Z
E

.PZs  /'g d˛;

where PZt is the semigroup of Z. The left hand side equals
R t
0

R
E
PZs .'g/ d˛, so that

the claim is obvious since Z is ˛-symmetric.
The following concatenation result can be found in Li–Ying [17, Proposition 3.2].

Lemma B.5. Let EV ; EW be C1-manifolds and let ˛V ; ˛W be Radon meas-
ures on EV and EW such that supp ˛V D EV and supp ˛W D EW . Consider an
˛V -symmetric .EV [ ¹4º/-valued diffusion .�V ;MV ; .Vt /t�0; .PVv /v2EV [¹4º/ with
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regular Dirichlet space
�
EV ;F V

�
on L2.EV ; ˛V / with core C1c .EV /, and an ˛W -

symmetric .EW [ ¹4º/-valued diffusion .�W ; MW ; .Wt /t�0; .PWw /w2EW [¹4º/ with
regular Dirichlet space

�
EW ;F W

�
on L2.EW ; ˛W / with core C1c .EW /. Introduce the

measure ˛ D ˛V ˝ ˛W onE D EV �EW . By convention, .v;4/D .4;w/D .4;4/D
4 for all v 2 EV and w 2 EW . Moreover, set M.V;W / D �.¹.Vt ;Wt / W t � 0º/ and define
P .V;W /
.v;w/

D PVv ˝ PWw if .v; w/ 2 EV �EW , and P .V;W /
4

D PV
4
˝ PW

4
. The process�

�V ��W ;M.V;W /; .Vt ; Wt /t�0; .P
.V;W /

.v;w/
/.v;w/2.EV �EW /[¹4º

�
is an E4-valued ˛-symmetric diffusion, with regular Dirichlet space .E;F / on L2.E; ˛/
with core C1c .E/ and, for ' 2 C1c .E/,

E.'; '/ D

Z
EV

EW .'.v; �/; '.v; �// ˛V .dv/C
Z
EW

EV .'.�; w/; '.�; w// ˛W .dw/:

Observe that M.V;W / may be strictly smaller than MV ˝MW due to the identifica-
tion of all the cemetery points. Also, actually PV

4
˝ PWw D PVv ˝ PW

4
D PV

4
˝ PW

4
on

M.V;W / so that the choice P .V;W /
4

D PV
4
˝ PW

4
is arbitrary but legitimate.

The following killing result is a summary, adapted to our context, of [11, Theorems
4.4.2 and 4.4.3 (i), pp. 173–174].

Lemma B.6. Let E be a C1-manifold, ˛ be a Radon measure on E with supp ˛ D E,
and .�;M; .Zt /t�0; .Pz/z2E4/ be an ˛-symmetric E4-valued diffusion with regular
Dirichlet space .E;F / on L2.E;˛/ with core C1c .E/. LetO be an open subset ofE and
consider �O D inf ¹t � 0 W Xt … Oº, with the convention that inf; D 1. Set

ZOt D Zt1¹t<�O º C41¹t��O º:

Then .�;M; .ZOt /t�0; .Pz/z2O[¹4º/ is an ˛jO -symmetric O [ ¹4º-valued diffusion
with regular Dirichlet space .EO ;FO/ onL2.O;˛jO/ with core C1c .O/ and for ' 2 FO ,

EO.'; '/ D E.'; '/:

Note that since O is an open subset of the manifold E and since the Hunt process is
continuous, the regularity condition (4.4.6) of [11, Theorem 4.4.2, p. 173] is obviously
satisfied.

We finally give an adaptation of the Girsanov theorem in the context of Dirichlet
spaces, which is a particular case of Chen–Zhang’s [5, Theorem 3.4].

Lemma B.7. LetE be an open subset of Rd with d � 1, ˛ be a Radon measure onE with
supp ˛ D E, and .�;M; .Zt /t�0; .Pz/z2E4/ be an ˛-symmetric E4-valued diffusion
with regular Dirichlet space .E;F / on L2.E; ˛/ with core C1c .E/ such that for all
' 2 C1c .E/,

E.'; '/ D

Z
E

kr'k2 d˛:
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Let .A;DA/ stand for its generator. Let u 2 F be bounded and such that for % D eu, we
have % � 1 2 DA with AŒ% � 1� bounded. Set

L
%
t D

%.Zt /

%.Z0/
exp

�
�

Z t

0

AŒ% � 1�.Zs/

%.Zs/
ds
�
;

with the conventions that %.4/ D 1 and AŒ% � 1�.4/ D 0.
Assume that % is continuous on E4. Then quasi-everywhere, .L%t /t�0 is a bounded

.Mt /t�0-martingale under Pz , where we have set Mt D �.¹Zs W s 2 Œ0; t �º/, and there
exists a probability measure QPz on .�;M/ such that for all t > 0, QPz D L

%
t � Pz on Mt .

Moreover, .�;M; .Zt /t�0; . QPz/z2E4/ is a %2˛-symmetric E4-valued diffusion with
regular Dirichlet space . QE;F / on L2.E; %2˛/ such that for all ' 2 F ,

QE.'; '/ D
1

2

Z
E

kr'k2%2 d˛:

Actually, Chen and Zhang speak of right processes in [5], but this is not an issue since
we only consider continuous Hunt processes. Also, they assume that L% is bounded from
above and from below by some deterministic constants, on each compact time interval,
but this is obvious under our assumptions on u and A%. Finally, their expression of L% is
different (see [5, pp. 485–486]): First, they defineM %

t as the martingale part of %.Xt /. By
Lemma B.2 (applied to % � 1), we see that

M
%
t D %.Zt / � %.Z0/ �

Z t

0

AŒ% � 1�.Zs/ ds:

Then they put Mt D
R t
0
Œ%.Zs/�

�1 dM %
s and define L% as L%t D exp.Mt �

1
2
hM it /: But

by Itô’s formula, we have

log %.Zt / D log %.Z0/C
Z t

0

Œ%.Zs/�
�1 dM %

s C

Z t

0

Œ%.Zs/�
�1AŒ% � 1�.Zs/ ds

�
1

2

Z t

0

Œ%.Zs/�
�2 dhM %

is;

whence log %.Zt / D log %.Z0/CMt C
R t
0
Œ%.Zs/�

�1AŒ% � 1�.Zs/ds � 1
2
hM it , so that

L
%
t D exp

�
Mt �

1

2
hM it

�
D Œ%.Z0/�

�1%.Zt / exp
�
�

Z t

0

%.Zs/
�1AŒ% � 1�.Zs/ ds

�
as desired.
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