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Abstract. We study local asymptotics for the spectral projector associated to a Schrödinger oper-
ator �„2�C V on Rn in the semiclassical limit as „ ! 0. We prove local uniform convergence
of the rescaled integral kernel of this projector towards a universal model, inside the classically
allowed region as well as on its boundary. This implies universality of microscopic fluctuations for
the corresponding free fermions (determinantal) point processes, both in the bulk and around regu-
lar boundary points. Our results apply to a general class of smooth potentials in arbitrary dimension
n � 1. These results are complemented by studying both macroscopic and mesoscopic fluctuations
of the point process. We obtain tail bounds for macroscopic linear statistics and, provided n � 2,
a central limit theorem for both macroscopic and mesoscopic linear statistics in the bulk.
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1. Introduction

Consider a semiclassical Schrödinger operator on L2.Rn/,

H„ D �„
2�C V;

where� is the standard (negative) Laplacian, „ > 0 plays the role of the Planck constant,
and the potential V WRn ! R is locally integrable, bounded from below, and confin-
ing (that is, V.x/! C1 as x !1). The operator H„ is then essentially self-adjoint
with domain H2.Rn/ \ ¹u 2 L2; V u 2 L2º and has compact resolvent: it admits a non-
decreasing sequence .�k/k2N of eigenvalues tending to C1, and an associated Hilbert
basis .vk/k2N of L2.Rn/ consisting of eigenfunctions

H„vk D �kvk ; hvk ; v`iL2 D ıkD`; k; ` 2 N:
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Note that these eigenvalues and eigenfunctions depend on „. We refer to the book [49]
for background on the spectral theory of Schrödinger operators. Using the eigenfunctions
.vk/k2N , one can build a Slater determinant with N particles associated to H„, which is
the following normalised element of L2.Rn�N /:

‰N .x/ D
1
p
NŠ

det
N�N

Œvk.xj /�; x 2 Rn�N :

Physically,‰N represents a zero temperature state1 of a system ofN non-interacting spin-
less fermions subject to the Hamiltonian H„. Using the usual probabilistic interpretation
of quantum mechanics, ‰N gives rise to an N -point process (a probability measure PN
on Rn�N ) whose density with respect to the Lebesgue measure is

PN Œdx� D j‰N .x/j2 D
1

N Š
j det
N�N

Œvk.xj /�j
2: (1.1)

The purpose of this article is to show that in a thermodynamical limit where both
N !C1 and „ ! 0, the properties of PN are identical for a large class of potentials V .
We use methods from semiclassical analysis and the fact that PN is a determinantal point
process.

Realisations ¹xj ºNjD1 2 Rn�N of PN are usually referred to as free fermions or non-
interacting Fermi gases [71] since the N particles are only subject to the external poten-
tial V and the Pauli exclusion principle. In the large N limit, this induces non-trivial
spatial correlations, named quantum fluctuations. Using cold atoms in optical traps, it is
now possible to experimentally simulate such non-interacting Fermi gases in a general
potential and study these quantum fluctuations [11, 44]. This has led to a significant
interest in the statistical physics literature regarding the theoretical description and uni-
versality of these local fluctuations. These predictions rely on standard methods from
many-body physics such as local density approximations, and on random matrix theory.
Indeed, for V Wx 7! x2 in dimension 1, PN corresponds to the law of the eigenvalues of the
Gaussian unitary ensemble (GUE), the most studied model of random matrices. We refer
to the reviews [19, 29] and Section 1.2 for some background on these results.

Except for a few specific cases, like the harmonic oscillator, the eigenvalues and eigen-
functions .�k ; vk/k2N of the Schrödinger operator H„ is neither explicit nor given by
induction formulas. The main novelty of this paper is to apply semiclassical methods to
study (non-interacting) Fermi gases for a general class of potential V , a problem which is
open in the mathematical literature since [71]. This requires extending, beyond the stand-
ard framework, both semiclassical estimates for the spectral projectors of Schrödinger
operators and estimates for determinantal processes with general reproducing kernels. The
greatest source of difficulty in this problem lies in the fact that the ground state of such
free fermions are gapless: one has �NC1 � �N ! 0 in the asymptotic regime considered.

1Uniqueness of the zero temperature state is ensured when �N < �NC1, a condition which we
will enforce throughout this article.
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Hence, one can only hope to describe the state ‰N up to O.„/. In contrast, for gapped
systems where �NC1 � �N is bounded from below, one can use perturbation theory to
describe the state‰N up to any polynomial precision in „. Such cases with recent activity
are the Szegő or Bergman projectors (see notably [9, 10, 20] for a fermionic perspective).

1.1. Main results

1.1.1. Setting and assumptions. The function ‰N is non-ambiguously defined when
�N < �NC1. To enforce this condition and to introduce the asymptotic setting considered,
we let � 2 R, „ > 0, V 2 L1loc with V !C1 as x !˙1, and let

…„;� D 1.�1;��.H„/

be the spectral projector of H„ on the interval .�1; ��. We also denote by …„;� the
integral kernel of the previous operator,

…„;�W .x; y/ 7!
X
�k��

vk.x/vk.y/:

Then, letting N D Rank.…„;�/, the probability density associated with the state ‰N
in (1.1) is

PN Œdx� D
1

N Š
det
N�N

Œ…„;�.xi ; xj /�: (1.2)

A precise physical description of PN Œdx� is the joint probability of positions of a system of
non-interacting fermions, subject to the one-body Hamiltonian H„, connected to a reser-
voir with chemical potential �, and at zero temperature equilibrium. The parameters we
tune are � and „, then N is determined by N D Rank.…„;�/ D max.j 2 N; �j � �/ so
that automatically �N < �NC1.

Since …„;� is an orthogonal projection, the random measure X WD
PN
jD1 ıxj , where

the configuration ¹xj ºNjD1 follows PN , is a determinantal point process with kernel…„;�.
This means that all the correlation functions of X are given by determinants of the ker-
nel …„;�; we refer to Appendix A.3 for background on determinantal point processes.

Let us now specify the hypothesis on V that we use throughout this article.

Definition 1.1. We say that

(H) A couple .�;V / 2R�L1loc.R
n;R/ satisfies (H) if there existsM 2R with minV <

� < M such that ¹V �M º is compact and V 2 C1.¹V < M º;R/.

The scope of this article is the following asymptotic regime: .�; V / satisfies (H) are
fixed, and „ ! 0. In this regime, one has in particular N < C1 for every fixed „ > 0,
and N !C1 as „ ! 0. In fact, if .�; V / satisfies (H), one can prove the Weyl law:

lim
„!0
„
nN D

!nZ

.2�/n
; Z WD

Z
Rn
.� � V.x//

n=2
C dx; (1.3)

where !n WD �n=2

�.1Cn=2/
denotes the volume of the unit Euclidean ball in Rn and .y/C D

max¹0; yº for y 2 R; see Proposition 2.10.
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1.1.2. Pointwise Weyl law and macroscopic fluctuations. A stronger form of (1.3) is that
the density of states (proportion of particles by unit volume) is given by

%.x/ WD Z�1.� � V.x//
n=2
C ; x 2 Rn:

Our first result is a probabilistic interpretation of this pointwise Weyl law. Let us denote
by dW the Kantorovich or Wasserstein1 distance on the space on probability measures
on Rn:

dW .�1; �2/ D sup
° Z

f d.�1 � �2/ W f 2 Lip1.R
n/
±
:

This provides a natural metric on the space of probability measures which is stronger
than weak convergence. Recall that X denotes the determinantal point process on Rn

associated with the operator …„;� D 1�„2�CV�� and that N D tr.…„;�/ is the particle
number.

Theorem I.1. Let .�; V / satisfy (H). There exists a constant c > 0 such that for any
ı 2 .0; 1� and for any „ 2 .0; 1�,

PN ŒdW .N�1X; %/ � ı� � C� exp.�cNı2/:

Theorem I.1 is a law of large numbers for the random probability measure N�1X,
with an exponential rate of convergence.

The set ¹V � �º which supports % is called the droplet. The droplet consists of a bulk
¹V < �º and an edge ¹V D �º. The real random variables

X.f / D
NX
jD1

f .xj /;

for f WRn ! R, are called linear statistics.
Our next theorems describe the fluctuations of linear statistics in the bulk. They exhibit

Gaussian-like tails and, if n � 2, the normalised linear statistics converge in distribution
to a Gaussian, as a form of central limit theorem (CLT).

Theorem I.2. Let .�; V / satisfy (H) and let f 2 C1c .¹V < �º;R/. There exist c > 0,
� > 0 such that for all „ 2 .0; 1� and all t � �

p
„N ,

PN ŒjX.f / � EX.f /j �
p
„Nt� � 2e�ct

2

:

This shows that the particles’ fluctuations are much smaller than in the independ-
ent case, a phenomenon related to rigidity and hyperuniformity [89] of the particles. For
free fermions, this rigidity is entirely due to the “repulsion” coming from the exclusion
principle.

We expect (Conjecture 1 below) that the variance of X.f / is always of order N„
for a sufficiently smooth function f , so that Theorem I.2 captures the typical size of the
fluctuations. In particular, in dimension 2 or more, the variance of X.f / diverges, and it
is a general feature of determinantal point processes (see Corollary A.12) that divergence
of the variance implies a CLT.



Universality for free fermions and the local Weyl law 3933

Theorem I.3. Let n � 2, let .�; V / satisfy (H) and let f 2 C.Rn;R/ with at most expo-
nential growth such that f 2 H 1.�/ on an open set � � ¹V � �º with

R
�
jrf j2 > 0.

It holds in distribution as „ ! 0, or equivalently N !1,

X.f / � EX.f /p
var X.f /

) N0;1:

Even if f 2 C1c .¹V < �º;R/, it is not clear that var X.f / does not oscillate because
of Remark 1.2 below, and its behaviour is expected to depend strongly on the properties
of the Newtonian dynamics associated with the potential V . The proofs of Theorems I.2
and I.3 rely on an upper bound and lower bound, respectively, for the variance, but these
bounds differ by a factor „ (see (3.13) and (5.28)): we are able to show that

c„2�n � var X.f / D �
1

2
tr.Œ…„; f �2/ � C„1�n:

This prompts the following conjecture.

Conjecture 1. Let n � 2 and let f 2 C1c .R
n;R/ be nonzero. There exist 0 < c < C

such that
c„1�n � var X.f / D �

1

2
tr.Œ…„; f �2/ � C„1�n:

The constants c and C presumably correspond to (weighted)H 1=2 Sobolev norms, as
in the case of the free Laplacian and as in the mesoscopic CLT theorem (Theorem III.1
below). In the physics literature, certain examples of counting statistics (non-smooth test
functions) have been considered in [82].

In dimension n D 1, we showed in [32] that under generic conditions on the poten-
tial V , for f 2 C1.R;R/ with at most polynomial growth, without any normalisation,
the statistic X.f / obeys a CLT as „ ! 0 and the variance converges to a weighted H 1=2

square-norm. This is similar to the random matrix cases treated in the one cut case, e.g.,
in [14,57,63]. It is however important to note that the situation is different for free fermi-
ons in the multi-cut regime. The method of [32] is different from the techniques developed
in this article and relies on the complete integrability of one-dimensional Schrödinger sys-
tems (WKB approximations).

1.1.3. Universal limit at microscopic scales. The method of proof of Theorems I.1, I.2
and I.3 relies on the asymptotics of the integral kernel of …„ D 1.�1;��.H„/ near the
diagonal. At the microscopic scale, that is, when zooming to the typical distance between
particles, this kernel converges to a universal limit, which does not depend on V but only
on the dimension n and on whether we are in the bulk ¹V < �º or at the edge ¹V D �º of
the droplet. This universal limit implies convergence in distribution of the point process
at this microscopic scale.

Given x0 2 Rn and U 2 SOn, we define the rescaled kernel obtained by zooming
around x0 at scale � as

Kx0;�W .x; y/ 7! �n…„;�.x0 C �U
�x; x0 C �U

�y/: (1.4)
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This is the kernel of the determinantal point process

T �x0;�X D
NX
jD1

ı��1U.xj�x0/
: (1.5)

Theorem II.1. Let .�;V / satisfy (H) and „2 .0;1�. Let x0 2 ¹V <�º, let � WD 2�!
�1=n
n „

p
��V.x0/

,
let U 2 SOn and set Kx0;� as in formula (1.4). For any compact sets A b ¹V < �º and
K b R2n, there exists a constant C > 0 such that

sup
x02A

sup
.x;y/2K

jKx0;�.x; y/ �Kbulk.x; y/j � C„;

where the bulk kernel is Kbulk WD 1
.�1;4�2!

�2=n
n �

.��/; see the explicit formula (1.6)
below.

Remark 1.2. This result is optimal in the sense that one cannot in general obtain asymp-
totics for Kx0;� beyond O.„/. There is no asymptotic expansion in powers of „ and the
error is known to oscillate. However, our methods can be used to obtain a stronger mode of
convergence: using the ellipticity of the operator, it holds for any multi-indices ˛;ˇ 2Nn

0 ,

sup
x02A

sup
.x;y/2K

j@˛x@
ˇ
yKx0;�.x; y/ � @

˛
x@
ˇ
yKbulk.x; y/j D O.„/:

Only local C 0-convergence is required for our applications to determinantal point pro-
cesses.

Theorem II.2. Let .�; V / satisfy (H) and „ 2 .0; 1�. Let x0 2 ¹V D �º \ ¹rV ¤ 0º,
let � D „2=3jrV.x0/j�1=3 and U 2 SOn such that U.rV.x0//D jrV.x0/je1. LetKx0;�
be as in (1.4). For any compact sets A b ¹V D �I rV ¤ 0º and K b R2n, there exists
a constant C > 0 such that

sup
x02A

sup
.x;y/2K

jKx0;�.x; y/ �Kedge.x; y/j � C„
1=3;

where the edge kernel isKedge WD 1.�1;0�.��C x1/; see the explicit formula (1.7) below.

Theorems II.1 and II.2 directly imply universality of the point process obtained by
zooming at microscopic scales either in the bulk or at the edge of the droplet (see Propos-
ition A.14).

Theorem II.3. Let .�; V / satisfy (H).

(1) If V.x0/ < � and �D 2�„ !
�1=n
np

��V.x0/
, then for any U 2 SOn, the point process T �x0;�X

given by (1.5) converges in distribution as „ ! 0 to the determinantal point process
associated with Kbulk.

(2) If V.x0/D �, rV.x0/¤ 0 and � D „2=3jrV.x0/j�1=3, then for any U 2 SO.n/ sat-
isfying U.rV.x0//D jrV.x0/je1, the point process T �x0;�X given by (1.5) converges
in distribution, as „ ! 0, to the determinantal point process associated with Kedge.
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Let us now explain the heuristics behind these results and define the limit objects
Kbulk and Kedge. Following Theorem I.1 and formula (1.3), the typical inter-particle dis-
tance around a point x0 in the bulk is approximately � D „cn.Z�.x0//�1=n, where cn D
2�!

�1=n
n . After zooming at scale �, the potential of the Schrödinger operator is close to

a constant,

„
2��2�C V.x0 C �x/ � � ' c

2
n.Z�.x0//

2=n.��C c�2n /:

Hence, the natural candidate for the scaling limit is

Kbulk D 1.�1;c�2n �.��/W .x; y/ 7!
Jn=2.c�1n jx � yj/
p
!njx � yjn=2

; (1.6)

where .J�/�>0 are Bessel functions of the first kind, cf. (A.2). The normalisation is such
that the determinantal point process with kernel Kbulk is translation and rotation invariant
on Rn with density 1.

At the boundary of the droplet, the density of states % vanishes. Assuming that E
 WD
rV.x0/ ¤ 0, if we zoom at scale � and apply an orthogonal matrix U, we obtain the
approximation

���2„2�C V.x0 C �U
�x/ � � ' ��2„2.��C x1/

provided
� D „2=3jrV.x0/j

�1=3; UV.x0/ D krV.x0/ke1:

Hence, at the edge the typical inter-particle distance is much larger than in the bulk and
given by „2=3jrV.x0/j�1=3. Then, up to the rotation U, the natural candidate for the
scaling limit is now

Kedge D 1.�1;0�.��C x1/W

.x; y/ 7!

Z C1
0

Ai.x1 C s/Ai.y1 C s/
J.n�1/=2.

p
sjx? � y?j/

.2�jx? � y?j/.n�1/=2
s.n�1/=2ds; (1.7)

where Ai denotes the standard Airy function (cf. Appendix A.5), and if n � 2, we decom-
pose x D .x1; x?/ 2 R �Rn�1 and similarly for y.

The bulk and edge point processes from Theorem II.3 are the natural generalisations
of the Sine and Airy point processes in higher dimension n � 2. The relevance of the
determinantal point processes associated with Kbulk has first been recognised in [75, 90]
under the name “Fermi-sphere” processes. The edge processes associated withKedge were
first obtained in [26,27], and the kernel asymptotics were proven in the case of the multi-
dimensional harmonic oscillator in [47].

1.1.4. Gaussian field at mesoscopic scales. One can interpolate between Theorems I.1,
I.2 and I.3, on the one hand, and Theorem II.3, on the other hand, by considering meso-
scopic scales, that is, the behaviour of the rescaled point process T ��;x0X for „ � � � 1.
In this case, we obtain convergence of the linear statistics to a Gaussian field with H 1=2

covariance.
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Theorem III.1. Suppose that n � 2, let .�; V / satisfy (H) and let x0 2 ¹V < �º. We
consider a mesoscopic scale �W Œ0; 1�! Œ0; 1� such that „1�ˇ � �.„/ � „ˇ for some ˇ 2
.0; 1/. Let

ı.„/ D
„

�.„/

1p
� � V.x0/

and �2n D
!n�1

.2�/n
:

We define the random distribution

X„;� WD ��1n ı.„/.n�1/=2.T �x0;�X � EŒT �x0;�X�/:

Then for any g 2 C1c .R
n;R/, we have

lim
„!0

EŒeX„;�.g/� D e�†
2.g/=2; where †2.g/ D

Z
Rn
jyg.�/j2j�jd�:

In particular, X„;� converges in the sense of finite-dimensional distributions as „ ! 0 to
a (centred) Gaussian field G on Rn with correlation kernel

EG.f /G.g/ D
Z
yf .�/yg.�/j�jd�; f; g 2 H 1=2.Rn/:

The variance †2 is the square of the H 1=2 seminorm, and it satisfies the following
scaling invariance property:

†2.T�;x0f / D �
.1�n/=2†2.f /;

where T�;x0f D f .x0 C �U�/ for x0 2 Rn, � > 0, U 2 SOn and f 2 H 1=2.Rn/. In par-
ticular, the Gaussian field G has the following invariance property: �.n�1/=2T ��;x0G

law
D G.

The proof of Theorem III.1 relies on Corollary A.14 which is valid for general determ-
inantal processes, and it boils down again to obtaining the asymptotics of the variance

var X„;�.f / D �
1

2
��2n ı.„/n�1 tr.ŒKx0;�; f �

2/:

These asymptotics are involved and cannot be directly deduced from Theorem II.1.
In the same way, the upper bound on the macroscopic variance leading to Theorem I.2.
However, all our results are derived using the same method based on a (semiclassical)
expression for the quantum propagator eitH„=„.

Again, the situation in dimension 1 is special as varT ��;x0X.f / is bounded for a smooth
function f . Nonetheless, by analogy with the known case of the harmonic oscillator
V W x 7! x2 (cf. [64]), we expect that Theorem III.1 holds in full generality.

Remark 1.3. In the formulation of Theorem III.1, we have exactly centred the random
variable X„;� , but its expectation EŒT ��;x0X� admits a simple equivalent. Indeed, if �0 D

cn„p
��V.x0/

with cn as in (1.6) denotes the microscopic scale at x0, using (1.4) with UD I,
we can rewrite for f 2 Cc.Rn;R/,

EŒT ��;x0X� D c�nn ı.„/�n
Z
f .x/K�0;x0C�x.0; 0/dx:
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As a consequence of the uniformity of Theorem II.1 with respect to x0, we obtain

EŒT ��;x0X� D c�nn ı.„/�n
Z
f .x/dx CO.��n„/:

In general, we can only replace EŒT ��;x0X� by its leading contribution in Theorem III.1
when the scale is small enough, that is, if �.„/� „.n�1/=.nC1/.

1.2. Discussion and related works

1.2.1. Hermitian random matrices. The free fermions point processes studied in this
article are basic examples of quantum gases which are exactly solvable due to their
determinantal structure.2 In fact, they were introduced by Macchi [71] as the first instances
of determinantal point processes. So far, there has been only little rigorous progress
on the statistical properties of free fermions, with the exception of the one-dimensional
harmonic oscillator which corresponds to the eigenvalues of the Gaussian unitary ensem-
ble [85, Section 2]. The GUE is a central model in random matrix theory which has been
extensively studied and Theorems I.1, II.1, II.2, II.3 and III.1 are well known in this con-
text, e.g., [40]. In particular, in dimension n D 1, the microscopic limits Kbulk and Kedge

from (1.6) and (1.7) are the celebrated Sine and Airy kernels

Kbulk.x; y/ D
sin.�jx � yj/
�jx � yj

;

Kedge.x; y/ D

Z C1
0

Ai.x C s/Ai.y C s/ds D
Ai.x/Ai0.y/ � Ai0.x/Ai.y/

x � y
:

The Sine and Airy point processes arise in a wide range of other contexts (as originally
surmised by Wigner) and have been extensively studied. In particular, they exhibit well-
known integrable structures, related, for instance, to the Tracy–Widom distribution and
the Kardar–Parisi–Zhang equation, e.g., [25].

One-dimensional free fermions and the eigenvalues of Hermitian random matrices
fall in the same universality class and there is a substantial body of works on the fluctu-
ations of random matrices. The closest context being that of unitary-invariant ensembles
which are also determinantal processes whose correlation kernels are expressed in terms
of orthogonal polynomials [31]. Universal asymptotics for these Christoffel–Darboux ker-
nels are known under very general assumptions and can be obtained by several different
methods; cf. the surveys [35, 69]. In fact, there are exact mappings between the ground
state of one-dimensional free fermions trapped by specific potentials with „ D N�1 and
the three classical unitary-invariant ensembles. The following table collects the weightQN
jD1wN .�j / of the random matrix ensemble together with the corresponding change of

variables and Schrödinger eigensystem.

2In a physical context, this integrable structure of the N -particle density function PN arises
from applying Wick’s theorem; see e.g., [70].
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Hermite

wN .�/ e��
2

mapping xj D �jN
�1=2

eigensystem
�
�
1

N 2
�C x2

�
HN;n.x/ D 2

n

N
HN;n.x/

Laguerre

wN .�/ �N˛e��1�>0, ˛ � 0

mapping xj D
q
�jN

�1, xj 2 RC

eigensystem
�
�
1

N 2
�C x2 C

�
˛2 �

1

4N 2

�
x�2

�
LN;n.x/ D 2

�2nC 1
N

C ˛
�
LN;n.x/

Jacobi

wN .�/ .1 � �/N˛.1C �/Nˇ1�2.�1;1/, ˛; ˇ � 0

mapping xj D arccos.�j /, xj 2 Œ0; ��

eigensystem
�
�
1

N 2
�C

.˛ cos x2 /
2C.ˇ sin x2 /

2�
1

4N2

.sin x/2

�
JN;n.x/ D

�2nC1
2N

C˛Cˇ
�2
JN;n.x/

There is also a correspondence between free fermions on the unit circle and the circu-
lar unitary ensembles [24]. One can realise Gaussian/circular ˇ-ensembles for any ˇ > 0
by considering the ground state of certain interacting Fermi gases known as Calogero–
Sutherland systems [39, 82] (these are the only cases where such exact mappings exist).
This suggests that more generally, ˇ-ensembles fall in the universality class of certain
interacting one-dimensional Fermi gases.

Let us also mention that there is an extensive body of work on rigidity and CLT
for eigenvalues of random matrices. For instance, the counterpart of Theorem III.1 in
dimension 1 is well known for unitary-invariant ensembles (ˇ D 2) and general ˇ-ensem-
bles [8, 64].

1.2.2. Free fermions on Rn. Recently, there has been a significant activity in theoretical
physics on the statistical properties of Fermi gases in general dimensions. Let us emphas-
ise again the results from [26–28] which have been an inspiration for our work. By explicit
asymptotic calculations based on short-time expansion of the quantum propagator (this
approach is similar to ours, albeit non-rigorous), Dean et al. established universality of
microscopic fluctuations for free Fermi gases in arbitrary dimension at the bulk and
(regular) edge points. Then, [62,81] explore other universal local behaviours around a sin-
gularity of the external potential, respectively around an interior point where the density
of state vanishes. We refer to the review [29] for applications of these results, some fur-
ther perspectives on the connection with random matrices and a discussion of the positive
temperature regime. The article [30] studies the influence of impurities (modelled by delta
function potentials) inside a Fermi gas. It is worth mentioning [45] on large hole prob-
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abilities for Fermi gases confined by rotation-invariant potentials. Finally, there are also
explicit results on number variance fluctuations, cf. [82] and the perspectives below.

1.2.3. Other universality classes for fermionic systems. In general dimension, a (clas-
sical) statistical mechanics model to compare our results is the Coulomb gas, also known
as one-component plasma or Jellium. Coulomb gases arise in the description of several
different physical phenomena, such as superconductivity, the (fractional) quantum Hall
effect or the eigenvalues of random normal matrices [76]. The prototypical model in this
class is the Ginibre ensemble which is also determinantal [3]. In fact, the (infinite) Ginibre
point process can also be interpreted as the ground state of a (free) quantum system sub-
ject to a strong magnetic Laplacian which forces the particles to lie in the lowest Landau
level [38, 65].

Such fermionic systems can be generalised on Cn or over an integrable compact
Kähler manifold for any n � 1. In contrast to the Euclidean case considered here, the ker-
nel of such determinantal point process associated with a magnetic Laplacian is gapped.
Hence, they fall in a different universality class. Notably, these Bargmann kernels (linked
with Berezin–Toeplitz quantisation associated with the Kähler structure) have semiclas-
sical expansion up to O.„1/ which renders asymptotics possible using methods from
perturbation theory. This has been used to study scaling limits in the bulk [9, 10] and at
the edge in the orthogonal polynomial case [48]. From a probabilistic perspective, another
significant difference is that these Ginibre-like processes exhibit exponential decay of
(spatial) correlations. Concretely, to compare with the Ginibre kernel jKGin.x � y/j D

e�jx�yj
2=2, the universal limit

jKbulk.x; y/j
2
D

J21.2
p
�jx � yj/

�jx � yj2

decays like jx � yj�3 in dimension 2 as jx � yj ! 1. For Coulomb gases, besides the
long-range interactions, this (super)-exponential decay of correlations is a consequence
of a screening phenomenon.

Besides in the determinantal case, the description of the thermodynamical limit of
Coulomb gases on Rn for n � 2 is still a major open problem [76], though recent pro-
gress has been achieved [4, 66]. For two-dimensional Coulomb gases, mesoscopic and
macroscopic fluctuations have been studied in [6, 7, 67]. In particular, a CLT for smooth
linear statistics holds under general conditions and the limit can be described in terms of
the Gaussian free field (H 1-noise, in contrast to the H 1=2-noise which arises from The-
orem III.1). We also refer to [2,73] for proofs in the Ginibre ensemble and normal matrix
models and further on the relationship to the GFF. In dimension n� 3, there has been pro-
gress in the Hierarchical case [21,43] and for the true model under a “no phase transition”
assumption [77]. Hence, Theorems I.3 and III.1 are among the few CLTs valid for a class
of correlated statistical mechanics models in arbitrary dimension. An analogous CLT was
obtained in [5] for another family of determinantal processes on the n-dimensional hyper-
cube, called multivariate orthogonal ensembles, and interesting applications to numerical
quadrature are discussed.
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1.2.4. Semiclassical projector asymptotics. In dimension 1, universal properties of free
fermions associated with Schrödinger operators in the semiclassical limit are heuristically
described in the textbook [88, Chapter 3.3], as well as in [34], based on Wentzel–Kra-
mers–Brillouin (WKB) approximations. In higher dimensions, there is no exact mapping
between free fermions and random matrix models, and furthermore the WKB method
is less powerful (the individual eigenfunctions of H„ do not admit asymptotic formu-
las). We refer to [26, 27] for a physical derivation of, e.g., the edge scaling limit, based
on a short-time expansion of the heat kernel associated with the Schrödinger operator:
s 7! exp.�sH„/. This approach can be made rigorous (using the Tauberian theorem of
Hardy–Littlewood–Karamata), but yields non-sharp kernel asymptotics (only O.„1=2/ in
Theorem II.1). Instead, we rely on the description of the quantum propagator t 7! eitH„=„

(see Section 2.3), which is known to yield the sharpest forms of the Weyl law.
Semiclassical techniques devoted to the study of spectral projectors are mostly devel-

oped in the homogeneous case of the Laplace–Beltrami operator over a compact manifold
and the Laplace operator on a domain of Rn with Neumann or Dirichlet boundary condi-
tions; we refer to the recent review [55]. The cornerstone is to use a semiclassical Fourier
transform to write a spectral function f .H„/ of the operator as

f .H„/ D
1

„

Z
exp

�
i
t

„
H„

�
yf
� t
„

�
dt:

The operator exp.i t
„
H„/ has a physical interpretation: it captures the time evolution of

a quantum system subject toH„, and admits an approximation as an integral operator for t
in a (fixed) neighbourhood Œ��; �� of 0; cf. Proposition 2.11. Even if f is not smooth, one
can hope that

f .H„/ �
1

„

Z
exp

�
i
t

„
H„

�
yf
� t
„

�
1jt j��dt;

then perform computations using the right-hand side. The last step consists in recover-
ing f .H„/ from the asymptotics of this frequency cutoff, which involves Fourier Tauber-
ian theorems.

