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Abstract. We prove that if .Gn/n�1 D ..Vn; En//n�1 is a sequence of finite, vertex-transitive
graphs with bounded degrees and jVnj ! 1 that is at least .1C "/-dimensional for some " > 0 in
the sense that

diam.Gn/ D O.jVnj1=.1C"// as n!1

then this sequence of graphs has a non-trivial phase transition for Bernoulli bond percolation. More
precisely, we prove under these conditions that for each 0 < ˛ < 1 there exists pc.˛/ < 1 such that
for each p � pc.˛/, Bernoulli-p bond percolation on Gn has a cluster of size at least ˛jVnj with
probability tending to 1 as n!1. In fact, we prove more generally that there exists a universal
constant a such that the same conclusion holds whenever

diam.Gn/ D O
�

jVnj

.log jVnj/a

�
as n!1.

This verifies a conjecture of Benjamini (2001) up to the value of the constant a, which he suggested
should be 1. We also prove a generalization of this result to quasitransitive graph sequences with a
bounded number of vertex orbits.

A key step in our argument is a direct proof of our result when the graphs Gn are all Cayley
graphs of Abelian groups, in which case we show that one may indeed take a D 1. This result
relies crucially on a new theorem of independent interest stating roughly that balls in arbitrary
Abelian Cayley graphs can always be approximated by boxes in Zd with the standard generating
set. Another key step is to adapt the methods of Duminil-Copin, Goswami, Raoufi, Severo, and
Yadin [Duke Math. J. 169 (2020)] from infinite graphs to finite graphs. This adaptation also leads
to an isoperimetric criterion for infinite graphs to have a non-trivial uniqueness phase (i.e., to have
pu < 1), which is of independent interest. We also prove that the set of possible values of the critical
probability of an infinite quasitransitive graph has a gap at 1 in the sense that for every k; n <1
there exists " > 0 such that every infinite graph G of degree at most k whose vertex set has at most
n orbits under Aut.G/ has either pc D 1 or pc � 1 � ".
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1. Introduction

In Bernoulli bond percolation, the edges of a connected, locally finite graph G D .V; E/
are chosen to be either deleted (closed) or retained (open) independently at random with
retention probability p 2 Œ0; 1�. We write Pp D PGp for the law of the resulting random
subgraph and refer to the connected components of this subgraph as clusters. When G is
infinite, the critical probability pc D pc.G/ is defined to be

pc D sup ¹p 2 Œ0; 1� W every cluster is finite PGp -almost surelyº:

It is a fact of fundamental importance that percolation undergoes a non-trivial phase
transition in the sense that 0 < pc < 1 on most infinite graphs. Indeed, in the tradi-
tional setting of Euclidean lattices,1 it is a classical consequence of the Peierls argument
that pc.Zd / < 1 for every d � 2 [28, Theorem 1.10], while the complementary bound
pc � 1=.M � 1/ > 0 holds for every graph of maximum degree M by elementary path-
counting arguments [30, Chapter 3]. Besides the obvious importance of such results to the
study of percolation itself, non-triviality of the percolation phase transition also implies
the non-triviality of the phase transition for many other important models in probabil-
ity and mathematical physics, including the random cluster, Ising, and Potts models; see
[29, Section 3.4] and Remark 1.11 below.

1As is standard in the area, we abuse notation by writing Zd for both the free Abelian group of
rank d and its standard Cayley graph, the hypercubic lattice.
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Since the pioneering work of Benjamini and Schramm [11], there has been substantial
interest in understanding the behaviour of percolation beyond the traditional setting of
Euclidean lattices. A natural level of generality is that of (vertex-)transitive graphs, i.e.,
graphs for which any vertex can be mapped to any other vertex by a graph automorphism.
More generally, one can also consider quasitransitive graphs, i.e., graphs G D .V;E/ for
which the action of the automorphism group Aut.G/ on V has finitely many orbits. We
refer the reader to [28] for background on percolation in the Euclidean context and to [51]
for percolation on general transitive graphs.

Benjamini and Schramm conjectured in the same work that pc < 1 for every infin-
ite, connected, quasitransitive graph that has superlinear volume growth (or, equivalently,
is not rough-isometric to Z). The final remaining cases of this conjecture were finally
resolved in the recent breakthrough work of Duminil-Copin, Goswami, Raoufi, Severo,
and Yadin [18]. Several important cases of the conjecture have been known for much
longer, including the cases that the graph in question has polynomial volume growth
(see the discussion in [18, Section 1]), exponential volume growth [49], or is a Cayley
graph of a finitely presented group [5,72]. Indeed, the precise result proven in [18] is that
pc < 1 for every infinite, connected, bounded degree graph satisfying a d -dimensional
isoperimetric inequality for some d > 4 (we recall what this means later in the introduc-
tion). The general conjecture follows since every infinite transitive graph that does not
satisfy this condition must have polynomial volume growth by a theorem of Coulhon and
Saloff-Coste [16], and hence is covered by previous results. Further works concerning this
problem include [10,15,56,60,67]; see the introduction of [18] for a detailed guide to the
relevant literature.

The purpose of this paper is to develop an analogous theory for finite transitive and
quasitransitive graphs. For such graphs there are multiple, potentially inequivalent ways
to define the supercritical phase (see Remark 1.13); we work with the most stringent such
definition, which requires the existence of a giant cluster whose volume is proportional
to that of the entire graph. Given a graph G D .V;E/ and parameters ˛; q 2 .0; 1/, define
the critical probability

pc.G; ˛; q/

D inf ¹p 2 Œ0; 1� W Pp.there exists an open cluster K such that jKj � ˛jGj/ � qº:

Of course, we trivially have pc.G; ˛; q/ < 1 whenever G is a finite connected graph and
˛; q 2 .0; 1/, so the relevant problem is instead to find conditions on sequences .Gn/n�1
of graphs guaranteeing that pc.Gn; ˛; q/ is bounded away from 1 as n!1.

By analogy with the infinite case, we would ideally like to say that this holds whenever
the graphs Gn are “not one-dimensional” in some sense. However, a precise interpret-
ation of what this should mean is much more delicate to determine in the finite case.
In the infinite case, well-known results of Trofimov [75], Gromov [33] and Bass and
Guivarc’h [6, 34] imply that for every transitive graph G of at most polynomial growth
there exists an integer d such that for each n 2 N the ball of radius n in G has cardinality
bounded above and below by constants times nd . In particular, any such graph with super-
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linear growth has at least quadratic growth. Sequences of finite transitive graphs, on the
other hand, may have volume growth that is only very barely superlinear. Indeed, if one
considers a highly asymmetric torus .Z=nZ/ � .Z=mZ/ with m D m.n/� n, one can
show that the percolation phase transition is non-trivial if and only if m D �.log n/ (see
Lemma 3.3 and Remark 3.4). This example led Benjamini [7, Conjecture 2.1] to make the
following conjecture.

Conjecture 1.1 (Benjamini 2001). For every k � 1, � > 0 and ˛; q 2 .0; 1/ there exists
" D ".k; �; ˛; q/ > 0 such that if G D .V;E/ is a finite, vertex-transitive graph of degree
at most k satisfying

diam.G/ �
�jV j

log jV j

then pc.G; ˛; q/ � 1 � ".

This conjecture has been verified for expander graphs (which automatically have dia-
meter at most logarithmic in their volume) by Alon, Benjamini, and Stacey [4]; see also
[9,46,57,62] for more refined results in this case. Malon and Pak [53] verified the conjec-
ture for Cayley graphs of Abelian groups generated by Hall bases (also called hypercubic
tori) and expressed a belief that the conjecture should be false in general. Note that the
case of the symmetric hypercubic torus .Z=nZ/d is classical; indeed, it follows from
the work of Grimmett and Marstrand [31] that such a torus has a giant cluster with high
probability for every p > pc.Zd /.

The main result of the present paper verifies Conjecture 1.1 for all but the very weakest
instances of the hypotheses, applying in particular to graphs G D .V;E/ that are .1C "/-
dimensional in the sense that diam.G/ � �jV j1=.1C"/ for some " > 0 and � < 1. In
fact, all of our results also apply more generally in the quasitransitive case. Of course,
since every finite graph is trivially quasitransitive, we must define our quasitransitivity
assumption quantitatively if it is to have any impact. Given n 2 N, we therefore define
a graph G D .V; E/ to be n-quasitransitive if the action of Aut.G/ on V has at most n
distinct orbits, so that transitive graphs are 1-quasitransitive.

Theorem 1.2. There exists an absolute constant a � 1 such that for every k;n � 1, � > 0
and ˛; q 2 .0; 1/ there exists " D ".k; n; �; ˛; q/ > 0 such that if G D .V; E/ is a finite,
n-quasitransitive graph of degree at most k satisfying

diam.G/ �
�jV j

.log jV j/a

then pc.G; ˛; q/ � 1 � ".

A crucial ingredient in our argument is a direct proof of Theorem 1.2 for an arbitrary
Abelian Cayley graph. In fact, in this case we show that the exponent a can be taken to
be 1, resolving Conjecture 1.1 in full and significantly generalising the results of Malon
and Pak [53].
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Theorem 1.3. Let k � 1, � > 0, and ˛; q 2 .0; 1/. Then there exists "D ".k; �; ˛; q/ > 0
such that if G D .V;E/ is a Cayley graph of a finite Abelian group with degree at most k
satisfying

diam.G/ �
�jV j

log jV j
(1.1)

then pc.G; ˛; q/ � 1 � ".

The proof of Theorem 1.3 relies on an interesting additive-combinatorial theorem,
Theorem 3.9, which roughly states that balls in Abelian Cayley graphs can always be
approximated, in a certain sense, by boxes in Zd with the standard generating set. This
result is in turn proven using a notion of taking a quotient modulo a subset of a group; we
believe that both Theorem 3.9 and this notion are new, and are optimistic that both will
have significant further applications in future work.

1.1. About the proof

Our work relies crucially on the quantitative structure theory of finite transitive graphs
as developed in a series of works by Tessera and the second author [68–71], building on
Breuillard, Green and Tao’s celebrated structure theorem for finite approximate groups
[12]. Roughly speaking, this theory states that for each integer d � 1 and each locally
finite, vertex-transitive graph G, there exists a scalem such that G looks at least .d C 1/-
dimensional on scales smaller than m and looks like a nilpotent group of dimension2

at most d on scales larger than m; see Section 5 for detailed statements. Again, we
stress that it is indeed possible for a vertex-transitive graph to look higher-dimensional
on small scales than it does on large scales: Consider for example the torus .Z=nZ/d1 �
.Z=mZ/d2�d1 with d2 > d1 and m� n, which looks d2-dimensional on scales up to m
and d1-dimensional on scales k satisfying m� k � n. Given these structure-theoretic
results, the proof of Theorem 1.5 has three main components: an analysis of percolation
on Cayley graphs of finite nilpotent groups, an analysis of percolation under a high-
dimensional isoperimetric condition using the techniques of [18], and finally an argument
showing that we can patch together the outputs of these two analyses at the relevant cros-
sover scale if necessary.

Let us now outline this proof in a little more detail.

� In Section 2.2 we reduce Theorem 1.2 to the transitive case by noting that every n-
quasitransitive graph is rough-isometric to a transitive graph of comparable volume
and diameter.

� In Sections 3.1 and 3.2, we prove Theorem 1.3 by using techniques from additive com-
binatorics to reduce from arbitrary Abelian Cayley graphs to boxes in Zd with the

2There are a number of natural notions of the dimension of a nilpotent group, not all of which
agree. Here we use the term dimension to refer to the degree of polynomial growth or to the isoperi-
metric dimension; these always agree by a result of Coulhon and Saloff-Coste [16] (see Section 5
for more details).
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standard generating set as discussed above. We stress that this reduction from arbitrary
Abelian Cayley graphs to hypercubic boxes, summarised by Theorem 3.9, is one of
the main technical innovations of the paper. Once this reduction has been carried out,
Theorem 1.3 can be handled by minor variations on the methods of Malon and Pak [53].

� In Section 3.3, we prove a version of Theorem 1.2 for Cayley graphs of nilpotent groups
(Theorem 3.19), but where the exponent a is taken to be the step of the group (i.e., the
length of the lower central series). This is done by induction on the step, with the base
case being handled by Theorem 1.3, and is the first place in which we lose additional
powers of log in our analysis.

� In Section 4, which can be read independently of the rest of the paper, we adapt the
methods of [18] to analyze percolation on finite graphs satisfying a 12-dimensional
isoperimetric condition. As described in more detail just after the statement of The-
orem 1.5 below, the proof of that paper adapts straightforwardly to show under a
.4C "/-dimensional isoperimetric assumption that there is a non-trivial phase in which
there exist large clusters (i.e. clusters of size going to infinity with the volume of the
graph), but an additional and completely new argument is needed to deduce the exist-
ence of a giant cluster (i.e. a cluster of volume proportional to the volume of the graph).

� In Section 5 we review the structure theory of vertex-transitive graphs as developed in
[69, 70]. We also prove an important supporting technical proposition, stating roughly
that at the scale where the graph crosses over from being at least .d C 1/-dimensional
to at most d -dimensional, we can find a set that well approximates the ball and that
induces a subgraph satisfying a .d C 1/-dimensional isoperimetric inequality.

� Finally, in Section 6 we put all these ingredients together to deduce Theorem 1.2. Note
that a substantial argument is still required to complete this stage of the proof, which is
the second and last place that additional powers of log are lost in our analysis.

1.2. Further results

We now state our other main results.

Isoperimetric criteria for percolation. We now discuss our results concerning percolation
on finite graphs under isoperimetric conditions, which build on the work of [18] and play
an important role in the proof of Theorem 1.2 as described above. Let d � 1 and c > 0. A
locally finite graphG D .V;E/ is said to satisfy a d -dimensional isoperimetric inequality
with constant c, abbreviated (IDd;c), if

j@EKj � cmin ¹jKj; jV nKjº.d�1/=d (IDd;c)

for every finite set K � V . Here, @EK denotes the edge boundary of K, i.e., the set
of edges with endpoints in both K and V n K. It is a classical result of Coulhon and
Saloff-Coste [16] that transitive graphs of at least d -dimensional volume growth always
satisfy d -dimensional isoperimetric inequalities, and strong quantitative versions of this
result for finite transitive graphs have recently been proven by Tessera and the second
author [69].
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The aforementioned theorem of Duminil-Copin, Goswami, Raoufi, Severo, and Yadin
[18], which we review in detail in Section 4, may be phrased quantitatively as follows.
(While they did not phrase their results in this way, one may easily verify that all the
constants appearing in their proof can be taken to depend only on the parameters d , c,
and k; see Remark 4.2 below.)

Theorem 1.4 (DGRSY). For each k <1, d >4, and c > 0, there exists "D ".d;c;k/> 0
such that if G D .V; E/ is an infinite, connected graph with degrees bounded by k satis-
fying the d -dimensional isoperimetric inequality (IDd;c) then pc.G/ � 1 � ". Moreover,
there exists a constant � D �.d; c; k/ > 0 such that

Pp.A$1/ � 1 � expŒ��jAj.d�2/=d �

for every p � 1 � " and every finite non-empty set A � V .

Our second main theorem extends this result to finite graphs under a stronger assump-
tion on the dimension. Note that neither Theorem 1.4 nor Theorem 1.5 require transitivity.
Given two sets A and B of vertices, we write ¹A$ Bº for the event that there is an open
path connecting A to B . The dimensional threshold 6 C 2

p
7 appearing here satisfies

6C 2
p
7 � 11:29 < 12.

Theorem 1.5. Let G D .V; E/ be a finite, connected graph with degrees bounded by k
that satisfies a d -dimensional isoperimetric inequality (IDd;c) for some d > 6C 2

p
7 and

c > 0. There exists a positive constant �D �.d; c; k/ such that for every " > 0 there exists
0 < p0 D p0."; d; c; k/ < 1 such that Pp.jKvj � .1 � "/jV j/ � 1 � " for every v 2 V
and p � p0 and

Pp.A$ B/ � 1 � " expŒ��.min ¹jAj; jBjº/.d�2/=d �

for every p � p0 and any non-empty sets A;B � V .

As we shall see in Section 4, the proof of [18] extends straightforwardly to show that
if G satisfies a d -dimensional isoperimetric assumption for some d > 4 then there exists
" D ".k; d/ > 0 such that if p � 1 � " then each vertex v has a good probability to be
connected to any setA� V satisfying jAj � jV j1�ı , where ı D ı.d/D .d � 4/=4.d � 1/
is an explicit positive constant tending to 0 as d # 4. An additional argument is required
to deduce that a giant component exists, and we have been able to implement such an
argument only under a stronger assumption on d .

Remark 1.6. We have not optimised the value of the dimensional threshold 6C 2
p
7 �

11:29 appearing here. We have been able to extend the result to some lower values of the
dimension, but not all the way down to 4C ", and do not pursue these improvements here.
We expect that Theorems 1.4 and 1.5 should hold for any d > 1, but this appears to be
beyond the scope of existing methods.

Critical probability gap for infinite transitive graphs. Although the main focus of this
paper is percolation on finite graphs, a number of the techniques apply equally well to
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infinite graphs. In particular, this allows us to make the results of [18] more quantitative
in the following sense. Recall that a transitive graph is said to have superlinear volume
growth if lim supn!1

1
n
jB.o;n/j D1, where B.o;n/ denotes the ball of radius n around

the vertex o.

