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Abstract. Fix ˛; � > 0 and consider the sequence .˛n� mod 1/n�1. Since the seminal work
of Rudnick–Sarnak (1998) and due to the Berry–Tabor conjecture in quantum chaos, the fine-
scale properties of these dilated monomial sequences have been intensively studied. In this paper,
we show that for � < 14=41 and ˛ > 0, the pair correlation function is Poissonian. While (for a given
� ¤ 1) this strong pseudo-randomness property has been proven for almost all values of ˛, there are
next-to-no instances where this has been proven for explicit ˛. Our result holds for all ˛ > 0 and
relies solely on classical Fourier analytic techniques. This addresses (in the sharpest possible way)
a problem posed by Aistleitner–El-Baz–Munsch (2021).

Keywords: local statistics, sequences modulo 1, exponential sums, van der Corput’s method,
Weyl’s differencing method.

1. Introduction

Let x D .xn/n�1 be a sequence on the unit interval Œ0; 1/. The pair correlation function
of x measures the correlation between points in the initial segment ¹xn W n � N º on the
scale of the mean spacing, 1=N , and is defined by

R.x;N; f / WD
1

N

X
i¤j�N

X
k2Z

f .N.xi � xj C k//;

where f 2 C1c .R/ is a compactly supported, C1-function. The sequence x is said to
have Poissonian pair correlation if the pair correlation function converges to the inte-
gral of f (over R) as N !1, just as one would expect for uniformly distributed and
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independent random variables. That is, the sequence x has Poissonian pair correlation if
for all f 2 C1c .R/,

lim
N!1

R.x;N; f / D

Z
R
f .t/ dt:

The notion of Poissonian pair correlation defines a strong measure of pseudo-randomness
and is a basic concept in quantum chaos. Unsurprisingly, various efforts have been made
[2, 6, 12, 21, 27, 31] to study the pair correlation function of monomial sequences

.˛n� mod 1/n�1; (1.1)

where � > 0 and ˛ > 0. However, little progress has been made to verify that the pair
correlation of such monomial sequences is Poissonian (under explicit conditions on ˛, � ).
We present the state of the art for (1.1) in Section 1.1. In this paper, we prove the first
general and explicit result showing that such monomial sequences exhibit Poissonian pair
correlation.

Theorem 1.1. If � 2 .0; 14=41/ and ˛ > 0, then (1.1) has Poissonian pair correlation.

Remark. (1) Our method applies to higher level correlations, although this generali-
zation is not straightforward as it requires a genuinely multidimensional approach (see
[17, 18]). Moreover, the only arithmetic input of our method are exponential sum bounds.
Thus, with some modification, the method can be extended to more general sequences
satisfying certain growth conditions.

(2) The method of proof allows one to show that the pair correlation function con-
verges to

R
R f .x/ dx with a polynomially decaying error in N which is uniform for all ˛

in a fixed compact interval.

(3) When � D 1=3 and ˛3 2 Q, then the triple correlation is not Poissonian (because
of the cubes n3). Thus, Theorem 1.1 gives an example of a sequence whose pair correla-
tion is Poissonian, but whose triple correlation is not.

Organization of the paper. Section 1.1 presents a brief history of these monomial se-
quences. Section 1.2 sketches the proof of Theorem 1.1, and Section 1.3 provides a heuris-
tic argument which indicates the limitations of our method. In Section 2, we collect
lemmas, reducing matters to bounding certain exponential sums. Finally, in Section 3
we prove Theorem 1.1.

1.1. Background

The study of monomial sequences dates back to Weyl [33], who used them in his study of
the uniform distribution (see [14] or [7]). More recently, there has been renewed interest
in these sequences. In part, this is due to the well-known Berry–Tabor conjecture [4],
which hypothesizes a link between the pseudo-randomness properties of energy levels
and dynamics of quantum systems. For more details, see either of the following review
papers [19, 25].
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The holy grail of this field is to find circumstances for which a sequence has Poisso-
nian gap statistics. That is, consider the distribution of gaps between neighboring first N
elements of the sequence – scaled to have average 1 – then we say the sequence exhibits
Poissonian gap statistics if this (finite) distribution converges to the exponential distribu-
tion, as one would expect for independent random variables. While the aforementioned
behavior is conjectured in many instances, it is truly challenging to prove. Thus, mathe-
maticians have turned to weaker measures of pseudo-randomness. In particular, there has
been a lot of recent work on the pair correlation. Indeed, if one could show that them-level
correlation converges to the expected value for independent random variables (for every
m � 2) then, by the method of moments, one can infer that the sequence has Poissonian
gap statistics.