In the context of the Laplace–Beltrami operator over a smooth compact manifold, the
equivalent of Theorem II.1 is well known, at least on the diagonal x D y. A major part of
the literature is devoted to the improvements on the O.„/ remainder, which depends on
dynamical assumptions on the geodesic flow. Recent developments include the study of
kernel asymptotics at mesoscopic scales around the diagonal, [17, 18, 61].

Using the Tauberian method, the Weyl law for semiclassical Schrödinger operator
(1.3) was obtained in [50], with a remainder O.„/, under the assumption that rV ¤ 0

along the whole edge. Asymptotics on the diagonal in the bulk and at a non-degenerate
edge (that is, Theorems II.1 and II.2 at x D y D 0) have been computed in [60] using the
preliminary results of [22], under a growth condition of V at infinity. In this article’s con-
text, the study of the kernel on the diagonal translates to asymptotics for the expectation
of linear statistics of the Fermi gas.
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Quantities associated with the semiclassical spectral projector for harmonic oscillat-
ors were studied in detail in [46], with anO.„1=2/ error term (see notably Proposition 1.8
therein). The upper bound on the variance which leads to Theorem I.2 (cf. (5.28)) is sim-
ilar to the bound in trace norm obtained in [41], which also holds under hypothesis (H).
Remarkably, many recent advances in the semiclassical literature about the off-diagonal
asymptotics of spectral projectors [17, 18, 46, 47] are also motivated by probabilistic
models (and notably the behaviour of the nodal sets of random linear combinations of
eigenfunctions).

1.2.5. A few perspectives. Even within the scope of semiclassical Schrödinger operators,
the asymptotic picture is far from complete. For instance, to complement our results, it is
of interest to obtain a large deviation principle for the empirical measure and determine
how the rate function depends on the potential. An analogous question can be raised about
the asymptotics of the variance in Theorem I.3 in relation to Conjecture 1. In particular,
it is relevant to investigate in which case the normalised variance converges to an H 1=2

norm or whether there can be oscillations. In dimension 1 where the variance of smooth
linear statistics is bounded, the issue of a mesoscopic CLT is still open.

For fermions point processes, the equivalent of Theorem III.1 when f is the indicator
of a smooth set (“How many particles are in this box”), is a topical question since the num-
ber variance is a common measure of the entanglement entropy of subsystems, e.g., [15,
16,68]. The gapless case (such as semiclassical Schrödinger operators) is linked to a con-
jecture by Widom concerning pseudodifferential operators with rough symbols [83, 91],
while the asymptotics of the variance of linear statistics performed in Section 5 relies on
the high regularity of f , the case of an indicator function falls outside the scope of this
article. This problem has been extensively studied recently in the context of random mat-
rix theory based on so-called Fisher–Hartwig asymptotics and it relates optimal particles’
rigidity and Gaussian multiplicative chaos, e.g., [23, 42, 82]

In a gapped system (integer quantum hall states linked with Berezin–Toeplitz quant-
isation), the so-called area law holds and macroscopic CLTs have been rigorously estab-
lished in [20, 37].

Finally, one can also mention the “hard edge” model of a semiclassical Laplacian
�„2�� with Dirichlet or Neumann boundary conditions on a relatively compact open
set �. The behaviour of the point process near the boundary of � is presumed to be very
different from the “soft edge” case of Theorem II.2. A complete description of the off-
diagonal kernel at the relevant scale is an ongoing problem, see for instance the recent
upper bounds on the size of the off-diagonal kernel [56].

1.3. Organisation and notations

In Section 2, we describe the basic semiclassical techniques and objects that are used
throughout this article. We begin with Agmon estimates, which allow us to prove expo-
nential decay for eigenfunctions ofH„ D�„2�C V in the “forbidden region” where the
value of V is greater than the eigenvalue. Then, we introduce (semiclassical) pseudodif-
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ferential operators and Fourier integral operators, which are used to obtain asymptotics
for the integral kernel of spectral functions of H„.

Section 3 is devoted to the proof of Theorem II.1 and its corollaries (Theorems I.1
and I.2, and the first part of Theorem II.3). Theorem II.1 is proved using the stationary
phase method and Tauberian techniques. Its probabilistic consequences make use of fine
properties of determinantal point processes.

In Section 4, we modify the previous arguments to study the edge of the droplet, prov-
ing Theorem II.2 and the second part of Theorem II.3. The main difference is the treatment
of rapidly oscillating integrals, whose phase is degenerate compared to Section 3.

Finally, we study mesoscopic fluctuations in Section 5 by proving Theorems I.3
and III.1. Again, we carefully study the oscillating integrals cut-off at short time, to obtain
asymptotics for the variance of the (rescaled) point process; then we use concentration
inequalities and properties of determinantal point processes (notably the fact that the vari-
ance diverges in dimensions n � 2) to conclude the proof of the CLT.

For completeness, we review in Appendix A.1 several notations and basic facts which
are instrumental to prove our results. We also derive several general estimates on determ-
inantal point processes and oscillatory integrals, which we believe may be of independent
interest, such as Proposition A.11, Corollary A.12, and Propositions A.18, A.19.

� Section A.1 presents our Hilbert space setup and various operator topologies that
we use.

� The usual Laplacian � on L2.Rn/ plays a crucial role in our analysis. Section A.2
reviews the basic spectral theory for �, based on the Fourier transform, as well as
standard elliptic regularity estimates.

� Section A.3 provides an introduction to the theory of determinantal point process.
We give a general definition (independent of the concept of correlation kernel) and
review the notion of weak convergence used in Theorem II.3. We also revisit a clas-
sical CLT of Soshnikov [86] by obtaining new bounds for the Laplace functional of
a general determinantal point process which might be of independent interest (cf. Pro-
position A.11).

� Section A.4 gives several versions of the stationary phase lemma, which are tuned to
obtain the asymptotics of oscillatory integrals which arise in our proofs. Depending on
the regularity of the integrand, we obtain different estimates for the remainder which
might be of independent interest.

� Section A.5 reviews basic facts about the Airy function including its integral repres-
entation, asymptotics and its relationship to the spectral theory of operator (1.7).

In the rest of this article, we use the following conventions:

� We denote by x � � the Euclidean inner product for x; � 2 Rn and jxj D
p
x � x

for x 2 Rn.

� We write A b Rn to denote a compact subset A of Rn.

� We denote by Bnx;r D ¹z 2 Rn W jx � zj � rº the Euclidean ball of radius r around x
in Rn and !n D jBn0;1j.
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� We denote by dx the Lebesgue measure on Rn and by h�; 'i D
R
�.x/'.x/dx the

usual inner product on L2.Rn/. We denote k�k D
p
h�; �i.

� For � 2 �.Rn/, we define its Fourier transform by

y�.�/ D

Z
Rn
e�i��x�.x/

dx
.2�/n=2

; � 2 Rn:

With this convention, the Fourier transform extends to a unitary operator F onL2.Rn/
and we write y� D F � for � 2 L2.Rn/, as well as � 2 � 0, where � 0 denotes the space
of Schwartz distributions, dual to the space of Schwartz functions � .

� Given V WRn ! R satisfying (H), „ 2 .0; 1� and � 2 R, we denote

H„ D �„
2�C V and …„;� D 1.�1;��.H„/:

Without loss of generality, we can always assume that V � 0 and � 2 .0;M/.

� If an operator A acting on L2.Rn/ admits an integral kernel, we also denote by A
its integral kernel. Given f WRC ! RC, U 2 SOn, � 2 .0; 1� and x0 2 ¹V < M º,
provided that f .H„/ admits an integral kernel, we write

Kfx0;�W .x; y/ 7! �nf .H„/.x0 C �U
�x; x0 C �U

�y/: (1.8)

In particular, according to (1.4), we simply have Kx0;� D K
1Œ0;��
x0;� . We also let

K
f
x0;0
D f .��C V.x0//:

� Given a multi-index ˛ 2 Nn
0 and f 2 S.Rn/, we denote @˛xf D @

˛n
xn � � � @

˛1
x1f and

define the norms for k 2 N0,

kf kCk.�/ D sup
x2�

X
˛Wj˛j�k

j@˛xf .x/j;

where � � Rn is any open set and the sum is over all multi-indices ˛ 2 Nn
0 with

j˛j D ˛1 C � � � C ˛n � k. The definition of this norm extends to general functions.
We also set k � kCk D k � kCk.Rn/.

� We use the notation @x D r D .@x1 ; : : : ; @xn/.

� C; c > 0 are constants which (vary from line to line) only depend on the dimension
n 2 N and the potential V .

� C˛; c˛ > 0 are constants which depend only on n 2 N, V , the parameter ˛ and vary
from line to line.

� If an elementA of a Banach space depends on a parameter � > 0, we write for k 2 N0,
A D O.�k/ if there exists a constant Ck such that kAk � Ck�k as �! 0. We further
write A D O.�1/ when A D O.�k/ for all k 2 N0. In the cases where there is ambi-
guity about the used norm, we indicate it as a subscript of O.

� We denote the commutator of two operators A, B on L2.Rn/ by ŒA;B� D AB �BA.
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2. Semiclassical techniques for Schrödinger operators

In this section, we cover basic techniques from semiclassical analysis tailored to the study
of Schrödinger operators of the formH„ D �„

2�C V , in the semiclassical limit „ ! 0.
Some of these techniques rely on stronger assumptions than (H). The following ancillary
hypothesis will be useful in this section.

From now on, let M be as in (H) and we assume (without loss of generality) that
V � 0.

Definition 2.1. We say that a potential V 2 C1.Rn;RC/ satisfies (H0) if

(H0) for every k � 0, there exists a constant Ck > 0 such that, for all x 2 Rn outside of
a compact set, for every j˛j D k,

j@˛V.x/j � Ckjxj
2;

and if there exists c > 0 such that, outside of a compact set,

cjxj2 � V.x/:

This section is devoted to the foundational techniques and results that allow us to
study the spectrum of H„ as „ ! 0. Section 2.1 is relatively elementary: we use operator
bracketing and Agmon estimates to prove that, when .�; V / satisfies (H), the spectrum
of H„ below � consists of a finite number of eigenvalues, and that the eigenfunctions
tend very quickly to zero in the forbidden region ¹V > �º. This is used in Section 2.2
to prove a replacement principle; we can change V on ¹V > M º so that it satisfies (H0).
Then, in Section 2.3, we introduce semiclassical pseudodifferential operators and Fourier
integral operators. They are a priori suited to the stronger assumption (H0), but thanks to
the replacement principle, we can relax the conditions on V in the forbidden region. Then,
under (H), Proposition 2.12 expresses rapidly oscillating functions of H„ of the form

eitH„=„#.H„/; t 2 Œ��; ��;

for a (fixed) small � > 0 and # 2 C1c .R/ supported in .�1;M/, as an integral operator
up to a small remainder in C1-kernel topology. This will be our main tool to prove the
results of Section 1.1.

2.1. Spectral theory and Agmon estimates

Lemma 2.2. Let .�; V / satisfy (H). There exist M � � and CM > 0 such that for all
„ 2 .0; 1�,

Rank.1H„�M / � CM„
�n:

Hence, H„ has discrete spectrum on Œ�1;M � consisting of finite rank eigenvalues.
Moreover, if V satisfies (H0), there exists C > 0 such that for all „ 2 .0; 1� and � > 0,

Rank.1H„��/ � C„
�n�n:



Universality for free fermions and the local Weyl law 3945

Proof. We proceed as in [72, Theorem XIII.81]. We start with an upper bound for the
Neumann Laplacian �N on a hypercube of size 1:

Rank.1��N�ƒ/ � Cn.ƒC 1/
n=2

valid for ƒ � 0; if ƒ < 0, the left-hand side is zero.
Now, for each j 2 Zn, let Vj denote the infimum of V on the hypercube �j centred

at j with size 1, and let �N ;j denote the Neumann Laplacian on �j . Then, writing

L2.Rn/ D
M
j2Zd

L2.�j /
L2

;

the following inequality holds in the sense of quadratic forms:

H„ D �„
2�C V �

M
j2Zd

.�„2�N ;j C Vj /:

By (H), there is only a finite number of indices j such that Vj �M . Hence, the previous
bound implies that

Rank.1�„2�CV�M / � CM Rank.1��N�„
�2M /;

which shows that
Rank.1�„2�CV�M / � C„

�n:

If moreover V satisfies (H0), then the number of indices j such that Vj � � grows
like �n=2, and Rank.1��N�„

�2�/ � C„
�n�n=2 for a universal constant C > 0. This

concludes the proof.

According to Lemma 2.2, the spectrum of �„2�C V below M consists of a finite
number of finite rank eigenvalues. Even though V is not regular on ¹V > M º, there
are robust tools to study the decay properties of any eigenfunction with eigenvalue less
than M on this region.

Proposition 2.3. Let .�; V / satisfy (H), let ı > 0 be such that .�C ı; V / satisfies (H),
and define

fı W Rn 3 x 7! ı dist.x; ¹V � �C ıº/:

Let v be a normalised eigenfunction of H„ D �„2�C V with eigenvalue � �. Then

kefı=„vkL2 � 1C
2�

ı
:

Proof. The proof is based on the celebrated Agmon estimates [1]. Let R > 0 and let

fRı W x 7! min.fı.x/; R/:

First notice that fR
ı

is bounded, Lipschitz, and such that jrfR
ı
j D ı1�R a.e., where

�R D
°
x 2 Rn; dist.x; ¹V � �C ıº/ �

R

ı

±
:
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Integrating by parts, for any u 2 H 1.Rn/, we obtain

hu; efR
ı
=„H„e

�fR
ı
=„ui D huH„ui � kurfRı k

2
L2

D hu; .H„ � ı
21�R/ui:

Take u D vefR
ı
=„, where v is a normalised eigenfunction of H„ with eigenvalue � � �.

In this case, both v; u 2 H 1.Rn/, and the last equation reads

�

Z
e2fR

ı
=„
jvj2 D „2

Z
jruj2 C

Z
e2fR

ı
=„.V � ı21�R/jvj

2:

In particular, if � � �, the eigenfunction v satisfiesZ
e2fR

ı
=„.V � ı2 � �/jvj2 � 0:

We decompose this integral above into two parts: ¹V � �C ıº, where f R
ı
D 0, and its

complement set where V � ı2 � � � ı
2

. We obtainZ
¹V>�Cıº

e2fR
ı
=„
jvj2 �

2

ı

Z
¹V��Cıº

.�C ı2 � V /jvj2 �
2�

ı
;

where we used that V � 1 and
R
¹V��Cıº

jvj2 � 1. This bound does not depend on R,
so that by monotone convergence, we conclude thatZ

¹V>�Cıº

e2fı=„jvj2 � 2
�

ı
:

Using again f R
ı
D 0 on ¹V � �C ıº and fı D 0 on ¹V � �C ıº.

This implies, in particular, the uniform decay for the integral kernel for (compactly
supported) spectral functions of H„.

2.2. Replacement principle

Hypothesis (H0) is much more suited to semiclassical analysis. One can replace, to some
extent, a potential satisfying (H) with one satisfying (H0), as follows.

Definition 2.4. Let .�; V1/ satisfy (H), let V2 satisfy (H0). Let M > �, and suppose that
V2 D V1 on ¹V1 �M º and ¹V2 >M º D ¹V1 >M º. Then, we say that V2 replaces V1 up
to M .

Proposition 2.5. Let V2 replace V1 up to M and recall that the trace-norm k � kJ1 is
defined in Proposition A.1. Let us denoteHj I„ D�„2�C Vj for j 2 ¹1; 2º. Then for any
f 2 C1c .R/ with support in Œ0;M/, we have as „ ! 0,

f .H1I„/ D f .H2I„/COJ1.„
1/:
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Proof. It suffices to prove that there are constants C; c > 0 such that

kf .H1I„/ � f .H2I„/kL2!L2 � Ce
�c=„ (2.1)

since by Lemma 2.2, both f .Hj I„/ have rank O.„�n/. In addition, it suffices to prove the
claim in the case where f takes non-negative values (by linearity).

We rely again on an Agmon estimate. Let � > 0 be small and � 2 C1.Rn; Œ0; 1�/
be a cutoff with � D 0 on ¹Vj � M � �

2
º and � D 2c on ¹Vj � M � �

4
º, where c D

c� > 0 is small enough such that jr�j2 � �
4

. Then, proceeding exactly as in the proof
of Proposition 2.3, for any normalised eigenfunction v of Hj I„ D �„2�C Vj (for either
j 2 ¹1; 2º) with eigenvalue �,Z

e2�=„.Vj � jr�j
2
� �/jvj2 � 0:

Let us split this integral into two parts: on ¹Vj � M � �
2
º, one has e2�=„ D 1 and

jr�j D 0; on ¹Vj �M � �
2
º, one has Vj � jr�j2 � � � �

4
provided that � �M � � and

� D 2c. We obtain

e4c=„
Z
¹Vj�M��=4º

jvj2 �

Z
¹Vj�M��=2º

e2�=„jvj2 �
4

�

Z
¹Vj<M��=2º

.�� Vj /jvj
2
�
4M

�
:

This yields the following uniform control: for every „ 2 .0; 1�, j 2 ¹1; 2º and every nor-
malised eigenfunction v of either Hj I„ with eigenvalue �M � �,Z

¹Vj�M��=4º

jvj2 � Ce�4c=„:

Moreover, using the eigenvalue equation, one hasZ
¹M��=4�Vj�M º

j�vj2 � 2
�2

„4

Z
¹M��=4�Vj�M º

jvj2 C 2

Z
¹M��=4�Vj�M º

V 2j jvj
2

� Ce�3c=„:

Let �2C1.Rn; Œ0;1�/ be equal to 1 on ¹V �M � �
4
º and to 0 on ¹V �M º. We claim

that if v is a normalised eigenfunction of either Hj I„, then �v is an almost eigenfunction
of both Hj I„ for j 2 ¹1; 2º in the sense that

kHj I„.�v/ � ��vkL2 � Ce
�2c=„: (2.2)

First observe that

Hj I„.�v/ D ��v C „
2.v�� � 2r� � rv/

for j 2 ¹1; 2º since V1 D V2 on supp.�/ so that

kHj I„.�v/ � ��vkL2 � C„
2
� Z
¹V�M��=4º

jvj2 C

Z
jr� � rvj2

�
:
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Second, by an integration by parts and then by the Cauchy–Schwarz inequality,� Z
jr� � rvj2

�2
� 2

�
2

Z
v��.r� � rv/

�2
C 2

� Z
v�vjr�j2

�2
� C

� Z
¹V�M��=4º

jvj2
�� Z

jr� � rvj2 C

Z
¹M��=4�V�M º

j�vj2
�

� Ce�4c=„
� Z
jr� � rvj2 C Ce�3c=„

�
:

This computation shows that kHj I„.�v/ � ��vkL2 � C„2e�3c=„, which proves (2.2).
Using the resolvent identity and the fact that k.Hj I„ � z/�1k � 1

jIm.z/j , this bound implies
that for all z 2 C nR,

k..H1I„ � z/
�1
� .H2I„ � z/

�1/�vkL2 �
2C

jIm.z/j2
e�2c=„:

Since in addition

k.Hj I„ � z/
�1.1 � �/vkL2 �

1

jIm.z/j

� Z
¹Vj�M��=4º

jvj2
�1=2
�

C

jIm.z/j
e�2c=„;

we conclude that for any normalised eigenfunction v of either Hj I„ with eigenvalue
�M � � and z 2 C nR,

k..H1I„ � z/
�1
� .H2I„ � z/

�1/vkL2 �
C

jIm.z/j2
e�2c=„: (2.3)

Now, if f 2 C1c .R;RC/ with support in Œ0;M/, using the spectral resolution

f .Hj I„/W .x; y/ 7!
X

�2�.Hj I„/

f .�/v�.x/v�.y/;

where .�; v�/ are normalised eigenpairs of Hj I„, we verify that

k..H1I„ � z/
�1
� .H2I„ � z/

�1/f .Hj I„/kL2!L2

� max
��M��

k..H1I„ � z/
�1
� .H2I„ � z/

�1/v�kL2
X

�2�.Hj I„/

f .�/;

where we used that supp.f / � Œ0;M � �� for � > 0 small enough. By Lemma 2.2 and
formula (2.3), this implies that

k..H1I„ � z/
�1
� .H2I„ � z/

�1/f .Hj I„/kL2!L2 �
C

jIm.z/j2
e�c=„:

Using the Helffer–Sjöstrand formula [52], it follows that

k.f .H1I„/ � f .H2I„//f .Hj I„/kL2!L2 � Ce
�c=„:

This shows that kf .H1I„/2 � f .H2I„/2kL2!L2 � 2Ce�c=„ and it proves (2.1) (upon
replacing f 2 by f ).
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Let us mention that the conclusion of Proposition 2.5 breaks down without regularity
hypotheses on f . In particular, in the case where f D 1.�1;��, which is the spectral
function of interest, individual eigenfunctions of H1I„ are O.e�c=„/-quasimodes of H2I„
but their energy might shift from just below � to just above it. Hence, without further
assumptions, the trace norm of 1.�1;��.H1I„/ � 1.�1;��.H2I„/ can be as large as „�n

and the operator norm can fail to tend to zero.

2.3. Pseudodifferential operators

If the potential V satisfies (H0), then the operator H„ D �„2� C V is an example of
a Weyl pseudodifferential operator. Informally speaking,H„ is the quantum equivalent of
the classical energy

R2n 3 .x; �/ 7! V.x/C j�j2 2 R;

using the quantisation rule � $ �i„r. We write

H„ D Op„..x; �/ 7! V.x/C j�j2/:

Weyl pseudodifferential operators generalise differential operators with smooth coeffi-
cients. The advantage of this setting is that this class of operators is, up to a small error,
preserved by smooth functional calculus: if P„ is a Weyl pseudodifferential operator and
f 2 C1.R/ has good properties at infinity, then f .P„/ is also a Weyl pseudodifferential
operator.

Pseudodifferential operators are associated with symbols, which are defined as fol-
lows.

Definition 2.6. Let k; n 2N,m 2 Z. The Fréchet space Sm.Rk ;Rn/ is defined as the set
of smooth functions aWRk �Rn � .0; 1�! C such that, for any multi-index ˛ 2 NkCn

0 ,
there exists C˛ > 0 such that, for all .x; �; „/ 2 RkCn � .0; 1�, one has

j@˛x;�a.x; �I „/j � C˛.1C j�j
2/m=2.1C jxj2/m=2:

The optimal constants C˛ are the seminorms on Sm.
An element a 2 Sm.Rk �Rn/ is said to be elliptic when there exists c > 0 such that,

for all .x; �; „/ 2 RkCn � .0; 1�,

ja.x; �I „/j � c.1C j�j2/m=2.1C jxj2/m=2:

The symbol classes defined here are particular cases of the symbol classes considered
in the textbook [33]. Indeed, the function

.x; �/ 7! .1C j�j2/m=2.1C jxj2/m=2

is an order function as in [33, Definition 7.4].
A natural element of these symbol classes is the harmonic oscillator x2 C �2 which

belongs to S2. Note that, contrary to microlocal symbol classes, the small parameter in
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our semiclassical techniques is „ > 0 and not j�j�1; in particular, we do not impose that
differentiating the symbol with respect to � improves its decay.

For instance, if V satisfies (H0), then .x; �/ 7! V.x/C j�j2 2 S2.Rn;Rn/ is elliptic
near infinity.

Definition 2.7. An element a 2 Sm.Rk ;Rn/ is called a classical symbol if there exists
a sequence .ak/k�0 of smooth functions in Rk � Rn such that for every k � 0, ak is an
„-independent element of Sm and, for every ` 2 N0,

„
�`�1

�
a �

X
k�`

„
kak

�
2 Sm:

The principal symbol of a is then defined as a0.

Definition 2.8. Let a 2 Sm.Rn;Rn/. The Weyl quantisation Op„.a/ of a is the family of
integral operators with distribution-valued kernels

R2n 3 .x; y/ 7!
1

.2�„/n

Z
Rn
e

i
„
..x�y/��/a

�x C y
2

; �I „
�

d�:

This is a family (indexed by „ 2 .0; 1�) of operators on L2.Rn/ with dense domain. If a
is real-valued, then Op„.a/ is symmetric.

Weyl pseudodifferential operators obey an exact (smooth) functional calculus.

Proposition 2.9 ([33, Theorem 8.7]). Let # 2 C1c .R;R/. Let P„ D Op„.p/ be a family
of self-adjoint pseudodifferential operators with symbol p 2 Sm.Rn/ such that p C i is
elliptic and m > 0. Then

#.P„/ D Op„.a/;

where Op„.a/ is a self-adjoint pseudodifferential operator with symbol a 2 � . Moreover,
if p is classical, then a is also classical and its principal part is a0 D #.p/.

If p 2Sm is real-valued and elliptic near infinity (if, for instance, pD j�j2CV with V
satisfying (H0)), then p C i is elliptic.

We emphasise that this representation of spectral functions of pseudodifferential oper-
ators is exact. An explicit induction formula for the symbol a (giving, in particular, the
condition on the support of a) can be found in [33, after Theorem 8.7]. Specifically,
Schrödinger operators are elliptic in the sense of the last proposition with m D 2.

As an illustration of the versatility of this functional calculus and the “replacement
principle”, let us prove a weak form of the Weyl law, that is, obtain formula (1.3).

Proposition 2.10. Let .�; V / satisfy (H). Recall that !n denotes the volume of the unit
Euclidean ball in Rn and that …„;� D 1.�1;��.H„/. Then, as „ ! 0,

N D tr.…„;�/ � .2�„/�n!n

Z
.� � V.x//

n=2
C dx:
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Proof. Let V2 replace V1 up to M . Then, by combining Propositions 2.5 and 2.9, for any
# 2 C1c .R; Œ0; 1�/ supported inside .0; MC�

2
�, one has

tr.#.H„// D tr.#.H2I„//CO.„1/

D
1

.2�„/n

Z
R2n

a.x; �I „/d�dx CO#.„
1/

D
1

.2�„/n

Z
#.V.x/C j�j2/dxd� CO#.„

�nC1/; (2.4)

where we used that a is a classical symbol with compact support on R2n and principal
part a0.x; �/ D #.V2.x/C j�j2/.

The spectrum of the operatorH„ lies in ŒminV;1/, so that if #C � 1Œmin.V /;�� � #�,
then #C.H„/ � …„;� � #�.H„/ as operators.

Hence, by (2.4), taking the limit as „ ! 0 and then the infimum over all #C larger
than 1Œmin.V /;��, we obtain

lim sup
„!0

.2�„/n tr.…„;�/ �
Z

R2n
1
j�j�.��V.x//

1=2
C

d�dx D !n

Z
.� � V.x//

n=2
C dx:

Similarly, by taking a supremum over #� � 1Œmin.V /;��, we obtain the other inequality.
Here, it is very important that for every E 2 R, the set ¹V.x/ C j�j2 D Eº has zero
measure; indeed, outside of the measure zero set ¹� D 0º, the symbol V.x/C j�j2 has no
critical points.

If # is not smooth, then #.P„/ cannot be written as a pseudodifferential operator in
a satisfactory way. However, by a Fourier transform, writing

#.�/ D
1

2�„

Z
eit�=„y#

��
„

�
dt;

the crucial step to obtain approximation for #.P„/ is the study of the operator ft I„.H„/,
where ft I„.�/D eit�=„�.�/ oscillates at frequency O.„�1/ and � 2 C1c .R/ is introduced
for technical reasons. In this case, ft I„.H„/ is an approximation of the propagator asso-
ciated with the Schrödinger operator H„. It can be expressed as an integral operator with
an oscillating phase, but one must replace ei..x�y/��/=„ in Definition 2.7 by the solution
of an order 1 partial differential equation given in (2.7) and called the Hamilton–Jacobi
equation.3

Proposition 2.11 ([33, Chapter 10, notably (10.2), (10.5) and (10.8)]). Let m > 0. Let
p 2 Sm.Rn;Rn/ be independent of „ and such that p C i is elliptic. Let P„ D Op„.p/.
Given # 2 C1c .R;RC/, there exist � > 0 and a classical symbol a 2 S0.R2nC1;Rn/
such that

eitP„=„#.P„/ D I
�;a

„;t
COJ1.„

1/ uniformly for t 2 Œ��; ��;

3Equation (2.7) corresponds to the classical (Lagrangian) dynamics associated with the symbol
p.x; �/ of P„ D Op„.p/.
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where I �;a
„;t

is a (non-self-adjoint) integral operator with kernel

I
�;a

„;t
W .x; y/ 7!

1

.2�„/n

Z
e

i
„
.�.t;x;�/�y��/a.t; x; y; �I „/d�: (2.5)

Here,

� .x; y; �/ 7! a.t; x; y; �I „/ has compact support K b R3n for all t 2 Œ��; �� and
„ 2 .0; 1�.

� K is a small � -neighbourhood of ¹.x; x; �/; #.p.x; �// > 0º.