Theorem 1.7 (Critical probability gap). Let k; n 2 N. Then there exists " D ".k; n/ > 0
such that if G is an infinite, connected n-quasitransitive graph of degree at most k with
superlinear volume growth then pc.G/ � 1 � ". In particular, every infinite, connected,
n-quasitransitive graph G of degree at most k has either pc.G/ � 1 � " or pc.G/ D 1.

Since the main results of [18] are already proven quantitatively as discussed above,
the main novelty of the proof of Theorem 1.7 comes from the application of quantitative
forms of Gromov’s theorem as developed in [68–71] to handle the low-dimensional case
in a quantitative way.

A critical probability gap of the form established by Theorem 1.7 was first sugges-
ted to hold by Gábor Pete [59, p. 225], who noted that it would follow from Schramm’s
locality conjecture [9] together with the (then conjectural) results of [18]. Moreover, The-
orem 1.7 shows in particular that, in the formulation of the locality conjecture, one may
harmlessly replace the assumption that pc.Gn/ < 1 for all sufficiently large n with the
a priori stronger assumption that lim supn!1 pc.Gn/ < 1. See [9, 42] for overviews of
this conjecture and the progress that has been made on it. [Added in proof: Schramm’s
locality conjecture has now been solved in a preprint of Easo and the first author [21].]

Corollaries for the uniqueness threshold. Recall that if G D .V; E/ is an infinite, con-
nected, locally finite graph then the uniqueness threshold pu D pu.G/ for Bernoulli bond
percolation on G is defined by

pu D inf ¹p 2 Œ0; 1� W there is a unique infinite cluster Pp-almost surelyº:

It is a result originally due to Häggström, Peres, and Schonmann [35, 36, 63] that if G
is quasitransitive then there is a unique infinite cluster almost surely for every p > pu.
Benjamini and Schramm [11, Question 3] asked whether the strict inequality pu < 1

holds for every transitive graph with one end. Of course, when the graph in question is
amenable we have pc D pu by the classical results of Aizenman, Kesten, and Newman [3]
and Burton and Keane [14], so that the question has a positive answer in this case by the
results of [18]. In the non-amenable setting, the question has been resolved positively for
Cayley graphs of finitely presented groups by Babson and Benjamini [5] (see also [72]),
for graphs defined as direct products by Peres [58], and for Cayley graphs of Kazhdan
groups and wreath products by Lyons and Schramm [52], but remains open in general.

Theorem 1.5 leads to an interesting isoperimetric criterion for an infinite graph to have
pu < 1. We define the internal isoperimetric dimension of an infinite, connected, locally
finite graph G D .V; E/ to be the supremal value of d for which there exists a positive
constant c and an exhaustion V1 � V2 � � � � of V by finite connected sets such that the
subgraph Gn of G induced by Vn satisfies the d -dimensional isoperimetric inequality
(IDd;c) for every n � 1. Notions closely related to the internal isoperimetric dimension
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have been studied systematically in the recent work of Hume, Mackay, and Tessera [41],
whose methods implicitly lead to computations of the internal isoperimetric dimension
in various examples: For example, one can prove via their methods that Zd has internal
isoperimetric dimension d for every d � 1, the 3-regular tree has internal isoperimetric
dimension 1, and graphs rough-isometric to d -dimensional hyperbolic space Hd with
d � 2 have internal isoperimetric dimension d � 1.

We are now ready to state our results on the uniqueness threshold.

Theorem 1.8. Let k 2 N, c > 0 and d > 6 C 2
p
7, and suppose that G D .V; E/ is

an infinite, connected graph with degree at most k for which there exists an exhaustion
V1 � V2 � � � � of V by finite connected sets such that each subgraph Gn of G induced
by Vn satisfies the d -dimensional isoperimetric inequality (IDd;c). Then there exists " D
".d; c; k/ > 0 such that Bernoulli-p bond percolation on G has a unique infinite cluster
almost surely for every p � 1 � ".

Corollary 1.9. Every infinite, connected, bounded degree graph with internal isoperimet-
ric dimension strictly greater than 6C 2

p
7 has pu < 1.

As above, the dimensional threshold appearing in Theorem 1.8 has not been optim-
ised, and we conjecture that the same conclusion holds for every infinite, connected,
bounded degree graph with internal isoperimetric dimension strictly greater than 1. (This
should only be a sufficient condition for pc < 1, since graphs rough-isometric to the
hyperbolic plane have pu < 1 but internal isoperimetric dimension 1. One may be able
to formulate a sharp condition for pu < 1 in terms of logarithmic internal isoperimetric
inequalities.) We remark that our notion of internal isoperimetric dimension is also closely
related to the isoperimetric criteria for pu < 1 for graphs of polynomial growth developed
in the work of Teixeira [67].

When G is transitive, Theorem 1.8 follows immediately from Theorem 1.5 applied to
the sequence of finite graphs Gn together with a result of Schonmann [63] stating that if
G is transitive then

.there is almost-sure uniqueness at p/ ”
�

lim
n!1

inf
x;y2V

Pp.B.x; n/$ B.y; n// D 1
�
;

where B.x; n/ denotes the graph distance ball of radius n around x. See also [52, 65]
for stronger versions of this theorem. In order to deduce Theorem 1.8 from Theorem 1.5
without the assumption that G is transitive, we prove the following variation on Schon-
mann’s theorem in Section 4.3.

Theorem 1.10. Let G D .V; E/ be an infinite, connected, bounded degree graph. If
0 < p0 < 1 is such that

lim
n!1

max ¹Pp0.A ½ B/ W A;B � V with jAj; jBj � nº D 0

then Bernoulli-p bond percolation on G has a unique infinite cluster almost surely for
each p > p0.
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1.3. Further discussion and remarks

Remark 1.11 (Other models). It follows by standard stochastic domination arguments
that each of our main theorems implies analogous results for several other percolation-
type models, including site percolation [32], finitely dependent models [48], and the
Fortuin–Kastelyn random cluster model [29]. Using the Edwards–Sokal coupling [25],
it follows moreover that the ferromagnetic Ising and Potts models have uniformly non-
trivial ordered phases on the classes of graphs treated by these theorems (i.e., the pair
correlations of these models are uniformly bounded away from zero at sufficiently low
temperatures).

Remark 1.12 (Sharp thresholds). It is a standard consequence of the abstract sharp-
threshold theorem of Kahn, Kalai, and Linial [44] that if Gn is a sequence of vertex-
transitive graphs with volume tending to infinity then jpc.Gn; ˛; 1 � "/ � pc.Gn; ˛; "/j
! 0 as n!1 for each fixed 0 < ˛; " < 1. See e.g. [30, Section 4.7] for background on
the use of such sharp-threshold theorems in percolation. This allows us to immediately
deduce the statement given in the abstract from Theorem 1.2: There exists a universal
constant a such that if .Gn/n�1 D ..Vn; En//n�1 is a sequence of finite, vertex-transitive
graphs with bounded degrees and jVnj ! 1 such that

diam.Gn/ D O
�

jVnj

.log jVnj/a

�
as n!1

then for each 0 < ˛ < 1 there exists pc.˛/ < 1 such that for each p � pc.˛/, Bernoulli-p
bond percolation on Gn has a cluster of size at least ˛jVnj with probability tending to 1
as n!1.

Remark 1.13 (Large clusters vs. giant clusters). We now discuss a key issue underlying
many of the additional difficulties arising in finite volume that do not arise in infinite
volume. Let .Gn/n�1 D ..Vn; En//n�1 be a sequence of finite, vertex-transitive graphs
of bounded degree and with jVnj ! 1. Our main theorems give criteria under which the
critical probability

pc D pc..Gn/n�1/ WD lim
˛#0

lim
q#0

lim sup
n!1

pc.Gn; ˛; q/ (1.2)

is strictly less than 1. If .Gn/n�1 converges locally to some infinite, connected, locally
finite, vertex-transitive graphG, it is natural to wonder whether the two critical probabilit-
ies pc.G/ and pc..Gn/n�1/ are necessarily equal. Indeed, if this were the case, one would
be able to deduce our main results (and more!) rather easily from the results of [18, 70]
by a compactness argument. Alon, Benjamini, and Stacey [4] proved that the equality
pc.G/ D pc..Gn/n�1/ holds when .Gn/n�1 is an expander sequence. This equality is
not true in general, however; indeed, the elongated torus Gn;k D .Z=nZ/ � .Z=knZ/
(with its standard generating set) Benjamini–Schramm converges to the square lattice Z2,
which has pc.Z2/ D 1=2, but has pc..Gn;k/n�1/! 1 as k !1.

On the other hand, there are several alternative notions of critical probability for the
sequence .Gn/n�1 that do always coincide with pc.G/ when Gn converges locally to G.
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For example, if we let on be a vertex of Gn for each n � 1, let Kon be the cluster of on,
and define

pT D pT ..Gn/n�1/ WD sup
°
p 2 Œ0; 1� W lim sup

n!1
EGnp jKon j <1

±
I

then it follows from the sharpness of the phase transition [2, 19] that pT ..Gn/n�0/ D
pc.G/ whenever Gn is a sequence of transitive graphs converging locally to a transitive,
locally finite graph G. It follows by similar sharpness arguments that the critical prob-
ability pT can also be characterised as the supremal value of p for which the cluster
volumes jKon j are tight as n!1. Together with the structure-theoretic results of [70],
one can deduce rather easily from these considerations and the results of [18] that if
.Gn/n�1 D ..Vn; En//n�1 is any sequence of finite, vertex-transitive, bounded degree
graphs with diam.Gn/ D o.jVnj/ as n!1 then there exist p < 1 and f W N ! N with
limn!1 f .n/ D1 such that

PGnp .jKvj � f .n// � 1=2

for every n � 1 and v 2 Vn. In other words, a sublinear diameter suffices for there to
be a non-trivial phase in which the cluster of the origin is unboundedly large with good
probability. However, as we see in the example of the elongated torus, it is possible in
finite graphs to have a non-trivial phase in which there are many large clusters but no
giant cluster. As mentioned above, this issue underlies many of the additional technical
difficulties that arise for finite transitive graphs but not for infinite transitive graphs.

Remark 1.14. In the recent works of Easo and the first author [22,23], which were writ-
ten after this paper first appeared, it is proven that the giant cluster is unique and has
concentrated volume in supercritical percolation on any finite vertex-transitive graph. See
also Easo’s work [20] on the problem of when there is a well-defined critical probability
for large finite transitive graphs.

1.4. Notation

Throughout the paper we assume without loss of generality that graphs do not have loops
or multiple edges. This can indeed be done without loss of generality since adding loops
has no effect on percolation, while adding multiple edges only makes it easier for a giant
cluster to exist.

Given a subsetA of a group � , we writeA�1D¹a�1 W a 2Aº and OADA[¹idº[A�1.
Given in additionm 2N, we defineAmD ¹a1 � � �am W a1; : : : ; am 2Aº, write OAmD . OA/m,
and define OA0D¹idº. Given two setsA andB we also writeAB D¹ab W a 2A;b 2Bº. We
write hAiD

S
m�0

OAm for the subgroup of � generated byA, and say thatA generates � if
hAiD� . Given a group � and a finite generating set S of � , the (undirected) Cayley graph
Cay.�; S/ is the graph with vertex set � and edge set ¹¹x; yº 2 � � � W x D ys for some
s 2 S [ S�1 n ¹idºº. Cayley graphs are always transitive since left multiplication defines
a transitive action of � on Cay.�; S/ by graph automorphisms. We write diamS .�/ for
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the diameter of Cay.�; S/, which is equal to the infimal m such that � D OSm. When
� is Abelian we will often denote the same objects using additive notation, so that e.g.
�AD ¹�a W a 2 Aº, OAD A[ ¹0º [ .�A/, andmAD ¹a1C � � � C am W a1; : : : ; am 2 Aº.

As above, we write Pp D PGp for the law of Bernoulli-p bond percolation on a
graph G, including the superscript only when the choice of graph is ambiguous. We write
¹x$ yº for the event that x and y belong to the same open cluster, and ¹A$ Bº for the
event that there is an open cluster intersecting both A and B . We write Kx for the cluster
containing the vertex x.

Given a graphG D .V;E/ and a subgroupH <Aut.G/, we writeHvD ¹hv W h 2H º
for the orbit of a vertex v in H and write Hv D ¹h 2 H W hv D vº for the stabiliser of
v in H . We also use similar notation for orbits and stabilisers of edges. We will often
take o to be a fixed root vertex of a vertex-transitive graph and write B.o; n/ for the
graph-distance ball of radius n around o.

2. Background on percolation and vertex-transitive graphs

In this section we present some basic tools for use in the rest of the paper.

The Harris-FKG inequality. Let G D .V; E/ be a countable graph. A set A � ¹0; 1ºE is
said to be increasing if whenever ! � !0 and ! 2 A we have !0 2 A. The Harris-FKG
inequality [28, Chapter 2.2] states that increasing events are positively correlated under
product measures, so that Pp.A \ B/ � Pp.A/Pp.B/ for any two increasing measurable
sets A and B . Since we will usually be free to increase p whenever needed, we may also
use the following trick to handle some situations in which Harris-FKG does not apply: If
G is a countable graph and ! and !0 are independent Bernoulli percolation configurations
with retention probabilities 1 � Np1 and 1 � Np2 respectively, then ! [ !0 is distributed as
Bernoulli percolation with retention probability 1 � Np1 Np2.

Criteria for a giant component. The next lemma gives necessary and sufficient conditions
for a giant component in terms of point-to-point connection probabilities.

Lemma 2.1. Let G D .V;E/ be a finite graph, let p 2 Œ0; 1�, and let ˛ 2 .0; 1/.

(1) If u 2 V and ˇ > ˛ are such that EpjKuj � ˇjV j, then Pp.jKuj � ˛jV j/ �
.ˇ � ˛/=.1 � ˛/.

(2) If G is vertex-transitive and 0 < ˛; q � 1 are such that Pp.jKuj � ˛jV j/ � q for
every u 2 V then EpjKuj � ˛qjV j and

Pp.u$ v/ � �3=� where � D
˛q

2
^ p

for every u; v 2 V .

Remark 2.2. Note that, for any given u 2 V , the assumption that Pp.u$ v/ � ˇ for
every v 2V is enough to be able to apply the first part of Lemma 2.1, since EpjKuj �ˇjV j
in that case.
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Remark 2.3. The second part of Lemma 2.1 is not true without the transitivity assump-
tion: consider a path of length n connected at one end to a complete graph with n vertices.

Remark 2.4. It is an important and useful fact [28, Theorem 2.38] that Pp� .A/� Pp.A/�

for every increasing event A and p; � 2 .0; 1/. Using this together with Lemma 2.1, one
may easily deduce that for each 0 < ˛1 � ˛2 < 1 and 0 < q1 � q2 < 1 there exists
� D �.˛1; ˛2; q1; q2/ 2 .0; 1/ such that pc.G; ˛2; q2/ � pc.G; ˛1; q1/� for every finite
vertex-transitive graph G. Hence, in order to prove all our main theorems it would suffice
to prove them for a specific value of ˛ and q.

The first item of the lemma follows trivially by applying Markov’s inequality to
jV j � jKuj. The second item appears in a slightly less general form in the work of Ben-
jamini [7, Proposition 1.3], who attributed the argument to Schramm. For completeness,
we now give a quick proof of this lemma at the full level of generality that we require.

Lemma 2.5. Let G D .V; E/ be a finite vertex-transitive graph, let o 2 V , and let p 2
Œ0; 1�. If 0 < ˛ � 1 and m 2 N are such that j¹v 2 V W Pp.o$ v/ � ˛ºj > jV j=.mC 1/

then Pp.o$ v/ � .˛ ^ p/3m for every v 2 V .

Proof. Write � D Aut.G/. We will apply the following algebraic lemma of [24, Lem-
ma 2.1] (see also [7, Proposition 1.3]).

Lemma 2.6. Let � be a finite group and let A� � be symmetric and contain the identity.
If m � 1 is such that jAj > j�j=.mC 1/ then A3m D hAi.

For each v 2 V , fix some 
v 2 � such that 
voD v. Set AD ¹
 2 � W Pp.o$ 
o/ �

˛ ^ pº, noting that A is symmetric and contains the identity. Since ¹
 2 � W 
o D vº D

v�o for every v 2 V , we have jAj > j�j=.mC 1/. Moreover, trivially the set ¹
 2 � W
d.o; 
o/ � 1º is contained in A, and since this set generates � we deduce that hAi D �
also. (This is why we considered ˛ ^ p instead of ˛.) Thus, we may apply Lemma 2.6 to
deduce thatA3mD � . Setting kD 3m, for each v 2 V there therefore exist a1; : : : ; ak 2A
such that 
v D ak � � �a1 and hence v D ak � � �a1o. Writing v0 D o and vi D ai � � �a1o for
each 1 � i � k we deduce by Harris-FKG and the definition of A that

Pp.o$ v/ �

kY
`D1

Pp.vi�1 $ vi / D

kY
`D1

Pp.vi�1 $ aivi�1/ � .˛ ^ p/
k

as required.