If we consider the random variable counting the number of sequence elements in
a randomly shifted set of size comparable to 1=N , then the m-level correlations arise
from the moments of this variable. Thus, the m-level correlations are natural measures of
pseudo-randomness in their own right. We refer to [20] for further discussion.

1.1.1. Pair correlation of deterministic sequences. Those few deterministic sequences,
whose pair correlation functions are known to be Poissonian, either require the presence
of particularly strong arithmetic structure, or tools from homogeneous dynamics to apply.
An example of the former is the work of Kurlberg and Rudnick [15] on the (appropriately
normalized) spacing of the quadratic residues of a highly composite modulus. In fact,
they show that the gap statistics are Poissonian. However, this setting requires the use of
arithmetic tools which cannot be relied on in our situation.

On the homogeneous dynamics side, Elkies and McMullen [9] established a remark-
able link between (1.1), for .�; ˛/ D .1=2; 1/, and flows on the modular surface SL2.R/=
SL2.Z/. They used this connection, and tools from homogeneous dynamics, to establish
that the corresponding gap distribution is not Poissonian. Surprisingly, El-Baz, Marklof,
and Vinogradov [8] then exploited the said relationship further to show that, if one re-
moved the squares, the pair correlation is Poissonian. However, the connection to homo-
geneous dynamics requires a particular scaling property which only holds when � D 1=2
and ˛2 2 Q. Indeed, for ˛2 62 Q it is conjectured [9] the gap statistics are Poissonian.

For the sequence .˛n mod 1/n�1, the three gap theorem (also known as the Steinhaus
conjecture) states that the size of the gaps between neighboring points, at any time N ,
form a set of cardinality at most 3. Hence, the local statistics are certainly not Poissonian.
For background see [22, 23].

1.1.2. Metric Poissonian pair correlation. Generally speaking, it is believed that, given
a � > 0, the pseudo-random properties of (1.1) are determined by the Diophantine prop-
erties of ˛ (e.g., see [27, Remark 1.2]). However, in the absence of methods to prove
Poissonian pair correlation for explicit values of ˛, Rudnick and Sarnak [27] introduced
the concept of metric Poissonian pair correlation. Namely, a general sequence .xn/n�1
has metric Poissonian pair correlation, if the dilated sequence .˛xn mod 1/n�1 has Pois-
sonian pair correlation for all ˛ > 0 outside of a (Lebesgue) null set.
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For � 2 N>1, Rudnick and Sarnak [27] proved metric Poissonian pair correlation
of (1.1) in the late 90s. The case of a non-integer � > 1 was only recently settled by
Aistleitner, El-Baz, and Munsch [1]. The regime 0 < � < 1 was addressed by Rudnick
and the third named author [30].

Special attention has been given to the quadratic case, � D 2, due to its connection
with quantum chaos and the boxed harmonic oscillator. Here, Heath-Brown [12] gave
an algorithmic construction of a dense set of ˛ for which the pair correlation is Pois-
sonian. Moreover, there have been some results for longer-range correlations [16, 32],
convergence along sparse subsequences [10,28], and minimal gaps [24,26,34]. However,
finding explicit ˛ for which the pair correlation is Poissonian remains out of reach.

Finally, it is worth noting that the metric Poisson pair correlation theory has been
generalized beyond monomial sequences and exploits some deep connections to additive
combinatorics [2, 5]. However, this connection is beyond the scope of this paper.

Notation. Throughout, we use the usual Bachmann–Landau notation: for functions
f; gWX ! R, defined on some set X , we write f � g (or f D O.g/) to denote that
there exists a constant C > 0 such that jf .x/j � C jg.x/j for all x 2 X . Moreover, let
f � g denote f � g and g � f . Furthermore, let f D o.g/ denote that f .x/

g.x/
! 0.