� The principal part of a at t D 0 satisfies, on the diagonal,

a0.0; x; x; �/ D #.p.x; �//: (2.6)

� There exists a compact K� b R2nC1 containing Œ��; �� �K such that �WK� ! R is
the (unique) solution of the initial value problem

�.0; x; �/ D x � �; @t�.t; x; �/ D p.x; @x�.t; x; �//: (2.7)

Notice the similarities with Proposition 2.9: at t D 0, one has I �;a
„;0
D Op„.a/.

The compact set K� and the solution � of the Hamilton–Jacobi equation can be
obtained from K , p, �jtD0 by the method of characteristics (see [36, Section 3.2.4, The-
orem 2] for a general statement concerning first-order PDEs and [36, Section 3.2.5 (c),
Example 6] for an application to Hamilton–Jacobi equations).

Our goal is to apply Propositions 2.9 and 2.11 to obtain pointwise estimates for
the spectral projector …„ D 1Œ0;��.H„/, but there are two small obstacles. First, H„ D
�„2�C V is a pseudodifferential operator, with elliptic symbol in S2, only when V sat-
isfies (H0). Second, we need to improve the control of the remainder in Proposition 2.11,
from J1-norm to local C1-norm. This relies on elliptic estimates (in our case, Proposi-
tion A.6).

The next proposition will be our main input to prove the results of Section 1.1.

Proposition 2.12. Assume that .�;V / satisfies (H) and let # 2 C1c ..�1;M/;RC/ with
M > � as in (H). There exists � > 0 such that for t 2 Œ��; ��,

#.H„/e
itH„=„ D I

�;a

„;t
CR„;t

with I �;a
„;t

as in (2.5) (under the same assumptions for the classical symbol a 2 S0) and
the error term satisfies kR„;tkJ1 D O.„1/ uniformly. Moreover, for any K b ¹V < M º2
and every multi-indices ˛; ˇ 2 Nn

0 ,

max
.x;y/2K

sup
t2Œ��;��

sup
„2.0;1�

j@˛x@
ˇ
yR„;t .x; y/j D O˛;ˇ .„

1/: (2.8)

Proof. Let V2 replace V1 up to M and assume that V1; V2 � 0. By Proposition 2.5, it
holds for any # 2 C1c .Œ0;M/;RC/,

k#.H1I„/ � #.H2I„/kJ1 D O.„1/:
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Next, let ~ 2 C1c .Œ0;M/;R/ such that ~.�/D � on the support of # . Then for j 2 ¹1; 2º,

eitHj I„=„#.Hj I„/ D e
it~.Hj I„/=„#.Hj I„/:

Hence, since � 7! ei� is 1-Lipschitz, by using again Proposition 2.5,

k#.H1I„/e
itH1I„=„ � #.H2I„/e

itH2I„=„kJ1 D O.„1/;

We can deduce from this trace norm estimate, a (local) C1 control for the kernel
is valid in ¹V < M º in the following way. Letting .�1

k
; �1
k
/ and .�2

k
; �2
k
/ be respective

spectral resolutions of H1I„ and H2I„ below M , one has for j 2 ¹1; 2º,

#.Hj I„/e
itHj I„=„.x; y/ D

X
�
j

k
�M

#.�
j

k
/eit�j

k�
j

k
.x/�

j

k
.y/:

Let #m.�/ D �2m#.�/ for � � 0 and m 2 N0. In particular, for .x; y/ 2 ¹V < M º2,
it holds for every m 2 N,

#m.Hj I„/e
itHj I„=„.x;y/D .�„2�xCV /

m.�„2�yCV /
m
X
�
j

k
�M

#.�
j

k
/eit�j

k�
j

k
.x/�

j

k
.y/:

Using Proposition A.6 and the following Remark A.7, for any K b ¹V < M º2 and
every k � 0, there exists Ck such that with m D k C bn

4
c C 1,

k#.H1I„/e
itH1I„=„ � #.H2I„/e

itH2I„=„kC2k.K/

� Ck„
�2k�n

k.�„2�C V /mx .�„
2�C V /my

� Œ#.H1I„/e
itH1I„=„ � #.H2I„/e

itH2I„=„�kL2.Rn�Rn/

� Ck„
�2k�n

k#m.H1I„/e
itH1I„=„ � #m.H2I„/e

itH2I„=„kJ1

since the L2-norm of a kernel operator is equal to the Hilbert–Schmidt norm of the cor-
responding operator, which is smaller than its trace norm (cf. Proposition A.1).

Hence, provided that supp # � Œ0; M/, the conclusions of Proposition 2.11 applied
to the symbol p.x; �/ D j�j2 C V.x/ also hold if V satisfies (H). It remains to prove the
claim under hypothesis (H0) in which case we can use ellipticity.

Let �WR! Œ0; 1� be compactly supported inside .0;M/ and such that � D 1 on the
support of # . Given m 2 N0, let

�mW � 7! ��m�.�/ and #mW � 7! �2m#.�/:

Then, for every m 2 N,

�m.H„/e
itH„=„#m.H„/�m.H„/ D e

itH„=„#.H„/:

Let us now apply Proposition 2.11 to eitH„=„#m.H„/. Under hypothesis (H0), for every
m 2 N0, there exists a classical symbol am such that

eitH„=„#m.H„/ D I
�;am
t;„

CRmt;„;



A. Deleporte, G. Lambert 3954

where, since all #m have the same support,

kRmt;„kJ1 D Om.„
1/ uniformly for t 2 Œ��; ��.

In particular,

eitH„=„#.H„/ D �m.H„/I
�;am
t;„

�m.H„/C zR
m
t;„;

zRmt;„ WD �m.H„/R
m
t;„�m.H„/:

Let K b ¹V <M º2 and let ~ 2 C1c .R
2n;RC/ be a cutoff equal to 1 on K . Applying

Proposition A.6, we have for every k;m 2 N,

k zRm
„;tkC2k.K/ � Ck„

�2k�n
k.�„2�C V /kCbn=4cC1x .�„2�C V /kCbn=4cC1y Œ zRm

„;t~�kL2 ;

Setting m D k C bn
4
c C 1, by definitions, one has

k.�„2�C V /kCbn=4cC1x .�„2�C V /kCbn=4cC1y Œ zR„;t~�kL2 � CkR„;tkL2 :

Again, the L2-norm of the kernel of R„;t is controlled by the J1-norm of the corres-
ponding operator; to conclude,

k zR„;tkC2k.K/ D O.„1/:

It remains to show that for t 2 Œ��; ��,

�m.H„/I
�;am
„;t

�m.H„/ D I
�;a

„;t
CO.„1/

for a compactly supported symbol a which satisfies (2.6) and that the error is controlled
as in (2.8).

Observe that as �m 2 C1c , by Proposition 2.9, there exists a classical symbol bm 2 S0

so that
�m.H„/ D Op„.bm/

and thus, for all x; y 2 Rn,

�m.H„/I
�;am
„;t

�m.H„/.x; y/

D
1

.2�„/3n

Z
e

i
„
‰.t;x1;x2;y;�1;�2;�/A.t; x1; x2; y; �1; �2; �/dx1d�1dx2d�2d�;

where

‰.t; x1; x2; y; �1; �2; �/ D .x � x1/ � �1 C �.t; x1; �/ � x2 � � C .x2 � y/ � �2;

A.t; x1; x2; y; �1; �2; �/ D bm

�x C x1
2

; �1I „
�
am.t; x1; x2; �I „/bm

�x2 C y
2

; �2I „
�
:

For any t 2 Œ��; ��, .x1; x2; �/ 7! am.t; x1; x2; �I „/ has compact support. Hence, for
.x; y/ 2K , both variables xCx1

2
and x2Cy

2
lie in a compact subset of Rn, and one can use

the fact that am 2 � has rapid decay in �. This allows us to localise the integral over �1, �2
to a fixed compact, up to an error whose C k.K/-norm is Ok.„

1/ for every k 2 N0.
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Hence, for fixed x, y, � , one can apply the stationary phase lemma to the previous
integral. One can easily check that the only critical point of the oscillating phase is

.x1; �1; x2; �2/ D .x; @x�.t; x; �/; y; �/

and the Hessian is non-degenerate at this point, with determinant 1. By Proposition A.15,
this implies that for .x; y/ 2K and t 2 Œ��; ��,

�m.H„/I
�;am
„;t

�m.H„/.x; y/

D
1

.2�„/n

Z
e

i
„
.�.t;x;�/�y��/a.t; x; y; �I „/d� CR„;t .t; x; y/;

where

� a 2 S0 is a classical symbol such that for all t 2 Œ��; ��, .x; y; �/ 7! a.t; x; y; �I „/

has a given compact support.

� For every k 2 N0,

sup
t2Œ��;��

kR„;t .t; x; y/kCk.K/ D Ok.„
1/:

� The principal part of a satisfies at t D 0 on the diagonal,

a0.0; x; x; �/ D bm;0.x; �/am;0.0; x; x; �/bm;0.x; �/:

Here we used the equations for the critical point (in particular, x1 D x2 D x on the
diagonal) and that �1D @x�.0;x; �/D � by the Hamilton–Jacobi equation (2.7). Since
bm;0.x; �/ D �m.p.x; �//, am;0.t; x; x; �/ D #m.p.x; �// (cf. Proposition 2.11) and,
by construction, �2m#m D # , we obtain that

a0.0; x; x; �/ D #.p.x; �//; p.x; �/ D j�j2 C V.x/:

This concludes the proof.

Recall that the free fermion point process, denoted by X, is the determinantal point
process associated with the operator …„;� D 1.�1;��.H„/, and N D tr…„;�. For fixed
„ > 0, the probability measure N�1EX admits a density with respect to the Lebesgue
measure on Rn, since it can be expressed using the first N eigenfunctions .vj /1�j�N
of H„ by

N�1EX D
1

N

NX
kD1

jvk.x/j
2dx;

where each term of the sum belongs to L1.Rn;R/ by definition. The intensity function is
the density of this probability measure,

�N .x/ WD N
�1…„;�.x; x/; x 2 Rn: (2.9)

As a simple consequence of Proposition 2.12, we obtain (locally) uniform bounds for the
intensity of this point process.
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Proposition 2.13. Assume that .�; V / satisfies (H) and let M > � be as in (H). For any
compact K b ¹V <M º, there exists a constant C (depending on K and �) such that for
all „ 2 .0; 1�,

max
K

�N � C:

Proof. Recall that V � 0 and let # 2 C1c .R; Œ0; 1�/ be such that supp.#/ � .�1; M/

and 1Œ0;�� � # . Then, as the spectrum of H„ lies in Œ0;1/,

…„;� D 1¹H„��º � #.H„/

as operators, so their kernels can be compared pointwise on the diagonal. Moreover, by
Proposition 2.12 with t D 0, we have #.H„/ D I

 ;a

„;0
C O.„1/ where the kernel of the

error is controlled locally uniformly inside ¹V < M º. By (2.5), this implies that for any
K b ¹V < M º,

…„;�.x; x/ �
1

.2�„/n

Z
a.0; x; x; �I „/d� CO.„1/

uniformly for x 2K , where .x; �/ 7! a.0; x; x; �I „/ is uniformly bounded with compact
support (independently of „ 2 .0; 1�). In particular, there exists C > 0 such that, for all
x 2K and all „ 2 .0; 1�,

…„;�.x; x/ � C„
�n:

Recalling from Lemma 2.10 that

N � .2�„/�n!n

Z
.� � V.x//

n=2
C dx;

this completes the proof.

Remark 2.14. Since V is not supposed to be regular on ¹V > M º, the ellipticity tech-
niques used to control the L1-norm from the L2-norm do not work there. If V is C1

everywhere, on the other hand, it is possible to obtain pointwise equivalents of Proposi-
tion 2.3, see, for instance, [51, Proposition 5.5].

To conclude this section and illustrate the methods used in this article, we apply
Proposition 2.12 with t D 0 to derive the microscopic asymptotics of the kernel of the
operator �.H„/ for a fixed smooth spectral function �.

Proposition 2.15. Assume that .�;V / satisfies (H) and let � 2 C1c ..�1;M/;RC/ with
M >� as in (H). Using notation (1.8), for any compact sets A� ¹V <M º and K �R2n,
it holds

max
x02A

max
.x;y/2K

jK
�

x0;„
.x; y/ �K

�
x0;0

.x; y/j D O.„/:

Proof. By Proposition 2.12 with t D 0, one can write

K
�

x0;„
.x; yI x0; „/ D

1

.2�/n

Z
ei.x�y/��a.x0 C „x; x0 C „y; �I „/d� CR.x; yI x0; „/;
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where the error R.x; yIx0;„/ and all its derivatives are O.„1/ uniformly for x0 2A and
.x; y/ 2K . Note that in this integral, the phase is independent of the parameter „ and the
symbol of a satisfies

a.x0; x0; �I „/ D �.V.x0/C j�j
2/CO.„/:

Upon identifying the kernel of the operator K�x0;0 as the leading term, this concludes the
proof.

3. The spectral projector in the bulk at microscopic scale

This section is devoted to the proof of Theorem II.1 and its consequences.
Our starting point consists in writing compactly supported spectral functions of the

operator H„ D �„2�C V via a semiclassical Fourier transform,

f .H„/ D
�.H„/
p
2�„

Z
yg.t/eitH„=„dt;

where f W� 7! �.�/g.„�1�/. Using the fact that �.H„/eitH„=„ can be well approximated
by integral operators for a short time t 2 Œ��; ��, see Proposition 2.12, up to an O.„1/

error, provided the support of yg lies inside Œ��; ��, the integral kernel of this operator has
the form

p
2�

.2�„/nC1

Z
e

i
„
.�.t;x;�/�y��/a.x; y; �; t I „/d�;

where a is a classical symbol and � satisfies the following Hamilton–Jacobi differential
equation: ´

@t� D V.x/C j@x�j
2;

�jtD0 D x � �:
(3.1)

One can then obtain the asymptotics of such integrals by applying the stationary phase
method as „ ! 0 using the properties of the phase � and of the symbol a for small t .
In particular, we study in Section 3.1 general properties of � that will be useful in the rest
of this article.

The approach described above cannot be directly applied to the spectral function of
interest 1.�1;��, which is not of the form � 7! �.�/g.„�1�/ where � and yg have com-
pact support. The idea is to regularise this function by applying a frequency cutoff �„
on scale „�1 and consider instead f„;� D # � .1.�1;�� � �„/, where # 2 C1c .R;RC/
is equal to 1 on Œ0; ��. In Section 3.2, we perform the first step of the proof of The-
orem II.1 which consists in obtaining the asymptotics of the regularised kernel associated
with such f„;�. Then, in Section 3.3, we recover 1.�1;�/.H„/ from its frequency cutoff
using the Tauberian theorem of Hörmander, concluding the proof of Theorem II.1. Finally,
the probabilistic consequences of Theorem II.1 for free fermions processes are discussed
in Section 3.4.
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3.1. Study of a phase function

Proposition 3.1. Let .�;V / satisfy (H) and letM >� be as in (H). Let K b ¹V < M º �

Rn. Let K 0 b R2nC1 be a neighbourhood of ¹0º �K , let �WK 0 ! R solve (3.1) and let

‰W .t; x; �/ 7! �.t; x; �/ � x � �:

There exist � > 0, �2C1.Œ��;���K;Rn/with det d�
d� ¤ 0 and g 2C1.Œ��;���Rn;R/

such that for all .t; x; �/ 2 Œ��; �� �K ,

‰.t; x; �/ D t .j�.t; x; �/j2 C g.t; x/C V.x//;

and g has the following Taylor expansion as t ! 0:

g.t; x/ D t2
jrV.x/j2

12
CO.t4/:

Proof. Since � solves the Hamilton–Jacobi equation (3.1), it is smooth on K 0 and, as
t ! 0,

� D x � � C t .V .x/C j�j2/CO.t2/: (3.2)

In particular,
‰.t; x; �/

t

ˇ̌̌
tD0
D V.x/C j�j2

is a Morse function of �. This property is preserved for t 2 Œ��; �� �K if � > 0 is small
enough, that is, ‰

t
admits exactly one non-degenerate critical point with respect to � ,

which is a (global) minimum. By the Morse lemma, there exists a smooth change of
variables � 7! �, which is smooth in .t; x/ such that

‰.t; x; �/

t
D j�.t; x; �/j2 C g.t; x/C V.x/:

Using (3.1), we can iterate the Taylor expansion of � as t ! 0. We obtain

�.t; x; �/ D x � � C t .V .x/C j�j2/C t2� � rV.x/C
t3

3
jrV.x/j2

C
2

3
t3h�;Hess.V /.x/�i CO..j�j C t /t4/

D x � � C t
�D
� C

t

2
rV.x/; IC

2t2

3
Hess.V /.x/; � C

t

2
rV.x/

E
C V.x/C

jrV.x/j2

12
t2
�
CO..j�j C t /t4/:

Note that in this expansion, all terms of even power in t are odd with respect to �, which
explains the error term. This yields as t ! 0,

�.t; x; �/ D
�

IdC
t2

3
Hess.V /.x/

��
� C

t

2
rV.x/

�
CO.j�jt4/;

g.t; x/ D
jrV.x/j2

12
t2 CO.t4/:

(3.3)

This completes the proof.
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3.2. Convergence of regularised kernels

In this section, we obtain asymptotics for a family of regularisations of the operator …„
which are essentially obtained by smoothing the function 1.�1;�� using a frequency
cutoff at scale „�1. To define this approximation, we introduce the following parameters.

Notations 3.1. Let .�0; V / satisfy (H), without loss of generality V � 0, and let M > 0

be as in (H). Let

� ~ 2 C1c .R; Œ0; 1�/, where ~ D 1 on Œ0;M �.
� # 2 C1c ..�0;M/;RC/, where �0 can be fixed at will later on.
� � > 0 is a small parameter such that for t 2 Œ��; ��, one can

– apply Proposition 2.12;
– apply Proposition 3.1 after fixing a large compact set K b R2n which contains
¹.x; �/; #.V .x/C j�j2/ > 0º.

� � 2 �.R;RC/ is even with
R

R �.�/d� D 1; y� is supported on Œ��; ��.
� �„ D „

�1�.„�1�/ for „ 2 .0; 1�.

In the sequel, we treat � as a parameter, and we also let ~� WD ~1Œ0;�� and #� WD #1Œ0;��
for �0 � � < M . We will consider spectral functions of H„ of the form

f„;�W � 7! #.�/

Z
~�.�/�„.� � �/d�:

By Proposition 2.12 applied to the operator #.H„/eitH„=„, it holds

f„;�.H„/ D
1

p
2�„

Z
~�.�/.I

�;a

„;t
CR„;t /e

�it�=„
y�.t/d�dt: (3.4)

The role of ~ is to limit the integral above to a compact set in � 2 R. In particular, the
operator f„;�.H„/ has an integral kernel of the form

f„;�.H„/W .x; y/ 7!

p
2�

.2�„/nC1

Z
e

i
„
.�.t;x;�/���y�t�/a.x; y; �; t I „/y�.t/~�.�/d�d�dt

CR„.x; y/; (3.5)

where � 7! a.x; y; �; t I „/ has compact support for t 2 Œ��; �� and the error R„, as well as
all its derivatives, are O.„1/ and controlled uniformly for � 2 RC and locally uniformly
for x; y 2 ¹V < M º.

The goal of this section is to apply the stationary phase method to the integral ker-
nel (3.5) in order to obtain the following asymptotics for the rescaled kernel Kf„;�

x0;„
of

f„;�.H„/, as defined in (1.8).

Proposition 3.2. Let K b R2n, let f„;� be as in Notations 3.1 and let

A b ¹.x0; �/ 2 Rn �RC W V.x0/ � �0 < � �M º:

Then, it holds uniformly for .x0; �/ 2 A and .x; y/ 2K ,

K
f„;�
x0;„

.x; y/ D K
#�
x0;0

.x; y/CO.„/:
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Proof. By formula (3.5), it suffices to obtain the asymptotics for .x; y/ 2 K of the res-
caled kernel

.x; y/ 7!
1

.2�/nC1=2„

Z
e

i
„
.�.t;x0C„x;�/�.x0C„y/���t�/

� a.x0 C „x; x0 C „y; �; t I „/y�.t/~�.�/d�d�dt;

where a 2 S0 is a classical symbol whose principal part is given by (2.6) at time t D 0
and p.x; �/ D j�j2 C V.x/. Since the phase � is smooth for t 2 Œ��; �� and Propos-
ition 3.1 applies, by a Taylor expansion and making a spherical change of variables
�.�/ D r.�/!.�/, where .r; !/ 2 RC � Sn�1, there exists a classical symbol b 2 S0

such that for .x; y/ 2K ,
p
2�e

i
„
.�.t;x0C„x;�/�.x0C„y/���t�/a.x0 C „x; x0 C „y; �; t I „/y�.t/d�

D e
i
„
 .t;r;�/b.x; y; r!; t I „/rn�1drd! (3.6)

and
 .t; r; �/ D t .r2 C g.t; x0/C V.x0/ � �/:

Since y� and a have compact supports, the function .r; t/ 7! b.x; y; r; !; t I „/ also has
compact support. Moreover, since y�.0/ D 1p

2�
and @x�.0; x; �/ D � (by (3.1) and the

change of variable (3.3)), the principal part of b satisfies at t D 0,

b0.x; y; �; 0/ D e
i.x�y/��#.r2 C V.x0//: (3.7)

In particular, r is bounded away from 0 in the previous integral since # is supported inside
.�0;M/ and V.x0/ < �0.

This implies that uniformly for .x; y/ 2K ,

K
f„;�
x0;„

.x; y/ D
1

.2�/nC1„

Z
e

i
„
 .t;r;!;�/b.x; y; r!; t I „/~�.�/r

n�1dtd�d!dr

CO.„1/:

We apply the stationary phase method to the previous integral in the variables .r; t/ 2
R � Œ��; �� for a fixed .�; !/ 2 R�C � S

n�1. By (3.2), the equations for the critical
point(s) are 8̂<̂

:
@ 

@r
D 2rt D 0;

@ 

@t
D V.x0/C r

2
� �CO.t/ D 0:

(3.8)

These equations have the following consequences:

� Since r is bounded away from 0 (otherwise b D 0), any critical point satisfies t D 0.

� If �� V.x0/, there are no critical points of the phase near the support of the symbol b;
by Proposition A.16, the integral is O.„1/ with the required uniformity.

� If � > V.x0/, there is a unique critical point given by r?.�/ WD
p
� � V.x0/, and we

assume that r? is bounded away from 0.



Universality for free fermions and the local Weyl law 3961

We also verify that  jtD0 D 0 and the Hessian of the phase at the critical point,
Hess D

�
� 2r?
2r? 0

�
, is not degenerate. Hence, by applying Proposition A.15, we obtain

uniformly for .x; y/ 2K ,

K
f„;�
x0;„

.x; y/ D
1

.2�/n

Z
r?.�/

n�2

2

Z
Sn�1

s.x; y; r?.�/!I „/~�.�/d!d�CO.„1/;

where, according to (3.7), r 7! s.x; y; r!I „/ is a classical symbol with compact support
in R�C and principal part

s0.x; y; �/ D e
i.x�y/��#.j�j2 C V.x0//:

To conclude, we go back to the original variable � D r?.�/!. We have � D j�j2 C V.x0/
and the Jacobian is

d� D rn�1? .�/
dr?.�/

d�
d�d! D

r?.�/
n�2

2
d�d!

so that

K
f„;�
x0;„

.x; y/ D
1

.2�/n

Z
.ei.x�y/��#.j�j2 C V.x0//CO.„//~�.j�j

2
C V.x0//d�

CO.„1/;

where both errors are controlled uniformly for .x;y/2K and .x0;�/2A. Since ~D 1 on
Œ1;M �, V.x0/ � 1 and � �M , we identify the leading term as the kernel of the operator

K
#�
x0;0
D #�.��C V.x0//;

this concludes the proof.

To recover the asymptotics of #�.H„/ from that of f„;�.H„/, we treat � as a para-
meter, and we will rely on the following estimate on the derivative @�f„;�.H„/.

Lemma 3.3. Let �, # be as in Notations 3.1 and set �„;�.�/ D #.�/�„.� � �/. There
exists a constant C > 0 such that for all x0 2 ¹V � �0º, � 2 RC and „ 2 .0; 1�,

„
n�„;�.H„/.x0; x0/ � C:

Proof. By writing �„ in terms of its Fourier transform and applying Proposition 2.12,
we obtain

„
n�„;�.H„/.x0; x0/ D

1

.2�/nC1=2„

Z
e

i
„
.�.t;x0;�/�x0����t/a.x0; x0; �; t I „/y�.t/dtd�

CO.„1/;

where a 2 S0, .x0; �/ 7! a.x0; x0; �; t I „/ has a fixed compact support for t 2 supp.y�/,
„ 2 .0; 1� and the error (as well as all its derivatives) is controlled uniformly for x0 2
¹V � �º and � 2 RC.
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We proceed like in the proof of Proposition 3.2, by decomposing �.�/ D r! for
.r; !/ 2 RC � Sn�1 and applying the stationary phase method in the variables .r; t/.
According to (3.6)–(3.7),

„
n�„;�.H„/.x0; x0/

D
1

.2�/nC1„

Z
Sn�1

Z
Œ��;���RC

e
i
„
 .t;r;!;�/b.x0; r!; t I „/r

n�1dtdrd! CO.„1/;

where  .t; r; !; �/ D t .r2 C g.x; t/ � �/ and b 2 S0 is another classical symbol.
Like in the proof of Proposition 3.2, the equations for the critical point(s) are given

by (3.8) with �D � and the parameter r is bounded away from 0. In particular, uniformly
for .x0; �/ in a (small) neighbourhood of ¹� � V.x0/º, there is no critical point and by
applying Proposition A.16,

�„;�.H„/.x0; x0/ D O.„1/:

On the other hand, if � is bounded away from V.x0/, then there is a unique critical point
.r?; t / D .

p
� � V.x0/; 0/, and applying Proposition A.15, it holds

„
n�„;�.H„/.x0; x0/ D

rn�2? =2

.2�/n

Z
Sn�1

.b0.x0; r?!; 0/CO.„//d! CO.„1/:

In both cases, this proves that there is a constant C such that for x0 2 ¹V � �0º,
� 2 RC and „ 2 .0; 1�,

„
n�„;�.H„/.x0; x0/ � C.1C r

n�2
? .�//:

3.3. From the regularised kernel to the projection kernel

To conclude the proof of Theorem II.1, it remains to replaceKf„;�
x0;„

by the rescaled kernel
of the projection …�;„ D 1Œ0;��.H„/. To this end, we treat the energy level � as a para-
meter, and we rely on the following Tauberian theorem.

Proposition 3.4 (Cf. [74, Theorem B.2.1]). Let N W Œ0;1/! Œ0;1/ be a function with
N.0/D 0,N 0 � 0 and at most polynomial growth. Let � be a mollifier as in Notations 3.1.
If N 0 � �„.�/ � 1C �˛ for some ˛ 2 RC, then jN.�/ �N � �„.�/j � C�„.1C �˛/ for
all � 2 RC.

This statement follows directly from [74, Theorem B.2.1] by rescaling the mollifier �
at scale „ as in the Notations 3.1. Moreover, the counting functionN is allowed to depend
on the parameter „ as long as the condition N 0 � �„.�/ � C.1C �˛/ holds.

Let us sketch how this result comes into play. Recall that #� D #1Œ0;��, where # 2
C1c ..�0; M/;RC/. Treating � as a parameter, we are interested in the kernel of the
operator K#�

x0;„
. To ease notation, let

KW � 7! K
#�
x0;„

.x; y/ D „n#�.H„/.x0 C „x; x0 C „y/:
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Then

K � �„.�/ D „
n

Z
#� .H„/.x0 C „x; x0 C „y/�„.� � �/d�

D „
ng„;�.H„/.x0 C „x; x0 C „y/;

where using that � is even, we define

g„;�.�/ D #.�/

Z
1¹���º�„.� � �/d�: (3.9)

This function is essentially the same as f„;� appearing in Notations 3.1.

Proposition 3.5. Let K0 b ¹V <M º2. It holds uniformly for .�; x; y/ 2 R�K0 �K0,

g„;�.H„/.x; y/ D f„;�.H„/.x; y/CO.„1/:

Proof. One has

f„;�.�/ � g„;�.�/ D #.�/

Z
.1 � ~.�//1¹���º�„.� � �/d�:

Since the supports of # and 1 � ~ are disjoint and � 2 � , we obtain

kf„;� � g„;�kL1 D O.„1/;

and moreover .f„;� � g„;�/ is supported inside .�0;�1/with �1 <M . Using the spectral
resolution of H„ for energy < �1, by Lemma 2.2, this implies that

kx 7! .f„;� � g„;�/.H„/.x; x/kC0.K0/
� C„�nkf„;� � g„;�kL1 max

���1

kv2�kC0.K0/
;

where v� denotes the eigenfunction(s) of H„ with energy �. Moreover, for any cutoff
� 2 C1c .¹V < M º;RC/ such that � � 1K0

, by Lemma A.5,

kv2�kC0.K0/
� kv��k

2
C0.Rn/ � Ck.1 ��/

bn=4cC1.v��/kL2.Rn/:

Using the eigenvalue equation,�H„v�D �v�, one verifies that for any ` 2N, there exists
a constant C` > 0 such that for any � < M and x 2 supp.�/,

j.1 ��/`.v��/.x/j � C`„
�2`
jv�.x/j:

This implies that for any � < M and ` 2 N,

k.1 ��/`.v��/kL2.Rn/ D O.„�2`/ and kv2�kC0.K0/
D O.„�.bn=2cC2//:

We conclude that

kx 7! .f„;� � g„;�/.H„/.x; x/kC0.K0/
D O.„1/:

Since f„;�; g„;� � 0 by the Cauchy–Schwarz inequality, this completes the proof.
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In addition,

@�.K � �„/.�/ D „
n#.H„/�„.� �H„/.x0 C „x; x0 C „y/;

which we studied in Proposition 3.3.
If � 7! K

#�
x0;„

.x; y/ would be non-increasing, one could directly combine Proposi-
tions 3.5, 3.3 and 3.2 with the Tauberian theorem to deduce the asymptotics of this kernel.
Nevertheless, using the positivity ofK#�

x0;„
on the diagonal as an additional trick, we obtain

the desired result.