Proof of Lemma 2.1. Markov’s inequality implies that if EjKuj � ˇjV j then

P
�
jV nKuj > .1 � ˛/jV j

�
�

EjV nKuj

.1 � ˛/jV j
�
1 � ˇ

1 � ˛
;

which is equivalent to the desired conclusion. Conversely, if Pp.jKuj � ˛jV j/ � q then
EpjKuj � ˛qjV j. This implies that there are at least ˛qjV j=2 vertices v satisfying
Pp.u$ v/ � ˛q=2, so that if G is vertex transitive then the second desired conclusion
follows from Lemma 2.5.
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The following variation on Lemma 2.5 will also be useful. Recall that when H is a
subgroup of Aut.G/ and v is a vertex of G, we write Hv for the orbit ¹hv W h 2 H º
and Hv for the stabiliser ¹h 2 H W h.v/ D vº.

Lemma 2.7. Let G D .V;E/ be a finite vertex-transitive graph, let o 2 V , let p 2 Œ0; 1�,
and let H < Aut.G/. If ˛ > 0 is such that j¹v 2 Ho W Pp.o$ v/ � ˛ºj > jHoj=2 then
Pp.u$ v/ � ˛2 for every v 2 Ho.

Proof. LetAD ¹h 2H W Pp.o$ ho/� ˛º, which is symmetric and contains the identity.
Then by transitivity, jAj D j¹v 2Ho W Pp.o$ v/ � ˛ºj � jHoj and jH j D jHoj � jHoj, so
that jAj > jH j=2. It follows that A2 D H , since for each h 2 H we have hA \ A ¤ ¿
and hence there exist a1; a2 2 A such that ha1 D a2. The claim now follows similarly to
the proof of Lemma 2.5.

2.1. Quotients and rough isometries

We now discuss several useful ways in which percolation on two different graphs can be
compared. We will be particularly interested in the cases that either one graph is a quotient
of the other or the two graphs are rough-isometric.

Monotonicity under quotients. We first recall a coupling of percolation on a graph and
a quotient of that graph due to Benjamini and Schramm [11, Theorem 1] (see also [39,
Section 2]), which implies in particular that if a graphG admits a quotient in which pc <1
then G also has pc < 1. See also [54] for strengthened forms of this result.

Proposition 2.8 (Benjamini–Schramm). Let G D .V; E/ be a locally finite graph, let
H < Aut.G/, and let � W G! G=H be the quotient map. For each v 2 G and p 2 Œ0; 1�,
the cluster of �.v/ in Bernoulli-p percolation on G=H is stochastically dominated by the
image under � of the cluster of v in Bernoulli-p percolation on G. That is,

PGp .�.Kv/ 2 A/ � PG=Hp .K�.v/ 2 A/

for every increasing measurable set A � ¹0; 1ºV=H .

See e.g. [30, Chapter 4.1] for background on stochastic domination.
The next lemma is a straightforward observation allowing us to make a comparison in

the opposite direction when H has bounded edge-orbits, at the cost of increasing p in a
way that depends on the size of these orbits. It implies in particular that ifH has bounded
orbits and G has pc < 1 then G=H has pc < 1 too.

Lemma 2.9. Suppose that G D .V; E/ is a locally finite graph and that H < Aut.G/
satisfies jHej � k for some k � 1 and every e 2 E. For each v 2 G and p 2 Œ0; 1�, the
cluster of �.v/ in Bernoulli-.1� .1� p/k/ percolation onG=H stochastically dominates
the image under � of the cluster of v in Bernoulli-p percolation on G. That is,

PG=H
1�.1�p/k

.K�.v/ 2 A/ � PGp .�.Kv/ 2 A/

for every increasing measurable set A � ¹0; 1ºV=H .
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Proof. Let ! be Bernoulli-p bond percolation on G, and let � 2 ¹0; 1ºE=H be defined by
taking �.e/ D 1 if and only if there is at least one !-open edge in the preimage ��1.e/.
For each vertex v of G, the cluster of �.v/ in � clearly contains the image of the cluster
of v in !. Moreover, the edges of G=H are open or closed in � independently of one
another and each is open with probability at most 1 � .1 � p/k . It follows by a standard
argument [51, Chapter 5.2] that � is stochastically dominated by Bernoulli-.1� .1� p/k/
percolation on G=H and the result follows.

Rough isometries and rough embeddings. We now make note of a simple folkloric
lemma allowing us to compare percolation on two rough-isometric graphs, or more gen-
erally on a graph that can be roughly embedded into another graph. We first recall the
relevant definitions, referring the reader to e.g. [51, Chapter 2.6] for further background.
Let G1 D .V1; E1/ and G2 D .V2; E2/ be connected, locally finite graphs and let ˛ � 1
and ˇ � 0. We abuse notation and write d. � ; � / for the graph distance on bothG1 andG2.
A function � W V1! V2 is said to be an .˛; ˇ/-rough isometry if the following conditions
hold:

(1) (� roughly preserves distances) The inequality ˛�1d.x; y/ � ˇ � d.�.x/; �.y// �
˛d.x; y/C ˇ holds for every x; y 2 V1.

(2) (� is roughly surjective) For every y 2 V2 there exists x 2 V1 with d.�.x/; y/ � ˇ.

Note that the relation of rough isometry is approximately symmetric in the sense that for
each ˛ � 1 and ˇ � 0 there exist ˛0 D ˛0.˛; ˇ/ � 1 and ˇ0 D ˇ0.˛; ˇ/ � 0 such that
whenever there exists an .˛; ˇ/-rough isometry � W V1 ! V2 between two graphs G1 D
.V1;E1/ andG2D .V2;E2/ then there also exists an .˛0;ˇ0/-rough isometry W V2! V1.
(Indeed, simply choose .y/ to be an arbitrary element of the set ¹x W d.�.x/;y/� ˇº for
each y 2 V2.) More generally, we say that � is an .˛;ˇ/-rough embedding if the following
conditions hold:

(1) (� is roughly Lipschitz) The inequality d.�.x/; �.y// � ˛d.x; y/ C ˇ holds for
every x; y 2 V1.

(2) (� is bounded-to-one) j��1.x/j � ˇ for every x 2 V2.

Note that every .˛; ˇ/-rough isometry between graphs with degrees bounded by k is an
.˛; ˇ0/-rough embedding for some ˇ0 D ˇ0.˛; ˇ; k/.

Lemma 2.10. For each k; ˛ � 1 and ˇ � 0 there exists a constant C D C.k; ˛; ˇ/ such
that the following holds. Let f W Œ0; 1�! Œ0; 1� be the increasing homeomorphism f .p/D
1� .1�p1=C /C , letG1D .V1;E1/ andG2D .V2;E2/ be connected graphs with degrees
bounded by k, and let � W V1 ! V2 be an .˛; ˇ/-rough embedding. Then for each v 2 V1
and p 2 Œ0; 1�, the cluster of �.v/ in Bernoulli-f .p/ percolation on G2 stochastically
dominates the image under � of the cluster of v in Bernoulli-p percolation on G1. That
is,

PG2
f .p/

.K�.v/ 2 A/ � PG1p .�.Kv/ 2 A/

for every increasing measurable set A � ¹0; 1ºV2 .
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Proof. For each edge e1 2 E1 with endpoints x and y, letˆ.e1/ be the set of edges ofG2
belonging to some shortest path connecting �.x/ and �.y/ in G2. The definitions are
easily seen to imply that there exists a constant C D C.k; ˛; ˇ/ such that jˆ.e1/j � C
for every e1 2 E1 and j¹e1 2 E1 W e2 2 ˆ.e1/ºj � C for every e2 2 E2. Let q 2 Œ0; 1�, let
.�.e1; e2//e12E1; e22E2 be a family of independent Bernoulli random variables each with
probability q to be 1, and consider the random variables !1 2 ¹0; 1ºE1 and !2 2 ¹0; 1ºE2

defined by

!1.e1/ D 1Œ�.e1; e2/ D 1 for every e2 2 ˆ.e1/� for every e1 2 E1,

!2.e2/ D 1Œ�.e1; e2/ D 1 for some e1 2 E1 with e2 2 ˆ.e1/� for every e2 2 E2.

Observe that for each v 2 V1 the image under � of the cluster of v in !1 is contained in the
cluster of �.v/ in !2. Moreover, each of the families .!1.e1//e12E1 and .!2.e2//e22E2
has independent entries with qC � P .!1.e1/D 1/ � q for every e1 2 E1 and .1� q/C �
P .!2.e2/ D 0/ � 1 � q for every e2 2 E2. It follows in particular that !1 stochastically
dominates Bernoulli-qC bond percolation on G1 and !2 is stochastically dominated by
Bernoulli-.1 � .1 � q/C / bond percolation on G2; hence the claim follows easily.

It is a standard and easily verified fact that if � is a group, S1 and S2 are generating sets
of � , andm� 1 is such that S1 � OSm2 then the identity function �! � is an .m;1/-rough
embedding (i.e., an m-Lipschitz injection) from Cay.�; S1/ to Cay.�; S2/. Lemma 2.10
therefore has the following immediate corollary.

Corollary 2.11. For each k and m there exists a constant C D C.k; m/ such that the
following holds. Let f W Œ0; 1�! Œ0; 1� be the increasing homeomorphism f .p/ D 1 �

.1 � p1=C /C , let � be a group, and let S1 and S2 be finite generating sets of � of size
at most k and with OS1 � OSm2 . Then for each v 2 � and p 2 Œ0; 1�, the cluster of v in
Bernoulli-f .p/ percolation on Cay.�; S2/ stochastically dominates the cluster of v in
Bernoulli-p percolation on Cay.�; S1/.

Remark 2.12. Lemma 2.10 and Corollary 2.11 could also be phrased slightly more
strongly as statements concerning stochastic ordering of the random equivalence rela-
tions given by connectivity.

Remark 2.13. Russ Lyons has pointed out to us that our Lemma 2.10 and Corollary 2.11
are essentially equivalent to [51, Proposition 7.14 and Theorem 7.15], which in turn are
based on [52, Theorem 6.1 and Remark 6.2].

2.2. Quasitransitive graphs

We reduce Theorems 1.2 and 1.7 to the transitive case via the following folkloric result.

Proposition 2.14. Let n;k 2N and supposeG D .V;E/ is a connected n-quasitransitive
graph of degree at most k. Then there exists a connected transitive graphG0 D .V 0;E 0/ of
degree at most .k C 1/2n satisfying diam.G0/ � diam.G/ and an injective .2n; n/-rough
isometry G0 ! G. Moreover, if G is finite then we may insist that jV j=n � jV 0j � jV j.
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The proof of Proposition 2.14 begins with the following simple observation.

Lemma 2.15. Let n 2 N, suppose G D .V; E/ is a connected n-quasitransitive graph
and let � D Aut.G/. Then every v 2 V lies at a distance of at most n � 1 from each
�-orbit of V .

Proof. This is equivalent to the claim that the quotient graph G=� has diameter at most
n � 1, which is trivial since this graph is connected and has at most n vertices.

Proof of Proposition 2.14. Let � D Aut.G/ and let V 0 � V be some �-orbit, noting that
if G is finite then we may take V 0 to be an orbit of maximum size so that jV j=n �
jV 0j � jV j as required. Define E 0 D ¹.x; y/ 2 V 0 � V 0 W 1 � dG.x; y/ � 2nº. Since
� acts by isometries on G it also acts by isometries on G0 D .V 0; E 0/, and this action
is transitive by definition of V 0. Moreover, the degree of a vertex x in G0 is at most
jBG.x; 2n/j � .k C 1/

2n, as required.
We claim that the inclusion map V 0! V is a .2n;n/-rough isometryG0!G. Indeed,

Lemma 2.15 shows that for every v 2V there exists u2V 0 with dG.u;v/� n, and trivially
dG.u; v/ � 2ndG0.u; v/ for every u; v 2 V 0. On the other hand, given u; v 2 V 0 with
dG.u; v/ D m 2 N, let x0 D u; x1; : : : ; xm�1; xm D v 2 V be such that d.xi�1; xi / D 1
for each i D 1; : : : ; m. By Lemma 2.15 there exist y0 D u; y1; : : : ; ym�1; ym D v 2 V 0

such that dG.xi ; yi / � n for each i D 0; : : : ; m, and hence dG0.yi�1; yi / � 1 for each
i D 1; : : : ;m, so that dG0.u; v/ � m. This completes the proof that the inclusion V 0! V

is a .2n; n/-rough isometry G0 ! G, and also proves that G0 is connected with diameter
at most diam.G/.

Corollary 2.16. If Theorems 1.2 and 1.7 hold for n D 1 then they hold for all n � 1.

Proof. In the case of Theorem 1.7 this is immediate from Proposition 2.14, Lemma 2.10
and the fact that superlinear growth is preserved under rough isometries, so we concentrate
on Theorem 1.2. Let k; n � 1, and � > 0 and let G D .V;E/ be a finite, n-quasitransitive
graph of degree at most k satisfying

diam.G/ �
�jV j

.log jV j/a
:

By Proposition 2.14 there exists a transitive graph G0 D .V 0; E 0/ of degree at most
.k C 1/2n with jV j=n � jV 0j � jV j and diam.G0/ � diam.G/, and hence

diam.G0/ � diam.G/ �
�jV j

.log jV j/a
�

�njV 0j

.log jV 0j/a
;

and an injective .2n; n/-rough isometry � W G0 ! G. If Theorem 1.2 holds for transitive
graphs then we may conclude by that theorem and the second part of Lemma 2.1 that
for each " > 0 there exists ı1 D ı1.k; n; �; "/ such that PG

0

p .u$ v/ � 1 � " for every
u;v 2 V 0 and p � 1� ı1. It then follows from Lemma 2.10 that for each " > 0 there exists
ı2 D ı2.k;n;�; "/ such that PGp .u$ v/� 1� " for every u;v 2 �.V 0/ and p � 1� ı2. It
follows by Harris-FKG that PGp .u$ v/� .1� "/p2n for every u;v 2 V and p � 1� ı2,
from which the claim follows easily by the first part of Lemma 2.1.
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3. Nilpotent and Abelian groups

In this section we study percolation on Cayley graphs of Abelian and nilpotent groups.
We study percolation in boxes in Zd in Section 3.1, use techniques from additive com-
binatorics to generalise these results to arbitrary Abelian Cayley graphs in Section 3.2,
then use an inductive argument to study percolation on Cayley graphs of nilpotent groups
in Section 3.3. Finally, in Section 3.4, which can be read independently of the rest of the
section, we prove uniform upper bounds on pc for Cayley graphs of infinite, virtually
nilpotent groups.

3.1. Percolation in an elongated Euclidean box

Malon and Pak proved Theorem 1.3 for certain specific types of generating sets called
Hall bases [53, Theorem 1.2]. In this section we prove a variant of their result that con-
cerns percolation on boxes rather than tori. In order to state this result it will be convenient
to introduce some notation. Given n1; : : : ; nd 2N, we define the boxB.n1; : : : ; nd /�Zd

via
B.n1; : : : ; nd / D ¹.x1; : : : ; xd / 2 Zd W jxi j � ni for every 1 � i � dº:

We view B.n1; : : : ; nd / as an induced subgraph of Zd , so that

diam.B.n1; : : : ; nd // D 2.n1 C � � � C nd /:

We now establish an analogue of Theorem 1.3 for Euclidean boxes.

Proposition 3.1. Let � � 1 and let n1; : : : ; nd 2 N. Suppose that B D B.n1; : : : ; nd /
satisfies

diam.B/ �
�jBj

log jBj
: (3.1)

Then for every " > 0 there exists p0 D p0.�; "/ such that Pp.x $ y/ � 1 � " for every
p � p0 and x; y 2 B .

Remark 3.2. This recovers [53, Theorem 1.2] by Lemma 2.1.

We first consider the case d D 2. The analysis of this case follows by standard methods
and is similar to [28, Chapter 11.5], so we will keep our presentation brief and focus on
the main conceptual ideas.

Lemma 3.3. For every 0 < �; " � 1 there exists p0 D p0.�; "/ < 1 such that ifm;n 2 N
satisfy � logn � m � n then Pp.x $ y/ � 1 � " for every p � p0 and x; y 2 B.n;m/.

Remark 3.4. One can also show conversely that if p < 1 is fixed and m D m.n/ D

o.log n/ then the torus .Z=nZ/ � .Z=mZ/, and in particular its subgraph B.n;m/, does
not contain a giant component with high probability under Bernoulli-p percolation as
n ! 1. Indeed, this torus contains bn=2c copies of the cycle Z=mZ with disjoint
1-neighbourhoods, and each such copy has all edges incident to it closed with probab-
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ility .1 � p/3m, independently of all other copies. We deduce that if n � .1 � p/�3m

then there will exist with high probability many cycles having this property. Since the
locations of these cycles are uniform among the bn=2c possibilities, their complement
will not contain a giant cluster with high probability.

In order to prove Lemma 3.3, we first prove the following standard lemma concerning
two-dimensional bond percolation in a square box.

Lemma 3.5. For each p > 1=2 there exists a constant c.p/ > 0, with c.p/! 1 as p! 1,
such that every point x 2 B.n; n/ has probability at least c.p/ to be connected to all four
sides of the box B.n; n/ in Bernoulli-p bond percolation on B.n; n/.