Throughout, we denote e.x/ D e2�ix , and yf is the Fourier transform (on R) of f .
All of the sums which appear range over integers, in the indicated interval. As ˛, ", � ,
and f are considered fixed, we suppress any dependence in the implied constants. More-
over, for ease of notation, " > 0may vary from line to line by a bounded constant. Further,
we will frequently encounter the exponent

‚ WD
1

1 � �
:

1.2. Idea of the proof

The proof relies on a well-known Fourier decomposition. First, we include the diagonal
term in the pair correlation function, to simplify technicalities. Thus, define

zR.N; f / WD
1

N

X
y2Œ1;N �2

X
k2Z

f .N.˛y�1 � ˛y
�
2 C k//:

Note that Theorem 1.1 is equivalent to showing that (as N !1)

zR.N; f / D

Z
R
f .x/ dx C f .0/C o.1/:

By the Poisson summation formula,

zR.N; f / D yf .0/C
1

N 2

X
jkj2Œ1;N1C"�

yf
� k
N

�ˇ̌̌ X
y2Œ1;N �

e.˛ky� /
ˇ̌̌2
C o.1/

for " > 0, where the o.1/-error comes from the fast decay of yf . Note that f can be de-
composed into a sum of an even and an odd function. Further, the Fourier coefficients
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of the odd part cancel out, and the Fourier coefficients of the even part are even functions
themselves. Thus, without loss of generality we may assume f is even. Hence, it suffices
to show that

E.N / WD
2

N 2

X
k2Œ1;N1C"�

yf
� k
N

�ˇ̌̌ X
y2Œ1;N �

e.˛ky� /
ˇ̌̌2
D f .0/C o.1/: (1.2)

To achieve the desired bound requires a detailed analysis of the exponential sums
in (1.2). We argue in, roughly, two steps: first, we decompose the innermost summation,
and apply van der Corput’s B-process to obtain a saving in the y-summation. Second,
we expand the square and use some analytic tricks to reduce the estimates to exponential
sums over k. Now to obtain a saving in the k-summation, we again use the B-process
coupled with other estimates (such as Weyl differencing).

1.3. Heuristic

After applying the B-process, interchanging the order of summation, extracting the main
terms and dealing with the error terms, our task is the following. We need to show that

Err WD
2

N 2

NX
r1;r2>cN

�

r1¤r2

1

.r1r2/.‚C1/=2

X
k2Œ1;N1C"�

yf
� k
N

�
k‚e.
.r/k‚/

is o.1/ as N !1, where 
.r/D ˇ.r1�‚2 � r1�‚1 /, and ˇ and c depend only on � and ˛.
Now we apply partial summation to reduce matters to estimatingˇ̌̌ X

k2Œ1;N1C"�

e.
.r/k‚/
ˇ̌̌
:

If we had square root cancellation for this sum – uniformly in 
.r/ – then our method
yields

Err � N ��1=2C":

In other words, even with optimal bounds, we cannot hope to go past the barrier � D
1=2 � ". To move past this barrier, our analytic method would require taking advantage
of the cancellation between exponential sums for different values of r. This seems to be
well beyond current technology.

Interestingly, if we consider instead the triple correlation function, the natural bar-
rier to our methods turns out to be � < 1=3. In fact, as we consider higher and higher
correlations, that barrier goes to 0.

1.4. Preliminaries

The following two results are fundamental in the modern study of exponential sums. First,
we recall an application of Weyl’s differencing method (called the A-process, see [11,
Theorem 2.9]).
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Theorem 1.2 (A-process). Let l � 0 be an integer and letM > 2. Suppose �W Œa; b/! R
has l C 2 continuous derivatives on Œa; b/ � ŒM; CM/, where C > 1 is some fixed con-
stant, and assume there exists a constant F > 0 such that

�.r/.x/ � FM�r (1.3)

for r D 1; : : : ; l C 2. ThenX
x2Œa;b/

e.�.x//� F 1=.4L�2/M 1�.lC2/=.4L�2/
C F �1M; (1.4)

where L WD 2l . The implicit constant in (1.4) depends on the choice of l and the implicit
constant(s) in (1.3).

Further, we will use van der Corput’s B-process, which follows from the Poisson
summation and a stationary phase argument (see [13, Theorem 8.16]).