Proposition 3.6. Let #� be as in Notations 3.1. For any compact sets A b ¹.x0; �/ 2
Rn �RC W V.x0/ � �0 < � �M º and K b Rn, there exists a constant C such that

max
.x0;�/2A

max
.x;y/2K�K

jK
#�
x0;„

.x; y/ �K
#�
x0;0

.x; y/j � C„:

Proof. Recall that we set K� D K
#�
x0;„

and define for x0; x; y 2 Rn and � 2 RC,

N 1
„;�.x/ D „

n
X
���

#.�/jv�.x0 C „x/j
2;

N 2
„;�.x; y/ D „

n
X
���

#.�/jv�.x0 C „x/ � v�.x0 C „y/j
2;

where .�; ��/ are normalised eigenpairs of H„. Using the spectral resolution of oper-
ator H„, it holds

N 1
„;�.x0 C „x/ D K�.x; x/;

N 2
„;�.x; y/ D K�.x; x/CK�.y; y/ � 2K�.x; y/:

(3.10)

The counting functions � 7! N
j

„;�
.x; y/ for j 2 ¹1; 2º satisfy all the assumptions of

Proposition 3.4. Indeed, they are non-decreasing, and we verify that if�0<�1<M and „
is sufficiently small, it holds uniformly for all � 2 RC, x0 2 ¹V � �0º and x; y 2K ,

N 2
„;�.x; y/ � 4 max

x02¹V<�1º
N 1
„;�.x0/ � 4„

n max
x02¹V<�1º

#.H„/.x0; x0/ <1:

The last bound follows from Proposition 2.13. From Proposition 3.3, the convolution
@�.K � �„/ is uniformly bounded. Hence, the same holds for the derivatives of the count-
ing functions N j

„;�
.x; y/ for j 2 ¹1; 2º.

Thus, one can apply the Tauberian theorem toN 1 andN 2, and by linearity, we obtain

max
.x0;�/2A

max
.x;y/2K

ˇ̌̌
K�.x; y/ �

Z
K�.x; y/�„.� � �/d�

ˇ̌̌
� C„:

On the other hand, according to Proposition 3.5, it also holds for � 2 RC,Z
K�.x; y/�„.� � �/d� D „ng„;�.H„/.x0 C „x; x0 C „y/

D „
nf„;�.H„/.x0 C „x; x0 C „y/CO.„1/
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with the required uniformity. By Proposition 3.2, we conclude that

K
#�
x0;„

.x; y/ D K
#�
x0;0

.x; y/CO.„/:

We are almost done with the proof of Theorem II.1: it remains to add the kernel of
a pseudodifferential operator.

Proposition 3.7. Let f 2C1c .R;RC/ and let f�D f 1Œ0;�� for�2RC. For any compact
sets A b ¹.x0;�/ 2Rn �RC W V.x0/ < �<M º and K b R2n, there exists a constant C
such that for „ 2 .0; 1�,

max
.x0;�/2A

max
.x;y/2K

jK
f�
x0;„

.x; y/ �K
f�
x0;0

.x; y/j � C„:

Proof. Let us choose �j for j 2 ¹0; 1º so that V.x0/ < �0 < �1 � � for all .x0; �/ 2 A

and decompose

f 1Œ0;�� D �C #1Œ0;��;

where � 2 C1c .R;RC/ is equal to 0 on Œ�1;1/ and # 2 C1c ..�0;M/;RC/. By linearity,
it holds for „ 2 Œ0; 1�,

K
f�
x0;„
D K

�

x0;„
CK

#�
x0;„

:

Moreover, according to Propositions 3.6 and 2.15, there exists a constant C depending
only on .A;K/ such that for all .x; y/ 2K ,

jK
#�
x0;„

.x; y/ �K
#�
x0;0

.x; y/j � C„

and
jK

�

x0;„
.x; y/ �K

�
x0;0

.x; y/j � C„:

By combining these estimates, the proof is completed.

To conclude with the proof of Theorem II.1, one can choose any f 2 C1c .R;R
C/

equal to 1 on Œ0; ��.

Remark 3.8. Let us comment on the convergence of derivatives for the rescaled kernel at
local scales. Choosing f equal to � 7! �2k on Œ0; �� allows us to prove that the kernel of
H k
„
…„H

k
„

also admits a scaling limit in the bulk which is expressed in terms of the free
Laplacian; for any k 2 N0, as „ ! 0,

.��x C V.x0 C „x//
k.��y C V.x0 C „y//

kK
1Œ0;��

x0;„
.x; y/

! .��x C V.x0//
k.��y C V.x0//

kK
1Œ0;��
x0;0

.x; y/

locally uniformly on R2n.
By Proposition A.6, this implies the convergence of the kernel .x; y/ 7! K

1Œ0;��

x0;„
.x; y/

in the local C 2k-topology (as well as a rate of convergence O.„/).
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3.4. Concentration inequalities for linear statistics

To conclude this section, we prove the law of large numbers of Theorem I.1 and the central
limit Theorem I.3.

Recall that the free fermion point process, denoted by X, is the determinantal point
process associated with the operator …„;� D 1.�1;��.H„/, and N D tr…„;�. Its (norm-
alised) intensity is denoted by �N , (2.9). In particular, for any test function f WRn! RC,
EX.f / D trŒf …„;�� D N

R
f d�N , where we view f as a (unbounded) positive multi-

plication operator. Let us denote

F D ¹f WRn ! R W f 2 Lip1; f .0/ D 0º;

and recall that the Kantorovich distance is dW.�; �/ D sup¹
R
f d.� � �/ W f 2 Fº for any

probability measures �, � on Rn.

Lemma 3.9. Let .�; V / satisfy the hypothesis (H) and let % D Z�1.� � V /
n=2
C be the

corresponding density of states. Then, as „ ! 0 (or equivalently N !1),

dW.�N ; %/! 0:

Proof. We begin with the elementary identity

8f 2 F; 8x 2 Rn; jf .x/j � jxj:

Let ı > 0 be a small parameter and let

�.x0/ D 2�„
!
�1=n
np

� � V.x0/
for x0 2 ¹V < �º

as in Theorem II.1. Let fı be as in Proposition 2.3 and let f 2 F. Then, using the spectral
resolution of …„;�,ˇ̌̌ 1

N

Z
V.x/��C2ı

f .x0/…„;�.x; x/dx
ˇ̌̌
� 2

�
1C

mu

ı

�
sup

V.x/��C2ı

jf .x/e�2fı.x/=„j;

and
sup
f 2F

sup
V.x/��C2ı

jf .x/e�2fı.x/=„j � sup
V.x/��C2ı

jxje�2fı.x/=„:

The right-hand side is finite for every „ 2 .0; 1� and tends to zero exponentially quickly
as „ ! 0.

On the other hand, by Theorem II.1 and Proposition 2.10, as „ ! 0,ˇ̌̌ 1
N

Z
¹V.x/���ıº

f .x/…„.x; x/dx �
Z
¹V.x/���ıº

f .x/%.x/dx
ˇ̌̌

�

Z
¹V.x/���ıº

jxj
ˇ̌̌Kx;�.x/.0; 0/

N�.x/n
�

.2�„/n

Z!n�.x/n

ˇ̌̌
dx ! 0;

where we used thatKx;�.x/.0; 0/! 1 uniformly for all x in the compact set ¹V � �� ıº.
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The function % is uniformly bounded, so that

lim sup
ı!0

sup
f 2F

Z
¹��ı�V.x/��C2ıº

f .x/%.x/dx D 0:

Similarly, by Proposition 2.13, �N is uniformly bounded on compact subsets of ¹V <M º,
so that

lim sup
ı!0

sup
f 2F

sup
„2.0;1�

Z
¹��ı�V.x/��C2ıº

f .x/�N .x/dx D 0:

Combining these estimates concludes the proof.

As consequence of Lemma 3.9, the (normalised) intensity �N converges weakly to
the density of states %. To complete the proof of the law of large numbers, Theorem I.1,
we rely on Lemma 3.9 and basic concentration bounds for determinantal processes.

Proposition 3.10. Let .�; V / satisfy the hypothesis (H). There exists a small constant
c > 0 such that for any � > 0 with � � „�1, there exists a (non-increasing) constant
C� � 1 and

P ŒdW.N
�1X; �N / � �� � C� exp.�cN�2/:

Moreover, we can choose C� D eC�
�n

for some universal constant C > 0.

Proof. Let us denote zX WD X � EX for the recentred Fermion point process. By (A.4),
for any f 2 C.Rn;R/,

EŒezX.f /� D det.IC .ef � 1/…„;�/e� trŒf …„;�� � exp.trŒ.ef � 1 � f /…„;��/;

where we used the elementary bound

det.IC A/ � exp.tr.A//

valid for all finite-rank operators A � �I (here AD…„;�.ef � 1/…„;�, is bounded from
below by �I).

Moreover, by Proposition 2.3 and using the spectral resolution of …„;�, it holds for
all g 2 C.Rn;RC/,

tr.g…„;�/ � N
�
1C 2

�

ı

�
sup
x2Rn

.g.x/e�2fı.x/=„/:

Using that 0 � ef � 1 � f � f 2ef , we obtain

EŒezX.f /� � exp
�
N
�
1C 2

�

ı

�
sup
x2Rn

.f .x/2ef .x/�2fı.x/=„/
�
:

By rescaling, this shows that for any � > 0 with �� N„�1, there exists a constant
C > 0 such that if „ is sufficiently small, then

sup
f 2F

EŒe�N
�1zX.f /� � exp

� C
2N

�2
�
:
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Here, we crucially use the fact that elements of F are globally 1-Lipschitz, so that, for c
small enough,

sup
�<cN„�1

sup
f 2F

sup
x2Rd

.e�N
�1f .x/�2fı.x/=„/ < C1:

By Markov’s inequality, this yields a Gaussian tail bound for the random variable
zX.f /; for any � > 0 and � > 0,

sup
f 2F

P ŒzX.f / � �N � � e���CC�
2=2N ;

so that, choosing � D cN� for c > 0 small enough,

sup
f 2F

P ŒzX.f / � �N � � e���Cc�
2=2N

D exp
�
�
c

2
N�2

�
:

Upon replacing f with �f , we obtain a symmetric inequality. Hence, it holds for any
� � „�1,

sup
f 2F

P ŒjzX.f /j � �N � � 2 exp
�
�
c

2
N�2

�
: (3.11)

To conclude the proof, it remains to use a compactness argument, but for this we need
to localise the problem in space. Let � 2 Cc.Rn; Œ0; 1�/ \ F with � D 1 on the compact
¹V �M º so that for all f 2 F,

jzX.f /j � jzX.�f /j C zX.g/C 2EX.g/; g.x/ D .1 � �.x//jxj:

Note that we used that by linearity,

jzX..1 � �/f /j � X..1 � �/jf j/C EX..1 � �/jf j/ � zX.g/C 2EX.g/

as jf .x/j � jxj. Since g 2 F and supp.%/ � ¹V > M º, as in the proof of Lemma 3.9,
EX.g/! 0 exponentially quickly as „ ! 0. This implies that if „ is sufficiently small,
then

P Œsup
f 2F
jzX.f /j � 4�N � � P Œsup

f 2F
jzX.�f /j � 2�N �C 2 exp

�
�
c

2
N�2

�
:

We now use that the set ¹�f W f 2 Fº is compact for the uniform topology (by the
Arzelà–Ascoli theorem) so that for any � > 0, there is a finite set S� � ¹�f W f 2 Fº such
that for any f 2 F,

there exists g 2 S� such that jzX.�f / � zX.g/j � N�;

where we used that the point process X has N particles. Since estimate (3.11) is uniform
over all Lipschitz functions in F, by a union bound, this implies that for any � > 0 with
� � „�1,

P Œsup
f 2F
jzX.f /j � 4�N � � P Œ sup

g2S�
jzX.g/j � �N �C 2 exp.�cN�2/

� 2.jS�j C 1/ exp.�cN�2/:

Since supf 2F jzX.f /j D N dW.N
�1X; �N /, this completes the proof. The form of the con-

stant C� follows from standard continuity arguments.
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By combining Lemma 3.9 and Proposition 3.10, the proof of Theorem I.1 is complete.
Let us now turn to the proof of Theorem I.3. This CLT follows from Corollary A.12

and showing that var X.f /!1 as „ ! 0, which holds true in dimension n � 2.

Proof of Theorem I.3. Let us first remark that, for fixed f 2 C.Rn; R/ with at most
exponential growth, for „ > 0 small enough, X.f / 2 L2 (as a real random variable).
Indeed, denoting by fC and f� the positive and negative parts of f , respectively, then
X.f / D X.fC/ � X.f�/, and X preserves positivity. Moreover, using the determinantal
structure,

EŒX.f˙/2� � trŒ…„f˙�2 C tr.…„f 2˙/;

and tr.…„g/D
R
…„.x;x/g.x/ <1 as soon as g � 0 has at most exponential growth, by

Proposition 2.3 (indeed, rank.…„/ is finite and the range consists of eigenfunctions with
spacial decay at a rate „�1jxj near infinity).

By Proposition 2.3, if f is supported on Rn n ¹V � �º, then we even have EX.f / D
O.„1/. In this case, by Lemma A.9,

var X.f / � tr.f 2…„;�/ D EX.f 2/ D O.„1/:

Let � 2 C1c .R
n; Œ0; 1�/ be a cutoff such that � � 1¹V��º. The previous estimate

implies that if f 2 C.Rn;R/,

var X.f�/ D var X.f /CO.„1/:

Note that the function f� is uniformly bounded on Rn. Hence, if we can show that
var X.f�/!1 as „ ! 1, by Corollary A.12, we obtain as „ ! 0,

zX.f�/p
var X.f /

) N0;1;

where zX WD X�EX. Moreover, zX.f .1� �//! 0 in L2 so that by Slutsky’s lemma, this
implies the claim of Theorem I.3. So we can assume that f 2 Cc.Rn;RC/ and then

var X.f / D �
1

2
tr.Œf;…„;��2/ D

1

2

Z
.f .x/ � f .y//2j…„;�.x; y/j

2dxdy:

For any open set�� ¹V <�º and any continuous function �W�! .0;1�, we have a lower
bound,

var X.f / �
1

2

Z
1x2�.f .x/ � f .x C �.x/z//

2�.x/�njK�.x/;x.0; z/j
2dxdz;

where we used notation (1.4). By Lusin’s theorem, since rf 2 L2.�/, by choosing
a smaller open subset � � ¹V � �º, we can assume that f 2 C 1.�/. Then, choosing

�.x/ D 2�„
!
�1=n
np

� � V.x/
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and applying Theorem II.1, it holds as „ ! 0,

.f .x/ � f .x C �.x/z//2�.x/�2jK�;x.0; z/j
2
! .z � rf .x//2

J2
n=2
.cnjzj/

!njzjn

for every x 2 �, where we used expression (1.6) for the kernelKbulk and cn D 2�!
�1=n
n .

By Fatou’s lemma, this implies that

lim inf
„!0

.„n�2 var X.f //

�
c2n

2.2�/n

Z
1x2�.� � V.x//

.n�2/=2.z � rf .x//2J2n=2.cnjzj/
dz
jzjn

dx:

By going to spherical coordinates, this integral factorises and we obtain

lim inf
„!0

.„n�2 var X.f //

�
n!n

2.2�/n

Z
�

.� � V.x//.n�2/=2jrf .x/j2dx
Z

RC

J2n=2.r/rdr:

Hence, if
R
�
jrf j2 > 0, the first integral is positive and using the asymptotics of the

Bessel functions as r !1,

Jn=2.r/ D

r
2

�r
cos
�
r �

.nC 1/�

4

�
CO.r�3=2/; (3.12)

we obtain that

lim inf
„!0

.„n�2 var X.f // D C1: (3.13)

This concludes the proof.

4. The spectral projector at the edge at microscopic scale

This section is devoted to the proof of Theorem II.2, that is, the asymptotics of the rescaled
kernel K�;x0 defined in (1.4), around a point x0 2 Rn at the boundary of the droplet,
V.x0/ D �. We also assume that the point is non-degenerate, rV.x0/ ¤ 0. In this case,
upon an appropriate scaling .�;U/, the limiting kernel is

KedgeW .x; y/ 7! 1.�1;0�.��C x1/;

where x1 D x � e1, and e1 denotes the first vector of the canonical basis of Rn. This kernel
is given explicitly in terms of Airy and Bessel functions by (1.7).

The method of proof is the same as in Section 3; we first prove convergence of a reg-
ularised projection kernel and then we apply the Tauberian theorem (Proposition 3.4)
to recover the asymptotics of the rescaled kernel K�;x0 . The main difference with the
proof of Proposition 3.2 is that, when dealing with an oscillatory integral of the form
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ei�=„a, the stationary point r� D 0 is degenerate (the Hessian is not invertible). This

explains why Kedge involves the Airy function, which is the simplest degenerate oscillat-
ory integral.

We again consider a regularised projection of the form f„;�.H„/ as in Notations 3.1
and denote

K
f„;�
x0;� W .x; y/ 7! �nf„;�.H„/.x0 C �U

�x; x0 C �U
�y/;

where � D „2=3jrV.x0/j�1=3 and U 2 SOn is chosen so that

U.rV.x0// D jrV.x0/je1

as in Theorem II.2.

Proposition 4.1. Let K b R2n, A b ¹.x0;�/ 2Rn � .0;M/;�D V.x0/;rV.x0/ ¤ 0º.
In the above setup, it holds

sup
x02A

sup
.x;y/2K

jK
f„;�
�;x0 .x; y/ � #.�/Kedge.x; y/j � C„

1=3:

Proof. Let us denote by E
 D rV.x0/, 
 D jE
 j and ı D „

�
D „1=3
1=3. By (3.5), the

rescaled kernel Kf„;��;x0 at a point .x; y/ 2K is given by

�n

.2�„/nC1

Z
e

i
„
.�.t;x0C�U

�x;�/�.x0C�U
�y/����t/

� a.x0 C �U
�x; x0 C �U

�y; �; t I „/y�.t/~�.�/d�d�dt CO.„1/;

where the error term is uniform for .x0; �/ 2 A and .x; y/ 2 K . As in the proof of
Proposition 3.2, we can rewrite

e
i
„
.�.t;x0C�U

�x;�/�.x0C�U
�y/��/a.x0 C �U�x; x0 C �U�y; �; t I „/

D e
i
„
‰.t;x0;�/e

i
ı
.@x�.t;x0;�/�U

�x���U�y/b.x; y; �; t I ı/;

where ‰.t; x0; �/ is as in Proposition 3.1 and b is a classical symbol with principal part
at t D 0,

b0.x; y; �; 0/ D #.�C j�j
2/:

The critical point for the phase ‰.t; x0; �/ � �t is again given by t D 0, � D 0, � D �,
but it is degenerate. However, by Proposition 3.1, one can rewrite the phase as

‰.t; x0; �/ D t .j�.t; x0; �/j
2
C g.t; x0/C �/;

where

g.t; x0/ D t
2 


2

12
CO.t3/ and �.t; x0; �/ D � C t

E


2
CO.t2/:
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We make a change of variable � � and use that the Jacobian j d�d� j D 1CO.t/ is a smooth
non-vanishing function for t 2 supp.y�/. Then

p
2� y�.t/b.x; y; �; t I ı/

ˇ̌̌d�
d�

ˇ̌̌
D c.x; y; �; t I ı/

is again a classical symbol, compactly supported in .t; �/. Making a change variable
�  .� � �/ and letting �1 D ~.� � �/ (according to Notations 3.1, the cutoff �1 2
C1c .R;RC/ can be chosen independent of � and is equal to 1 on a neighbourhood of 0),
this implies that for .x; y/ 2K ,

zK��;x0.x; y/ D
�n

.2�„/nC1

Z
1��0e

it .�;t;�/=„ei!.x;y;t;�/=ı

� c.x; y; �; t I ı/�1.�/d�d�dt CO.„1/;

where the error term is C1 with the required uniformity and the phases are given by

!.x; y; t; �/ D @x‰.t; x0; �.t; �// �U
�x C �.t; �/ �U�.x � y/;

 .�; t; �/ D j�j2 C g.t; x0/C �:

Moreover, the classical symbol c has principal part at t D 0, for x; y 2K ,

c0.x; y; �; 0/ D #.�C j�j
2/:

We claim that this integral can be localised to the set ¹jt j � ı1�˛; j�j � ı1�˛º for any
small ˛ 2 .0; 1/ up to an arbitrary small error. Namely, if �2 2 C1c .R

nC1;RC/ is a cutoff
which equals 1 on the unit ball BnC1, we will show that the integral

J„ D

Z
eit .�;t;�/=„ei!.x;y;t;�/=ıc.x; y; �; t I ı/.1 � �2.ı

˛�1.t; �///d�dt

is O.„1/. This relies on the fact that for t 2 supp.y�/ and � 2 Œ0; ��,

@t Œt .�; t; �/� � c.jt j
2
C j�j2/ and @2t Œt .�; t; �/� D O.t/:

Let Dt D @t .
�

@t Œt .�;t;�/�
/. The previous bounds imply that if .t; �/ … ı1�˛BnC1, then for

any k 2 N,ˇ̌
Dk
t

�
ei!.x;y;t;�/=ıc.x;y;�; t Iı/.1��.ı˛�1.t; �///

�ˇ̌
�Ckı

�k.3�2˛/
DOk.„

�k.1�2˛=3//:

Hence, repeated integration by parts shows that for any k 2 N,

J„ D .i„/k
Z
eit .�;t;�/=„Dk

t

�
ei!.x;y;t;�/=ıc.x; y; �; t I ı/.1 � �2.ı

˛�1.t; �///
�
d�d�dt

D Ok.„
2k˛=3/:

This proves that uniformly for all .x0; �/ 2 A and .x; y/ 2K ,

zK��;x0.x; y/ D
�n

.2�„/nC1

Z
1��0e

it .�;t;�/=„ei!.x;y;t;�/=ı

� c.x; y; �; t I ı/�1.�/�2.ı
˛�1.t; �//d�d�dt CO.„1/:
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We can now perform a Taylor expansion of the two phases. By Proposition 3.1,

 .
1=3U��; t
�2=3; �/ D 
2=3
�
j�j2 C

t2

12

�
C �CO.t3/;

t
�2=3 .
1=3U��; t
�2=3; 
2=3�/ D
1

3

� t
2
C�1

�3
C
1

3

� t
2
��1

�3
Ct .j�?j2C�/CO.t4/;

where we decompose � D .�1; �?/. In addition, by Proposition 3.1,

@x‰.t; x0; �/ D t E
 CO.t2/; �.t; �/ D � �
t

2
E
 CO.t2/;

so that

!.x; y; t; �/ D �.t; �/ �U�.x � y/C @x‰.t; x0; �.t; �// �U
�x

D U� � .x � y/C
t

2
UE
 � .x C y/CO.t2/:

Since UE
 D 
e1, this implies that with the same scaling,

!.x;y;
�2=3t; 
1=3U��/D 
1=3
�
�? � .x � y/C x1

� t
2
C �1

�
C y1

� t
2
� �1

��
CO.t2/:

Let us also decompose x D .x1; x?/ and y D .y1; y?/. These expansions imply that
if we make a change of variables

u D ı�1
�


t

2
C �1

�
; v D ı�1

�


t

2
� �1

�
; z D ı�1�? and s D ı�2.�C j�?j2/;

then we can rewrite

eit .�;t;�/=„ei!.x;y;t;�/=ıc.x; y; �; t I ı/

D exp
�

i
�u3
3
C .x1 C s/uC

v3

3
C .y1 C s/v

�
C iz � .x? � y?/

�
� f .x; y; u; v; z; sI ı/: (4.1)

Note that we used in a crucial way that the errors coming from the expansions of the
phases are given O.„�1t4/ D O..uCv

2
/4ı/ and O.ı�1t2/ D O..uCv

2
/2ı/, so that f is

again a classical symbol with constant principal part,

f0.x; y; u; v; z; s/ D c0.x; y; 0; 0/ D #.�/:

Hence, making the change of variables .t; �; �/ 7! .u; v; z; s/ as above (whose Jac-
obian is given by „ın) and using (4.1), we obtain

zK��;x0.x; y/ D
1

.2�/nC1

Z
1s�jzj2e

i.u3=3C.x1Cs/uCv3=3C.y1Cs/vCz�.x?�y?//

� f .x; y; u; v; z; sI ı/�3;ı.s; u; v; z/dudvdzds

CO.„1/; (4.2)
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where the cutoff

�3;ı.s; u; v; z/ D �1.ı
2.s � jzj2//�2

�
ı˛
�uC v



;
u � v

2
; z
��
:

Since the cutoffs are arbitrary, we can assume that

�3;ı.s; u; v; z/ D �1.ı
2.s � jzj2//�1.ı

˛u/�1.ı
˛v/�1.ı

˛
jzj/:

Let us denote
D D �@uv

�
�

.u2 C s C 1/.v2 C s C 1/

�
and observe that performing repeated integrations by parts with respect to .u; v/, for any
smooth function gWR2 ! R with k@ju@`vgkL1 <1 for all j; ` 2 N0, it holds for any
k 2 N, Z

ei.u3=3C.x1Cs/uCv3=3C.y1Cs/v/g.u; v/�1.ı
˛u/�1.ı

˛v/dudv

D

Z
ei.u3=3C.sC1/uCv3=3C.sC1/v/

�Dk.ei.u.x1�1/Cv.y1�1//g.u; v/�1.ı
˛u/�1.ı

˛v//dudv

D Ok

� Z dudv
.u2 C s C 1/k.v2 C s C 1/k

�
D Ok

� 1

.1C s/2k

�
:

These estimates imply that we can localise integral (4.2) on ¹s � ı�˛º and expand the
symbol f with respect to ı; using that f0 D #.�/, we obtain for any k 2 N,

zK��;x0.x; y/ D
#.�/

.2�/nC1

Z
s�jzj2

ei.u3=3C.x1Cs/uCv3=3C.y1Cs/vCiz�.x?�y?//

� �3;ı.s; u; v; z/�1.ı
˛s/dudvdzds

COk

�
ı

Z
1s�jzj2

dzds
.1C s/2k

�
CO.„1/:

Moreover,
�1.ı

2.s � jzj2//�1.ı
˛
jzj/ D 1

if jzj2 � s � Cı�˛ and ı is small enough, so that the leading term on the right-hand side
of (4.2) factorises as

zK��;x0.x; y/ D #.�/

Z 1
0

�1.ı
˛s/Iu.s/Iv.s/Iz.s/CO.ı/;

Iu.s/ D
1

2�

Z
ei.u3=3C.x1Cs/u/�1.ı

˛u/du;

Iv.s/ D
1

2�

Z
ei.v3=3C.y1Cs/v/�1.ı

˛v/dv;

Iz.s/ D
1

.2�/n�1

Z
p
s�jzj

eiz�.x?�y?/dz:
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Finally, by (A.2) and Lemma A.20, this implies that for any k 2 N,

zK��;x0.x; y/ D #.�/

Z 1
0

�1.ı
˛s/
�

Ai.x1 C s/COk

� ı2˛k

.s C 1/k

��
�

�
Ai.y1 C s/COk

� ı2˛k

.s C 1/k

��
�

J.n�1/=2.
p
sjx? � y?j/

.2�jx? � y?j/.n�1/=2
s.n�1/=4ds CO.ı/

uniformly for all .x; y/ 2 K . Using the uniform bounds for � � 0, maxr�0
jJ�.
p
sr/j

r�
�

C�s
�=2, kAi kL1.R/ <1 and that for any r 2 R,Z 1

0

jAi.r C s/js�ds <1 is of order O�.r
�1/ as r !1, (4.3)

(cf. (A.19)), we conclude that

zK��;x0.x; y/ D #.�/

Z 1
0

Ai.x1 C s/Ai.y1 C s/
J.n�1/=2.

p
sjx? � y?j/

.2�jx? � y?j/.n�1/=2
s.n�1/=4ds

CO.ı/;

where the error term is uniform for all .x0;�/ 2A and .x;y/ 2K . Up to the factor #.�/,
we identify that this kernel is exactly Kedge.x; y/ and as ı D O.„1=3/, this completes the
proof.

Like in Section 3.3, we may use the asymptotics of Proposition 4.1 and the Tauberian
theorem (Proposition 3.4) in order to obtain the edge asymptotics of the rescaled projec-
tion kernel …„;�. This application of the Tauberian method is more subtle because the
counting function changes regimes precisely at � D V.x0/.