Proof. We will prove that for an arbitrary p > 1=2 there exists a constant c.p/ > 0 such
that every point x 2 B.n; n/ has probability at least c.p/ to be connected to all four
sides of the box B.n; n/ in Bernoulli-p bond percolation on B.n; n/; using the fact that
Pp� .A/� Pp.A/� for every p;� 2 Œ0;1� and every increasing eventA [28, Theorem 2.38],
we may then take c.p/ ! 1 as p ! 1 as required. It follows from a standard duality
argument [28, Lemma 11.21] that B.n; n/ has a left-right crossing with probability at
least 1=2 when p � 1=2, and hence by symmetry and Harris-FKG, B.n; n/ has both a
left-right crossing and a top-bottom crossing with probability at least 1=4 when p � 1=2.
Moreover, it is a consequence of Kesten’s theorem [45] that the critical probability for the
quarter-plane Œ0;1/2 � Z2 is 1=2 (see e.g. [28, Chapter 11.5]), and hence if p > 1=2

then there exists q D q.p/ > 0 such that the origin is connected to infinity in the quarter-
plane with probability at least q. Letting x 2 B.n; n/ and considering the four copies of
the quarter-plane with corner at x, we deduce by Harris-FKG that with probability at least
q4=4, B.n; n/ has both a left-right crossing and a top-bottom crossing and x is connected
to the boundary of B.n;n/ within each of the four quarter-planes with corner at x. On this
event, we see by a simple topological argument that x must be connected to all four sides
of the box as required; see Figure 1 for an illustration.

Remark 3.6. For our purposes it would suffice to prove Lemma 3.5 for p > 2=3, say,
where one can use elementary path counting arguments (i.e., the Peierls argument) in
place of Kesten’s theorem.

Proof of Lemma 3.3. This follows by a standard duality argument for percolation on the
square lattice. Consider an edge e in the top of the rectangle B.n;m/. The expected num-
ber of dual paths of closed edges of length r that start at e is at most 3r�1.1 � p/r , and it
follows by Markov’s inequality that if p > 2=3 then the probability that e is connected to
the bottom of the rectangle by a dual path of closed edges is at most

P
r�m 3

r�1.1� p/r

D .9p � 6/�13m.1 � p/m. Since m � � log n, there exists p0 D p0.�/ < 1 such that if
p � p0 then this probability is at most 1=n2. If we take such a p, then it follows by a
union bound that there does not exist any closed dual top-bottom crossing of the rectangle
B.n;m/ with probability at least 1 � 2=n. On this event there must exist an open path in
the primal connecting the left and right sides of the rectangle.
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Fig. 1. Top: If a square box admits both a left-right and top-bottom open crossing and a point x
in the box is connected to infinity in all four quarter-planes with corner at x, then x is connected
to all four sides of the box within the box. Bottom: Consider a rectangular box R of width greater
than height, let x and y be points in the rectangle, and let B1 and B2 be square boxes contained in
R, of height equal to that of R, and containing x and y respectively. If R admits an open left-right
crossing and x and y are connected to the top and bottom of B1 and B2 respectively by open paths,
then x and y are connected by an open path.

On the other hand, for each p > 1=2, by Lemma 3.5 there exists a constant c.p/ > 0,
with c.p/! 1 as p! 1, such that every element of the box Œ�m;m�2 has probability at
least c.p/ to be connected to all four sides of the box Œ�m;m�2 by open paths contained
within this box. We can easily deduce from this that there is a giant cluster with high
probability when p is close to 1. Indeed, if x and y are any two points in the rectangular
box B.m;n/, then if p is close enough to 1, x and y each have probability at least 1� " to
be connected to both the top and bottom of the rectangle. By the Harris-FKG inequality,
the probability that x and y are both connected to both the top and bottom of the rectangle
and that there is an open left-right crossing of the rectangle is at least the product of
these probabilities, and hence is close to 1 when p is close to 1 and n is large. On this
event x must be connected to y (see Figure 1 for an illustration), and the claim is easily
deduced.

We now apply the two-dimensional case to analyze the general case. Following Malon
and Pak, we will do this by constructing a homomorphic image of a two-dimensional box
inside a box of general dimension, taking care to make sure the two-dimensional box has
diameter of the correct order.

Proof of Proposition 3.1. We follow Malon and Pak [53, Theorem 1.2]. For notational
convenience we write Ni D 2ni C 1, so that jBj D

Qd
iD1 Ni . We may assume without

loss of generality that n1 � � � � � nd . We may also assume that jBj � 100e�, noting that
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this combines with (3.1) to force d � 2. We claim that there exists 1 � k < d such that

N1 � � �Nk � �
�1 log jBj and NkC1 � � �Nd � �

�1 log jBj: (3.2)

Indeed, we will prove that if k is minimal such that N1 � � �Nk � ��1 log jBj then k < d
and NkC1 � � �Nd � ��1 log jBj. If k D 1 then this inequality is immediate since

N2 � � �Nd �
p
N1N2 � � �Nd D

p
jBj � ��1 log jBj;

where the final inequality follows by calculus and the assumption that jBj � 100e�. We
may therefore assume that k > 1. In this case the bounds (3.1) and d � 2 imply that

Nd � diam.B/ �
�jBj

log jBj
D
�N1 � � �Nd

log jBj
;

and hence that k < d . If (3.2) does not hold then we have

N1 � � �Nk D
jBj

NkC1 � � �Nd
>

�jBj

log jBj
(3.3)

and hence

log jBj > �NkC1 � � �Nd (since (3.2) does not hold)

� �Nk (since k < d and the Ni are increasing)

>
�2N1 � � �Nk

log jBj
(by minimality of k and since k > 1)

>
�3jBj

log2 jBj
(by (3.3)).

Since � � 1 this is contrary to the assumption that jBj � 100, so that NkC1 � � �Nd �
��1 log jBj as claimed.

Let 1 � k < d be such that (3.2) holds and set

m D 1
2
.N1 � � �Nk � 1/; n D 1

2
.NkC1 � � �Nd � 1/;

noting that m; n 2 N since the Ni are all odd. It follows from (3.2) and the assumption
that jBj � 100e� that

min ¹m; nº �
��1

2
log jBj �

1

2
�
��1

4
log jBj �

��1

4
log max ¹m; nº: (3.4)

Recall that a Hamiltonian path in a graph is a path that visits each vertex exactly once.
Continuing to follow Malon and Pak, choose Hamiltonian paths

�1 W ¹�m; : : : ; mº ! B.n1; : : : ; nk/; �2 W ¹�n; : : : ; nº ! B.nkC1; : : : ; nd /

such that �1.0/D 0 and �2.0/D 0, noting that such paths trivially exist, and note that the
map � D .�1;�2/ WB.m;n/!B is a bijective graph homomorphism satisfying �.0/D 0.
In particular,B.m;n/ is isomorphic to a spanning subgraph ofB , so that the desired result
follows from (3.4) and Lemma 3.3.
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3.2. Abelian groups

In this section we prove the following generalisation of Theorem 1.3. Throughout this
section we use additive notation for Abelian groups. In particular, we write 0 for the
identity element of an Abelian group, and given a subset A of an abelian group and a
positive integer r we write rA D ¹a1 C � � � C ar W ai 2 Aº. Given vertices x and y and

a set of vertices A, we write ¹x
A
 ! yº for the event that x is connected to y by an open

path of edges with both endpoints in A.

Theorem 3.7. For each k � 1 and �; " 2 .0; 1� there exist constants C D Ck 2 N and
p0 D p0.k; �; "/ < 1 such that the following holds. Let � be an Abelian group with
generating set S D ¹x1; : : : ; xkº and let r � 1 be such that jr OS j � �.r C 1/ log.r C 1/.
Then

Pp.x
Cr OS
 �! y/ � 1 � "

for every p � p0 and x; y 2 r OS .

Remark. Theorem 3.7 is not true in an arbitrary group. For example, if S is a generating
set for a non-Abelian free group � then j OS r j grows exponentially in r , but under percola-
tion on Cay.�; S/ we have Pp.x $ y/! 0 as d.x; y/!1 for every fixed p < 1.

Before we prove Theorem 3.7, let us confirm that it really does generalise The-
orem 1.3.

Proof of Theorem 1.3. This follows by applying Theorem 3.7 with r D diamS .�/ and
using j�j � diamS .�/, and then applying the first part of Lemma 2.1.

We will prove Theorem 3.7 by constructing subgraphs isomorphic to Euclidean boxes
inside Cay.�; S/ and then applying the results of the previous subsection. We first recall
a standard definition from additive combinatorics.

Definition 3.8 (Progressions). Given elements a1; : : : ; ak of an Abelian group � , and
L1; : : : ; Lk � 0, define the progression P D Pa1;:::;ak .L1; : : : ; Lk/ via

Pa1;:::;ak .L1; : : : ; Lk/ D ¹`1a1 C � � � C `kak W j`i j � Li for every iº:

(Note that the Li need not be integers.) The progression P is called proper if each of its
elements has a unique representation of the form `1a1 C � � � C `kak with j`i j � Li for
every i . Note that if L1; : : : ;Lk are integers and P D Pa1;:::;ak .L1; : : : ;Lk/ is a progres-
sion in an Abelian group then mP D Pa1;:::;ak .mL1; : : : ; mLk/ for every integer m � 1.

We now state our main additive-combinatorial theorem powering the results of this
section.

Theorem 3.9. For each k � 1 let Ck D 26k.kŠ/3. Let � be an Abelian group with gen-
erating set S D ¹x1; : : : ; xkº. Then for each r � 1 there exist non-negative integers
L1; : : : ; Lk � r such that the progression P D Px1;:::;xk .L1; : : : ; Lk/ is proper and sat-
isfies P � r OS � Ck.P C OS/.
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Note that we do not claim that the progression CkP is proper. Before proving this
theorem, let us see how it implies Theorem 3.7, and hence in particular Theorem 1.3.

Proof of Theorem 3.7 given Theorem 3.9. Let k � 1 and 0 < �; " � 1. Fix r � 1, an
Abelian group � , and a generating set S D ¹x1; : : : ; xkº of � such that jr OS j �
�.r C 1/ log.r C 1/. First note that

jr OS j �
�

2
.r C 1/ log jr OS j: (3.5)

Indeed, if jr OS j � .r C 1/2 then this is immediate from the assumption that jr OS j �
�.r C 1/ log.r C 1/, whilst if jr OS j � .r C 1/2 then we have jr OS j= log jr OS j � jr OS j1=2 �
r C 1, from which the claim is also immediate.

Let C DCk be the constant coming from Theorem 3.9 and let P be as in the statement
of that theorem, so that P is proper and

P � r OS � CP C C OS: (3.6)

Since P is proper, there is a subgraph of G D Cay.�; S/ with vertex set P that is iso-
morphic to the box B D B.L1; : : : ; Lk/. (The subgraph of G induced by P may ‘wrap
around the sides’ of P and be strictly larger than this subgraph, but this does not cause
any problems.) Moreover, we also have

diam.B/ � k.2r C 1/ (by the bound on Li )

�
4kjr OS j

� log jr OS j
(by (3.5))

�
4C k.2k C 1/CC1jBj

� log jBj
(by (3.6)),

where we used jCP j �
Qk
iD1.2CLi C 1/ � C k

Qk
iD1.2Li C 1/ D C kjBj and

jCP C C OS j � jCP j � j OS jC � .2k C 1/C jCP j in the last line. Proposition 3.1 there-
fore implies that there exists p0 D p0.k; �; "/ < 1 with p0 � .1 � "/1=4C such that

Pp.x
P
 ! y/ � .1 � "/1=4C for every x; y 2 P and p � p0. It follows trivially that

Pp.0
PC OS
 ��! x/ � .1 � "/1=.4C/

for every p � p0 and x 2 P [ OS also. Let y 2 CP C C OS , so that we can write y D
a1 C � � � C a` for some ` � 2C and a1; : : : ; a` 2 P [ OS . Writing y0 D 0 for the identity
of � and yi D

Pi
jD1 aj for each 0 � i � `, we deduce from the Harris-FKG inequality

that

P .0
2CPC2C OS
 ������! y/ �

`�1Y
iD0

P .yi
yiCPC OS
 �����! yiC1/ � .1 � "/

1=2

for every p � p0 and y 2 CP C C OS . A further application of Harris-FKG then yields

Pp.x
2CPC2C OS
 ������! y/ � 1 � "
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for every p � p0 and x; y 2 CP C C OS . The claim follows since r OS � CP C C OS and
2CP � 2Cr OS .

The remainder of this section is dedicated to proving Theorem 3.9, and is of an entirely
additive-combinatorial nature. In order to facilitate an inductive proof we will prove a
more general and technical statement concerning progressions that are proper modulo a
set. We begin with some relevant definitions.

Definition 3.10 (Divisibility by a subset). Let � be an Abelian group and let Q � � be
symmetric and contain the identity. If a subset A � � satisfies

.8x; y; z 2 A/
�
..x � y 2 Q/ ^ .y � z 2 Q//) x � z 2 Q

�
(3.7)

then we may define an equivalence relation “�modQ” onA by saying that x� y modQ
if and only if x � y 2 Q. We write A=Q for the set of equivalence classes of this equi-
valence relation, and call A=Q the quotient of A by Q. If in addition to (3.7) we have

.8x; x0; y; y0 2 A/...x � x0 mod Q/ ^ .y � y0 mod Q//) .xC y � x0 C y0 mod Q/
(3.8)

then we say that A is divisible by Q. Note that if A is divisible by Q then so is every
subset of A. IfQ � � is symmetric and contains 0, we will say that a progression P � �
is proper mod Q if it is proper, divisible by Q, and no two of its elements belong to
the same equivalence class of P=Q. Equivalently, P is proper mod Q if it is proper and
x � y … Q for any two distinct elements x; y 2 P .

These definitions also make sense in a non-Abelian setting, but we restrict attention
to the Abelian case here for simplicity of notation.

These definitions satisfy the following elementary inductive property.

Lemma 3.11. Let � be an Abelian group, and let Q � � be symmetric and contain the
identity. If Pa1;:::;am.K1; : : : ; Km/ is proper mod Q and Pb1;:::;bn.L1; : : : ; Ln/ is proper
mod Pa1;:::;am.2K1; : : : ; 2Km/CQ then Pa1;:::;am;b1;:::;bn.K1; : : : ; Km; L1; : : : ; Ln/ is
proper mod Q.

Proof. Let k1; : : : ; km; k01; : : : ; k
0
m; `1; : : : ; `n; `

0
1; : : : ; `

0
n 2 Z be such that jki j; jk0i j � Ki

for all i and j j̀ j; j`0j j � Lj for all j . It suffices to prove that if

k1a1 C � � � C kmam C `1b1 C � � � C `nbn

2 k01a1 C � � � C k
0
mam C `

0
1b1 C � � � C `

0
nbn CQ:

then `i D `0i for every 1 � i � n and kj D k0j for every 1 � j � m. To prove this, we first
rearrange to obtain

.`1 � `
0
1/b1 C � � � C .`n � `

0
n/bn 2 .k

0
1 � k1/a1 C � � � C .k

0
m � km/am CQ

� Pa1;:::;am.2K1; : : : ; 2Km/CQ:



Non-triviality of the phase transition for percolation on finite transitive graphs 4307

The properness ofPb1;:::;bn.L1; : : : ;Ln/modPa1;:::;am.2K1; : : : ;2Km/CQ then implies
that `i D `0i for every 1 � i � n. It follows in particular that

.k1 � k
0
1/a1 C � � � C .km � k

0
m/am 2 Q

and the properness of Pa1;:::;am.K1; : : : ; Km/ mod Q implies that kj D k0j for every
1 � j � m.

We now prove the following proposition, which generalises Theorem 3.9. We will
always apply this proposition with Q D ¹0º, but we include Q in the statement in order
to facilitate the inductive proof. Note also that we do not require the set A to generate � .

Proposition 3.12. For each k � 1 let Ck D 26k.kŠ/3. Let � be an Abelian group, let
Q � � be symmetric and contain the identity, and let A D ¹a1; : : : ; akº � � be a subset
of � with k elements. For each r 2 N such that r OA is divisible by Q there exist non-
negative integers L1; : : : ; Lk � r such that the progression P D Pa1;:::;ak .L1; : : : ; Lk/
is proper mod Q and satisfies

P � r OA � Ck.P CQC OA/:

Proof. We prove the claim by induction on k. To prove the base case k D 1, let A D ¹aº
for some a 2 � and suppose that r OAD ¹�ra; : : : ; raº D Pa.r/ is divisible byQ. If Pa.r/
is proper mod Q then the proposition is satisfied, so we may assume not and set L < r to
be the maximum non-negative integer such that Pa.L/ is proper mod Q. By maximality
there exist distinct `; `0 2 Z with j`j; j`j � LC 1 such that .`� `0/a 2Q. The divisibility
of Pa.r/ by Q then implies that m.`� `0/a 2Q for all m 2 Z such that jm.`� `0/j � r ,
and so r OA� Pa.j`� `0j/CQ. In particular, we have Pa.L/� r OA� Pa.j`� `0j/CQ �
Pa.2LC 2/CQ � 2.Pa.L/CQC OA/ and the proposition is satisfied.