Theorem 1.3 (B-process). Let �W ŒA; B/! R be a C 4-function so that there are ƒ > 0

and � � 1 with

ƒ � �.2/.x/ < �ƒ; j�.3/.x/j <
�ƒ

B � A
; j�.4/.x/j <

�ƒ

.B � A/2

for all x 2 ŒA; B/. Let also

a D �0.A/ and b D �0.B/:

Then X
n2ŒA;B/

e.�.n// D e
�1
8

� X
m2Œa;b/

e.�.xm/ �mxm/p
�.2/.xm/

C !�.A;B/;

where xm denotes the unique solution to �0.x/ D m. Furthermore,

!�.A;B/� ƒ�1=2 C �2 log.b � aC 1/;

where the implied constant is absolute.

We will often need to bound weighted exponential sums. To reduce these estimates to
bounding unweighted sums, we use partial summation.

Lemma 1.4. Let .as/s and .bs/s be sequences of complex numbers. Fix a constant c > 1.
If T > 0 is such that

jbs � bsC1j �
T

s
;

then ˇ̌̌ X
S�s< zS

asbs

ˇ̌̌
� . max

S�s�cS
jbsj CO.T // max

S�zS�cS

ˇ̌̌ X
S�s< zS

as

ˇ̌̌
for any positive integers S and zS satisfying S � zS � cS .
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2. Reducing to exponential sum bounds

2.1. Decomposing the sums and applying the B-process

Now consider the term E.N / defined in (1.2). We shall apply the B-process (Theorem 1.3)
to the exponential sum in E.N /, but presently we do not have sufficient control on the
derivative of y 7! ˛ky� . To gain control, we use several decompositions. First, we assume
(without loss of generality) that

N D NQ WD Q
� ;

for some fixed � > 0, which will be chosen to be sufficiently large in our proof (in a way
depending on � ), as it is enough to prove that the correlations converge along such a sub-
sequence, see [29, Lemma 3.1]. Thus, we decompose the inner summation into the pieces

Eq.k/ WD
X

y2ŒNq ;NqC1/

e.˛ky� /;

where Nq WD q� . To catch the largest term, we set NQC1 D NQ C 1. Thus,

E.N / D
2

N 2

X
k2Œ1;N1C"/

yf
� k
N

�ˇ̌̌ X
q�Q

Eq.k/
ˇ̌̌2
: (2.1)

Now, the next lemma shows that we can replace each Eq.k/ by

E.B/q .k/ WD c1
X

r2Rq.k/

k‚=2

r .‚C1/=2
e.ˇk‚r1�‚/;

where
Rq.k/ WD ˛�k.N

��1
qC1 ; N

��1
q �;

which is the main term after applying the B-process to Eq.k/; the constants c1 and ˇ are
defined by

c1 WD e
�
�
1

8

�q
‚.˛�/‚ and ˇ WD ˛‚.�1�‚ � �‚/:

For later reference, let
R.k/ WD

[
q2Œ1;Q�

Rq.k/:

Let

E.B/.N; yf / WD
2

N 2

X
q2Œ1;Q�2

X
k2Œ1;N1C"/

yf
� k
N

�
E.B/q1

.k/E
.B/
q2 .k/: (2.2)

Lemma 2.1. Let E.N / and E.B/.N; yf / be defined as in (2.1) and (2.2), respectively.
Then

E.N / D E.B/.N; yf /CO.N��C" C jE.B/.N; j yf j/j1=2N��=2C"/:
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Proof. First, we apply Theorem 1.3 to each Eq.k/, q � Q, with ƒ D k˛�.1 � �/N ��2
qC1

and � D 25� . Hence,

jEq.k/ �E
.B/
q .k/j �

NqC1q
N �
qC1k

C logN � N 1��=2k�1=2;

with the implied constant being uniform in q and k. Thus,

E.N / D
2

N 2

X
k2Œ1;N1C"/

yf
� k
N

�ˇ̌̌ X
q�Q

E.B/q .k/CO.N 1��=2C1=�k�1=2/
ˇ̌̌2
:

Taking � > 1=" ensures that in the above error term N 1=� can be replaced by N ". Squar-
ing out and applying the Cauchy–Schwarz inequality yields now the lemma.