Recall that #� D #1Œ0;�� and let us denote

N 1
�;�.x/ WD �

n#�.H„/.x; x/; � 2 RC; x 2 Rn:

Pay attention that the edge-scaling is different from that of Section 3.3 and � D O.„2=3/.
The derivative of this function (with respect to �) satisfies for � 2 RC,Z

N 1 0
�;� .x/�„.� � �/d� D

Z
N 1
�;� .x/�

0
„
.� � �/d� D �n�„;�.H„/.x; x/; (4.4)

where
�„;� D #.�/�„.� � �/:

We expect that �„;�.H„/.x;x/DO.„1/ for � < V.x/ and this quantity becomes relevant
when � D V.x/. In this case, by adapting the proof of Proposition 4.1, the kernel of
�„;�.H„/ can be controlled appropriately, locally uniformly (at scale �). We obtain the
following bounds.



A. Deleporte, G. Lambert 3976

Proposition 4.2. Let # 2 C1c .R
n;RC/ be a cutoff and for c � 1, let

A„ b ¹x 2 Rn; � 2 Œ0;M/ W V.x/ � � � c„2=3; rV.x/ ¤ 0º (4.5)

be any compact set. There exists a constant C > 0 such that for all .x; �/ 2 A„,

„
2.nC1/=3�„;�.H„/.x; x/ � C:

Proof. By Proposition 2.12, it holds for x 2 Rn,

�„;�.H„/.x; x/ D
1

.2�/nC1=2„nC1

Z
e

i
„
.�.t;x;�/�x����t/a.x; �; t I „/y�.t/dtd� CO.„1/;

where a is a classical symbol with principal part a0.x; �;0/D #.j�j2CV.x// at t D 0, the
error term is independent of � 2 RC and locally uniform. According to Proposition 3.1,
the phase satisfies

�.t; x; �/ � x � � � �t D t .j�j2 C g.t; x/C V.x/ � �/;

where

g.t; x/ D t2
jrV.x/j2

12
CO.t4/:

Hence, by a change of variable �  �, we can rewrite

�„;�.H„/.x; x/ D
1

.2�„/nC1

Z
e

it
„
.j�j2Cg.t;x/CV.x/��/b.x; �; t I „/dtd�CO.„1/;

where b.x;�; t I„/D
p
2� y�.t/a.x;�; t Iı/j d�d� j is again a classical symbol. By assumptions

V.x/ � � � c„2=3, so that exactly as in the proof of Proposition 4.1, we can localise this
integral in .t; �/ at scale „1=3�˛ for any small ˛ > 0 up to an error which is O.„1/. This
means that for any cutoff � 2 C1c .R;RC/ which equals 1 on Œ�1; 1�, it holds

�„;�.H„/.x; x/ D
1

.2�„/nC1

Z
e

it
„
.j�j2Cg.t;x/CV.x/��/b.x; �; t I „/

� �.„˛�1=3t /�.„˛�1=3j�j/dtd�CO.„1/

uniformly for .x; �/ 2 A„. Let 
.x/ D jrV.x/j
2

. By assumption, this function is bounded
uniformly from above and below on A„, and by making a change of variables

„
�1=3
2=3t  t and „

�1=3
�1=3� �;

we obtain

„
.2nC2/=3�„;�.H„/.x; x/

D

.x/.n�2/=3

.2�/nC1

Z
e

i.t3=3Ct j�j2C t.V.x/��/
.
.x/„/2=3

/
f .x; t; �I „1=3/

� �.„˛
�2=3t /�.„˛
1=3j�j/dtd�CO.„1/;
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where

f .x; t; �I „1=3/ D eiO.t4„1=3/b.x; 
1=3„1=3�; 
�2=3„1=3t I „/ D #.V.x//CO.„1=3�4˛/

uniformly for x 2 A„ and t; j�j � C„�˛ .
If we further let � D r!, where .r; !/ 2 RC � Sn�1, this implies that for some

�.n/ 2 N,

„
.2nC2/=3�„;�.H„/.x; x/

D

.x/.n�2/=3#.V.x//

.2�/nC1

Z
Sn�1�RC

�.„˛
1=3r/rn�1

�

Z
e

i.t3=3Ctr2C t.V.x/��/
.
.x/„/2=3

/
�.„˛
�2=3t /dtd!dr CO.„1=3��˛/;

where the error term is uniform for .x; �/ 2 A„. Since the cutoff � 2 C1c .R;RC/ is
equal to 1 on a neighbourhood of 0, by Lemma A.20, it holds uniformly for u 2 RC and
.x; �/ 2 A,

1

2�

Z
ei.t3=3Ctu/�.„˛
�2=3t /dt D Ai.u/CO.„1/:

By (4.3), we conclude that there exists a constant C > 0 such that

sup
„2.0;1�

max
.x;�/2A

„
.2nC2/=3�„;�.H„/.x; x/ � C:

This completes the proof.

Let us now introduce again the counting functions

N 1
�;�.x/ WD �

n
X
���

#.�/jv� .x/j
2;

N 2
�;�.x/ WD �

n
X
���

#.�/jv� .x/ � v� .y/j
2;

where � D „2=3jrV.x0/j�1=3.
Proposition 4.2 has the following consequence for the diagonal counting function.

Corollary 4.3. Let K b Rn and A b ¹.x0;�/ 2Rn � .0;M/;V .x0/D �;rV.x0/¤ 0º.
Then

max
.x0;�/2A

max
x2K
jN 1
�;�.x0 C �x/ �N

1
�;� � �„j�.x0 C �x/j D O.„1=3/:

Proof. We work under general assumptions. Let N be as in Proposition 3.4 and define
for � 2 RC, MN.�/ WD min.N.�/;N.�C„1�˛//, where ˛ > 0 is a small parameter. Then
. MN/0 � �„ � N

0 � �„ pointwise and for � � �

.N � MN/ � �„.�/ � „
�1

Z
RC

�
�� � �
„

�
.N.�/ �N.�C „1�˛//Cd� D O.„1/;
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using that � 2 � has superpolynomial decay and N has polynomial growth. Hence, if we
assume that maxŒ0;�C„1�˛ � N 0 � �„ � C„�ˇ , by applying Proposition 3.4 to C�1„ˇ MN ,
we obtain the uniform bound

max
���
jN �N � �„j � max

���
j MN � MN � �„j CO.„1/ � O.„1�ˇ /: (4.6)

By (4.4), @�.N 1
„;�
� �„/ D �

n�„;�.H„/, so that by Proposition 4.2, there exists a con-
stant C such that

max
.x0;�/2A

max
���C„2=3

max
x2K

�n�„;�.H„/.x0 C �x/ � C„
�2=3:

Here we used that since V is smooth on ¹V � M º, A„ D ¹.x0 C �x; �/ W .x0; �/ 2 A;

x 2 K; � � �C „2=3º is a compact set of (4.5). Thus, if we apply bound (4.6) to � 7!
N 1
„;�
.x0 C �x/ with .˛; ˇ/ D .1

3
; 2
3
/, we obtain the claim.

Recall that N 1
�;�.x/ D �n#�.H„/.x; x/ with � D „2=3jrV.x0/j�1=3. Using Nota-

tions 3.1, by (3.9), we obtainZ
N 1
�;� .x0 C �U

�x/�„.� � �/d� D K
f„;�
x0;� .x; x/CO.„1/;

where the error is controlled locally uniformly for ¹.x0; �/; V .x0/ D �;rV.x0/ ¤ 0º

and x 2 Rn. Choosing U 2 SOn as in Theorem II.2, we conclude by Proposition 4.1 and
Corollary 4.3 that

jN 1
�;�.x0 C �U�x/ � #.�/Kedge.x; x/j D O.„1=3/

with the same uniformity.
Hence, choosing any cutoff # equal to 1 on Œ1; ��, this implies that the rescaled pro-

jection kernel (1.4) obeys the relevant asymptotics (on the diagonal) in the edge case; for
any compact sets A � ¹V D �I rV ¤ 0º and K � Rn,

sup
x02A

sup
x2K

jKx0;�.x; x/ �Kedge.x; x/j � C„
1=3:

To complete the proof of Theorem II.2, we can just adapt the proof of Proposition 3.6
using the previous estimates to obtain the relevant off-diagonal asymptotics. Note that in
this case, the scalings are such that we cannot argue that any derivative ofKx0;� converges
to that of Kedge.

Proof of Theorem II.2. Let us choose a cutoff # 2 C1c .RC; Œ0; 1�/ such that # � 1Œ0;��
and letK� D K

#�
x0;� D K

1Œ0;��
x0;� , where x0 2 A and � D „2=3jrV.x0/j�1=3. This holds for

any �2 Œ0;�� since we assume that the potential V � 0. We consider the counting function
for � � 0,

N 2
�;� .x; y/ D �

n
X
���

j��.x0 C �x/ � ��.x0 C �y/j
2;
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where .�; ��/ are normalised eigenpairs of H„. Like in the proof of Proposition 3.6, the
linear relationships (3.10) hold with „ �, so that if we proceed like in the proof of Corol-
lary 4.3 for N 2

�;� .x; y/, we conclude that for any compact sets A � ¹V D �I rV ¤ 0º

and K � Rn,
sup
x02A

sup
x;y2K

jKx0;�.x; y/ �Kedge.x; y/j � C„
1=3:

This completes the proof.

5. Mesoscopic fluctuations

The goal of this section is to prove Theorems III.1 and the Gaussian tail bounds of
Theorem I.2. The arguments consist in controlling the variance of a mesoscopic, or mac-
rocscopic linear statistics.

The first step is to study the model case of the free Laplacian in Section 5.1, which is
helpful to understand the general picture. In this case, we obtain an (optimal) functional
CLT as the intensity of the point process �!1, see Theorem III.2 below.

5.1. Central limit theorem for the free Laplacian point process

In this section, we study linear statistics of the determinantal point process X1 associated
with the free Laplacian, that is, with the operator

Kb;� D 1.�1;�2�.��/W .x; y/ 7! �n=2
Jn=2.�jx � yj/
.2�jx � yj/n=2

;

in the regime where �!1, or equivalently as the intensity �n!n
.2�/n

of the particle tends to
infinity, cf. (A.2). We obtain the following central limit theorem.

Theorem III.2. Suppose that n � 2 and let �2n D
!n�1
.2�/n

. For any g 2 H 1=2 \ L1.Rn/,
it holds in distribution as �!1,

X1;�.g/ WD
X1.g/ � �n!n=.2�/n

R
g

�n�.n�1/=2
!N0;†2.f /; where †2.g/D

Z
Rn
jyg.�/j2j�jd�:

As in Theorem III.1, the interpretation is that the random process X1;� converges in
the sense of finite-dimensional distributions as �!1 to a (centred) Gaussian field G
on Rn with correlation kernel

EG.f /G.g/ D
Z
yf .�/yg.�/j�jd�; f; g 2 H 1=2.Rn/:

Note that the process X1;� is exactly centred and the assumptions of Theorem III.2
are optimal in the sense that X1;� is a priori defined on L1.Rn/ and the asymptotic vari-
ance†2.g/ is finite if and only if g 2H 1=2. In dimension nD 1,Kb;�W.x;y/ 7!

sin.�jx�yj/
�jx�yj

is the sine-kernel from random matrix theory and the counterpart of Theorem III.2 is
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a classical result. In this case, the CLT holds without (re)normalisation; we refer to [59,84]
for different proofs.

The proof of Theorem III.2 relies on Corollary A.12 and the following lemma which
controls the asymptotics of the variance of X1;�.g/ for general test functions.

Lemma 5.1. For n � 1 and for every g 2 H 1=2.Rn/, it holds as �!1,

var X1.g/ D �
1

2
tr.Œg;Kb;��

2/ � �2n�
n�1†2.g/:

Proof. By definition,

tr.Œg;Kb;��
2/ D �

Z
jg.x/ � g.y/j2jKb;�.x; y/j

2dxdy: (5.1)

By Plancherel’s formula, it holds for any z 2 Rn,Z
jg.x/ � g.x C z/j2dx D 4

Z
jyg.�/j2 sin2

�� � z
2

�
d�:

Note that this identity makes sense for any g 2 H 1=2 and by a change of variable, this
implies that

tr.Œg;Kb;��
2/ D �4

Z
jyg.�/j2 sin2

�� � z
2

�
jKb;�.z; 0/j

2d�dz:

We can use Plancherel’s formula in the same way again using that z 7! Kbulk.z; 0/ is the
Fourier transform of .2�/�n=21j�j�� (see formula (A.1)). This yields

tr.Œg;Kb;��
2/ D

�1

.2�/n

Z
jyg.�/j2j1j� j�� � 1j�C�j��j

2d�d�:

Note that one has for any � 2 Rn,

1

2

Z
j1j� j�� �1j�C�j��j

2d�D�n
Z
.1j� j�1 �1j�C�=�j�1;j� j�1/d�D�njBn0;1 nB

n
j�j=�;1j:

This shows that

var X1.g/ D
�n

.2�/n

Z
jyg.�/j2jBn0;1 n B

n
j�j=�;1jd�:

Moreover, the function

r 2 Œ0;1/ 7!
jBn0;1 n B

n
r;1j

r

is clearly continuous and bounded and its value at 0 is

jBRn�1.0; 1/j D !n�1:

We conclude using the dominated convergence theorem: if g 2 H
1
2 .Rn/, one has pre-

cisely
R
jyg.�/j2j�jd� < C1, and the proof is complete.
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Remark 5.2. For the last step of the proof, we use the dominated convergence theorem;
in fact, one can show that the convergence is monotone, using the convexity of Euclidean
balls in Rn. It follows that, if g 2 L2 but g … H 1=2, then

var X1;�.g/ <18� but �1�n var X1;�.g/!C1 as �!1:

Remark 5.3. From the Bessel functions asymptotics (3.12) and the explicit formula for
the kernel Kb;�, one can derive an alternative proof of Lemma 5.1 on the more restrictive
class g 2 C 2c .R

n/.
Observe that, as �jx � yj ! 1, by (A.2),

jKb;�.x; y/j
2
D �n�1

4 cos2.�jx � yj � .nC 1/�=4/
.2�jx � yj/nC1

CO
� �n�2

jx � yjnC2

�
:

Then, by formula (5.1),

var X1.g/ D
1

2

Z
jg.x/ � g.y/j2jKb;�.x; y/j

2dxdy

and these asymptotics (and the Riemann–Lebesgue lemma) allow us to argue that for any
g 2 C 2c .R

n/, it holds as �!1,

var X1.g/ � �n�1
Z
jg.x/ � g.y/j2

.2�jx � yj/nC1
dxdy:

We recover the classical expression of the Sobolev–Slobodeckij W 1=2;2.Rn/-semi-
norm via a singular integral kernel, which is equivalent to the Fourier space definition of
the H 1=2-seminorm (see, for instance, [87, p. 155, Theorem 5]). In fact, together with
Lemma 5.1, this provides a comparison of the constants in the definitions

�2n†
2.g/ D

1

.2�/nC1

Z
jg.x/ � g.y/j2

jx � yjnC1
dxdy; (5.2)

where �2n D
!n�1
.2�/n

as in Theorem III.2.

Proof of Theorem III.2. Let us first assume that g 2H 1=2 \L1 \L1.Rn/. We make the
extra assumption that g 2 L1 and n � 2 in order to apply Corollary A.12. Since X1 has
constant intensity, EX1.g/ D

�n!n
.2�/n

R
g.x/dx and Lemma 5.1 gives the asymptotics of

var X1.g/ which diverge if g ¤ 0. Hence, by Corollary A.12, for any t 2 R, as N !1

EŒetX1;�.g/� D exp
�
t2
�†2.g/

2
CO.��

n�1
2 /
��
: (5.3)

In this case, the random variable X1;�.g/ does not only converge in distribution, but in
the sense of its Laplace transform, so that all its moments converge. Moreover, we can
easily remove the technical condition g 2 L1 by using the following inequality for any
t 2 R:

jEeitX
� EeitY

j � jt j
p

var.X � Y /
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for any two random variables X , Y defined on the same probability space. In particular,
if g 2 H 1=2 \ L1.Rn/ and � 2 C1c .R

n/, then by Lemma 5.1, it holds for any t 2 R,

lim sup
�!1

jEŒeitX1;�.g/� � EŒeitX1;�.�/�j D jt j†2.g � �/:

In addition, EŒeitX1;�.�/�! e�t
2†2.�/=2 as �!1 by (5.3), so that for any small � > 0,

choosing � in such a way that

†2.g � �/ D k� � gkH1=2 � �

(by density), this implies that for any t 2 R,

lim sup
�!1

jEŒeitX1;�.g/� � e�t
2†2.g/=2

j D .1C t2/�:

This establishes that the characteristic function

EŒeitX1;�.g/�! EŒeitN
0;†2.g/ � D e�t

2†2.g/=2

as �!1 for any fixed t 2 R and this implies Theorem III.2.

5.2. Mesoscopic commutator estimates

The goal of this section is to prove Theorem III.1. The core of the argument is to obtain the
asymptotics for the variance of smooth (mesoscopic) linear statistics of the free fermions
point processes. Recall that for a test function g 2 C1c .R

n/,

varT �x0;�X.g/ D �
1

2
tr.ŒT �x0;�g;…„;��

2/; (5.4)

where T �x0;�g D g.
��x0
�
/ and …„;� D 1�„2�CV��. Hence, the proof basically amounts

to proving the following expansion for the Hilbert–Schmidt norm of the commutator,

kŒT �x0;�g;…„;��k
2
J2 D � tr.ŒT �x0;�g;…„;��

2/:

Proposition 5.4. Let .�; V / satisfy (H) and let �W Œ0; 1� ! Œ0; 1� be a non-increasing
function such that „1�ˇ � �.„/ � „ˇ for some ˇ > 0 and let ı.„/ D „

�.„/
. There exists

˛ > 0 such that for any g 2 C1c .R
n/, as „ ! 0,

� tr.ŒT �x0;�g;…„;��
2/ D 2�n.� � V.x0//

.n�1/=2ı.„/1�n†2.g/CO.„˛ı.„/1�n/;

where �n and †2 are as in Theorem III.2 and the error term is locally uniform for
.x0; �/ 2 ¹.x; �/ 2 RnC1 W V.x/ < � < M º.

The proof of this result is divided into three steps and it is similar to the analysis
carried out in the previous sections. The first step (Proposition 5.5) is to study the com-
mutator between T �x0;�g and a smooth compactly supported function ofH„, using the fact
that such a spectral function is a pseudodifferential operator. The second step is to estimate
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the commutator with a projector over a spectral window of size „ (Proposition 5.6). This
allows us, in the last step, to replace the spectral projector …„;� by a Fourier integral
operator using Proposition 2.11 and a frequency cutoff at scale „. In this case, however,
recovering the true projector from its mollification does not require to use a Tauberian
theorem but is a direct consequence of Proposition 5.6.

Proposition 5.5. Let .�;V / satisfy (H) and �D ı.„/�1„, where ıW .0; 1�! .0; 1� satisfies
„ � ı.„/ � 1. Then, for any � 2 C1c ..�1;M/;R/, g 2 C1c .R

n/ and x0 2 Rn, it holds
as „ ! 0,

tr.ŒT �x0;�g; �.H„/�
2/ D O.ı.„/2�n/:

Proof. We can apply Proposition 2.12 with t D 0. In particular, since kR„;tkJ1 D O.„1/

and k�.H„/kJ1 D O.„�n/, we have

kŒT �x0;�g;R„;0�
2
kJ1 � 4kgk

2
L1kR„;0k

2
J1 D O.„1/;

jtr.ŒT �x0;�g; �.H„/�ŒT
�
x0;�

g;R„;0�/j � kŒT
�
x0;�

g; �.H„/�kJ1kŒT
�
x0;�

g;R„;0�kJ1

� 4kf k2L1k�.H„/kJ1kR„;0kJ1

D O.„1/:

This implies that

tr.ŒT �x0;�g; �.H„/�
2/ D tr.ŒT �x0;�g; I

�;a

„;0
�2/CO.„1/;

where a 2 S0 is a classical symbol and I �;a
„;0

denotes the pseudodifferential operator

I
�;a

„;0
W .x; y/ 7!

1

.2�„/n

Z
e

i
„
..x�y/��/a.x; y; �I „/d�:

Then, we have

tr.ŒT �x0;�g; I
�;a

„;0
�2/ D

�1

.2�„/2n

Z
.T �x0;�g.x/ � T

�
x0;�

g.y//2I
�;a

„;0
.x; y/I

�;a

„;0
.y; x/dxdy

D
�1

.2�„/2n

Z
.T �x0;�g.x/ � T

�
x0;�

g.y//2e
i
„
..x�y/�.���//

� a.x; y; �I „/a.y; x; �I „/d�d�dxdy:

We are in position to apply Proposition A.18, the special case of the stationary phase
lemma, in the variables .y; �/ keeping .x; �/ fixed. We obtain, for every ` 2 N,

tr.ŒT �x0;�g; I
�;a

„;0
�2/ D

�1

.2�„/n

Z � X
j˛j<`

.i„/j˛j@˛y@˛�
˛Š

..T �x0;�g.x/ � T
�
x0;�

g.y//2

� a.x; y; �I „/a.y; x; �I „//jyDx;�D�CR`.x; �/
�

dxd�;

where the errorR`.x; �/DO.„`��`/DO.ı`/ is compactly supported in ¹jx � x0j � C�;
j�j � C º for some C > 0 depending on the support of g.
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To conclude the proof, it remains to take ` D 2. Indeed, observe that the terms k D 0
and k D 1 in the sum vanish, and it remains

�1

.2�„/n

Z
R2.x; �/dxd� D O.ı�nC2/:

Proposition 5.6. Let .�; V / satisfy (H) and g 2 C1c .R
n;R/. Let �W .0; 1�! .0; �0� be

a small („-dependent) parameter. It holds as „ ! 0,

kT �x0;�g1H„2Œ��„;�C„�T
�
x0;�

gkJ1 D O.�n„1�n/

uniformly for .x0; �/ 2 ¹.x; �/ 2 RnC1 W � < M; supp.T �x;�0g/ � ¹V < �ºº.

Proof. Let us fix .x0; �/ such that V.x0/ < �. By functional calculus, we can bound

1H„2Œ��„;�C„� � �.„
�1.H„ � �//�.H„/

by choosing appropriate cutoff � 2 C1c .R;RC/ with supp� � .V .x0/;M/ and a smooth
mollifier � such that supp y� � Œ��; �� (for a small � > 0 so that one can apply Proposi-
tion 2.12).

For any function # WRn!RC measurable with compact support, T �x0;�g#.H„/T
�
x0;�

g

is a positive trace-class operator. Hence, by Proposition A.4,

kT �x0;�g1H„2Œ��„;�C„�T
�
x0;�

gkJ1 � trŒT �x0;�g�.„
�1.H„ � �//�.H„/T

�
x0;�

g�

D trŒT �x0;�g
2�.„�1.H„ � �//�.H„/�:

Since
�.x/ D

1
p
2�

Z
eix�t
y�.t/dt;

by Proposition 2.12, we have

�.„�1.H„ � �//�.H„/.x; y/ D
1=
p
2�

.2�„/n

Z
e

i
„
.�.t;x;�/�y���t�/a.t; x; y; �I „/y�.t/d�dt

COJ1.„
1/;

where the error is uniform for all � 2 R and a 2 S0 is a classical symbol. This implies
that

kT �x0;�g1H„2Œ��„;�C„�T
�
x0;�

gkJ1

�
1

.2�„/n

Z
e

i
„
.‰.t;x;�/�t�/.T �x0;�g.x//

2b.t; x; �I „/d�dtdx CO.„1/; (5.5)

where ‰ is as in Proposition 3.1 and

b.t; x; �; „/ D a.t; x; x; �I „/
y�.t/
p
2�

has compact support.
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We may assume that the parameter �0 is sufficiently small so that

� supp.T �x0;�g/ � ¹V < �º for any � < �0,

� since supp � � .V .x0/; M/, .r; t/ 7! b.t; x; r!I „/ has compact support in R�C �
Œ��; �� for any x 2 supp.T �x0;�g/, ! 2 S

n�1 and „ 2 .0; 1�.

This is exactly the setting of the proof of Proposition 3.2. Thus, we can make a change
of variables � D r!, where .r; !/ 2 RC � Sn�1 and apply the stationary phase method
to integral (5.5) in the variables .r; t/ 2 R�C � Œ��; �� for a fixed .x; !/ 2 Rn � Sn�1.
By (3.8), the only critical point is .r?; 0/, where r?.x/ WD

p
� � V.x/ and the Hessian of

the phase is non-degenerate with det Hess jr? D 4r
2
? . Then, by Proposition A.15, there

exists a classical symbol s 2 S0 such that

1

2�„

Z
e

i
„
.‰.t;x;�/�t�/b.t; x; �I „/d�dt D r?.x/n�2s.xI „/COx.„

1/;

where the error is controlled uniformly for all x 2 supp.T �x0;�g/. By (5.5), this yields the
bound

kT �x0;�g1H„2Œ��„;�C„�T
�
x0;�

gkJ1 �
�n=2�1

.2�„/n�1

Z
.T �x0;�g.x//

2s.xI „/dx CO.„1/:

Since kT �x0;�gk
2
L2
D O.�n/, and maxx2¹V��º js.xI „/j � C for a constant (independent

of „), this completes the proof.

Let f„;� be as in Notations 3.1 with # D 1 on a neighbourhood of �. If we assume
for now the asymptotics of the quantity kŒT �x0;�g; f„;�.H„/�k

2
J2

as „ ! 0, we can prove
Proposition 5.4 and then Theorem III.1. The remaining parts of the proof are given in the
next section.

Proof of Proposition 5.4. Let us denote G D T �x0;�g viewed as a (bounded) self-adjoint
multiplication operator. By the Cauchy–Schwarz inequality, we can compare

jtr.ŒG;…„;��2/ � tr.ŒG; f„;�.H„/�2/j

D jtr.ŒG;…„;� � f„;�.H„/�ŒG;…„;� C f„;�.H„/�/j

� kŒG;…„;� � f„;�.H„/�k
2
J2 C 2kŒG;…„;� � f„;�.H„/�kJ2kŒG; f„;�.H„/�kJ2 :

Hence, Proposition 5.4 follows if we can show there exists a small ˛ > 0 such that
as „ ! 0,

kŒG;f„;�.H„/�kJ2 D 2�
2
n .�� V.x0//

.n�1/=2.2�/�nC1ı1�n†2.f /CO.ı1�n„˛/ (5.6)

and
kŒG;…„;� � f„;�.H„/�k

2
J2 D O.„2˛ı1�n/: (5.7)

Asymptotics (5.6) follows by combining Propositions 5.7 and 5.8 below by using that

kŒG; f„;�.H„/�kJ2 D 2.tr.f
2
„;�.H„/G

2/ � tr..f„;�.H„/G/2//:

Note that the leading term (of order ı�n) cancels in the expansions of both terms exactly.
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To prove estimate (5.7), observe that since supp.#/ � Œ0;M � with # D 1 on a neigh-
bourhood of �,

1.�1;�� � f„;� D g„;� C �;

where

g„;� D #.1.�1;�� � ~� � �„/ and � 2 C1c ..�1;M/;RC/:

In particular, by Proposition 5.5, this implies that

kŒG;…„;� � f„;�.H„/�k
2
J2 � 2kŒG; g„;�.H„/�k

2
J2 C 2kŒG; �.H„/�k

2
J2

� 2kGg2
„;�.H„/GkJ1 CO.ı�nC2/: (5.8)

Since ~ D 1 on Œ0;M � and � 2 S , we can bound for any 
 > 0,

g2
„;� � 1Œ��„1�
 ;�C„1�
 � CO.„1/:

Thus, one has

Gg2
„;�.H„/G � G.1Œ��„1�
 ;�C„1�
 �.H„/COJ1.„

1//G:

Then, since the operator norm of G is bounded, by the triangle inequality,

kGg2
„;�.H„/GkJ1 �

X
k

kG1Œ�k�„;�kC„�.H„/GkJ1 CO.„1/;

where �k is a uniform mesh of the interval Œ� � „1�
 ; �C „1�
 � with spacing 2„.
Hence, by Proposition 5.6, we conclude that

kGg2
„;�.H„/GkJ1 D O.�n„1�
�n/ D O.„ˇ�
ı1�n/:

Thus, if 
 > 0 is small enough (compared to ˇ), by (5.8), this completes the proof of
estimate (5.7) for some ˛ > 0.

Proof of Theorem III.1. According to the convention of Theorem III.1, using (5.4) to-
gether with Proposition 5.4, we obtain

var X„;�.g/ D ��2n ı.„/n�1 varT �x0;gX.g/ D †2.g/CO.„˛/:

In dimension n � 2, we are therefore in a position to apply Corollary A.12. Indeed, up to
normalisation, X„;�.g/ corresponds to the linear statistic X.T �x0;�g/, where

kT �x0;�gkL1 � kgkL1 :

We conclude that as „ ! 0,

X„;ı.g/) †2.g/1=2N0;1;

and the convergence holds in the sense of the Laplace transform.
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5.3. Mesoscopic commutator estimates with a regularised kernel

The goal of this section is to obtain asymptotics (5.6). Note that we can split

kŒT �x0;�g; f„;�.H„/�kJ2 D tr.f 2
„;�.H„/.T

�
x0;�

g/2/ � tr..f„;�.H„/T �x0;�g/
2/:

We obtain separately the asymptotics of both terms in expansion (5.4) and show that
the leading terms cancel while computing the correction term. Let us introduce the useful
notation

g� WD �
�nT �x0;�g for � 2 .0; 1�:

Proposition 5.7. Recall Notations 3.1 and choose # D 1 on a neighbourhood of �. Let
�W Œ0;1�! Œ0;1� be a non-increasing function such that ı.„/D „

�.„/
satisfies ı.„/DO.„ˇ /

for some ˇ 2 .0; 1�. For any g 2 C1c .R
n/ such that supp.T �x0;�g/ � ¹V � �0º for any

� � �.1/, it holds for any 0 < ˛ < ˇ as „ ! 0,

tr.f 2
„;�.H„/T

�
x0;�

g/ D
jSn�1j

2.2�ı/n

Z
g�.x/#.�/

2.� � V.x//.n�2/=21���dxd�

CO.„˛ı1�n/;

where the error term is locally uniform for .x0; �/ 2 ¹.x; �/ 2 RnC1 W V.x/ < � < M º.