Now suppose that k � 2, let � , Q, A, and r be as in the statement, and suppose that
the claim has already been proven for all smaller values of k. It suffices to prove that if r
satisfies the additional assumption that r OA 6� .r � 1/ OACQ, or equivalently that

there exists x 2 r OA such that x 6� y mod Q for every y 2 .r � 1/ OA; (3.9)

then there exist non-negative integersL1; : : : ;Lk� r such thatPDPa1;:::;ak .L1; : : : ;Lk/
is proper mod Q and satisfies

P � r OA � .Ck � 1/.P CQC OA/:

Indeed, suppose that we have proven this claim and that r does not satisfy (3.9). Then
either r OA � Q, in which case the claim is trivial, or we may take r 0 2 N to be maximal
with 1 � r 0 � r such that there exists x 2 r 0 OA that is not equal to any element of .r 0 �
1/ OA mod Q. Since r OA is divisible by Q, so that equivalence mod Q is an equivalence
relation on r OA, the maximality of r 0 implies that every element of r OA is equivalent to
an element of r 0 OA mod Q, so that r OA � r 0 OACQ. Applying the claim to the set r 0 OA, we
deduce that there exist non-negative integersL1; : : : ;Lk � r 0� r such that the progression
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PDPa1;:::;ak .L1; : : : ;Lk/ is proper modQ and satisfiesP �r 0 OA�.Ck�1/.PCQC OA/,
so that P � r OA � Ck.P CQC OA/ as required.

We now carry out the induction step under the additional hypothesis (3.9) as dis-
cussed above. By condition (3.9) we may pick x 2 r OA n ..r � 1/ OACQ/. Note that then
x D m1a1 C � � � C mkak for some m1; : : : ; mk 2 Z such that jm1j C � � � C jmkj D r .
By relabelling the generators a1; : : : ; ak if necessary, we may assume without loss of
generality that mk D maxi jmi j, which implies in particular that

r=k � mk � r: (3.10)

We next claim that if `1; : : : ; `k 2 Z satisfy j`kj � mk and `1a1 C � � � C `kak 2 Q then

j`kj � j`1j C � � � C j`k�1j:

Indeed, since Q is symmetric we may assume that 0 � `k � mk . For such .`i /kiD1 it is
obvious that x 2 .m1 � `1/a1 C � � � C .mk � `k/ak CQ, and using x … .r � 1/ OACQ
we deduce that

r � jm1 � `1j C � � � C jmk � `kj � jm1j C � � � C jmkj C j`1j C � � � C j`k�1j � j`kj

D r C j`1j C � � � C j`k�1j � j`kj

as claimed. Applying this claim with `1 D � � � D `k�1 D 0 shows that the progression
Pak .mk=2/ is proper modQ. Similarly, taking arbitrary `1; : : : ; `k�1 with j`i j �mk=.4k/
establishes the implication

.x � y 2 Pak .mk=2/CQ/ H) .x � y 2 Pak .mk=4/CQ/

for all x; y 2 Pa1;:::;ak�1

�
mk

4k
; : : : ;

mk

4k

�
: (3.11)

We claim that Pa1;:::;ak�1.mk=.4k/; : : : ; mk=.4k// is divisible by Pak .mk=2/CQ.
We first show that the quotient of Pa1;:::;ak�1.mk=.4k/; : : : ; mk=.4k// by Pak .mk=2/C
Q is well defined (i.e., (3.7) holds). Given x; y; z 2 Pa1;:::;ak�1.mk=.4k/; : : : ; mk=.4k//
with x � y 2 Pak .mk=2/ C Q and y � z 2 Pak .mk=2/ C Q, it follows from (3.11)
that there exist u; v 2 Pak .mk=4/ such that x � y C u mod Q and y C u � z C

u C v mod Q (equivalence mod Q being well defined for x, y C u and z C u C

v since they all belong to r OA, which is divisible by Q). We deduce from this
that x � z C u C v mod Q, which implies in particular that x � z 2 Pak .mk=2/ C
Q as required. To prove moreover that Pa1;:::;ak�1.mk=.4k/; : : : ; mk=.4k// is
divisible by Pak .mk=2/ C Q (i.e., to verify (3.8)), suppose that x; x0; y; y0 2

Pa1;:::;ak�1.mk=.4k/; : : : ; mk=.4k// satisfy x � x0 mod Pak .mk=2/ C Q and y �

y0 mod Pak .mk=2/ C Q. As before, (3.11) implies that there exist u; v 2 Pak .mk=4/
such that x � x0 C u mod Q and y � y0 C v mod Q, and since r OA is divisible by Q it
follows that x C y � x0 C y0 C uC v mod Q. This in turn implies that x C y � x0 � y0

2 Pak .mk=2/ C Q, and hence x C y � x0 C y0 mod Pak .mk=2/ C Q as required.
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Note moreover that writing A0 D ¹a1; : : : ; ak�1º we see that bmk
4k
c OA0 is a subset of

Pa1;:::;ak�1.mk=.4k/; : : : ;mk=.4k//, and is therefore divisible by Pak .mk=2/CQ also.
Define n2N [ ¹0º to be minimal such that bmk

4k
c OA0� n OA0CPak .mk=2/CQ, noting

that n � mk=4k and, by (3.11),�
mk

4k

�
OA0 � n OA0 C Pak

�
mk

4

�
CQ: (3.12)

Applying the induction hypothesis to the sets A0 and Pak .mk=2/CQ, we deduce that
there exist integers L1; : : : ;Lk�1 � n such that Pa1;:::;ak�1.L1; : : : ;Lk�1/ is proper mod
Pak .mk=2/CQ and satisfies

n OA0 � Ck�1Pa1;:::;ak�1.L1; : : : ;Lk�1/CCk�1Pak

�
mk

2

�
CCk�1QCCk�1 OA: (3.13)

SetLk Dbmk=.4k/c, so that br=.4k2/c �Lk � r=.4k/ by (3.10). Considering separately
the cases Lk D 0 and Lk � 1 yields

Pak .r/ � 4k
2 OAC 8k2Pak .Lk/: (3.14)

Since the progression Pa1;:::;ak�1.L1; : : : ; Lk�1/ is proper mod Pak .mk=2/ C Q and
Pak .mk=2k/ is proper mod Q, we may apply Lemma 3.11 to deduce that the progres-
sion Pa1;:::;ak .L1; : : : ; Lk/ is proper mod Q as required. This progression is also clearly
contained in r OA since Li � r=.4k/ for every 1 � i � k. It follows from (3.12) and (3.13)
that

Lk OA
0
� Ck�1Pa1;:::;ak�1.L1; : : : ; Lk�1/C Ck�1Pak .mk=2/C Ck�1QC Ck�1

OA

C Pak .mk=4/CQ:

Noting that Pak .mk=2/ � 4kPak .Lk/ C 2k OA (the term 2k OA being necessary only if
Lk D 0), we deduce that

Lk OA
0
� Ck�1Pa1;:::;ak�1.L1; : : : ; Lk�1/C .Ck�1 C 1/

�
4kPak .Lk/C 2k

OA
�

C .Ck�1 C 1/QC Ck�1 OA

� 4k.Ck�1 C 1/
�
Pa1;:::;ak .L1; : : : ; Lk/CQ

�
C .Ck�1 C 1/.2k C 1/ OA:

It follows from (3.10) that r � kmk � 8k2Lk C 4k2, so we deduce that

r OA0 � 32k3.Ck�1 C 1/
�
Pa1;:::;ak .L1; : : : ; Lk/CQC

OA
�
:

It follows from this and (3.14) that

r OA � r OA0 C Pak .r/ � 32k
3.Ck�1 C 2/.Pa1;:::;ak .L1; : : : ; Lk/CQC

OA/:

The claim follows since 32k3.Ck�1 C 2/C 1 � 64k3Ck�1 D Ck for every k � 2.

Proof of Theorem 3.9. This follows by applying Proposition 3.12 with A D S and
Q D ¹0º.
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3.3. Finite nilpotent groups

In this section we extend Theorem 1.3 to finite nilpotent groups. We first recall some basic
relevant facts about nilpotent groups, referring the reader to e.g. [74, Section 5.2] or [37,
Chapter 10] for more detailed background. Let � be a group. Given elements x1; : : : ; xk
of � , the simple commutator Œx1; : : : ;xk � is defined recursively by Œx1;x2�D x�11 x�12 x1x2
and Œx1; : : : ; xk �D ŒŒx1; : : : ; xk�1�; xk �. Given two subgroupsH1 andH2 of � , we define
ŒH1; H2� D hŒh1; h2� W h1 2 H1, h2 2 H2i. The lower central series of � is the nested
sequence of normal subgroups �1 > �2 > � � � defined recursively by

�1 D � and �iC1 D Œ�i ; �� for each i � 1:

Each subgroup �i appearing in the lower central series is easily seen to be characteristic
in � (that is, �i is fixed by every automorphism of �), and by definition �i=�iC1 is
central in �=�iC1 for every i � 1 (that is, every element of �i=�iC1 commutes with
every element of �=�iC1). The group � is said to be nilpotent if there exists s � 1 such
that �sC1 D ¹idº. Note in this case that �i D ¹idº for every i > s and �s D �s=�sC1 is
central in � D �=�sC1. The minimal such s is known as the step of � , and is equal to 1
if and only if � is Abelian.

The primary goal of this section is to prove the following proposition.

Proposition 3.13. For each k; s 2N, �� 1, and " > 0 there exists p0.k; s;�; "/ < 1 such
that the following holds. If � is a finite s-step nilpotent group and S is a generating set
for � of size at most k satisfying

diamS .�/ �
�j�j

.log j�j/s
(3.15)

then Bernoulli-p bond percolation on Cay.�; S/ satisfies Pp.x $ y/ � 1 � " for every
p � p0 and x; y 2 � .

The proof of Proposition 3.13 will proceed by induction on the step s of the group,
with the Abelian case already being handled by Theorem 3.7. The proof will rely on the
fact that if � is nilpotent of step s then �=�s is nilpotent of step s � 1. We begin by
recalling some relevant basic facts about nilpotent groups.

Lemma 3.14 (Multilinearity of commutators [74, Lemma 5.5.2]). Let j � 2 and let � be
a group. Then the map

�j W �
j
! �j ; .
1; : : : ; 
j / 7! Œ
1; : : : ; 
j �;

is a homomorphism in each variable modulo �jC1. Moreover, if 
i 2 Œ�; �� for some i
then �j .
1; : : : ; 
j / 2 �jC1. In particular, if � is j -step nilpotent group then �j is a
homomorphism in each variable and the commutator subgroup Œ�; �� is in the kernel of
each of these homomorphisms.

Lemma 3.15 ([74, Proposition 5.2.6]). Let s � 2 and suppose � is an s-step nilpo-
tent group with generating set S . Then �s is generated by the set Ss WD ¹Œx1; : : : ; xs� W
x1; : : : ; xs 2 Sº.
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We will split the proof of the induction step into two cases according to whether
j�sj � log j�j or j�sj < log j�j. It will be useful to know that j�sj cannot be too large. We
recall that the rank of a finitely generated group � is defined to be the minimal cardinality
of a generating set of � .

Lemma 3.16 ([13, Lemma 4.13]). For each s � 2 and k � 1 there exists �D �.s; k/ > 0
such that if � is an s-step nilpotent group with rank at most k then j�sj�jŒ�;��j�j�j1�� .

We now treat the case that j�sj � log j�j, for which we will be able to use a rather
general argument that does not use the induction hypothesis and is not specific to the nil-
potent setting. Let � be a group with finite generating set S , and let H be a subgroup.
Given r � 1, we say thatH is r-quasiconnected if OS r \H generatesH , or equivalently if
the cosets ofH are connected as subsets of Cay.�; OS r /. In particular, Lemma 3.15 implies
that if � is s-step nilpotent then �s is Cs-quasiconnected with respect to any generating
set. The next proposition shows very generally that the existence of a quasiconnected
central subgroup of moderate size implies non-triviality of the percolation phase trans-
ition. As above, we say that a subgroup H of a group � is central if 
h D h
 for every
h 2 H and 
 2 � , noting that central subgroups are always normal.

Proposition 3.17. For each �;">0 and k; r�1 there exists a constant p0Dp0.�; ";k; r/
< 1 such that the following holds. If � is a finite group with generating set S of size at
most k and H is a central, r-quasiconnected subgroup of � such that

jH j � � log j�j and j�=H j � � log j�j (3.16)

then Bernoulli-p bond percolation on Cay.�; S/ satisfies Pp.x $ y/ � 1 � " for every
p � p0 and x; y 2 � .

Proof. We will construct a surjective rough embedding of a Euclidean box onto
Cay.�; S/. The box will satisfy the hypotheses of Proposition 3.1 by (3.16), so that we
can conclude by applying that proposition together with Lemma 2.10.

Let � W � ! �=H be the projection map. It suffices by Corollary 2.11 to prove the
assertion about the non-triviality of the percolation phase transition for G D Cay.�; OS r /
rather than Cay.�; S/. Let G1 be the subgraph of G induced by H , which is isomorphic
to Cay.H; OS r \H/, and let G2 be Cay.�=H; OS r=H/. Recall that every finite graph all of
whose degrees are even admits an Eulerian circuit, i.e., a cycle that passes through every
edge exactly once [17, Theorem 1.8.1]. It follows that every finite graph admits a path that
visits every vertex and crosses each edge exactly twice. Thus, there exist n1; n2 � 1 and
surjective functions �1 W ¹1; : : : ; n1º ! H and �2 W ¹1; : : : ; n2º ! �=H such that

� �i .j / and �i .j C 1/ are adjacent in Gi for each i 2 ¹1; 2º and 1 � j � ni � 1,

� the path in Gi associated to �i crosses each edge of Gi at most twice.

In particular, the path in Gi associated to �i visits each vertex of Gi at most 2.2k C 1/r

times, so that jH j � n1 � 2.2k C 1/r jH j and j�=H j � n2 � 2.2k C 1/r j�=H j. Since
also have j�j D jH j � j�=H j, it follows from (3.16) that there exists a positive constant
Q� D Q�.�; k; r/ such that min ¹n1; n2º � Q� log max ¹n1; n2º.
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Let B be the subgraph of Z2 induced by ¹1; : : : ; n1º � ¹1; : : : ; n2º. For each 1 � j �
n2 � 1 let sj 2 OS r be such that �2.j C 1/ D �2.j /�.sj / D �2.1/�.s1 � � � sj /. We define
� W ¹1; : : : ; n1º � ¹1; : : : ; n2º ! � by �.a; 1/ D �1.a/ for each a 2 ¹1; : : : ; n1º and

�.a; j / D �1.a/s1 � � � sj�1 for each 1 � a � n1 and 2 � j � n2.

The centrality of H implies that the map � defines a graph homomorphism B ! G, i.e.,
�.a; j / and �.a0; j 0/ are adjacent in G whenever ja � a0j C jj � j 0j D 1. Equivalently,
�.a; j /�1�.a0; j 0/ 2 OS r whenever ja � a0j C jj � j 0j D 1. Indeed, if a0 D a and j 0 D
j C 1 we trivially have

�.a; j /�1�.a; j C 1/ D s�1j�1 � � � s
�1
1 �1.a/

�1�1.a/s1 � � � sj D sj 2 OS
r

while if a0 D aC 1 and j 0 D j then by centrality of H ,

�.a; j /�1�.aC 1; j / D s�1j�1 � � � s
�1
1 �1.a/

�1�1.aC 1/s1 � � � sj�1 D �1.a/
�1�1.aC 1/;

which belongs to OS r since �1.a/ and �1.aC 1/ are adjacent in G1.
Finally, we observe that the preimage of each element of � under � has between 1

and 4.2k C 1/2r elements. Indeed, �.a; j / belongs to the right coset ofH determined by
�.s1 � � � sj�1/, so that for each 
 2 � there are at most 2.2k C 1/r values of j for which
�.a; j / lies in the sameH -coset as 
 , and for each j there are at most 2.2k C 1/r values
of a for which �1.a/D 
s�1j�1 � � � s

�1
1 . Thus � is a .1; 4.2kC 1/2r /-rough embedding ofB

into G. Since � is surjective on vertices and min ¹n1; n2º � Q� log max ¹n1; n2º the claim
follows from Proposition 3.1 and Lemma 2.10.

Proposition 3.17 together with Lemmas 3.15 and 3.16 immediately handles the case
of Proposition 3.13 in which j�sj � log j�j. We next address the case j�sj < log j�j, for
which the induction hypothesis will actually be used. We begin with some preliminaries.
Let � be an s-step nilpotent group with finite generating set S , so that by Lemma 3.15,
�s is generated by Ss D ¹Œx1; : : : ; xs� W x1; : : : ; xs 2 Sº. Since �s is central in � , we know
moreover that hzi�s is an Abelian subgroup of � for each z 2 � and hzi�s is generated
by Ss [ ¹zº. The next lemma shows that when s � 2 we can always take z 2 S in such
a way that the Abelian group hzi�s “looks at least two-dimensional” within a ball that
contains �s .