2.2. The diagonal

Presently, our goal is to establish (1.2). In view of Lemma 2.1, it suffices to prove that

E.B/.N; yf / D f .0/C o.1/ and E.B/.N; j yf j/ D O.1/; N !1;

for in that case (1.2) is true and Theorem 1.1 will follow. Computing the estimates of
E.B/.N; yf / and E.B/.N; j yf j/ is done by completely analogous way and, therefore, we
give detailed proofs only for E.B/.N; yf /.

The main term, f .0/, will come from the diagonal term when expanding the square
in E.B/.N; yf /. That is, in (2.2) we square out and consider the term

D.N; yf / WD
2jc1j

2

N 2

X
k2Œ1;N1C"/

yf
� k
N

� X
r2R.k/

k‚

r‚C1
:

Lemma 2.2. If � 2 .0; 1/, then

D.N; yf / D f .0/C o.1/ and D.N; j yf j/ D O.1/; N !1: (2.3)

Proof. By a Riemann integral argument (see, for example, [3, Theorem 3.2]), the sumX
r2R.k/

1

r‚C1
D
.˛�k/�‚ � .˛�k.N C 1/��1/�‚

�‚
CO..˛�kN ��1/�‚�1/:

Recall that jc1j2 D ‚.˛�/‚. Thus,

D.N; yf / D
2

N 2

X
k2Œ1;N1C"/

yf
� k
N

��
N CO

�N 2��

k

��
D

2

N

X
k2Œ1;N1C"/

yf
� k
N

�
CO.N��C"/:

Now (2.3) follows by the Poisson summation formula and the fact that f is an even
function. The second statement of the lemma follows as above, only this time we employ
the rapid decay of yf to give an upper bound for D.N; j yf j/.



Pair correlation of the fractional parts of ˛n� 4077

2.3. Partial summation

Lemmas 2.1 and 2.2 reduce the problem to estimating E.B/.N; g/ �D.N; g/ for g D yf
and j yf j. Estimating these errors requires a second application of the B-process, this time
to the k-variable. In order to have adequate control on the derivative of y 7! 
.r/y‚ in
the next section, we introduce a second decomposition. In particular, let U 2 N be such
that eU �N 1C" < eUC1. Then we may decompose the sum in k into a sum over intervals
Œeu; euC1/, the last one being ŒeU ; N 1C"/. Let

E.B/q;u .N; g/ WD
2

N 2

X
k2Œeu;euC1/

g
� k
N

�
E.B/q1

.k/E
.B/
q2 .k/:

The next lemma reduces matters further to bounding the unweighted exponential sums

S.
; I/ WD
X
k2I

e.
k‚/

requiring the bound to be uniform in the size of 
 , and the interval I. Therefore, we
introduce

zSƒ1;ƒ2.u/ WD sup

2Œƒ1;ƒ2�

sup
I�Œeu;euC1/

jS.
; I/j:

With this maximal operator at hand, we have the following.

Lemma 2.3. Let q1 � q2 and g D yf or j yf j. Then

E.B/q;u .N; g/ D 1¹q1Dq2ºDu;q1.N; g/

CO
�
N�2C"

X
j2Ju;q1

ej
q
N �
q2
N 2��
q1
zSƒ1.j /;ƒ2.u/.u/

�
;

where 1¹P º is 1 if the property P is satisfied and 0 otherwise,

Du;q.N; g/ WD
2jc1j

2

N 2

X
k2Œeu;euC1/

g
� k
N

� X
r2Rq.k/

k‚

r‚C1
;

ƒ1.j / WD C1e
j�u‚Nq1 ; ƒ2.u/ WD C2e

u.1�‚/N �
q2
;

Ju;q1 WD Œ0; C3 C u � .1 � �/� log q1/

for some constants C1; C2; C3 > 0.