Proof. As in formula (3.4), it holds

f 2
„;�.H„/ D

1

2�„2

Z
~�.�1/~�.�2/.I

�;a

„;t1Ct2
COJ1.„

1//e�
i
„
.t1�1Ct2�2/

� y�.t1/y�.t2/d�1d�2dt1dt2;

where this estimate is uniform for �1; �2 2 supp.~/ and t1; t2 2 Œ�; �; � �. Making a change
of variables

t D t1 C t2; s D
t1 � t2

2
; � D

�1 C �2

2
; � D �1 � �2;

we obtain that

tr.f 2
„;�.H„/T

�
x0;�

g/ D
1

2�„2.2�ı/n

Z
e

i
„
.�.t;x;�/���x�t��s�/g�.x/a.x; x; �; t I „/

� ��.t; ƒ/dtdxd�dƒCO.„1/;

where, correspondingly, we let

��.t; ƒ/ D y�
� t
2
C s

�
y�
� t
2
� s

�
~
�
�C

�

2

�
~
�
� �

�

2

�
1j�=2j����; ƒ D .s; �; �/:

Let us make a change of variable �  � as in Proposition 3.1 and decompose � in
polar coordinates: � D r!, where .r; !/ 2 RC � Sn�1. We obtain

tr.f 2
„;�.H„/T

�
x0;�

g/ D
1

2�„2.2�ı/n

Z
e

i
„
.t.r2Cg.t;x/CV.x/��/�s�/g�.x/b.t; x; r; !I „/

� ��.t; ƒ/dtdxdrd!dƒCO.„1/;
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where b 2 S0 is a classical symbol given by

b.t; x; r; !I „/ D a.x; x; �.t; x; r!/; t I „/jJacŒ�  r!�.t; x; r; !/j:

We now apply the stationary phase method as in the proof of Proposition 3.2 in the
variable .r; t/ 2 Œc;1/ � Œ�2�; 2�� for a fixed .x; !; ƒ/ 2 supp.g�/ � Sn�1 � R3. The
equations for the critical point(s) are given by (3.8) (upon replacing x0 by x). In particular,
we can assume that supp.g�/ � ¹V � �0º for any � � �.1/ and introduce a cutoff � 2
C1.R; Œ0; 1�/ such that �.�/ D 0 for � � �0 and �.�/ D 1 for � 2 supp.#/. Then, for
� 2 supp.�/, the (unique) critical point is given by .r; t/ D .r?.x; �/; 0/, where

r?.x; �/ WD
p
� � V.x/: (5.9)

By Proposition A.15, we obtain

1

2�„

Z
e

it
„
.r2Cg.t;x/CV.x/��/b.t; x; r; !I „/��.t; ƒ/dtdr

D �.�/d.x; �; !I „/��.0;ƒ/CO.„1/; (5.10)

where d 2 S0 is again a classical symbol whose principal part is given by

d0.x; �; !/ D
1

2r?.x; �/
b0.0; x; r?.x; �/; !/ D

1

2
a0.x; x; r?.x; �/!; 0/r?.x; �/

n�2:

Here we used that according to (3.3),

�.0; x; �/ D � and JacŒ�  ��.0; x; �/ D 1:

Given the explicit formula for a0, d0 is independent of ! and by (5.9), it is given by

d0.x; �/ D
1

2
#.V .x/C r?.x; �/

2/2r?.x; �/
n�2
D
1

2
#.�/r?.x; �/

n�2: (5.11)

Moreover, the error in (5.10) is uniform for all x 2 supp.g�/, ! 2 Sn�1 and locally
uniform for ƒ 2 R3. Hence, we conclude that

tr.f 2
„;�.H„/T

�
x0;�

g/ D
1

„.2�ı/n

Z
e�is�=„g�.x/d.x; �; !I „/��.0;ƒ/�.�/dxd!dƒ

CO.„1/:

Next, let us observe that because of the cutoff � (�.�/ D 0 for � � �0 with �0 > 0
and ~ D 1 on Œ0;M �)

��.0;ƒ/�.�/ D y�.s/
21j�=2j�����.�/:

This allows us to compute explicitly the integral with respect to � . We obtain

tr.f 2
„;�.H„/T

�
x0;�

g/ D
1

„.2�ı/n

Z
sin.2.� � �/s=„/

s=2„
g�.x/d.x; �; !I „/

y�.s/2�.�/1���dsdxd!d�CO.„1/:



Universality for free fermions and the local Weyl law 3989

We can now compute the integral with respect to .�; s/ using Proposition A.19. Since
� 7! d.x; �; !I „/�.�/1��� is L1c (uniformly for ! 2 Sn�1 and x 2 supp.g�/) and
y�2 2 C1c .R/ with y�.0/ D 1p

2�
, this implies that for any 
 2 .0; 1�,

tr.f 2
„;�.H„/T

�
x0;�

g/ D
1

.2�ı/n

Z
g�.x/d.x; �; !I „/�.�/1���dxd!d�CO
 .ı

1�
 /:

Here we also used that kg�kL1.Rn/ <1 is independent of � > 0. Since ı � „ˇ , the error
term is of order „˛ for any 0< ˛ <ˇ and we can also replace the symbol d by its principal
part (5.11) up to a negligible error. Since �.�/D 1 for � 2 supp.#/ and d0 is independent
of ! 2 Sn�1, this completes the proof.

Proposition 5.8. Let �W Œ0; 1� ! Œ0; 1� be a non-increasing function such that „1�ˇ �
�.„/ � „ˇ for some ˇ > 0 and let ı.„/ D „

�.„/
. There exists ˛ > 0 such that for any

g 2 C1c .R
n/,

tr..f„;�.H„/T �x0;�g/
2/ D

jSn�1j

2.2�ı/n

Z
g�.x/

2#.�/.� � V.x//.n�2/=21���dxd�

� �2n#.�/ı
1�n.� � V.x0//

.n�1/=2†2.f /CO.ı1�n„˛/;

where �n and †2.f / are as in Theorem III.2 and the error term is locally uniform for
.x0; �/ 2 ¹.x; �/ 2 RnC1 W V.x/ < � < M º.

Recall the notations from (2.5):

I
�;a

„;t
.x;y/D

1

.2�„/n

Z
e

i
„
 .t;x;y;�/a.t;x;y; �I „/d�;  .t;x;y; �/ WD �.t;x; �/� y � �:

The proof requires the following basic estimates on the decay of this kernel.

Lemma 5.9. Suppose that � � „1�ˇ for ˇ 2 .0; 1�. Suppose that the symbol .t; x; y; �/ 7!
a.t;x;y;�I„/ is supported on ¹t 2 Œ��;��;x;y 2Bn0;�; � 2K W jt j �C�º, where K b Rn n
¹0º and C is a large enough constant. Then, I �;a

„;t
.x; y/ D O.„1/ for .t; x; y/ 2 supp.a/.

Proof. By (3.2), we have

@� .t; x; y; �/ D .x � y/C 2t� CO.t2/:

Hence, since j�j > c, jt j � C� and jx � yj � 2� on supp.a/, one has j@� .t; x; y; �/j � �
and for any multi-index ˛ with j˛j � 1, j@˛

�
 .t; x; y; �/j � C˛�. In particular, for a multi-

index ˛ with j˛j D 1, the differential operator

L� W u 7! @˛�

� u

@˛
�
 

�
satisfies for u 2 C1c .R

n/ and every k 2 N,

kLk
�ukC0 �

Ck

�k
kukCk :
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By repeated integration by parts, we obtain for every k 2 N,Z
e

i
„
 .t;x;y;�/a.t; x; y; �I „/d� D .i„/k

Z
e

i
„
 .t;x;y;�/Lk

� a.t; x; y; �I „/d�:

Since a 2 S0 is supported in K , the right-hand side is of order Ok..„=�/
k/. Because we

assume that � � „1�ˇ for ˇ > 0, this proves that

I
�;a

„;t
.x; y/ D O.„1/:

Proof of Proposition 5.8. The argument splits into several parts: a reduction step, a first
application of the stationary phase, a rescaling, and then the actual computation of the
leading and subleading terms.

5.3.1. Reduction steps. We can assume that � � �.1/ is small enough so that supp.g�/ �
Bn0;c for all � 2 .0; �.1/� and V.x/ < �0 for all x 2 Bn0;c .

Using representation (3.4) and proceeding as in the proof of Proposition 5.5 for t 2
Œ��; ��, we obtain

tr..f„;�.H„/g�/2/ D
�2n

2�„2

Z
tr.g�I

�;a

„;t1
g�I

�;a�

„;t2
/e�it1�1=„�it2�2=„~�.�1/~�.�2/

� y�.t1/y�.t2/dt1dt2d�1d�2 CO.„1/;

where I �;a�
„;t

denotes the adjoint of I �;a
„;t

and a 2 S0 is a classical symbol whose principal
part satisfies

a0.t; x; y; �/ D #
�
V
�x C y

2
C j�j2

��
COx;y;�.t/; x; y 2 Bn0;c ; � 2 Rn:

Note that we used that the operator f„;�.H„/ is self-adjoint, though I �;a
„;t

is not. Hence,
the only relevant contribution to the trace in question is given by the oscillatory integral

I„ D
1

2�„2.2�ı/2n

Z
e

i
„
ˆ.x;y;ƒ1;ƒ2/A.x; y;ƒ1; ƒ2/dxdydƒ1dƒ2;

where
ƒ1 D .t1; x1; �1/; ƒ2 D .t2; x2; �2/

and

ˆ.x; y;ƒ1; ƒ2/ D  .t1; x; �1/ � y � �1 � t1 � �1 �  .t2; x; �2/C y � �2 C t2 � �2;

A.x; y;ƒ1; ƒ2/ D g�.x/g�.y/a.t1; x; y; �1I „/a.t2; y; x; �2I „/

� ~�.�1/~�.�2/y�.t1/y�.t2/:

Observe that there is a constant c such that the amplitude A is supported in

¹t 2 Œ��; ��; x; y 2 Bn0;c�; � 2Kº
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for a K b Rn n ¹0º (since #.V.x//D 0 for all x in a neighbourhood of supp.g�/). Hence,
by Lemma 5.9, we may add a cutoff �. t1Ct2

2�1��
/, where � 2 C1c .R; Œ0; 1�/ is an even func-

tion which equals to 1 on a neighbourhood of 0 and � > 0 is a small parameter, inside the
integral J„ up to an error which is O.„1/. Indeed, if j t1Ct2

2�
j � C , then either jt1j � C� or

jt2j � C�, and in either case Lemma 5.9 applies. The choice of cutoff �. t1Ct2
2�1��

/ is tuned
for the sequel of the argument. In summary, we have

I„ D
1

2�„2.2�ı/2n

Z
e

i
„
ˆ.x;y;ƒ1;ƒ2/B.x; y;ƒ1;ƒ2/dxdydƒ1dƒ2 CO.„1/; (5.12)

where

B.x; y;ƒ1; ƒ2/ D g�.x/g�.y/a.t1; x; y; �1I „/a.t2; y; x; �2I „/

� ��

��1 C �2
2

; �1 � �2

�
‚�

� t1 C t2
2

; t1 � t2

�
;

��.�; �/ D ~
�
�C

�

2

�
~
�
� �

�

2

�
1j�=2j����;

‚�.t; s/ D y�
�
t C

s

2

�
y�
�
t �

s

2

�
�.t���1/:

In preparation for the stationary phase, we introduce the new variables

r! D
�1 C �2

2
; � D �1 � �2; t D

t1 C t2

2
; s D t1 � t2; �D

�1 C �2

2
; � D �1 � �2;

where .r; !/ 2 RC � Sn�1, and we let

‰.t; s; r; �; x; !; �/ D �
�
t C

s

2
; x; r! C

�

2

�
� �

�
t �

s

2
; x; r! �

�

2

�
� s�:

By making this change of variables in (5.12), one has

I„ D
1

„.2�ı/2n

Z
e�

i
„
.� �yCt�/g�.x/g�.y/L„.ƒ/��.�; �/dƒd� CO.„1/; (5.13)

where

L„.ƒ/ WD
1

2�„

Z
e

i
„
‰.s;r;ƒ/d.s; r;ƒI „/‚�.t; s/dsdr; ƒ D .t; �; x; y; !; �/

and we set

d.s; r;ƒI „/ D rn�1a
�
t C

s

2
; x; y; r! C

�

2
I „

�
a
�
t �

s

2
; y; x; r! �

�

2
I „

�
:

Remark 5.10. We can also write integral (5.13) as

I„ D
1

2�„2.2�ı/2n

Z
e

i
„
.‰.t;s;r;�;x;!;�/�t�/g�.x/M„.t; s; r; �; x; !/

� ��.�; �/‚�.t; s/dtdsdrd�dxd!d�d� CO.„1/;
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where
M„.t; s; r; �; x; !/ WD

Z
e�i� �y=„g�.y/d.s; r;ƒI „/dy:

The point is that since d 2 S0 and g 2 C1, by making repeated integration by parts, we
obtain if j�j � z for some z > 0, then for every k 2 N0,

M„.t; s; r; �; x; !/ D Ok.z
�k
„
k��n�k/

uniformly for .t; s/ 2 Œ�2�;2��, x 2Bn0;c and r! 2K . Recall that ıD„=� and we assume
that ı � „ˇ where ˇ > 0. Hence, we conclude that M„ D O.„1/ if j�j � ı1�� for any
� > 0. This argument allows us to include at will a cutoff �.j�jı��1/ inside integral (5.13),
where again � 2 C1c .R; Œ0; 1�/ is even and equal to 1 on a neighbourhood of 0. Hence,

tr..f„;�.H„/; g�/2/ D I 0
„
CO.„1/;

where

I 0
„
D

1

„.2�ı/2n

Z
e�

i
„
.� �yCt�/g�.x/g�.y/L„.ƒ/��.�; �/�.j�jı

��1/dƒd�: (5.14)

5.3.2. Stationary phase. We now apply the stationary phase method to the oscillatory
integral L„ with respect to the variables .r; s/, keeping ƒ D .t; �; x; y; !; �/ fixed. The
equations for the critical point(s) are8̂<̂
:
0 D @r‰.s; r;ƒ/ D ! �

�
@��

�
t C

s

2
; x; r! C

�

2

�
� @��

�
t �

s

2
; x; r! �

�

2

��
;

0 D @s‰.s; r;ƒ/ D
1

2

�
@t�

�
t C

s

2
; x; r! C

�

2

�
C @t�

�
t �

s

2
; x; r! �

�

2

��
� �:

By (3.2), using that�
t C

s

2

�ˇ̌̌
r! C

�

2

ˇ̌̌2
�

�
t �

s

2

�ˇ̌̌
r! �

�

2

ˇ̌̌2
D

�
r2 C

j�j2

4

�
s C 2rt � � !

and considering even/odd terms in �, the phase is the following expansion for small times:

‰.s; r;ƒ/D x � � C s
�
V.x/C r2C

j�j2

4
� �

�
C 2rt� �! C sO.&/C � �O.&2/; (5.15)

where & D max¹jt j; jsjº � 2� . Similarly, by expanding the previous equations for small
.t; s/, we obtain8<:0 D @r‰.s; r;ƒ/ D 2rs C 2! � .t� C sO.&/C �O.&2//;

0 D @s‰.s; r;ƒ/ D V.x/C r
2
C
j�j2

4
� �CO.&/:

(5.16)

Since r � c0� � and we may assume that j�j � c for any constant c (cf. Remark 5.10),
these equations have the following consequences:
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� If the parameter � � �0, then the second equation has no solution r � c. In this case,
there is no critical point and by Proposition A.16, we conclude that I„ D O.„1/. We
can therefore include a cutoff �.�/ in the integrand of (5.29), where � 2 C1.R; Œ0; 1�/
satisfies �.�/ D 0 for � � �0 and �.�/ D 1 for � 2 supp.#/.

� For � � �0, (5.16) has a unique solution; rc > 0 and sc have the following expansion:8̂<̂
:rc.ƒ/ D

r
� � V.x/ �

j�j2

4
CO.&/;

sc.ƒ/ D �r
�1
c t� � !.1CO.&//:

(5.17)

In particular, the critical point at t D 0 is explicit,

.rc;0; sc;0/ D
�r

� � V.x/ �
j�j2

4
; 0
�
;

as well as the corresponding Hessian matrix. Indeed, using the first equation in (5.16), we
compute ´

@rr‰.t; sc; rc; �; x; !; �/jtD0 D Œsc CO.&/�tD0 D 0;

@sr‰.t; sc; rc; �; x; !; �/jtD0 D Œ2rc CO.&/�tD0 D 2rc;0 > 0:

This shows that the Hessian is non-degenerate at t D 0 and its determinant is given
by †2c;0 D 4r2c;0. This property is preserved in a small neighbourhood of t D 0 (which
clearly contains supp.‚�/), so that we can apply Proposition A.15 to the integral L„, and
we obtain

L„.ƒ/ D e
i
„
ˆ.ƒ/e.ƒI „/‚�.t; sc/;

ˆ.ƒ/ WD ‰.t; sc; rc; �; x; !; �/;

where e 2 S0 is again a classical symbol with principal part at time t D 0 along the
diagonal .x D y/,

e0.ƒ0/ D †
�2
c;0 d0.0; rc;0; ƒ0/

D
1

2
rn�2c;0 .�; x; �/#

�
V.x/C

ˇ̌̌
rc;0! C

�

2

ˇ̌̌2�
#
�
V.x/C

ˇ̌̌
rc;0! �

�

2

ˇ̌̌2�
; (5.18)

where ƒ0 D .0; �; x; x; !; �/.
Let us observe that sc D � � O.t/ and therefore the control parameter & D t in the

regime that we consider. By (5.15) and (5.17), this implies that the new phase has the
following expansion for small t ,

ˆ.ƒ/ D x � � C 2rc t� � ! C scO.t/C � �O.t
2/

D x � � C 2
p
� � V.x/ t� � .! CO.t/CO.j�j2//:

(5.19)

Going back to formula (5.14), we conclude that

I 0
„
D

1

„.2�ı/2n

Z
e�

i
„
.� �yCt��ˆ.ƒ//g�.x/g�.y/e.ƒI „/‚�.t; sc/

� ��.�; �/�.�/�.j�jı
��1/dƒd� CO.„1/: (5.20)
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5.3.3. (Re)scaling. Let us first observe that because of the cutoff � �1Œ�0;1/ with�0>�
and ~ D 1 on Œ0;M �, we have

��.�; �/�.�/ D 1j�=2j�����.�/:

This allows us to compute the integral with respect to � in (5.20), since � does not appear
in ƒ,

1

2„

Z
e�it�=„��.�; �/d��.�/ D 1����.�/

sin.2.� � �/t=„/
t

:

This implies that

I 0
„
D

2

.2�ı/2n

Z
e

i
„
.ˆ.ƒ/�� �y/g�.y/g�.x/e.ƒI „/‚�.t; sc/

sin.2.� � �/t=„/
t

� �.�/�.j�jı��1/1���dƒCO.„1/: (5.21)

We can now make the following change of variables in integral (5.21):

y  x0 C �y; x  x0 C �x; t  �t; �  ı�;

where we recall that ı D „

�
. In particular, by expansion (5.19), the phase satisfies for

jt j � ��� and j�j � ı�� ,

ˆ.�t; ı�; x0 C �x; x0 C �y; !; �/ � ı� � .x0 C �y/

„

D .x � y/ � � C 2r?.x0; �/t� � .! CO.ı2�2�//C tO.�ı��/;

where r? is given by (5.9).
Moreover, by (5.18) Taylor expansions (in a neighbourhood of t D 0, � D 0 and the

diagonal x D y), one obtains

e0.t; ı�; x0 C �x; x0 C �y; !; �/

D
1

2
rn�2c;0 .ı�; x�; �/#

�
V.x�/C

ˇ̌̌
rc;0! C ı

�

2

ˇ̌̌2�
#
�
V.x�/C

ˇ̌̌
rc;0! � ı

�

2

ˇ̌̌2�
COƒ.jt j/COƒ.�jx � yj/

D
1

2
r?.x�; �/

n�2#.V.x�/C r?.x�; �/
2/2 COƒ.ı

2�2�/COƒ.jt j/

COƒ.�jx � yj/;

where the linear terms in � exactly cancel and we use the shorthand notation

x� D x0 C �x:

Finally, since y� is even with y�.0/ D 1p
2�

, it holds by (5.17),

‚�.�t; sc/ D
1

2�
.1CO.t2�2//�.t��/:
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We also emphasise that these expansions are all uniform for all x; y 2 supp.g/,
! 2 Sn�1, � 2 supp.�/ and .x0; �/ 2 A. Altogether, this implies that as „ ! 0,

e�
i
„
.ˆ.�t;ı�;x0C�x;x0C�y;!;�/�ı� �.x0C�y//‚�.�t; sc/e.�t; ı�; x0 C �x; x0 C �y; !; �I „/

D
1

4�
ei.x�yC2r?.x0;�/t!/��

�
F.x�; �/C ‡1I�;ı.ƒ/C t‡2I�;ı.ƒ/

C .x � y C 2r?.x0; �/t!/ � ‡3I�;ı.ƒ/
�
�.t��/;

where the main term is given by

F.x; �/ D r?.x; �/
n�2#

�
V
�x C y

2

�
C r?.x; �/

2
�2
D r?.x; �/

n�2#.�/2

according to (5.9), and the error terms are smooth functions such that

‡1I�;ı.t; �; x; y; !; �/ D Oƒ.ı
2�2�/COƒ.„/;

‡2I�;ı.t; �; x; y; !; �/ D Oƒ.�
1��/;

‡3I�;ı.t; �; x; y; !; �/ D Oƒ.�/:

In particular, these errors (as well as their derivatives) are controlled uniformly for � 2
supp.�/, ! 2 Sn�1, x; y 2 supp.g/, .x0; �/ 2 A, jt j � ��� and j�j � ı�� .

According to (5.21), this allows us to rewrite the main contribution to I 0
„

as

I 00
„
D

1=2�

..2�/2ı/n

Z
ei.x�yC2r?.x0;�/t!/��g.x/g.y/

� ŒF .x�; �/C ‡1I�;ı.ƒ/C t‡2I�;ı.ƒ/C .x � y C 2r?.x0; �/t!/ � ‡3I�;ı.ƒ/�

�
sin.2.� � �/t=ı/

t
�.t��/�.j�jı�/�.�/1���dƒ: (5.22)

By Proposition A.19, we argue that the error term ‡1I�;ı does not contribute signific-
antly to the integral I 00

„
. Indeed, the function

.�; t/ 7! ‡1I�;ı.ƒ/�.t�
�/�.�/

is smooth with respect to t , uniformly bounded with respect to � with

k.�; t/ 7! ‡1I�;ı.ƒ/�.t�
�/�.�/kL1C2

C k.�; t/ 7! �.�/t
�1@t .‡1I�;ı.ƒ/�.t�
�//kL1L1 � C�

�
�.ı2�2� C „/;

uniformly for ! 2 Sn�1, x; y 2 supp.g/, .x0; �/ 2 A and j�j � ı�
 . Since one has
„1�ˇ � �, ı � „ˇ and Z

�.j�jı�/d� D O.ı�n�/;

by choosing � small enough (depending only on the dimension n and on 0 < ˛ < ˇ), this
shows that the contribution of ‡1I�;ı in (5.22) is O.ı1�n„˛/.

Similarly,
k.�; t/ 7! �.�/‡2I�;ı.ƒ/�.t�

�/kL1H1 � C�
1�2� ;
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so that by Proposition A.17, the contribution of ‡2I�;ı in (5.22) is O.�1�2�ı�nC1�n�/,
which is O.ı�nC1„˛/ for small ˛ > 0.

Finally, note that we have tuned the pre-factor of ‡3I�;ı so that we can perform integ-
ration by parts with respect to �. Hence, the contribution of ‡3I�;ı in (5.22) is given by

ı=2�

..2�/2ı/n

Z
ei.x�yC2R.x0;�/t!/��g.x/g.y/ div� ‡3I�;ı.ƒ/

sin.2.� � �/t=ı/
t

� �.t��/�.j�jı�/�.�/1���dƒ:

Because of the change of variable �  ı� that we performed,

jdiv�‡3I�;ı.ƒ/j D O.�ı/

and

k.�; t/ 7! div� ‡3I�;ı.ƒ/�.t��/�.�/kL1C2

C k.�; t/ 7! �.�/t
�1@t .div� ‡3I�;ı.ƒ/�.t��//kL1L1 � Cı�
1�
� :

By Proposition A.19, we conclude that the contribution of ‡3I�;ı in (5.22) is also of order
O.ı�nC1„˛/ for small ˛ > 0 with the required uniformity.

In summary, as „ ! 0,

I 00
„
D

1=2�

..2�/2ı/n

Z
ei.x�yC2r?.x0;�/t!/��g.y/g.x/h.x�; y�; �/

sin.2.� � �/t=ı/
t

� �.t��/�.j�jı�/�.�/1���dƒCO.ı1�n„˛/: (5.23)

5.3.4. Leading term. Let us denote

F.�; x; �I �/ D
g.x/�.�/

.2�/n

Z
e�iy��h.x�; y�; �/g.y/dy

D
g.x/�.�/

.2�/n
r?.x�; �/

n�2

Z
yg.� C ��/cvx� .�/d�;

where
vx W y 7! #

�
V
�x C y

2

�
C r?.x0; �/

2
�2
:

Since g 2 C1c .R
n/ and vx 2 C1c .R

n/ for all x 2 Bn0;c and � 2 supp.�/, we have F 2
S0.Rn �RnC1/ with compact support with respect to .�; x/ and

Fk.�; x; �/ D Ok.j�j
�1/

as �!1 for every k 2N0. In particular, the leading term on the right-hand side of (5.23)
satisfies

I 00
„
D

1=2�

.2�ı/n

Z
ei.xC2r?.x0;�/t!/��F.�; x; �I �/

sin.2.� � �/t=ı/
t

�.t��/

� �.j�jı�/1���d�dtdxd�d! CO.„1/:



Universality for free fermions and the local Weyl law 3997

Note that we used the decay of F to remove the cutoff �.j�jı�/ up to another O.„1/

error. We can now compute the integral with respect to � by Fourier’s inversion formula,
and we obtain for any jt j � ��� and x 2 supp.g/,Z

ei.xC2r?.x0;�/t!/��F.�; x; �I �/d�

D g.x/�.�/h.x�; .x C 2r?.x0; �/t!/�; �/g.x C 2r?.x0; �/t!/

D g.x/g.xC2r?.x0; �/t!/r?.x�; �/
n�2#.V.x�C �t r?.x0; �/!/Cr?.x�; �/

2/2�.�/

D g.x/g.x C r?.x0; �/t!/r?.x�; �/
n�2#.�/COx;�;!.�t/�.�/;

where we used that V.x�/C r?.x�; �/2 D � and that �.�/D 1 for � 2 supp.#/ to rewrite
the leading term. Using again Proposition A.17, integrating the error term Ox;�;!.�t/�.�/

over .�; t/, it contributes as O
 .�ı
1�
�n�/ D O.ı„˛/ to the previous integral, upon

choosing the parameters 
; � > 0 small enough. Hence, from (5.23), one has I 00
„
D N„ C

O.ı1�n„˛/, where

N„ D
1=2�

.2�ı/n

Z
g.x/g.x C 2r?.x0; �/t!/r?.x�; �/

n�2 sin.2.� � �/t=ı/
t

� �.t��/#.�/1���dtdxd�d!: (5.24)

To finish the proof, we split integral (5.24) in two parts, N„ D R„ C Im.S„/, where

R„ D
1=2�

.2�ı/n

Z
g.x/2r?.x�; �/

n�2 sin.2.� � �/t=ı/
t

�.t��/#.�/1���dtdxd�d!

and

S„ D
1=2�

.2�ı/n

Z
g.x/

g.x C 2r?.x0; �/t!/ � g.x/

t
e2i.���/t=ır?.x�; �/

n�2

� �.t��/#.�/21���dtdxd�d!: (5.25)

Note that the integrand in R„ is independent of !.
According to Proposition A.19, it holds for any 0 < 
 � �,

R„ D
jSn�1j=2�

.2�ı/n

Z
g�.x/

2r?.x; �/
n�2 sin.2.� � �/t=.ı��//

t
�.t/#.�/1���dtdxd�

D
jSn�1j

2.2�ı/n

Z
g�.x/

2r?.x; �/
n�2#.�/1���dxd�CO.��.1�
/ı1�
 /:

Since „1�ˇ � �, ı � „ˇ , by choosing 
 small enough (depending only on 0 < ˛ < ˇ
and �), the error term is also O.„˛/. By (5.23) and (5.24), this shows that

N„ D
jSn�1j

2.2�ı/n

Z
g�.x/

2r?.x; �/
n�2#.�/1���dxd�CO.ı1�n„˛/: (5.26)

This coincides with the asymptotics in Proposition 5.7. Hence, to finish the proof, it re-
mains to compute the leading asymptotics of Im.S„/.
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5.3.5. Subleading term. First of all, by Proposition A.19, when computing Im.S„/ from
(5.25), we may replace r?.x�; �/ by r?.x0; �/, up to an error of size O.ı�nC1�
�1��/ D

O.ı�nC1„˛/. It remains to compute the imaginary part of

S0
„
D

1=2�

.2�ı/n

Z
g.x/

g.x C 2r?.x0; �/t!/ � g.x/

t
e2i.���/t=ır?.x0; �/

n�2

� �.t��/#.�/21���dtdxd�d!:

Let us observe that using the invariance by rotation with respect to ! 2 Sn�1 of
r?.x0; �/, one hasZ

g.x/! � @xg.x/r?.x0; �/
n�1 1

t
�.t��/#.�/21���dtdxd�d! D 0:

In particular, letting

GW .x; �/ 7!
g.x C 2�/ � g.x/ � 2� � @xg.x/

j�j2
;

one obtain that .t; �/ 7! G.x; r?.x0; �/t!/ is smooth with uniform controls in !, and

ınS0
„
D

1

.2�/nC1

Z
g.x/G.x; r?.x0; �/t!/r?.x0; �/

nte2i.���/t=ı

� �.t��/#.�/21���dtdxd�d!:

We rewrite this as

ın�1S0
„
D

i
2.2�/nC1

Z
g.x/G.x; r?.x0; �/t!/r?.x0; �/

n@�.e
2i.���/t=ı/

� �.t��/#.�/21���dtdxd�d!:

We can then perform an integration by parts with respect to � to obtain

ın�1S0
„
D

i#.�/
2.2�/nC1

Z
g.x/G.x; r?.x0; �/t!/r?.x0; �/

n�.t��/dtdxd!