Lemma 3.18. Let s � 2 and let � be an s-step nilpotent group with generating set S of
size k. Then there exist z 2 S and r � 1 such that

OS rs D �s and j. OSs [ ¹z; z
�1
º/r j �

r2

4k2s
:

Proof. Enumerate Ss D ¹Œx1; : : : ; xs� W x1 : : : ; xs 2 Sº D ¹c1; : : : ; cmº, noting that m D
jSsj � k

s . Let z be an element of S of maximal order modulo Œ�; �� and consider the set

T D
®
z�0c

�1
1 � � � c

�m
m W �i 2 ¹�1; 0; 1º

¯
;
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which is contained in . OSs [ ¹z; z�1º/mC1. Lemma 3.15 implies the set T generates the
group hzi�s , which is Abelian since �s is central. Let r be the largest order of an element
of Ss , so that OSmrs D �s by commutativity and Lemma 3.15. We claim that z must have
order at least r modulo Œ�; ��. Indeed, letting Œx1; : : : ; xs� 2 Ss have order r , we see by
Lemma 3.14 that Œx`1; x2; : : : ; xs� D Œx1; x2; : : : ; xs�

` ¤ id for every ` < r . It follows
by a further application of Lemma 3.14 that x1 2 S has order at least r mod Œ�; ��, and
hence z has order at least r modulo Œ�; �� as claimed by maximality. Let c 2 Ss be of
order r . Since �s < Œ�; �� the group elements ¹zicj W 1 � i; j � rº are all distinct, and
so j OT r j � r2. Since OT � . OS [ ¹z; z�1º/mC1 it follows that

OS .mC1/rs D �s and j. OSs [ ¹z; z
�1
º/.mC1/r j � r2;

which implies the claim since mC 1 � ks C 1 � 2ks .

We are now ready to complete the proof of Proposition 3.13.

Proof of Proposition 3.13. We prove the proposition by induction on the step s of the
nilpotent group, the Abelian sD 1 base case having already been handled by Theorem 3.7.
Let s � 2, k 2 N, � � 1, and " > 0. Let � be a finite s-step nilpotent group and let S be
a generating set for � of size at most k satisfying

diamS .�/ �
�j�j

.log j�j/s
:

We need to prove that there exists p0 D p0.s; k; �; "/ < 1 such that if p � p0 then
Bernoulli-p bond percolation on Cay.�; S/ satisfies Pp.x$ y/ � 1� " for all x; y 2 � .
We may split into two cases according to whether or not j�sj � log j�j, taking p0 to be
the maximum of the constants produced in the two cases.

In the first case, j�sj � log j�j and the claim follows immediately from Pro-
position 3.17 with H D �s . Indeed, the hypotheses of this proposition are satisfied
by Lemma 3.15, which implies that �s is r-quasiconnected for some r D r.s/, and
Lemma 3.16, which implies that j�sj � cj�j= log j�j for some constant c D c.s; k/.

Now suppose that j�sj < log j�j. In this case, we clearly have

diamS .�=�s/ � diamS .�/ �
�j�j

.log j�j/s
�

�j�=�sj

.log j�j/s�1
�

�j�=�sj

.log j�=�sj/s�1
:

Letting G1 D Cay.�=�s; S/, it follows from the induction hypothesis that there exists
q1 D q1.s; k; �; "/ < 1 such that if p � q1 then

PG1p .x $ y/ �
p
1 � " for every x; y 2 �=�s :

Let z 2 S and r � 1 be as in Lemma 3.18 and let G2 D Cay.hzi�s; Ss [ ¹zº/. Using
the conclusions of Lemma 3.18 together with Theorem 3.7 shows that there exists q2 D
q2.s; k; "/ such that

PG2q2 .x $ y/ �
p
1 � " for every x; y 2 �s .
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Letting G0 D Cay.G; S [ Ss/, we deduce from these estimates together with Proposi-
tion 2.8 that

PG
0

q1
.x $ y�s/ � 1 � " for every x; y 2 � ,

PG
0

q2
.x $ y/ � 1 � " for every x; y 2 � belonging to a common coset of �s .

Letting q3 < 1 be defined by 1 � q3 D .1 � q1 _ q2/2 so that Bernoulli-q3 percolation
on G0 has the same law as the union of two independent copies of Bernoulli-q1 _ q2
percolation, we find that if p � q3 then

PG
0

p .x $ y/ � PG
0

q1
.x $ y�s/min ¹PG

0

q2
.y $ w/ W w 2 y�sº � 1 � "

for every x; y 2 � . Since " > 0 was arbitrary, we may conclude by applying Corol-
lary 2.11.

3.4. Subgroups of bounded index and virtually nilpotent groups

In this section we show how to reduce the study of percolation on a group to the study of
percolation on a subgroup of bounded index. Our main objective in so doing is to prove
the following extension of Proposition 3.13.

Theorem 3.19. Let k;n; s 2N and let �;" > 0. Then there exist p0D p0.k;n; s;�; "/ < 1
such that if � is a finite group containing an s-step nilpotent subgroup H of index n, and
if S is a generating set for � of size at most k satisfying

diamS .�/ �
�j�j

.log j�j/s
;

then Bernoulli-p bond percolation on Cay.�; S/ satisfies Pp.x $ y/ � 1 � " for every
p � p0 and x; y 2 � .

Another objective is to prove the following quantitative version of [51, Corol-
lary 7.19], which is an important ingredient in the proof of Theorem 1.7. Note here that
the upper bound on pc does not depend on the size of the generating set.

Theorem 3.20. For each n � 1 there exists " D ".n/ > 0 such that if � is an infinite,
finitely generated group that is not virtually cyclic and that contains a nilpotent subgroup
of index at most n, and if S is a finite generating set of � , then pc.Cay.�; S// � 1 � ".

In fact, proving these results is fairly straightforward given the results of the previous
section and the following standard lemmas.

Lemma 3.21 ([74, Lemma 11.2.1]). Let n 2 N. Suppose � is a group with a finite gen-
erating set S , and H is a subgroup of index n in � . Then OSn contains a complete set of
coset representatives for H in � .

Lemma 3.22 ([13, Lemma 4.2]). Let n 2N. Suppose � is a group with a finite generating
set S , and H is a subgroup of index n in � . Then H \ OS2n�1 generates H with diameter
at most diamS .�/.
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Lemma 3.23. Let � be a nilpotent group that is not virtually cyclic. Then there exists a
surjective homomorphism � ! Z2.

Although this lemma is well known as folklore, we were not able to find a reference
and have therefore included a proof for completeness.

Proof of Lemma 3.23. The abelianisation �=Œ�; �� is a finitely generated abelian group,
so �=Œ�; �� Š Zd � T for some d � 0 and some finite abelian group T . It suffices to
show that d � 2. If, on the contrary, d � 1, then writing � W �! �=Œ�;�� for the quotient
homomorphism there exists a finite subset S of � such that �.S/ generates �=Œ�; �� and
contains at most one element of infinite order. It then follows from Lemma 3.14 that each
simple commutator Œx1; : : : ; xj � with each xi 2 S has finite order modulo �jC1. The
fact that �.S/ generates �=Œ�; �� implies that S generates � [37, Corollary 10.3.3], so
Lemma 3.15 shows that for each j D 2; : : : ; s the simple commutators Œx1; : : : ; xj � with
each xi 2 S generate �j modulo �jC1. Thus each quotient �j =�jC1 with j D 2; : : : ; s is
an abelian group generated by finitely many elements of finite order. Since �sC1 D ¹idº, it
follows that �2 D Œ�; �� is finite, and hence � is finite-by-cyclic. Finite-by-cyclic groups
are well known to be virtually cyclic: indeed, if �=H Š Z for some H C � and if xH
is a generator of G=H then H is a complete set of coset representatives for the cyclic
subgroup hxi of � . This completes the proof.

Proof of Theorem 3.19. Let U D H \ OS2n�1, so that

diamU .H/ �
�njH j

.log jH j/s

by Lemma 3.22. Applying Proposition 3.13 to G0 D Cay.H; U / shows that for every
" > 0 there exists p0 D p0.k; n; s; �; "/ < 1 such that PG

0

p .h1 $ h2/ � 1 � " for every
p � p0 and h1; h2 2 H . Since G0 is a subgraph of G00 D Cay.�; OS2n�1/, it follows that
PG
00

p .h1 $ h2/ � 1 � " for every p � p0 and h1; h2 2 H also. Now, by Lemma 3.21,
for every 
 2 � there exists h 2 H such that h and 
 have distance at most 1 in
Cay.�; OS2n�1/ and hence PG

00

p .h$ 
/ � p for every p 2 Œ0; 1�. It follows by Harris-
FKG that PG

00

p .x $ y/ � p2.1 � "/ for all p � p0 and x; y 2 � , and the result follows
easily from Corollary 2.11.

Proof of Theorem 3.20. Let H be a nilpotent subgroup of index at most n in � that is
not virtually cyclic. Lemma 3.23 implies that there exists a surjective homomorphism
� WH !Z2, and Lemma 3.22 then implies that �.H \ OS2n�1/ is a generating set for Z2,
and in particular there exist x1; x2 2 H \ OS2n�1 such that �.x1/ and �.x2/ are linearly
independent. Since x1; x2 2 OS2n�1, there exists a subset S0 � OS of size at most 4n � 2
such that x1; x2 2 S2n�10 . Let �0 D hS0i andH0 D hH \ S2n�10 i. Since �.x1/ and �.x2/
are linearly independent, they generate a subgraph of Cay.�.H0/; �.H \ S2n�10 // that is
isomorphic to the two-dimensional square lattice. This lattice has pc D 1=2 by a famous
theorem of Kesten [45], so that pc.Cay.H0;H \S2n�10 //� 1=2 by Proposition 2.8. Since



T. Hutchcroft, M. Tointon 4316

H0 < �0 we may consider the inclusion map H0 ! �0, which induces a .2n � 1; 1/-
rough embedding Cay.H0;H \ S2n�10 //! Cay.�0; S0/. Lemma 2.10 therefore implies
that there exists " D ".n/ such that pc.Cay.�0; S0// � 1 � ". This proves the theorem,
since Cay.�0; S0/ is a subgraph of Cay.�; S/.

Remark 3.24. Instead of invoking Kesten’s theorem, one could instead use the easy
bound pc.Z2/ � 2=3 to deduce a result of the same form.

4. Percolation from isoperimetry

The goal of this section is to prove Theorems 1.5, 1.8 and 1.10. The section is organised
as follows: In Section 4.1 we explain how the methods of Duminil-Copin, Goswami,
Raoufi, Severo, and Yadin [18] can be adapted to the setting of finite graphs, then apply
the resulting theorems to prove Theorem 1.5 in Section 4.2. Finally, in Section 4.3 we
prove Theorem 1.10 and then deduce Theorem 1.8 from Theorems 1.5 and 1.10.

4.1. Connecting large sets via the Gaussian free field

In this section we discuss those results that can be obtained by a direct application of
the methods of [18] to finite graphs. Before stating these results, we first introduce some
relevant definitions. Let G D .V;E/ be a finite, connected graph and let B � V be a dis-
tinguished set of boundary vertices. We say that the pair .G;B/ satisfies a d -dimensional
isoperimetric inequality with constant c, abbreviated (ID.B/d;c), if

j@EKj � cjKj
.d�1/=d for every K � V n B . (ID.B/d;c)

Note that, in contrast to our earlier definition (IDd;c), we now require that every large
subset of V n B has large boundary, not just those with at most half the total volume
of V . In particular, B must itself be large for (ID.B/d;c) to hold. For any two non-empty,
disjoint sets of vertices A and B in the finite connected graph G, we write Ceff.A$ B/

for the effective conductance between A and B , which is defined by

Ceff.A$ B/ D
X
a2A

deg.a/Pa.�B < �CA / D
X
b2B

deg.b/Pb.�A < �CB /;

where Pv is the law of a simple random walk started at v, and �A and �CA denote the first
time and first positive time that the walk visits A respectively. It is a theorem of Lyons,
Morris, and Schramm [50] that if G D .V; E/ satisfies a d -dimensional isoperimetric
inequality (IDd;c) then there exists a positive constant c0 D c0.d; c/ such that

Ceff.A$ B/ � c0.min ¹jAj; jBjº/.d�2/=d (4.1)

for any two disjoint non-empty sets A; B � V . See e.g. [51] for further background on
effective conductances.

The following theorem follows by an essentially identical proof to that of [18, The-
orem 1.2].



Non-triviality of the phase transition for percolation on finite transitive graphs 4317

Theorem 4.1 (Connecting to large sets). Let G D .V; E/ be a finite, connected graph
with degrees bounded by k and let B � V be such that .G; B/ satisfies a d -dimensional
isoperimetric inequality (ID.B/d;c) for some d > 4 and c > 0. Then there exists p0 D
p0.d; c; k/ < 1 such that

Pp.A$ B/ � 1 � exp
�
�
1
2
Ceff.A$ B/

�
(4.2)

for every p0 � p � 1 and every non-empty set A � V .

Rather than reproduce the entire proof of [18, Theorem 1.2], which would take rather
a lot of space, we instead give a brief summary of the main ideas of that proof with
particular emphasis given to the (very minor) changes needed to prove Theorem 4.1.

Remark 4.2. Note that if G D .V; E/ is an infinite connected, locally finite graph satis-
fying (IDd;c), ƒ � V is a finite set of vertices, Gƒ is the subgraph of G induced by ƒ,
and @�Vƒ is the internal vertex boundary of ƒ then .Gƒ; @�Vƒ/ satisfies .ID.@�Vƒ/d;c/.
Taking an exhaustion of G by finite sets, this allows one to recover Theorem 1.4 from
Theorem 4.1 and inequality (4.1).

The proof relies crucially on the relationships between Bernoulli bond percolation and
the Gaussian free field. The basic idea of the proof is that, by using the Gaussian free field,
we can construct a percolation in random environment model that is easier to prove has
a phase transition than for standard Bernoulli percolation. The main technical step of the
proof of [18] then shows that, under a suitable isoperimetric assumption, we can ‘integrate
out’ the randomness of the environment and compare the new model to standard Bernoulli
percolation of sufficiently high retention probability.

We now recall the relevant definitions. Let G D .V; E/ be a finite, connected graph
and let B be a non-empty subset of V . Let PB W V 2 ! R be the transition matrix of a
random walk on G that is killed when it first visits B , so that

PB.u; v/ D
number of edges between u and v

deg.u/
1.u; v … B/

for every u; v 2 V . The Green function GB W V 2 ! R is defined by

GB.u; v/ D
1.u; v 2 V n B/

deg.v/

X
n�0

P nB .u; v/

for every u; v 2 V , so that deg.v/GB.u; v/ is the expected number of times a random
walk started at u visits v before first hitting B . (Note that the normalization by the degree
is not always included in the definition of the Green function, but is convenient for our
applications here as it makes the Green function symmetric.) The Gaussian free field
(GFF) on G with Dirichlet boundary conditions on B is the mean-zero Gaussian random
vector 'D .'v/v2V with covariances given by the Green function. That is, ' is a Gaussian
random vector with

EGFF
B Œ'u� D 0 and EGFF

B Œ'u'v� D GB.u; v/
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for every u; v 2 V , where we write EGFF
B for expectations taken with respect to the law

of '. Equivalently, the law P GFF
B of the GFF on G with Dirichlet boundary conditions

on B can be defined as the measure on RV that is supported on ¹ 2 RV W  .b/ D 0 for
every b 2 Bº Š RV nB and has density with respect to Lebesgue measure Leb on RV nB

given by
dP GFF
B

dLeb
.'/ D

1

Z.G;B/
exp

�
�
1

2

X
e2E!

j'.eC/ � '.e�/j2
�
; (4.3)

where E! denotes the set of oriented edges of the graph G and Z.G;B/ is a normalising
constant. (Although our graphs are not oriented, we can still think of each edge as having
exactly two possible orientations.)

Let � > 0. It follows from the representation (4.3) that if we condition on the absolute
values .j'v C �j/v2V , then the signs .sgn.'v C �//v2V are distributed as an Ising model
on G with plus boundary conditions on B and with coupling constants given by J.e/ D
j'x C �j j'y C �j for each edge e with endpoints x and y. (The discussion here serves
only as background; we will not use the Ising model directly in this paper.) Using this
fact with � D 1 together with the relationship between the Ising model and Bernoulli
percolation given by the Edwards–Sokal coupling led the authors of [18] to derive an
important estimate concerning connection probabilities in a certain percolation in random
environment model derived from the GFF. Before stating this estimate, let us first give the
relevant definitions. Given a vector p D .pe/e2E of probabilities, Pp denotes the law of
the inhomogeneous Bernoulli bond percolation process in which each edge e is either
deleted or retained independently at random with retention probability pe . Finally, given
a real number x we write xCDmax ¹x;0º. The following proposition follows by the same
proof as [18, Proposition 2.1]. (Indeed, the proof of that proposition implicitly establishes
the proposition as stated here and then applies a limiting argument to deduce a similar
claim for connections to infinity in infinite graphs.)

Proposition 4.3. Let G D .V;E/ be a finite, connected graph and let A;B be non-empty
disjoint subsets of V . Then

EGFF
B ŒPp.'/.A$ B/� � 1 � exp

�
�
1
2
Ceff.A$ B/

�
; (4.4)

where p.'/e WD 1� expŒ�2.'x C 1/C.'y C 1/C� for each edge e with endpoints x and y.