Proof. For brevity, in this proof, let


.r/ WD ˇ.r1�‚2 � r1�‚1 /:

We also consider only the case gD yf since the second case follows by repeating the same
arguments. With this notation, we have

E.B/q;u .N;
yf / D

2jc1j
2

N 2

X
k2Œeu;euC1/

yf
� k
N

� X
ri2Rqi .k/

iD1;2

k‚

.r1r2/.‚C1/=2
e.�
.r/k‚/:
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Thus, the ri which appear in the overall sum all fall within the ranges

Rqi ;u WD

� ˛�eu
N 1��
qiC1

;
˛�euC1

N 1��
qi

�
; i D 1; 2:

Now we interchange the r and k summations. For each choice of r1 and r2, we have that

k 2Kq.r/ WD
1

˛�

�
max.r1N 1��

q1
; r2N

1��
q2

; ˛�eu/;min.r1N 1��
q1C1

; r2N
1��
q2C1

; ˛�euC1/
�
:

Note that this interval may sometimes be empty. With that,

E.B/q;u .N;
yf / D

2jc1j
2

N 2

X
ri2Rqi ;u
iD1;2

.r1r2/
�.‚C1/=2

X
k2Kq.r/

yf
� k
N

�
k‚e.�
.r/k‚/:

Next, we remove the weights via partial summation, see Lemma 1.4. Let wk D yf . kN /k
‚,

we first show

jwk � wkC1j �
N "e‚u

k
(2.4)

for any k 2 Kq.r/ with the implied constant being absolute. The mean value theorem
implies

jwk � wkC1j �
ˇ̌̌
yf
� k
N

�ˇ̌̌
jk‚ � .k C 1/‚j C

ˇ̌̌
yf
� k
N

�
� yf

�k C 1
N

�ˇ̌̌
.k C 1/‚

�
jwkj

k
C
e‚u

N
:

Using that k � N 1C" yields (2.4).
Note that Kq.r/ � Œeu; euC1/. Thus, Lemma 1.4 is applicable and, in combination

with (2.4), yieldsX
k2Kq.r/

wke.�
.r/k‚/� N "e‚u max
K2Kq.r/

ˇ̌̌ X
k2Kq.r/\Œ1;K�

e.
.r/k‚/
ˇ̌̌
:

Note that each ri 2 Rqi ;u satisfies ri � euN
�.1��/
qi for i D 1; 2.

Reducing matters to exponential sums requires control of the difference 
.r/; thus,
let T .j / denote the set of pairs .r1; r2/ 2Rq1;u �Rq2;u satisfying ej � jr2 � r1j< ejC1.
Recall q1 � q2. From now on, we assume r2 < r1, since the case r2 > r1 can be done
in exactly the same way and therefore shall not be discussed in detail. Observe also that
q1 <q2 and r1D r2 implies that Kq.r/D;, i.e., this case gives zero contribution. Assume
now q1 < q2. Then


.r/ D ˇ.‚ � 1/
Z r1

r2

��‚d� � .r1 � r2/r
�‚
1 � .r1 � r2/

� N 1��
q1

˛�euC1

�‚
� .r1 � r2/e

�u‚Nq1 :
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On the other hand,


.r/ D ˇ.r1�‚2 � r1�‚1 /� max.r1�‚1 ; r1�‚2 / D min.r1; r2/1�‚

� min.euN�.1��/q1
; euN�.1��/q2

/1�‚ D eu.1�‚/N �
q2
:

Thus, provided r 2 T .j / we deduce that 
.r/ 2 Œƒ1.j /;ƒ2.u/�.
Moreover, the range of j can be constrained by

ej � r1 � r2 � r1 � euN�.1��/q1

which implies that j 2 Ju;q1 . Thus, we have the following bound:

E.B/q;u .N;
yf /� N�2C"

X
j2Ju;q1

� eu

N 1��
q1

eu

N 1��
q2

��.‚C1/=2
e‚u#T .j / zSƒ1.j /;ƒ2.u/.u/

� N�2C"
X

j2Ju;q1

� eu

N 1��
q1

eu

N 1��
q2

��.‚C1/=2
e‚u

eu

N 1��
q2

ej zSƒ1.j /;ƒ2.u/.u/:

We observe that� eu

N 1��
q1

eu

N 1��
q2

��.‚C1/=2
e‚u

eu

N 1��
q2

ej D ej
q
N �
q2
N 2��
q1

:

Overall, we infer, for q1 < q2, that

E.B/q;u .N;
yf /� N�2C"

X
j2Ju;q1

ej
q
N �
q2
N 2��
q1
zSƒ1.j /;ƒ2.u/.u/:

If q1 D q2, we remove the diagonal r1 D r2, which corresponds to the termDu;q1.N;
yf /,

and apply exactly the same bound to the off-diagonal.