�
i�

.2�/nC2

Z
���

g.x/e2i.���/t=ı@�ŒG.x; r?.x0; �/t!/#.�/
2r?.x0; �/

n�

� �.t��/dtdxd�d!: (5.27)

The function � 7! @�.G.x; r?.x0; �/t; !/#.�/
2r?.x0; �/

n/ is uniformly bounded with
a fixed compact support and t 7! �.t��/ is a smooth function with

k�.���/kH s � Csk�.��
�/kL2 � Cs�

��=2

for any s � 0 so that, by Proposition A.17, the second term on the right-hand side of (5.27)
is O.„˛/ for some ˛ > 0. Hence, with r? D r?.x0; �/, we obtain

ın�1S„ D
irn?#.�/
2.2�/nC1

Z
g.x/G.x; r?t!/�.t�

�/dtdxd! CO.„˛/

D
irn�1? #.�/

.2�/nC1

Z
g.x/G.x; �/

�.j�j��=r?/

j�jn�1
d�dx CO.„˛/;
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where we made a change of variable r?.x0; �/t!  � . An extra factor 2 comes from the
fact that this map is two-to-one .t 2 R/. By symmetry, we can rewrite

ın�1S„ D
irn�1? #.�/

.2�/nC1

Z
g.x � �/G.x � �; �/

�.j�j��=r?/

j�jn�1
d�dx CO.„˛/

D
�irn�1? #.�/

2.2�/nC1

Z ��g.x � �/ � g.x C �/
j�j

�2
C

�

4j�j2
.@xg.x � �/

2
� @xg.x C �/

2/
�

�
�.j�j��=r?/

j�jn�1
d�dx CO.„˛/:

In particular, the second term vanishes since it is an exact derivative with respect to x of
an integrable function of .x; �/ (here we use that � and g have compact support). Hence,
using the Hölder bound

j�.t��/ � 1j � c� t
��
�

for any 
 2 .0; 1/ and that

�
� D O.„˛/

if ˛ > 0 is small enough, we obtain

ın�1S„ D
�irn�1? #.�/

.2�/nC1

Z
.g.x � �=2/ � g.x C �=2//2

j�jnC1
d�dx CO.„˛/:

By formulas (5.26) and (5.2), we conclude that

J„ D
njSn�1j

2.2�ı/n

Z
g�.x/

2r?.x; �/
n�2#.�/dxd� � �2nr

n�1
? #.�/ı1�n†2.f /

CO.ı1�n„˛/:

Since tr..f„;�.H„/g�/2/ D J„ CO.„1/, this completes the proof.

5.4. Macroscopic commutators

In this section, we turn to the proof of Theorem I.2. Let g 2 C1c .¹V < �º;R/ be any
smooth function compactly supported in the bulk of the droplet. Given the bounds for
the Laplace functional of a determinantal point process from Proposition A.11, the main
ingredient of the proof is a (sharp) bound for the variance

var X.g/ D �
1

2
tr.Œg;…„;��2/:

Using estimate (5.7) with M D g and the next proposition, we obtain

var X.g/ D O.„�nC1/: (5.28)
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Proposition 5.11. Let .�;V / satisfy (H) and let f„;� be as in Notations 3.1 with �0 < �.
Then, for any g 2 C1c .¹V < �0º/,

tr.Œf„;�.H„/; g�2/ D O.„�nC1/:

Proof. Using representation (3.4) and proceeding as in the proof of Proposition 5.5 for
t 2 Œ��; ��, by bilinearity, we obtain

tr.Œg; f„;�.H„/�2/ D
1

2�„2

Z
tr.Œg; I �;a

„;t1
�Œg; I

�;a

„;t2
�/e�it1�1=„�it2�2=„~�.�1/~�.�2/

� y�.t1/y�.t2/dt1dt2d�1d�2 CO.„1/;

where we recall that ~� D ~1.�1;��, and a 2 S0 is a classical symbol.
Hence, the only relevant contribution to this trace is given by the oscillatory integral

J„ D
4�

.2�„/2nC2

Z
e

i
„
‰1.t1;t2;x;y;�1;�2;�1;�2/g.x/.g.y/ � g.x//b.t1; t2; x; y; �1; �2I „/

� ~�.�1/~�.�2/dt1dt2d�1d�2d�1d�2dxdy;

where b 2 S0 is given by

b.t1; t2; x; y; �1; �2I „/ WD a.t1; x; y; �1I „/xa.t2; y; x; �2I „/y�.t1/y�.t2/:

In particular, b has compact support on R4nC2 and, provided � is small enough, we can
assume that for a fixed ı > 0, for all t 2 Œ��; ��, x 2 supp.g/, y 2 Rn and „ 2 .0; 1�, the
function � 7! a.t; x; y; �I „/y�.t/ is supported on ¹j�j � ıº (cf. Proposition 2.11).

5.4.1. Stationary phase method. The phase in J„ is given by

‰1.t1; t2; x;y; �1; �2; �1; �2/ WD �.t1; x; �1/� y � .�1 � �2/� �.t2; x1; �2/� t1�1C t2�2:

To apply the stationary phase method, we make the change of variables

s D t1 � t2; t D
t1 C t2

2
; � D �1 � �2; r! D

�1 C �2

2
; & D �1 � �2; � D

�1 C �2

2
;

where r 2 RC, ! 2 Sn�1, t; s 2 Œ�2�; 2��, �; & 2 R and � 2 Rn. The Jacobian of this
map is rn�1 and, introducing

c.t; s; x; y; �; r; !I „/ D b
�
t C

s

2
; t �

s

2
; x; y; r! C

�

2
; r! �

�

2
I „

�
rn�1;

��.&; �/ D ~�

�
� C

&

2

�
~�

�
� �

&

2

�
;

‰2.t; s; x; y; �; r; !; &; �/ D ‰1.t1; t2; x; y; �1; �2; �1; �2/;

we obtain

J„ D
4�

.2�„/2nC2

Z
e

i
„
‰2.t;s;x;y;�;r;!;&;�/g.x/.g.y/ � g.x//c.t; s; x; y; �; r; !I „/

� ��.&; �/drdtdsd�dydxd�d&d!: (5.29)
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We now apply the stationary phase method to this integral in the variables .y; r; s; �/
while keeping .t; x; �; &; !/ fixed. The equations for the critical point(s) are given by

0 D @y‰2.t; s; x; y; �; r; !; &; �/ D ��; (5.30)

0 D @r‰2.t; s; x; y; �; r; !; &; �/ D ! � .@��.t1; x; �1/ � @��.t2; x; �2//; (5.31)

0 D @s‰2.t; s; x; y; �; r; !; &; �/ D
1

2
.@t�.t1; x; �1/C @t�.t2; x; �2// � �; (5.32)

0 D @�‰2.t; x; y; �; r; !; &; �/ D @��.t1; x; �1/C @��.t2; x; �2/ � y; (5.33)

where we recall that

�1 D r! C
�

2
; �2 D r! C

�

2
; t1 D t C

s

2
; t2 D t �

s

2
:

From these equations, we can now argue that there is at most one critical point within
the support of c.

� Formula (5.30) implies that � D 0 (equivalently �1 D �2 D r!).

� Recall that according to (3.2), @��.t; x; �/ D x C t� C O.t2/: Then, (5.31) and the
condition � D 0 imply that

0 D ! � .@��.t1; x; r!/ � @��.t2; x; r!// D s.r CO.t//:

Since � 7! a.t; x; y; �I „/ is supported on ¹j�j> ıº, one has r > ı at least when � D 0,
so that this equation is satisfied only if sD 0, provided � is small enough (equivalently
t1 D t2 D t ).

� Using the conditions � D t D 0, equations (5.32) and (3.2) then yield

� D @t�.t; x; r!/ D V.x/C r
2
CO.t/:

Like in the proof of Proposition 3.2, we need to distinguish two cases:

– If � � V.x/ C c1, for some constant c1 D c1.ı; �/, then this equation has no
solutions satisfying r � ı. In this case, there is no critical point within the support
of c and by Proposition A.16, we conclude that J„ D O.„1/. We can therefore
include a cutoff �.� � V.x// in the integrand of (5.29), where � 2 C1.R; Œ0; 1�/
satisfies 1Œc2;1/ � � � 1Œc1;1/ for a small enough c2 > c1 > � such that V.x/C
c2 < �0 for all x in the support of g.

– For � � V.x/C c1, this equation has a unique (positive) solution which determ-
ines the critical value of r as a function of the other parameters,

r?.t; x; �; !/ D
p
� � V.x/CO.t/: (5.34)

� Finally, using the conditions .s; �; r/ D .0; 0; r?/, condition (5.33) determines the
critical value of y as a function of the other parameters,

y?.t; x; �; !/ D @��.t; x; r?!/ D x CO.t/;

where we used again expansions (3.2) and (5.34).
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This shows that the (unique) critical point is given by .y; r; s; �/ D .y?; r?; 0; 0/, and
using (5.30)–(5.33), we verify that the Hessian of ‰2 in these variables evaluated at the
critical point is given by the matrix

H D �

0BB@
0 0 0 I
0 0 � �

0 � 0 0

I � 0 0

1CCA :
This matrix is non-degenerate, and by expanding over the second and third columns, we
obtain

det H D j@r@s‰2j2.t; s; x; y?; 0; r?; !; &; �/

D j! � @� j@x�j
2.t; x; r?!/j

2
D 4.� � V.x//2 CO.t2/;

where we used expansion (3.2) to simplify the quantity for small t . Let us also observe
that at the critical point, one has

‰2.t; x; y?; 0; r?; !; &; �/ D �t&:

Hence, applying Proposition A.15 to integral (5.29) while keeping the variables .t; x;
�; &; !/ fixed, since g 2 C1c .R

n/, we obtain the expansion as „ ! 0, for any k 2 N,

J„ D
4�

.2�„/nC1

Z
e�it&=„e.t; x; !; � I „/��.&; �/dtdxd!d�d& CO.„1/; (5.35)

where the (classical) symbol e is smooth and satisfies

e.t; x; !; � I 0/ D g.x/.g.y?/ � g.x//jy�.t/j
2a.t; x; y?; r?!I 0/xa.t; y?; x; r?!I 0/

�
rn�1?
p

det H
�.� � V.x//:

In particular, the function .t; x; !; �; &/ 7! e.t; x; !; � I „/��.&; �/ in (5.35) is compactly
supported, L1 with respect to & and C1 with respect to t . Hence, by Proposition A.17,
subprincipal terms contribute as O.„�nC1/, so that

J„ D
4�

.2�„/nC1

Z
e�it&=„e.t; x; !; � I 0/~

�
� C

&

2

�
~
�
� �

&

2

�
1j&=2j����dtdxd!d�d&

CO.„�nC1/:

Since y? D x C O.t/ and g is smooth, the principal symbol of e D O.t/, that is, there
exists F 2 C1c such that

e.t; x; !; � I 0/ D tF .t; x; !; �/:

Integrating by parts with respect to & , since ~ D 1 on Œ0;M �, we obtain

J„ D
4�

.2�„/n

Z
sin
�2.� � �/

t

�
F.t; x; !; �/1���dtd�dxd!

C
4�

.2�„/n

Z
e
2it
„
.���/F.t; x; !; �/� 0�.&; �/dtd�dxd!d� CO.„�nC1/;
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where
� 0�W .&; �/ 7!

d
d&

h
~
�
� C

&

2

�
~
�
� �

&

2

�i
1j&=2j���� :

The function � 0� 2 L
1 and F 2 C1c , so by applying Proposition A.17 to both these

integrals, we conclude that J„ D O.„�nC1/. This completes the proof.

Remark 5.12. With extra work, it is possible to refine the proof to obtain the leading
asymptotics of tr.Œf„;�.H„/; g�2/. However, upon comparing these asymptotics with that
of tr.Œ…„;�g�2/, there is another a priori uncontrolled O.„�nC1/ contribution coming
from Lemma 5.6. In view of Conjecture 1, it is not clear how to bypass this difficulty.

Remark 5.13. The stationary phase in the proof of Proposition 5.11 still holds if the
test function g depends on „ at sufficiently large scales. In this fashion, one can give an
alternative proof of the mesoscopic commutator estimate from Proposition 5.4 in the case
� � „ˇ for ˇ > 1

2
. Based on the counterpart of (5.35) at mesoscopic scales and Proposi-

tion A.19, one can recover the leading asymptotics of kŒT �x0;�g;f„;�.H„/�kJ2 when �! 0

in the previous regime.

We are now ready to conclude the proof of Theorem I.2.

Proof of Theorem I.2. Let f 2C1c .¹V <�º/ and let zX.f /DX.f /�EŒX.f /�. Suppose
first that f � 0:69. Then, by Proposition A.11 and estimate (5.28) applied to the test
function g D .ef � 1/ 2 C1c .¹V < �º/,

log EŒezX.f /� D O.var X.g// D O.N„/

as „ ! 0.
If now f 2 C1c .¹V < �º/ is arbitrary and � � kf k�1L1

p
N„, by rescaling, one has

E
h
exp

��zX.f /
p
N„

�i
� exp.C�2/;

where C depends only on f . In particular, by Markov’s inequality, for every t > 0,

P ŒzX.f / �
p
N„t � D P

h�zX.f /
p
N„

� t�
i
� exp.C�2 � t�/:

The optimal value of � for the right-hand side is

� D
t

2C
;

so that provided t � 2Ckf k�1L1
p
N„, we obtain

P ŒzX.f / �
p
N„t � � e�t

2=.2C/:

Replacing f by �f yields the symmetric inequality.
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Appendix A.

A.1. Compact operators

We follow the conventions from [80, Chapters 1–3]. Throughout this article, we work on
the Hilbert space L2.Rn/ equipped with the norm k � k D k � kL2 . Recall that a (linear)
operator B is bounded if

kBk D sup
�2L2;k�k�1

kB�k < C1:

If B is a bounded operator, it is called positive if hB�; �i D h�; B�i � 0 for all
� 2 L2.Rn/. Then, we write A � B if A and B are symmetric and .A � B/ is positive.
Moreover, we make use of the following conventions and basic properties.

Proposition A.1. (i) Given any function g 2 L1.Rn/, the operator � 7! g� is bounded
on L2.Rn/ and its norm is kgkL1 . We will also denote by g this operator. In partic-
ular, this operator is positive if g � 0.

(ii) If A is a compact operator, we let .�k.A//C1kD1 be its singular values as in [80, The-
orem 1.5]. We define the Schatten norms for p � 1,

kAkJp D

� 1X
kD1

�
p

k
.A/

�1=p
:

Note that it holds for any bounded operator B and any p � 1, kBAkJp ; kABkJp �

kBkkAkJp .

Proposition A.2 (Convergence of operators). For a family of bounded operators .B"/">0,
we will use the following topology of convergence as "! 0,

(i) B" ! 0 in the strong operator topology if lim"!0 kB"�k D 0 for all � 2 L2.
If kB"k � C , it suffices to verify that lim"!0 kB"�k D 0 for all � 2 A, where A is
dense in L2.

(ii) B" ! 0 in the operator norm topology if lim"!0 kB"k D 0.

(iii) For p � 1, B" ! 0 in the Jp-norm topology if lim"!0 kB"kJp D 0. Note that if
q > p � 1, the Jp-norm topology is stronger than the Jq-norm topology.

Then, we have (iii)) (ii)) (i).

Proposition A.3 (Hilbert–Schmidt operators). (i) We say that B is a Hilbert–Schmidt
operator if kBkJ2 < C1, in which case by [80, Theorem 2.11], B has an integral
kernel and

kBkJ2 D

� Z
R2n
jB.x; y/j2dxdy

�1=2
:

(ii) By [80, Theorem 2.15], it holds

kBk2J2 D

1X
kD1

jB�kk
2

for any orthonormal basis .�k/k2N of L2.Rn/.
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Proposition A.4 (Trace-class operators). (i) We say that B is a trace-class operator if
kBkJ1< C1. Moreover, by [80, Theorem 2.12], if B � 0 is trace-class and has
a kernel which is continuous on R2n, and

kBkJ1 D

Z
Rn
B.x; x/dx:

(ii) If B is trace-class, we define trB D
PC1
kD1h�k ; B�ki for any orthonormal basis

of L2.Rn/, see [80, Theorem 3.1]. Note that tr.�/ is a linear operator with jtrBj �
kBkJ1 and trB D kBkJ1 when B � 0.

(iii) If B is trace-class, then the Fredholm determinant det.1C B/ is well defined and
it is a continuous function on J1. By [80, Theorem 3.4],

j det.1C B/ � det.1C A/j � kA � BkJ1e
1CkAkJ1CkBkJ1 :

(iv) By [80, Corollary 3.8], if A, B are bounded operators such that AB and BA are
trace-class, then tr.AB/ D tr.BA/ and det.1C AB/ D det.1C BA/.

(v) We say that B is locally trace-class if for any compact set K b Rn, kB1KkJ1 <

C1.

Let A; B;M � 0 be bounded operators. If B � A and BM is trace-class, then by
Proposition A.4,

trŒAM� D trŒ
p
MA
p
M� � trŒ

p
MB
p
M� D trŒBM�;

where
p
M denotes the positive solution of

p
M
2
DM , see [80, Section 1.1]. Moreover,

by Proposition A.1, if A is a finite-rank operator and B is bounded, then �k.AB/ �
1k�Rank.A/kABk and

kABkJ1 � kABkRank.A/:

A.2. Operators bounded from below

In this paper, the usual Laplacian � on L2.Rn/ plays a crucial role and we review below
its basic properties.

An essentially self-adjoint operator, bounded from below, on a Hilbert space H is
the data of a dense subspace D.A/ � H and a linear map AWD.A/ ! H such that
¹.x; Ax/; x 2 D.A/º is closed in H � H and there exists C > 0 such that, for every
x 2 D.A/, one has hx;Axi D hAx; xi � �Ckxk2H .

The point is that essentially self-adjoint operators, bounded from below, admit a spec-
tral decomposition and a functional calculus; we refer to the textbook [49]. In particular,
since �� � 0 on L2.Rn/, under hypothesis (H), the Schrödinger operator

H„ D �„
2�C V

is essentially self-adjoint, bounded from below, onL2.Rn/. Moreover, if V � c for a con-
stant c � 0, then H„ � c.
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A.2.1. Spectral properties of �� on L2.Rn/. Recall that F denotes the Fourier trans-
form viewed as a unitary operator on L2.Rn/ and that �ir D F �AF , where A is the
multiplication operator, A�W � 7! ��.�/. This property of the Fourier transform renders
explicit many properties of the operator �ir or its functions. For instance, we define ��
as a self-adjoint operator on L2.Rn/ with domain

H 2
D ¹� 2 L2 W � 7! j�j2F �.�/ 2 L2.Rn/º:

Similarly, the classical L2 Sobolev spaces can be defined using the Fourier transform. For
s 2 R, let

H s
D ¹� 2 � 0 W � 7! .1C j�j/sF �.�/ 2 L2.Rn/º;

where � 0 denotes the space of Schwartz distributions. There are alternative definitions
of H s , e.g., Remark 5.3.

For any f 2 L1.R/, we define f .��/ D F �f F , where f stands for a multi-
plication operator as in Proposition A.1 (i). In particular, f .��/ is a pseudodifferential
operator in the sense of Definition 2.8, with semiclassical parameter „ D 1 and symbol
a D f .j�j2/. Hence, by Proposition A.3 (ii) and (v), if f WR 7! Œ0;1/ satisfies f .j�j2/ 2
L1.Rn/, the operator f .��/ is locally trace-class with integral kernel

.x; y/ 2 R2n 7!
1

.2�/n

Z
Rn
ei.x�y/��f .j�j2/d�:

In particular, this shows that for any � > 0 the kernel of the bulk operator is given by

K
.n/
b;� D 1.�1;�2�.��/W .x; y/ 2 R2n 7!

1

.2�/n

Z
Rn

1j�j��e
i.x�y/��d�: (A.1)

By going to spherical coordinates, one can rewrite

K
.n/
b;�.x; y/ D

1

.2�/n

Z �

0

Z
Sn�1

eirjx�yje1��rn�1d�dr

D
1

.2�jx � yj/n

Z �jx�yj

0

Z
Sn�1

cos.r�1/rn�1d�dr

D
�..n � 1/=2/�1=

p
�

.
p
2�jx � yj/n

Z �jx�yj

0

rn�1
�Z �

0

cos.r cos'/.sin'/n�2d'
�

dr

D
1

.
p
2�jx � yj/n

Z �jx�yj

0

rn=2Jn=2�1.r/dr

D �n=2
Jn=2.�jx � yj/
.2�jx � yj/n=2

; (A.2)

where we used that the Bessel functions of the first kind are given by for any � 2 RC
and r 2 RC,

J�.r/ D
.r=2/�

p
��.� C 1=2/

Z �

0

cos.r cos'/.sin'/2�d'
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and d
dr .r

�J�.r// D r�J��1.r/. In particular, the determinantal point process associated
with the operatorK.n/b;� is both translation and rotation invariant on Rn with intensity �n!n

.2�/n
.

Let us also recall the following standard bounds.

Lemma A.5 (Sobolev embeddings). Let k 2N0. There exists Ck > 0 such that, for every
f 2 � 0.Rn/, for every „ 2 .0; 1�, one has

kf kC2k.Rn/ � Ck„
�2k�n=2

k.1 � „2�/kCbn=4cC1f kL2.Rn/:

The most direct argument relies on the properties of the Fourier transform.

Proof. The Fourier transform of g 2 L1 is continuous with

kygkC0 � .2�/
n=2
kgkL1 :

Hence, for every multi-index ˛ 2 Nn
0 , one has

kx 7! @˛xf .x/kC0 � .2�/
n=2
k� 7! �˛ yf .�/kL1 ;

and, by the Cauchy–Schwarz inequality,

k� 7! �˛ yf .�/kL1 � k� 7! �˛.1C „2j�j2/�k�bn=4c�1kL2

� k� 7! .1C „2j�j2/kCbn=4cC1 yf kL2 :

By the above functional calculus for �ir and since

k� 7! �˛.1C „2j�j2/�k�bn=4c�1kL2 � C„
�j˛j�n=2

if j˛j � 2k, this completes the proof.

By working on a (relatively) compact set, one can, in fact, replace 1 with any smooth
positive potential.

Proposition A.6. Let V WRn ! Œ1;C1/ and � � Rn be a relatively compact open set
such that V is C1 on a neighbourhood of x�. Then, for every k 2 N, there exists Ck.V /
such that, for every f 2 � 0.Rn/ with compact support in �, for every 0 < „ � 1,

kf kC2k � Ck.V /„
�k�n=2

k.V � „2�/kCbn=4cC1f kL2 :

Proof. According to Lemma A.5, it suffices to show that for every k 2 N, there exists
Ck > 0 such that, for any f 2 C1c .�/, uniformly for 0 < h � 1,

k.1 � „2�/kf kL2 � Ckk.V � „
2�/kf kL2.�/: (A.3)

Then the result follows by density.
Let us prove (A.3) by induction on k; the case k D 0 is trivial with C0 D 1.
By assumptions, it holds for any k 2 N0 and f 2 C1c .�/,

.V � „2�/kC1f D .1 � „2�/kC1f C Lkf;
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where the differential operator Lk takes the form

Lk D
X
j˛j�2k

gkI˛.x; „/„
j˛j@˛

and gkI˛ is bounded, along with its derivatives, uniformly as „ ! 0. Indeed, letting zV 2
C1c .R

n;R/ be equal to V on x�, the sequence .Lk/k�0 satisfy

L0 D zV � 1;

LkC1 D .�„
2�C zV /Lk�1 C . zV � 1/.�„

2�C 1/k :

Hence, there exists Ck such that, for every f 2 C1c .�/,

k.1 � „2�/kC1f kL2 � k.V � „
2�/kC1f kL2 C Ck

X
j˛j�2k

k„
j˛j@˛f kL2 :

Moreover, one directly hasX
j˛j�2k

k„
j˛j@˛f kL2 � Ckk.1 � „

2�/kf kL2

since all operators involved are Fourier multipliers.
In conclusion, by the induction hypothesis

k.1 � „2�/kC1f kL2 � k.V � „
2�/kC1f kL2 C Ckk.V � „

2�/kf kL2

� Ckk.V � „
2�/kC1f kL2 ;

where we used the fact that V � „2� � 1 as operators, and we upgraded the constant Ck
from line to line.

Remark A.7. The argument of Lemma A.5 also shows that if f 2 � 0.Rn �Rn/, then

kf kC2k.R2n/ D
X

˛;ˇ2Nn
0
Wj˛jCjˇ j�2k

sup
x;y2Rn

j@˛x@
ˇ
y f .x; y/j

� Ck„
�2k�n

�

X
i;j2N0WiCjDk

k.1 � „2�x/
iCbn=4cC1.1 � „2�y/

jCbn=4cC1f kL2.Rn/:

Then, by adjusting the proof of Proposition A.6, it is straightforward to show that under
the same assumptions, for every f 2 � 0.Rn �Rn/ with compact support in �,

kf kC2k.R2n/ � Ck.V /„
�2k�n

k.V � „2�/kCbn=4cC1x .V � „2�/kCbn=4cC1y f kL2 :

The only difference is that for a test function f 2 C1.Rn �Rn/, for any i; j 2 N0 with
i C j � k, it holds

.V � „2�/ix.V � „
2�/jyf D .1 � „

2�/ix.1 � „
2�/jyf C Li;jf;
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where Li;j is an „-differential operator, with bounded coefficients (by polynomials in
kV kC2k.x�/ and „), of orders 2i and 2j with respect to x and y, respectively, and of total
order 2.i C j � 1/. Hence, since x, y are independent variables, we can bound

kLi;j kL2 � Ck.V /.k.1 � „
2�/ix.1 � „

2�/j�1y kL2 C k.1 � „
2�/i�1x .1 � „2�/jykL2/:

The proof now follows by the same induction as in Proposition A.6.

A.3. Determinantal point processes

This class of point processes was introduced in [71] under the name Fermion processes.
Macchi’s fundamental contributions were physically motivated by electron-interference
experiments and the goal was to provide a mathematical model for point processes which
obey the Pauli exclusion principle; hence the name Fermion processes. In contrast to Pois-
son processes which describes independent particles, determinantal processes are well
known to exhibit repulsion and are typically hyperuniform [90]. The mathematical theory
of determinantal processes has been developed largely by Soshnikov [85] and Shirai–
Takahashi [78,79]. We also refer to [54] for a survey with more probabilistic perspectives.
There are many applications beyond the context of quantum mechanics discussed in
the introduction which include random matrices and Coulomb gases, asymptotic repres-
entation theory, certain random tilings and two-dimensional growth processes, zeros of
Gaussian analytic functions, etc. We refer to [13, 58, 85] for comprehensive reviews of
these examples. In this section, we explain some basic concepts of the theory of determ-
inantal point processes. The results are stated for the Hilbert space L2.Rn/ but they hold
true for L2.E/ if E is a locally compact, completely separable, Hausdorff space. We only
focus on the Euclidean case for concreteness.