Proof. For each t 2 RA let X tA.'/ D expŒ�
P
x2A tx.'x C 1/�. Equation (2.5) of [18]

states in our notation that

EGFF
B ŒPp.'/.A ½ B/� � EGFF

B ŒX tA.'/�

for every t 2 RA. By the definitions
P
x2A tx.'x C 1/ is a Gaussian with mean

P
x2A tx

and variance
P
x;y2A txtyGB.x; y/, so that

EGFF
B ŒX tA.'/� D exp

�
�

X
x2A

tx C
1

2

X
x;y2A

txtyGB.x; y/
�
:
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Taking tx D deg.x/Px.�B < �CA / for each x 2 A yields the claimed bound since by a
standard calculation we have

P
x2A tx D Ceff.A$ B/ andX

y2A

tyGB.x; y/ D
X
y2A

X
n�0

P nB .x; y/Py.�B < �
C

A /

D

X
y2A

Px.the walk visits A for the last time at y before hitting B/ D 1

for every x 2 A.

Proposition 4.3 establishes the same estimate as Theorem 4.1 but applying to the per-
colation in random environment model associated to the GFF rather than to our original
Bernoulli percolation model. An important and technical part of the argument of [18]
shows that, in high-dimensional graphs, the two models can be compared in such a way
that Proposition 4.3 implies Theorem 4.1.

Proposition 4.4. Let G D .V;E/ be a finite, connected graph with degrees bounded by k
and let B � V be such that .G; B/ satisfies a d -dimensional isoperimetric inequality
(ID.B/d;c) for some d > 4 and c > 0. Then there exists p0 D p0.d; c; k/ < 1 such that

Pp.A$ B/ � EGFF
B ŒPp.'/.A$ B/� (4.5)

for every p0 � p � 1 and every non-empty set A � V .

Note that the proof does not establish a stochastic domination relation between the
two models, and indeed such a relation does not hold.

Proof of Proposition 4.4. We first apply the classical relationship between isoperimetric
inequalities and return probability bounds (see e.g. [47, Theorem 3.2.7] or [51, Corol-
lary 6.32]) to deduce from (ID.B/d;c) that there exists a constant C D C.d; c; k/ such
that

P nB .u; v/ � Cn
�d=2

for every u; v 2 V . This bound is of the same form as in hypothesis .Hd / of [18], and
given this bound the proof proceeds exactly as that of [18, Proposition 3.2]; one need
only check that the value of p0 given by that proof depends only on d; c; and k. Let
us now give a brief indication of how this can be done. That proof gives a value for p0
of the form 1 � .1 � q/e�h, where q 2 Œ1=2; 1/ and h > 0 both depend on two other
quantities ˛ > 0 and n0 2N, and in principle on the graphG. The quantity q is computed
explicitly from n0 in the proof of Proposition 3.2, with no dependence on the graph. The
quantity h is computed in Lemma 3.5, and depends only on n0 and the maximum degree
of the graph since all the constants arising in the quoted theorem of Liggett, Schonmann
and Stacey [48] depend only on the maximum degree. The value of ˛ and a preliminary
value for n0 are given by Lemma 3.6; they depend on several constants appearing in the
conclusion of the proof of that lemma (pages 21 and 22 of the published version), each
of which can easily be checked to depend only on the parameters d; c, and k (indeed,
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these constants are introduced only to simplify a completely explicit expression involving
the maximum degree and sums of return probabilities). The integer n0 is then possibly
increased at the start of the proof of Proposition 3.2, but only to ensure that it is larger
than some constant depending only on ˛.

Proof of Theorem 4.1. This follows immediately from Propositions 4.3 and 4.4.

4.2. From large sets to small sets

We now apply Theorem 4.1 to complete the proof of Theorem 1.5. We first establish
the following crude relationship between the two kinds of isoperimetric inequality we
consider.

Lemma 4.5. Let G D .V; E/ be a finite, connected graph satisfying the isoperimetric
inequality (IDd;c) for some d > 1 and c > 0. If B � V has jBj � "jV j1�ı for some
0 < "; ı � 1, then .G;B/ satisfies the isoperimetric inequality .ID.B/d 0;c0/ with

d 0 D
d

1C ı.d � 1/
and c0 D c".d�1/=d :

Proof. LetK � V nB . We need to prove that j@EKj � c0jKj.d
0�1/=d 0 . The claim follows

trivially from (IDd;c) if jKj � jV j=2. Otherwise we have

j@EKj � cjV nKj
.d�1/=d

� cjBj.d�1/=d � c".d�1/=d jV j.1�ı/.d�1/=d

� c".d�1/=d jKj.1�ı/.d�1/=d D c".d�1/=d jKj.d
0�1/=d

as claimed.

Putting together Theorem 4.1 and Lemma 4.5 yields the following immediate corol-
lary.

Corollary 4.6. Let G D .V; E/ be a finite, connected graph with degrees bounded by k
satisfying a d -dimensional isoperimetric inequality (IDd;c) for some d > 4 and c > 0.
Then for each ı < .d � 4/=4.d � 1/ and " > 0 there exists p0.ı; "/D p0.ı; "; d; c; k/ < 1
such that

Pp.A$ B/ � 1 � exp
�
�
1
2
Ceff.A$ B/

�
(4.6)

for every p0.ı; "/ � p � 1 and any two non-empty sets A;B � V with jBj � "jV j1�ı .

We now apply Corollary 4.6 to prove Theorem 1.5. To do this, we will apply The-
orem 4.1 with B taken to be a random set given by a so-called ghost field, which we now
introduce. For each p 2 Œ0; 1� and h > 0 we write Pp;h for the joint distribution of the
Bernoulli-p bond percolation configuration ! and an independent ghost field G of intens-
ity h, that is, a random subset of V in which each vertex is included independently at
random with probability 1 � e�h. Note that the ghost field G has the property that

Pp;h.A \ G D ¿/ D e�hjAj
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for every A � V . Moreover, it follows from a standard Chernoff bound calculation for
sums of Bernoulli random variables [55, Theorem 4.5] that there exists a universal con-
stant a 2 .0; 1/ such that if h � 1 then jG j satisfies the lower tail estimate

Pp;h

�
jG j �

1

2
hjV j

�
� Pp;h

�
jG j �

e

2e � 2
.1 � e�h/jV j

�
� expŒ�ahjV j�: (4.7)

(Indeed, one may take a D .e � 2/2=8.e � 1/2.)

Proof of Theorem 1.5. Let d > 6C 2
p
7 and write ˛ D .d � 2/=d . Let a 2 .0; 1/ be the

universal constant from (4.7). By the results of Lyons, Morris, and Schramm [50] stated
in (4.1), there exists a positive constant � D �.d; c; k/ � a such that

Ceff.A$ B/ � �.min ¹jAj; jBjº/˛

for any two disjoint non-empty sets A;B � V . The condition d > 6C 2
p
7 allows us to

take ı such that
2

d
< ı <

d � 4

4.d � 1/
:

Fix one such choice of ı and let p0 D p0.ı; �=16; d; c; k/ < 1 be as in Corollary 4.6 so
that

Pp0.A ½ B/ � exp
�
�
�

2
.min ¹jAj; jBjº/˛

�
(4.8)

for any non-empty sets A;B � V with max ¹jAj; jBjº � �
16
jV j1�ı . Since small values of

jV j can be handled by increasing p, we may assume throughout the rest of the proof that
jV j � .8=�/1=.1�ı/ so that �

8
jV j�ı � jV j�1.

For each A � V , let KA D
S
v2AKv be the union of all clusters intersecting A. We

first apply Corollary 4.6 with one of the sets equal to the ghost field G to show that KA is
much larger than jAj with high probability when p � p0 and jAj is either large or small
in a certain sense. Indeed, Corollary 4.6 implies immediately that if jV j�1 � h � 1 and
A � V are such that either jAj � �

16
jV j1�ı or h � �

8
jV j�ı then by (4.7) and the choice

of � we have

Pp0;h.A ½ G / � Pp0;h

�
jG j �

1

2
hjV j

�
C exp

�
�
�

4
.min ¹jAj; hjV jº/˛

�
� expŒ�ahjV j�C exp

�
�
�

4
.min ¹jAj; hjV jº/˛

�
� 2 exp

�
�
�

4
.min ¹jAj; hjV jº/˛

�
:

(4.9)

On the other hand, by definition of the ghost field we have

Pp0;h.A ½ G j KA/ D e
�hjKAj; so that Ep0 Œe

�hjKAj� D Pp0;h.A ½ G / (4.10)
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for every h > 0 and A � V . It follows by (4.9), (4.10) and Markov’s inequality that

Pp0

�
jKAj �

�

8h
.min ¹jAj; hjV jº/˛

�
D Pp0

�
e�hjKAj � exp

�
�
�

8
.min ¹jAj; hjV jº˛/

��
� exp

�
�

8
.min ¹jAj; hjV jº˛/

�
Ep0 Œe

�hjKAj�

� 2 exp
�
�
�

8
.min ¹jAj; hjV jº/˛

�
for every jV j�1 � h� 1 andA� V such that either jAj � �

16
jV j1�ı or h� �

8
jV j�ı . Since

�
8
jV j�ı � jV j�1 by assumption, we may apply the previous inequality with h D �

8
jV j�ı

to obtain

Pp0

�
jKAj � jV j

ı

�
min

²
jAj;

�

8
jV j1�ı

³�˛�
� 2 exp

�
�
�

8

�
min

²
jAj;

�

8
jV j1�ı

³�˛�
(4.11)

for every A � V .
Consider the function ' W Œ0; �

8
jV j1�ı �! Œ0; �

8
jV j1�ı � defined by

'.x/ D min
²
jV jıx˛;

�

8
jV j1�ı

³
:

It follows from (4.11) that

Pp0.jKAj � '.jAj// � 2 exp
�
�
�

8
jAj˛

�
for every A � V with jAj � �

8
jV j1�ı . Now for each i � 1, let pi be defined by 1� pi D

.1 � p0/
iC1, so that Bernoulli-pi percolation has the same distribution as the union

of i C 1 independent copies of Bernoulli-p0 percolation. This relationship immediately
implies the recursive inequality

PpiC1.jKAj � n/ � Ppi .jKAj � m/Cmax ¹Pp0.jKA0 j � n/ W A
0
� V; jA0j > mº

for every i � 0, A � V and n; m � 1, which combines with (4.11) and the fact that
x � 'i .x/ � �

8
jV j1�ı for every i � 0 and x 2 Œ0; �

8
jV j1�ı � to yield

Ppi
�
jKAj � '

iC1.jAj/
�
� Ppi�1.jKAj � '

i .jAj//C 2 exp
�
�
�

8
'i .jAj/˛

�
;

and we deduce by induction on i that

Ppi
�
jKAj � '

iC1.jAj/
�
� 2

i�1X
jD0

exp
�
�
�

8
'j .jAj/˛

�
(4.12)

for every i � 1 and A � V with jAj � �
8
jV j1�ı . Let " D ı � .1 � ˛/.1 � ı/, which is

positive since ı > 2=d . Observe that

jV jıx˛ � jV jı�.1�˛/.1�ı/x D jV j"x for every 0 � x � jV j1�ı , (4.13)
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so that ' is increasing and moreover

'i .x/ � min
²
jV j"i ;

�

8
jV j1�ı

³
for every i � 0 and 1 � x � jV j1�ı : (4.14)

It follows that there exists a constant i0 D i0.d; c; k/ such that 'i0C1.x/ D �
8
jV j1�ı for

every x 2 Œ1; �
8
jV j1�ı �, and hence there exists a constant C1 D 2i0 such that

Ppi0

�
jKAj �

�

8
jV j1�ı

�
� 2

i0�1X
jD0

exp
�
�
�

8
'j .jAj/˛

�
� C1 exp

�
�
�

8
jAj˛

�
for every non-empty set A � V with jAj � �

8
jV j1�ı , and hence for every non-empty

set A � V since the inequality holds vacuously in the case jAj > �
8
jV j1�ı . Considering

again the coupling of pi0C1 percolation with pi0 and p0 percolation, we deduce that if
A;B � V are non-empty then

Ppi0C1.A ½ B/ � Ppi0

�
jKAj �

�

8
jV j1�ı

�
C Ppi0

�
jKB j �

�

8
jV j1�ı

�
Cmax

²
Pp0.A

0 ½ B 0/ W jA0j; jB 0j �
�

8
jV j1�ı

³
� C1 exp

�
�
�

8
jAj˛

�
C C1 exp

�
�
�

8
jBj˛

�
C exp

�
�
�2

16
jV j.1�ı/˛

�
� C2 exp

�
�
�

8
.min ¹jAj; jBjº/˛

�
(4.15)

for some constant C2 D C2.d; c; k/D .2C1 C 1/, where we used (4.8) to bound the term
in the second line.

To complete the proof, it remains to show that the constant prefactor C2 in (4.15)
can be made arbitrarily small by increasing p in a uniform manner. This is particularly
important when A and B are singletons, in which case the right hand side of (4.15) might
be larger than 1, rendering the inequality useless. Let B.v; r/ denote the graph-distance
ball of radius r around v for every v 2 V and r � 1. Since jB.v; r/j � r C 1 for every
v 2 V and r � diam.G/, it follows from (4.15) that there exists a constant r0 D r0.d; c; k/
such that

Ppi0C1.B.u; r0/$ B.v; r0// � 1=2

for every u; v 2 V . Applying the Harris-FKG inequality, it follows that there exists a
positive constant c1 D c1.d; c; k/ such that

Ppi0C1.u$ v/ � Ppi0C1
�
B.u; r0/$ B.v; r0/; B.u; r0/ � Ku and B.v; r0/ � Kv

�
�
1

2

�
pk

r0C1

i0C1

�2
� c1 (4.16)

for every v 2 V , where in the second line we used the fact that B.v; r/ is incident to at
most krC1 edges. It follows from (4.15) and (4.16) by calculus that there exists a positive
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constant �0 D �0.d; c; k/ such that

Ppi0C1.A ½ B/ � min
²
.1 � c1/; C2 exp

�
�
�

8
.min ¹jAj; jBjº/˛

�³
� expŒ��0.min ¹jAj; jBjº/˛�

for any two non-empty setsA;B � V . The claim as stated in the theorem, in which we can
increase p in a uniform way to introduce an arbitrarily small constant prefactor, follows
easily by calculus from this together with the fact [28, Theorem 2.38] that Pp� .A/ �
P .A/� for every p; � 2 .0; 1/ and every increasing event A.

4.3. Consequences for the uniqueness threshold

In this section we prove our results concerning the uniqueness threshold. More specific-
ally, we first prove Theorem 1.10, then deduce Theorem 1.8 from Theorems 1.5 and 1.10.
The results of this section are not used in the proof of our main theorem, Theorem 1.2,
and the reader may safely skip this section if they are interested only in that result.

The proof of Theorem 1.10 will apply the following theorem of Schonmann [63, The-
orem 3.1 and Corollaries 3.2 and 3.3].

Theorem 4.7 (Schonmann). Let G D .V; E/ be an infinite, connected, bounded degree
graph, let 0 < p0 < 1, and suppose that

lim
n!1

inf
x

Pp0.B.x; n/ ½1/ D 0:

Then Pp.x $1/ is continuous on Œp0; 1� for every x 2 V . Moreover, if p0 � p1 � 1 is
such that there is a unique infinite cluster Pp1 -almost surely, then there is a unique infinite
cluster Pp2 -almost surely for every p1 � p2 � 1.

Remark 4.8. We believe that the bounded degree assumption is not really necessary for
this result to hold, and hence should not be necessary for Theorem 1.10 to hold either.

The proof of Theorem 1.10 will also apply [28, Theorem 2.45], which states that if
A � ¹0; 1ºE is an increasing event and Ir .A / denotes the event that A holds in any
configuration obtained from ! by deleting at most r edges then

Pp2.Ir .A // � 1 �

�
p2

p2 � p1

�r
Pp1.A

c/ (4.17)

for every 0 � p1 < p2 � 1 and r � 1. That is, if A holds with high probability at p1
then it will hold and be stable to the perturbation of a large number of edges with high
probability at p2 > p1.

Proof of Theorem 1.10. It follows from the hypotheses that there exists a function f W
N ! .0; 1� with f .n/! 0 as n!1 such that

Pp0.A ½ B/ � f .min ¹jAj; jBjº/
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for any two finite sets A;B � V . Letting .Vn/n�1 be an exhaustion of V by finite connec-
ted graphs, we note that

Pp0.A ½1/ D lim
n!1

lim
m!1

Pp0.A ½ Vm n Vn/ � f .jAj/ (4.18)

for every finite set A � V , and hence the hypotheses of Theorem 4.7 are satisfied. To
complete the proof, it suffices by Theorem 4.7 to prove that the set

D WD ¹p 2 .p0; 1� W Pp.there exist multiple infinite clusters/ > 0º

has dense complement in .p0; 1�. We will do this by proving that D is contained in the
set of discontinuities of point-to-point connection probabilities and hence D has at most
countably many elements.

Fix p0 < p1 < 1. Given finite sets A and B and r � 1, let ¹A
r

WV Bº be the event that
there exists a collection of r edge-disjoint open paths each of which starts in A and ends
in B . By Menger’s theorem this is equivalent to the event that there does not exist any set
of r � 1 open edges whose deletion disconnects A from B . Applying (4.17) shows that
there exists a constant C1, depending on the choice of p1, such that

Pp1.A
r

WV B/ � 1 �

�
p1

p1 � p0

�r�1
Pp0.A ½ B/ � 1 � eC1rf .min ¹jAj; jBjº/

for every A; B � V finite and r � 1. It follows in particular that there exists a positive
constant c, depending on the choice of p1, such that if we define g.n/ D b�c log f .n/c
for every n � 1 then

Pp1.A
r

WV B/ � 1 �
p
f .min ¹jAj; jBjº/ (4.19)

for every A;B � V finite and 1 � r � g.min ¹jAj; jBjº/. Since f .n/! 0 as n!1, we
see that g.n/!1 as n!1.