3. Proof of the main theorem

3.1. Exponential sum bounds

Thanks to Lemmas 2.1, 2.2, and 2.3, we will show that Theorem 1.1 can be deduced from
the next lemma.

Lemma 3.1. Assume q1 � q2. Then we have the following bound:

zSƒ1.j /;ƒ2.u/.u/� e8u=15N 11�=30
q2

C eu�j=2N�1=2q1
: (3.1)

Proof. First, we apply the B-process (Theorem 1.3) in the k variable. Here k is in an
interval ŒA; B� of size eu, and the phase function �.k/ D 
k‚ satisfies �.k/ � 
eu‚, as
well as �0.k/ � 
eu.‚�1/ and �00.k/ � 
eu.‚�2/, where 
 2 Œƒ1.j /; ƒ2.u/�. Applying
Theorem 1.3 and a trivial estimate gives one bound (which will suffice for � < 1=3).
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In fact, we require slightly more than the B-process to move past � D 1=3. Thus, we
will apply the B-process precisely, and then use partial summation and the A-process to
bound the resulting sum. First, set # D 1=.1 �‚/ and apply Theorem 1.3 to concludeX

k2Œeu;euC1/

e.
k‚/ D c3
X

h2Œa;b/

s

#

h#C1
e.c4


#h1�#/

CO.eu�j=2N�1=2q1
C log.Nq2//; (3.2)

where a < b are positive integers of size 
eu.‚�1/, c3 and c4 are complex and real non-
zero constants, respectively. A trivial estimate implies that we can assume b � a � 10.

By exploiting partial summation, we may apply Lemma 1.4 to the main term in (3.2).
Thus, to prove (3.1), it suffices to bound

eu


1=2e‚u=2

X
h2Œa;b/

e.c4

#h1�#/ (3.3)

for a < b being of size 
eu.‚�1/ and such that b � a � 10. To that end, we use Theo-
rem 1.2 for an arbitrary integer l . In that notation, let F � 
eu‚, and M � 
eu.‚�1/.
Thus, we conclude that (recall L D 2l )X

h2Œa;b/

e.c4

#h1�#/� .
eu‚/1=.4L�2/.
eu.‚�1//1�.lC2/=.4L�2/ C e�u:

Inserting this into (3.3) and using that ej�u‚Nq1 � 
 � eu.1�‚/N �
q2

, we obtain

eu


1=2e‚u=2

X
h2Œa;b/

e.c4

#h1�#/� eu.euN �

q2
/1=.4L�2/�1=2.N �

q2
/1�.lC2/=.4L�2/

C e�j=2N�1=2q1
;

which, on rearranging and choosing l D 3, gives (3.1).

3.2. Proof of Theorem 1.1

Recall that, after applying Lemma 2.1, our goal is to show

E.B/.N; yf / D
X

q2Œ1;Q�2

X
u�U

E.B/q;u .N;
yf / D f .0/C o.1/ and E.B/.N; j yf j/ D O.1/

when N !1.
In view of (3.1) (a similar calculation shows that the second error term in (3.1) gives

a negligible contribution), we have for q1 � q2 that

N "�2
q
N �
q2
N 2��
q1

X
j2Ju;q1

ej zSƒ1.j /;ƒ2.u/.u/

� N "�2
q
N �
q2
N 2��
q1

X
j2Ju;q1

eje8u=15N 11�=30
q2

� N "�2
q
N �
q2
N �
q1
eue8u=15N 11�=30

q2

� N .41��14/=30C":
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The case q2 < q1 can be treated in the same way by interchanging the roles of q1 and q2.
Therefore, taking into account Lemmas 2.2 and 2.3, we obtain thatX

q2Œ1;Q�2

X
u�U

E.B/q;u .N;
yf / D D.N; yf /CO

�
N .41��14/=30C"

X
q2Œ1;Q�2

X
u�U

1
�

D f .0/C o.1/CO.N .41��14/=30C2=�C"/; N !1:

In a similar fashion,

E.B/.N; j yf j/� 1CN .41��14/=30C2=�C":

Thus, for any � < 14=41 the theorem follows by choosing � large enough and " small
enough.
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