A.3.1. Point processes on Rn. Let us recall that a (simple) point process is a random
measure of the form „ D

P
�2ƒ ı�, where ƒ � Rn is a countable set with no accumu-

lation points. We refer to [58, Section 2] for the construction of such random measures.
The law of a point process is usually characterised by its Laplace functional:

 „.f / D EŒe�„.f /� for all function f 2 C1c .R
n;RC/:

We define the correlation functions .Rk/C1kD1 of the point process „ through its Laplace
functional by

 „.f / D 1C

C1X
kD1

1

kŠ

Z
Rn�k

kY
iD1

.e�f .zi / � 1/Rk.z1; : : : ; zk/dz1 � � � dzk ;

when this expansion makes sense. For instance, if „ D
PN
jD1 ıxj and ¹x1; : : : ; xN º has

a (symmetric) joint probability density function PN , then we verify that the correlation
functions of „ are given by the marginals for k 2 N,

Rk.z1; : : : ; zk/ D 1k�N
NŠ

.N � k/Š

Z
Rn�.N�k/

PN Œz1; : : : ; zk ; dzkC1; : : : ; dzN �:
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A.3.2. Determinantal processes. In this article, we rely on the following definition.

Definition A.8. A point process „ is called determinantal if its Laplace functional is of
the form

 „.f / D detŒI � .1 � e�f /K�; (A.4)

where K is a locally trace-class operator on L2.Rn/ and the right-hand side of (A.4) is
a Fredholm determinant, see Proposition A.4 for the relevant definitions. Then, we say
that the determinantal process „ is associated with the operator K and the correlation
functions of „ are given by

Rk.z1; : : : ; zk/ D det
k�k

ŒK.zi ; zj /�; k 2 N:

Definition A.8 is equivalent to the usual definition of determinantal processes in terms
of its correlation kernel K, see, e.g., [58, Section 2] or [85, Theorem 2]. Moreover,
while a determinantal process has several correlation kernels, the associated operator is
uniquely defined. In general, formula (A.4) makes sense for any (measurable) function
f WRn ! RC. Moreover, if the operator K is trace-class, then by Proposition A.4 (iii),
 „ is continuous with respect to the L1-norm.

Definition A.8 has the following consequences for the distribution of a linear stat-
istic „.f /.

Lemma A.9. Let„ be a determinantal process associated with the operatorK. Then for
any functions f; gWRn ! RC,

E„.f / D tr.fK/

and, if defined,

cov.„.g/;„.f // D tr.g.I �K/fK/

D
1

2
tr.Œg;K�ŒK; f �/C tr.gfK.I �K//: (A.5)

Proof. By definition of the correlation functions, see Definition A.8,

EŒ„.f /� D

Z
Rn
f .z/R1.z/dz D

Z
Rn
f .z/K.z; z/dz D trŒfK�;

and for any f; g 2 L1c .R
n/,

EŒ„.g/„.f /� D

“
R2n

g.z1/f .z2/R2.z1; z2/dz1dz2 C
Z

Rn
g.z/f .z/R1.z/dz

D trŒgK� trŒgK� � trŒgKfK�C trŒgfK�:

This shows that the covariance between the random variables„.f / and„.g/ is given by

cov.„.g/;„.f // D EŒ„.g/„.f /� � EŒ„.g/�EŒ„.f /� D trŒg.I �K/fK�:
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This formula is actually symmetric and can be written using commutators as follows:

trŒg.I �K/fK� D
1

2
tr.Œg; I �K�Œf;K�/C tr.gfK.I �K//;

where we used cyclicity of trŒ��.
To complete the proof, it remains to observe that Œg; I �K� D ŒK; g�.

Note that formula (A.5) implies that for any g 2 L1c .R
n/, the variance of the linear

statistics „.g/ is well defined and given in terms of Hilbert–Schmidt norm by

var„.g/ D k
p
Kg
p

I �Kk2J2 D
1

2
kŒg;K�k2J2 C kg

p
K.I �K/k2J2 : (A.6)

In the context of this article, it is relevant to recall the following [85, Theorem 3].

Proposition A.10. If K is a self-adjoint locally trace-class operator on L2.Rn/, then it
(uniquely) defines a determinantal process if and only if 0 � K � I.

For instance, consider H an (unbounded) self-adjoint with a domain D.H/ which
is dense in L2.Rn/, and let KS D 1S .H/, where S � R is a Borel set. Then, by Pro-
position A.10, if KS is locally trace-class on Rn, there exists a determinantal process
associated withKS . In particular, ifH is bounded from below and 1.�1;�/.H/ is a finite-
rank projection (as in our setting, thanks to Proposition 2.2), there is a determinantal
process associated with this operator. Moreover, this process has almost surely N D
Rank.1.�1;�/.H// particles, see [85, Theorem 4].

It is also of interest to record the following basic expansion for the Laplace func-
tional (A.4) for small f . The proof of Proposition A.11 is inspired by that of [86, The-
orem 1], except that we control directly the Laplace functional instead of the cumulants
of the linear statistic „.f /. This simplifies the argument and makes the result stronger.
In particular, these asymptotics could certainly be of independent interest.

Proposition A.11. Under the assumptions of Proposition A.10, it holds uniformly for all
f 2 L1c .R

n/ with f � 0:69,

 „.�f / D exp
�
EŒ„.f /�C var.„.ef � 1//

�1
2
CO.kfCkL1/

��
:

Proof. By functional calculus, it holds for g 2 L1c .R
n/ with kgkL1 < 1,

log det.1 � gK/ D trŒlog.1 � gK/� D �
X
`2N

1

`
trŒ.gK/`�: (A.7)

Now, defineAk D g.I�K/gkK for k 2N0 and observe that for every k 2N0 and j 2N,

.gK/jgkK D .gK/j�1gkC1K C .gK/j�1Ak I

repeated application of this formula yields, for every ` � 2,

trŒ.gK/`� D trŒ.gK/`�1gK� D trŒg`K�C
X̀
jD2

trŒ.gK/`�jAj�1�: (A.8)
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Moreover, using that 0 � K � 1 and cyclicity of trŒ��, we have for any j; k 2 N,

trŒ.gK/kAj � D trŒ
p
K.gK/k�1g

p
K
p
Kg.I �K/gj

p
K�:

This implies that for j; k 2 N,

jtrŒ.gK/kAj �j � k.gK/k�1gkk
p
Kg.I �K/gj

p
KkJ1

� kgkkL1

q
k
p
Kg
p

I �KkJ2k
p

I �Kgj
p
KkJ2

D kgkkL1

q
var„.g/ var„.gj / (A.9)

according to (A.6). Moreover, var„.gj / D 1
2
kŒgj ; K�k2

J2
C trŒg2jK.I �K/� for j 2 N,

and we can bound

trŒg2j�2gK.I �K/g� � kgk2.j�1/L1 kgK.I �K/gkJ1 D kgk
2.j�1/
L1 trŒgK.I �K/g�:

Since ŒK; gj �D
Pj

kD1
gk�1ŒK; g�gj�k , we also have kŒK; gj �kJ2 � j kgk

j�1
L1 kŒK; g�kJ2

so that

var„.gj / � j 2kgk2.j�1/L1

�1
2
kŒK; g�kJ2 C trŒg2.I �K/K�

�
D j 2kgk

2.j�1/
L1 var„.g/: (A.10)

By (A.9), this shows that for any j; k 2 N,

jtrŒ.gK/kAj �j � j kgk
kCj�1
L1 var„.g/:

Hence, by (A.8), we have shown that for any ` � 3,

jtrŒ.gK/`� � trŒg`K�j � kgk`�2L1

X̀
jD2

.j � 1/ var„.g/

D kgk`�2L1
`.` � 1/

2
var„.g/: (A.11)

Observe that if g D 1 � e�f , then by linearity of trŒ��,X
`2N

1

`
trŒg`K� D tr

h�X
k2`

1

`
g`
�
K
i
D � trŒlog.1 � g/K� D trŒfK�: (A.12)

By combining (A.7), (A.12) with bound (A.11) for g D ef � 1 and ` � 3, this shows
that if kgkL1 < 1,ˇ̌̌

log det.1 � gK/ � trŒfK� �
1

2
var„.g/

ˇ̌̌
�
1

2
var„.g/

X
`�3

.` � 1/kgk`�2L1

D var„.g/
kgkL1

.1 � kgkL1/2
;
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where we used that for ` D 2, trŒ.gK/2� � trŒg2K� D � trŒA1� D var„.g/, according to
formulas (A.6)–(A.8). By (A.4), we conclude that if f � 0:69 < log 2, then

 „.�f / D exp
�

trŒfK�C var„.g/
�1
2
CO.kfCkL1/

��
;

where we used that under our assumptions,

kgkL1

.1 � kgkL1/2
� CkfCkL1

for a numerical constant C > 0.

Like in [86], one can immediately deduce from the asymptotics of Proposition A.11
a CLT for linear statistics of general determinantal processes. We give the proof of this
result since, compared to [86, Theorem 1], we can remove the (technical) conditions on
the mean and variance of the linear statistic „N .fN /.

Corollary A.12. Let .KN /N2N be a sequence of (self-adjoint) trace-class operators on
L2.Rn/ with 0 � KN � 1 and let .„N /N2N be the associated determinantal processes
on Rn. Let fN 2L1.Rn/ with kfN kL1 � C and assume that �2N D varŒ„N .fN /�!1
as N !C1. Then it holds uniformly for all t 2 R with jt j � 0:69�N =C ,

 „N .t�
�1
N fN / exp.t��1N EŒ„N .fN /�/ D exp

�
t2
�1
2
CO.t��1N /

��
:

In particular, this implies that

„N .fN / � EŒ„N .fN /�

�N
) N0;1;

where N0;1 denotes a standard Gaussian random variable.

Proof. By the Cauchy–Schwarz inequality, one has a crude bound

jvarŒ„.1 � e�f /� � varŒ„.f /� �
X
k;j2N
kCj>2

1

kŠj Š

q
varŒ„.f k/� varŒ„.f j /�:

Using bound (A.10), this implies that

jvarŒ„.1 � e�f /� � varŒ„.f /�j �
varŒ„.f /�

2

X
k;j2N0
kCj>0

1

kŠj Š
kf k

kCj
L1

D
varŒ„.f /�

2
.e2kf kL1 � 1/

� kf kL1 varŒ„.f /�e2kf kL1 :

Hence, by applying Proposition A.11, it shows that if kf kL1 � 0:69,

 „.f /e
EŒ„.f /�

D exp
�

varŒ„.f /�
�1
2
CO.kf kL1/

��
:
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Making the change of variable f  t��1N fN with t 2 R, we conclude that asN !C1,

 „N .t�
�1
N fN /e

t��1
N

EŒ„N .fN /� D exp
�
t2
�1
2
CO.t��1N /

��
:

As the convergence of the Laplace transform of the random variable „N .fN /�EŒ„N .fN /�
�N

implies its convergence in distribution and

EŒetN .0;1/� D et
2=2

for all t 2 R, this proves the claims.

A.3.3. Weak convergence. In the context of Theorem II.3, we also recall the concept of
convergence in distribution for point processes.

Definition A.13. We say that a sequence „N of point processes on Rn converges in dis-
tribution to a point process„ if the Laplace functionals „N .f /! „.f / asN !C1
for all f 2 C1c .R

n;RC/.

In the context of Proposition A.10, this has the following consequence.

Proposition A.14 (Weak convergence for determinantal processes). Let .KN /N2N be
a sequence of self-adjoint operator onL2.Rn/with 0�KN � I. Suppose that asN !1,
KN ! K locally uniformly, where K is locally trace-class, then there exists a determ-
inantal process „ associated with the operator K and the determinantal processes „N
associated with KN converge weakly to „ as N !C1.

Proof. By assumptions, KN ! K in the weak operator topology as n!1 (cf. Propos-
ition A.1). Indeed, by density, it suffices to verify that h�; KN�i ! h�; K�i for any
� 2 Cc.Rn/. This also implies that 0 � K � I and by Proposition A.10, there exists
a determinantal process associated with the operator K. Moreover, using that KN � 0
and Proposition A.4 (i), it holds as N !1,

k�KN kJ1 D trŒ�KN �! trŒ�K� D k�KkJ1<1

for any � 2 L1c .R
n;RC/. As both KN , K are positive operators, by [80, Theorem 2.19],

this implies that k�.KN � K/kJ1 ! 0 for any such �. Now, by formula (A.8) and Pro-
position A.4 (iii), the Laplace functionals of these point processes satisfy for every
f 2 C1c .R

n;RC/.

j „N .f / �  „.f /j � k�.KN �K/kJ1e
1Ck�KN kJ1Ck�KkJ1

with � D 1 � e�f . Since � � 0 with compact support,

lim sup
N!1

j „N .f / �  „.f /j

� e1C2 trŒ�K� lim sup
N!1

.k�.KN �K/kJ1e
k�.KN�K/kJ1 / D 0:

According to Definition A.13, this completes the proof.
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A.4. Oscillatory integrals

The technical core of this article relies on standard techniques of semiclassical analysis, in
particular, the stationary phase method to obtain the asymptotics of oscillatory integrals.

Proposition A.15 (Stationary phase lemma, [33, Proposition 5.2]). Let � � Rd be an
open set, A be a compact and x 7! ˆ.x; y/ 2 C1.�;R/ for every y 2 A. Suppose that
for any y 2 A, there is exactly one point xy 2 � such that @xˆ.xy ; y/ D 0, and that the
Hessian matrix, Hessˆ.xy Iy/, is non-degenerate.

Then, there exists a sequence of differential operators .Lk/k�0 on Rd , depending on
y 2 A such that Lk is of degree 2k and for every ` � 0 and K b �, there is a con-
stant C`;ˆ;K such that, for any f 2 C1c .K/,

sup
y2A

ˇ̌̌̌ Z
e

i
„
ˆ.x;y/f .x/dx � e

i
„
ˆ.xy ;y/.2�„/d=2

X̀
kD0

„
k.Lkf /.xy/

ˇ̌̌̌
� C`;ˆ;K „

d=2C`C1
kf kC2`CdC1 :

Moreover, one can also allow f to depend smoothly on the parameter y 2 A, in which
case the error can be controlled with respect to C k.A/ for every k 2 N0.

An explicit form for the operators Lk , depending on ˆ, can be found in [53, The-
orem 7.7.5]. In particular, it holds

L0 D
inC�n�p

det.jHess.ˆ/.xy ; y/j/
;

where nC and n� respectively denote the number of positive and negative eigenvalues of
Hess.ˆ/.xy ; y/.

In the special case where d D 2n and ˆWR2n 3 .x; �/ 7! x � � 2 R, one has

Lk D
ik

kŠ

X
j˛jDk

@˛x@
˛
� : (A.13)

In general, we apply Proposition A.15 in the following standard way. If a 2 S0 is
a classical symbol (cf. Definition 2.7), then there exists another classical symbol b 2 S0

such that Z
�

e
i
„
ˆ.x;y/a.x; yI „/dx D b.y; „/CO.„1/:

The error being controlled by kf kk for some k 2 N allows us to apply Proposi-
tion A.15 to „-dependent functions satisfying, uniformly as „ ! 0, a control of the form

kf kCk � Ck„
�kı for some ı <

1

2
:

In this case, the terms in the expansion have decreasing magnitudes and the remainder is
still O.„1/ by choosing ` arbitrary large.

Proposition A.15 is complemented by the non-stationary phase lemma.
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Proposition A.16 (Non-stationary phase lemma, [53, Theorem 7.7.1]). Let � � Rd be
an open set, A be a compact and x 7! ˆ.x; y/ 2 C1.�;R/ for every y 2 A. Suppose
that .x;y/ 7! @xˆ.x;y/ is bounded away from 0 on��A. Then, for every f 2 C1c .�/,
as „ ! 0, Z

�

e
i
„
ˆ.x/f .x/dx D O.„1/:

An explicit estimate (involving derivatives of f and a lower bound on j@xˆj) is [53,
(7.7.1)0].

In the remainder of this section, we give more precise estimates in the case where
�W .x; y/ 7! x � y.

Proposition A.17. Let f WRn � Rn ! R be a measurable function. Denote by yf its
Fourier transform with respect to the second variable. Define for s � 0,

kf k2L1H s WD

Z
sup
x2Rn

j yf .x; �/j2.1C j�j/2sd�

and let L1H s be the corresponding function space. If f 2 L1H s with s > n
2

, then for
any „ 2 .0; 1�, ˇ̌̌ 1

„n

Z
e

i
„
.x�y/f .x; y/dxdy

ˇ̌̌
� Cskf kL1H s :

Proof. It holds

1

„n

Z
e�

i
„
.x�y/f .x; y/dxdy D

.2�/n=2

„n

Z
yf
�
x;
x

„

�
dx D .2�/n=2

Z
yf .„�; �/d�:

Since Cs D .2�/n=2
R
.1C j�j/�2sd� <1 if s > n=2, by the Cauchy–Schwarz inequality,

we obtain the boundˇ̌̌ 1
„n

Z
e

i
„
.x�y/f .x; y/dxdy

ˇ̌̌
� Cs

Z
sup
x2Rn

j yf .x; �/j2.1C j�j/2sd�:

By assuming more regularity on f , we can bootstrap the previous proposition to
obtain higher-order expansion of such oscillatory integral with a similar control of the
remainder.

Proposition A.18. Let `; n 2 N and let s > `C n
2

. Let .Lk/k2N be the sequence of dif-
ferential operators given by (A.13). There exist constants C`;s such that for any function
f WRnx �Rn

�
! R with @˛xf 2 L

1
x H

s
�

for every j˛j � `, it holds for any „ 2 .0; 1�,ˇ̌̌̌
1

.2�„/n

Z
e

i
„
.x��/f .x;�/dxd� �

`�1X
kD0

„
kLkf .0;0/

ˇ̌̌̌
�C`;s„

`
X
j˛j�`

k@˛xf kL1x H s�
: (A.14)

This statement, more precise than Proposition A.15, is tailored to the case where f
is smooth but oscillates rapidly with respect to the first variable: given g 2 C1c .R

2n;R/,
we can apply Proposition A.18 to

f W .x; �/ 7! g.„�ıx; �/
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for any ı < 1 (since in this case, k@˛xf kL1x H s� D O.„�ı˛`/ for any j˛j � `), whereas one
needs ı < 1

2
to use the result of Proposition A.15.

Proof. We proceed by induction over ` 2 N0 utilizing that the case ` D 0 follows from
Proposition A.17. Hence, we assume that bound (A.14) holds for a given ` 2 N0. Define

F1.x; �/ D
f .x; �/ � f .x; �/jx1D0

x1
; x; � 2 Rn:

Integrating by parts,

1

„n

Z
e

i
„
.x��/x1F1.x; �/dxd� D

i„
„n

Z
e

i
„
.x��/@�1F1.x; �/dxd�:

Note also that by (A.13) and Taylor’s theorem, for every k 2 N0,

iLk.@�1F1/.0; 0/ D
ikC1

.k C 1/Š

X
j˛jDk

@˛x@
˛
� @x1@�1f .0; 0/ D

ikC1

.k C 1/Š

X
j˛jDkC1
˛1>0

@˛x@
˛
� f .0; 0/;

that is, we recover every terms in LkC1f .0; 0/ with ˛1 > 0.
Continuing in this fashion, one can write for j 2 ¹1; : : : ; nº,

Fj .x; �/ D
f .x; �/jx1D���Dxj�1D0 � f .x; �/jx1D���DxjD0

xj
; x; � 2 Rn

and verify that for every k 2 N0,

iLk.@�jFj /.0; 0/ D
ikC1

.k C 1/Š

X
j˛jDkC1; j̨>0
˛1D���D j̨D0

@˛x@
˛
� f .0; 0/: (A.15)

Hence, in the end,

1

.2�„/n

Z
e

i
„
.x��/f .x; �/dx D

1

.2�„/n

Z
e

i
„
.x��/f .0; �/d�dx

C
i„

.2�„/n

nX
jD1

Z
e

i
„
.x��/@�jFj .x; �/dxd�:

For the first term, � 7! f .0; �/ belongs to H s for s > n
2
C 1, which is a subset of

C 0 \ L2 (by Proposition A.5). Hence, by a double Fourier transform,

1

.2�„/n

Z
e

i
„
.x��/f .0; �/d�dx D f .0; 0/:

Note also that by assumptions, the functions @�jFj are such that, for every j˛j � `,
one has @˛x@�jFj 2 L

1
x H

s�1
�

, for instance, with

k@˛x@�1F1kL1x H s�1�
� k@˛C.1;0;:::;0/x f kL1x H s�

: (A.16)
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Hence, using the induction hypothesis, this implies that if s � 1 > `C n
2

,ˇ̌̌̌
1

.2�„/n

Z
e

i
„
.x��/f .x; �/dx � f .0; 0/ � i„

`�1X
kD0

nX
jD1

„
kLk.@�jFj /.0; 0/

ˇ̌̌̌
� C`;s�1„

`C1

nX
jD1

X
j˛jD`

k@˛x@�jFj kL1x H s�1�
:

Using (A.15) and bound (A.16), we conclude that s > `C 1C n
2

,ˇ̌̌̌
1

.2�„/n

Z
e

i
„
.x��/f .x; �/dx �

X̀
kD0

„
kLk.@�jFj /.0; 0/

ˇ̌̌̌
� C`;s�1 „

`C1
X
j˛jD`C1

k@˛xf kL1x H s�
;

which completes the proof.

To conclude this section, we provide another useful estimate on oscillatory integrals.

Proposition A.19. Let K b R and let f WK �R! R be such that

kf kL1C2 WD sup
.�;t/2K�R

.jf .�; t/j C j@tf .�; t/j C j@
2
t f .�; t/j/ < C1:

Then for every 
 2 .0; 1�, there exists CK;
 such that, as ı ! 0,ˇ̌̌ Z
R2

sin.�t=ı/
t

f .�; t/dtd� � 2�
Z
f .�; 0/d�

ˇ̌̌
� CK;
ı

1�
 .kf kL1C2 C k.t; �/ 7! t
�1@tf .�; t/kL1L1/:

Proof. Let us observe that by making an integration by parts, it holds for any f 2C 1;1c .R/
and every � ¤ 0,Z

R

sin.�t/
t

f .t/dt D �
2

�

Z
sin
�
�
t

2

�2
@t

�f .t/
t

�
dt

D
2

�
f .0/

Z C1
�1

sin.�t=2/2

t2
dt

C

Z C1
�1

1 � cos.�t/
�

@t

�f .0/ � f .t/
t

�
dt;

where R 3 t 7! @t .
f .0/�f .t/

t
/ is bounded. Indeed, by the Taylor integral theorem,ˇ̌̌

@t

�f .0/ � f .t/
t

�ˇ̌̌
D

ˇ̌̌f .t/ � f .0/ � tf 0.t/
t2

ˇ̌̌
D

ˇ̌̌ 1
2t2

Z t

0

sf 00.s/ds
ˇ̌̌
�
1

4
kf 00kL1 :

Moreover,
R

R.
sin.t/
t
/2 D � as shown by a Fourier transform.
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Let now f be as in the claim and let gW .�; t/ 7! @t .
f .�;0/�f .�;t/

t
/. ThenZ

R2

sin.�t=ı/
t

f .�; t/dtd� D 2�
Z
f .0; �/d�C

Z
R2

1 � cos.�ı�1t /
�ı�1

g.�; t/dtd�:

Using the Hölder bound j1 � cos.u/j � juj
 , valid for all u 2 R, 
 2 .0; 1/, one hasˇ̌̌ Z
R2

1 � cos.�ı�1t /
�ı�1

g.�; t/dtd�
ˇ̌̌
� ı1�


Z
K�R

j�j
�1jt j
 jg.�; t/jdtd�

� ı1�

� Z

K

j�j
�1d�
�� Z

R
jt j
 sup

�2K

jg.�; t/jdt
�
:

It remains to decomposeZ
R
jt j
 sup

�2K

jg.�; t/jdt D
Z
Œ�1;1�

jt j
 sup
�2K

jg.�; t/jdt C
Z

RnŒ�1;1�
jt j
 sup

�2K

jg.�; t/jdt:

The integral on Œ�1; 1� is bounded by 1
4
kf kL1C2 . On R n Œ�1; 1�, we can write

g.�; t/ D �
f .�; 0/ � f .�; t/

t2
�
@tf .t/

t
;

and thenZ
RnŒ�1;1�

jt j
 sup
�2K

jg.�; t/jdt � C.
/kf kL1C2 C k.�; t/ 7! t
�1@tf kL1L1 :

This concludes the proof.

A.5. The Airy function

The (classical) Airy function can be defined as the oscillatory integral; for x 2 R,

Ai.x/ D
1

�

Z 1
0

cos
� t3
3
C xt

�
dt D

1

2�

Z
R
ei.t3=3Cxt/dt: (A.17)

These improper integrals converge and the definition can be extended to x 2C by consid-
ering a contour in the complex plane instead. The Airy function gives rise to the decaying
solutions of the Schrödinger equation

.��C x/Ai.x � �/ D �Ai.x � �/; x 2 R; � 2 C:

For this reason, the Airy function arises in semiclassical approximations at (generic)
boundary points as in Theorem II.2. The differential operator �� C x on R is essen-
tially self-adjoint with absolutely continuous spectrum. Moreover, its projection-valued
measure can be computed explicitly. Namely, for any � 2 R, its kernel is given by

1

�
lim
�!0

Im.��C x � .�C i�//�1W .x; y/ 2 R2 7! Ai.x � �/Ai.y � �/: (A.18)

Before studying further the applications of the Airy functions to Schrödinger operators
with linear potentials, let us prove a useful fact.
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Lemma A.20. Let � 2 C1c .R; Œ0; 1�/ be any cutoff with 1Œ�1;1� � � � 1Œ�2;2�. For any
k 2 N and x 2 R,ˇ̌̌ 1

2�

Z
R
ei.t3=3Cxt/�.�t/dt � Ai.x/

ˇ̌̌
�

Ck

.��2 C x/kC
:

Proof. By integrations by parts, we can rewrite for x 2 R,

Ai.x/ D
i
2�

Z
R
ei.t3=3Ct/@t

�ei.x�1/t

t2 C 1

�
dt

D
1

2�

Z
R
ei.t3=3Cxt/�.�t/dt C

i
2�

Z
R
ei.t3=3Ct/@t

�ei.x�1/t

t2 C 1
.1 � �.�t//

�
dt;

where these integrals converge in the usual sense.
Let D D @t .

�

t2Cx
/. By making repeated integration by parts, it also holds for x����1

and for any k 2 N,Z
R
ei.t3=3Ct/@t

�ei.x�1/t

t2 C 1
.1 � �.�t//

�
dt

D

Z
R
ei.t3=3Ct/Dk

�
ei.1�x/t@t

�ei.x�1/t

t2 C 1
.1 � �.�t//

��
dt;

where we verify by induction that

Dk
�
ei.1�x/t@t

�ei.x�1/t

t2 C 1
.1 � �.�t//

��
D

´
0 if jt j � ��1;

Ok..t
2 C 1/�1.��2 C x/�k/ if jt j � ��1:

This proves the claim.

Note that taking � D 1, Lemma A.20 and Proposition A.16 (applied with ˆ.t/ D t

and „ D 1
x

) imply that as x !C1,

Ai.x/ D O.x�1/: (A.19)

In fact, applying the steepest descent method to integral (A.17), one obtains the well-
known asymptotics

Ai.x/ �
e.�2=3/x

3=2

2
p
�x1=4

as x !C1:

As a direct consequence of (A.19), the integral over � 2 .�1; �� of the resolvent
kernel (A.18) is convergent for any � 2 R. This implies in particular that the operator
1��Cx�� is locally trace-class and its (integral) kernel is given by

KAiry;� D 1��Cx��W .x; y/ 7!

Z �

�1

Ai.x C � � �/Ai.y C � � �/d�;

see, e.g., [12, Section A.2].
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From this Airy kernel and the bulk kernel (A.1), one can formally construct an integ-
ral kernel for the edge operator 1��Cx1�0 on Rn in arbitrary dimension n � 2 as in
formula (1.7). Indeed, one can decompose

��C x1 D H1 CH2;

where H1 D �@2x1 C x1 is the one-dimensional Airy operator and H2 D ��x? is the
Laplacian on the orthogonal hyperplane (we use the coordinates x D .x1; x?/ with x? D
.x2; : : : ; xn/ for x 2Rn with n� 2). These two operators commute, hence the projection-
valued measure for ��C x1 is a convolution whose kernel can be written as for � 2 R,

.x; y/ 2 R2n 7!

Z
R

d
d�
KAiry;�.x1; y1/

ˇ̌̌
�

d
d�
K
.n�1/

b;
p
�
.x?; y?/

ˇ̌̌
���

d�:

By (A.1), this integral can be restricted to ¹� � �º since Kb;� D 0 for � � 0. This shows
that this integral converges sinceˇ̌̌ d

d�
K
.n�1/

b;
p
�
.x?; y?/

ˇ̌
���

ˇ̌̌
� Cn�

.n�2/=2

uniformly for x; y 2 Rn and since Ai.�/ D O.��1/ as �!C1 (cf. (A.19)). Then, by
Fubini’s theorem, we also obtain

K
.n/
edge D 1.�1;0�.��C x1/W

.x; y/ 7!

Z
R�

Z �

�1

d
d�
K
.n�1/

b;
p
�
.x?; y?/

ˇ̌̌
���

Ai.x � �/Ai.y � �/d�d�

D

Z
RC

K
.n�1/

b;
p
�
.x?; y?/Ai.x C �/Ai.y C �/d�:

This formula defines a locally trace-class operator and allows us to conjugate explicitly
��C x1 into a multiplication operator with a conjugation kernel that is well defined and
L2-unitary for functions in Schwartz space. In particular, �� C x1 is essentially self-
adjoint, and using the explicit formula (A.2), this concludes the proof of (1.7).
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