Let p � p1 and suppose that u and v belong to distinct infinite clusters with positive
probability in Bernoulli-p percolation on G. Let !1 and !2 be independent copies of
Bernoulli-p percolation on G, and let ! 2 ¹0; 1ºE be defined by

!.e/ D

8<:!1.e/ if e touches the cluster of u or v in !1;

!2.e/ otherwise,

where we say that an edge touches the cluster of a vertex if it has at least one endpoint
in that cluster; note that these touching edges are exactly those edges that are revealed
when exploring the cluster. It is easily seen that ! is itself distributed as Bernoulli-p bond
percolation on G, and that the clusters of u and v are the same in !1 and !. Condition on
!1 and suppose that u and v belong to distinct infinite clusters of !1. Letm � 1 and let A
and B be finite subsets of Ku and Kv respectively such that jAj; jBj � m. Using the fact
that !2 is independent of !1 and applying (4.19), with probability at least 1 �

p
f .m/

there exists a collection of at least g.m/ disjoint open paths connecting A to B in !2.
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Since ! and !2 coincide for those edges that do not touch the cluster of u or v in !1 we
deduce that, with probability at least 1 �

p
f .m/, there exists a collection of g.m/ edge-

disjoint paths in G each of which starts in the cluster of u in !, ends in the cluster of v in
!, and is !-open other than at its first and last edge. Since m was arbitrary, g.m/!1
as m!1, and the probability of the aforementioned event tends to 1 as m!1, we
deduce that, for each k � 1, there almost surely exists a collection of k edge-disjoint paths
in G each of which starts in the cluster of u in !, ends in the cluster of v in !, and is !-
open other than at its first and last edge. Considering the standard monotone coupling of
percolation at p and p C ", we deduce that

PpC".u$ v/ � Pp.u$ v/

C .1 � .1 � "2/k/Pp.u and v belong to distinct infinite clusters/

for every p1 � p � p C " � 1, u; v 2 V , and k � 1 and hence

PpC".u$ v/ � Pp.u$ v/C Pp.u and v belong to distinct infinite clusters/

for every p1 � p � p C " � 1 and u; v 2 V . It follows that

D \ Œp1; 1� �
[
u;v2V

¹p 2 Œp1; 1� W Pp.u$ v/ is discontinuous at pº;

and since increasing functions have at most countably many points of discontinuity we
deduce that D \ Œp1; 1� is at most countable also. Since p0 < p1 < 1 was arbitrary, we
deduce that D is at most countable and hence D has dense complement in .p0; 1� as
required.

Proof of Theorem 1.8. It follows from Theorem 1.5 that there exist positive constants �D
�.d; c; k/ > 0 and p0 D p0.d; c; k/ < 1 such that

Pp.A$ B/ � 1 � expŒ��.min ¹jAj; jBjº/.d�2/=d � (4.20)

for every p � p0 and any two finite sets of vertices A and B . (Indeed, simply take n to
be sufficiently large that A;B � Vn and apply Theorem 1.5 to Gn.) The claim therefore
follows from Theorem 1.10.

5. The structure theory of vertex-transitive graphs

In this section we review the structure theory of vertex-transitive graphs that will be used
in the proofs of our main theorems and prove some related supporting technical proposi-
tions.

Let us begin with a brief historical overview of the relevant theory. The structure
theory of vertex-transitive graphs that we use in this paper has its roots in celebrated
results of Gromov and Trofimov from the 1980s. Gromov’s theorem states that every
group of polynomial growth is virtually nilpotent [33]. Trofimov’s work shows that every
transitive graph of polynomial growth is roughly isometric to a Cayley graph [75] (see
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also [70, Remark 2.2] for more details), the underlying group of which is then virtually
nilpotent by Gromov’s theorem. Combined with a formula of Bass [6] and Guivarc’h
[34], these results immediately imply that if G D .V; E/ is an infinite transitive graph of
polynomial growth then there exist constants c; C > 0 and an integer d � 1 such that

cnd � jB.o; n/j � Cnd (5.1)

for all o 2 V and n 2 N.
It is a classical result of Coulhon and Saloff-Coste [16] that the lower bound of (5.1)

implies in particular that G satisfies (IDd;c) (with a possibly smaller constant c). This
extends without too much difficulty to transitive graphs (see e.g. [69, Proposition 4.1]).
Moreover, in a transitive graph the upper bound of (5.1) easily implies that G does not
satisfy (IDd;c) with any larger value of d (see e.g. [69, Proposition 6.7]). An infinite
transitive graph thus has a well-defined integer “dimension” d that manifests itself both
as the graph’s growth rate and as its isoperimetric dimension.

Of course, if G is finite then the existence of constants c; C such that (5.1) holds with
d D 0 is completely trivial. For our analysis of percolation on finite graphs, therefore,
we need something more finitary and quantitative. Moreover, even in an infinite graph the
growth rate and isoperimetry can behave differently on different scales: for example, the
graph of Zd1 � .Z=mZ/d2�d1 with d2 > d1 looks d2-dimensional on scales up tom, and
thereafter looks d1-dimensional. Indeed, as was first noted by Tao [66], the growth degree
of a transitive graph of polynomial growth can increase and decrease several times as the
scale increases, before finally settling down to the rate detected by the bounds (5.1). See
[66, Example 1.11] for a particularly illuminating example of a Cayley graph in which
the growth rate is faster at large scales than at small scales.

The key result allowing us to understand the different “local” dimensions of transit-
ive graphs at different scales is the celebrated theorem of Breuillard, Green and Tao [12]
describing the structure of finite approximate groups. Roughly speaking, an approximate
group is a subset of a group that is “approximately closed” under the group operation.
Such sets arose implicitly in the original proof of Gromov’s theorem, and “approximate
closure” can be seen as a natural finitary analogue of polynomial growth (see e.g. [74, Pro-
position 11.3.1]). Breuillard, Green and Tao essentially show that every finite approximate
group has a large finite-by-nilpotent piece; when applied in the context of polynomial
growth, this implies in particular a quantitative, finitary version of Gromov’s theorem
[12, Corollary 11.7] (see also [40, 64] for earlier results in this direction). Tessera and
the second author also recently used approximate groups to give a quantitative, finitary
version of Trofimov’s result [70], which complements Breuillard, Green and Tao’s finit-
ary Gromov-type theorem in the same way that Trofimov’s original work complements
Gromov’s theorem. For more general background on approximate groups see [73,74]; for
some other examples of applications of approximate groups, see [27] and [12, Section 11].

After some fairly delicate additional work, these results lead to a number of refine-
ments of the bounds (5.1) and their isoperimetric consequences. For a complete picture
of the state of the art, as well as a detailed bibliography, see [69, 71]. Of particular rel-
evance to the present work is a result of Tessera and the second author stating that if
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jB.o; n/j � nd for some vertex o of a transitive graph G D .V;E/ and some n 2 N then
all subsets of V size at most 1

2
jB.o; n/j satisfy the d -dimensional isoperimetric inequal-

ity (IDd;c) for some c D c.d/ (see Theorem 5.3 below). This confirmed a conjecture of
Benjamini and Kozma [8].

This isoperimetric inequality was in fact motivated by another application to prob-
ability: Tessera and the second author use it to give a quantitative, finitary refinement of
Varopoulos’s famous result that the simple random walk on a vertex-transitive graph is
transient if and only if the graph has superquadradic growth [69], verifying and extend-
ing another conjecture of Benjamini and Kozma. In particular, this leads to a gap for
the escape probability of a random walk on a vertex-transitive graph [69, Corollary 1.7],
very similar in spirit to the gap for the critical percolation probability we obtain here
in Theorem 1.7. For some other applications of this structure theory to probability see
[13, Corollary 1.10 and Theorem 1.11] and [70, Remark 2.9].

We now present some specific results for use in the present work. The first follows
directly from Tessera and the second author’s finitary version of Trofimov’s theorem.

Theorem 5.1. For each d � 1 there exists a positive constant M D M.d/ such
that the following holds. Let G D .V; E/ be a vertex-transitive graph and set m D
sup ¹n � diam.�/ W jB.o; n/j � nd º. Ifm < diam.G/ then there are groupsH C Aut.G/
and � < Aut.G=H/ Š Aut.G/=H such that

(i) every orbit of H has diameter at most max ¹m1=2;M º;

(ii) � acts transitively on V=H ;

(iii) the stabiliser in � of each vertex of G=H has size at most M ;

(iv) � has a nilpotent subgroup of step and index at most M .

Proof. The statement of [70, Corollary 2.4] features parameters d � 0 and � 2 .0; 1/, a
constant n0.d; �/, and various implied constants depending only on d and �; let M.d/
be the maximum of n0.d; �/ and these implied constants when � D 1=2. If M � m <

diam.G/ then the conclusion follows from applying [70, Corollary 2.4] with n D mC 1.
Ifm <M � diam.G/ then the conclusion follows from applying [70, Corollary 2.4] with
n DM . If diam.G/ < M then we may take H D Aut.G/ and � D ¹1º.

The next result shows that a bound of the form jB.o; n/j � cnd is enough to ensure
that the “local” dimension of a transitive graph can never go above d at higher scales.
This verified a conjecture of Benjamini.

Theorem 5.2 ([70, Corollary 1.5]). Let d � 1 be an integer. There exist positive constants
c D c.d/ and C D C.d/ such that ifG D .V;E/ is a connected, vertex-transitive, locally
finite graph, o is a vertex of G, and n � 1 is such that jB.o; n/j � cnd then

jB.o;m2/j

jB.o;m1/j
� C

�
m2

m1

�d�1
for all m1, m2 with n � m1 � m2.
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The next theorem is essentially what results from combining Theorem 5.2 with the
Coulhon–Saloff-Coste argument, and is a slight generalisation of [69, Theorem 1.20].

Theorem 5.3. For each d � 1 there exists a positive constant c D c.d/ such that the
following holds. If G D .V; E/ is a connected, locally finite, vertex-transitive graph, o is
a vertex of G, and n � 1 then

j@EAj � j@
C

VAj � c.d/min ¹1;
1

n
jB.o; n/j1=d º jAj.d�1/=d

for every set A � V with jAj � 1
2
jB.o; n/j. In particular, if sup¹n W jB.o; n/j � nd º D

diam.G/ then G satisfies the d -dimensional isoperimetric inequality (IDd;c).

Note that the case in whichmD diam.G/ includes the case in which G is infinite and
m D1.

Proof of Theorem 5.3. It is stated in [69, Theorem 1.20] that for each positive integer k
there exists a positive constant c.k/ � 1 such that if n � 1 is such that jB.o; n/j � nd for
some d � 1 then

j@CVAj � c.bdc/jAj
.d�1/=d

for every set A � V with jAj � 1
2
jB.o; n/j. The case of Theorem 5.3 in which

jB.o; n/j � nd , which includes the case that n D 1, follows immediately. Now suppose
that n � 2 and that jB.o; n/j < nd . Let c0.d/ D min ¹1; c.1/; : : : ; c.bdc/º > 0 for each
d � 1. We can write jB.o; n/j D nd�ı where

ı D d �
log jB.o; n/j

logn
;

and deduce that
j@CVAj � c

0.d/jAj.d�ı�1/=.d�ı/

for every A � V with jAj � 1
2
jB.o; n/j: This is trivial when d � ı < 1, and follows from

[69, Theorem 1.20] otherwise. A little algebra gives

d � ı � 1

d � ı
D
d � 1

d
�

ı

d.d � ı/

and we easily obtain

j@CVAj � c
0.d/jAj.d�1/=d jAj�ı=.d.d�ı// � c0.d/jAj.d�1/=d jB.o; n/j�ı=.d.d�ı//

D c0.d/

�
jB.o; n/j

nd

�1=d
jAj.d�1/=d

as claimed.

Again, speaking very roughly, Theorems 5.1 and 5.3 tell us that for every locally finite
transitive graph G D .V; E/, there is a scale m such that G “looks high-dimensional” on
scales smaller than m and “looks low-step nilpotent” on scales larger than m.
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5.1. Transitive graphs as quotients of Cayley graphs

In this section we describe a construction due to Abels [1] expressing any vertex-transitive
graph as a quotient of a Cayley graph of its isometry group. We start in a fairly abstract
setting. Suppose � is a group with a symmetric generating set S , and suppose that H <

� is a subgroup with respect to which S is bi-invariant in the sense that HSH D S .
This implies that given x; y 2 � and h 2 H we have x � y in Cay.�; S/ if and only if
xh � yh in Cay.�; S/, where we write u � v to mean that two vertices u; v of a given
graph are neighbours. We may therefore define an injective homomorphism � W H !

Aut.Cay.�; S// by setting �.h/.x/ D xh�1 for x 2 � . We then denote by A.�; S; H/
the quotient graph Cay.�; S/=�.H/. Note that the vertex set of A.�; S; H/ is the set
�=H of left cosets of H in � , and the action of � on Cay.�; S/ induces a transitive
action of � on A.�; S;H/ given by g.xH/ D .gx/H , so that A.�; S;H/ is a transitive
graph.

It turns out that every transitive graph whose automorphism group is discrete (and
hence every finite transitive graph) can be realised in this way, as follows. Note that if �
is a closed subgroup of Aut.G/ then the stabiliser �o is compact, so that � is discrete if
and only if �o is finite.

Proposition 5.4. Let G D .V; E/ be a vertex-transitive graph, and suppose that � is
a discrete transitive subgroup of Aut.G/. Let S D ¹
 2 � W d.
o; o/ � 1º. Then S is a
symmetric generating set for � satisfying diamS .�/D diam.G/ and jSnj D jB.o;n/j j�oj
for every non-negative integer n. Moreover, S is bi-invariant with respect to the stabiliser
�o, and G Š A.�; S; �o/. In particular, there exists H � Aut.Cay.�; S// with H Š �o
such that G Š Cay.�; S/=H .

Proof. The fact that S is a symmetric generating set for � satisfying diamS .�/Ddiam.G/
follows immediately from [70, Lemma 3.4]. The sets Sn are of the claimed cardinality by
[70, Lemma 3.8]. To see that S is bi-invariant with respect to �o, first note that we trivially
have S�o D S . Applying this and the symmetry of S repeatedly then gives �oS�o D
�oS D .S�o/

�1 D S�1 D S , as required. Note also that bi-invariance in turn implies that
for every 
; 
 0 2 � we have


�o � 

0�o in A.�; S; �o/ H) 
 � 
 0 in Cay.�; S/: (5.2)

Indeed, if 
�o � 
 0�o in A.�; S; �o/ then by definition there exists h 2 �o such that

h � 
 0 in Cay.�; S/, which in turn means that there exists s 2 S such that 
hs D 
 0.
The bi-invariance of S then implies that hs 2 S , and hence 
 � 
 0 in Cay.G; S/, as
claimed.

Since � acts transitively on G, the map

' W G ! �=�o; 
o 7! 
�o;

is a well-defined bijection by the orbit-stabiliser theorem. This map ' defines a graph
isomorphism G ! A.�; S; �o/, since for every 
; 
 0 2 � we have
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�o � 

0�o in A.�; S; �o/ ” 
�1
 0 2 S n �o (by (5.2))

” 
�1
 0o � o in G

” 
o � 
 0o in G

as claimed.

5.2. Isoperimetry in induced subgraphs

We will see in Section 6 that it is a straightforward matter to deduce Theorem 1.7, which
concerns the value of pc in infinite transitive graphs, from the structure-theoretic results
of Theorems 5.1 and 5.3 together with our analyses of virtually nilpotent groups from
Section 3 and graphs of large isoperimetric dimension from Section 4. Our main results
regarding finite transitive graphs require a rather more delicate approach owing to the
possibility that the auxiliary graphG=H is of ‘intermediate size’, i.e., 1� jV=H j � jV j,
in which case we cannot rely on the results of either Section 3 or Section 4 alone to
establish the existence of a giant component. The purpose of this section is to prove the
following proposition, which is a variation on Theorem 5.3 and will be used to apply the
results of Section 4 when G=H is of intermediate size.

Proposition 5.5. For each integer d � 1, k � 1, " > 0, and � 2 .0; 1/ there exist positive
constants `D `.d;k; ";�/, "0D "0.d/, and cD c.d;k; ";�/ such that the following holds.
LetG D .V;E/ be a vertex-transitive graph of degree k and let o be a vertex ofG. If n� 1
is such that "nd � jB.o; n/j � "0nd then there exists a subset I � B.o; `n/ such that

(1) jI \ B.o; n/j � �jB.o; n/j,

(2) the subgraph of G induced by I satisfies the d -dimensional isoperimetric inequality
(IDd;c).

Note that a non-trivial argument is still required to deduce our main theorems from
this together with our analyses of the nilpotent and high-dimensional cases. This argument
is carried out in Section 6.

We now begin to work towards the proof of Proposition 5.5. We begin by adapting the
arguments of Coulhon–Saloff-Coste and Tessera and the second author to prove the fol-
lowing result, which essentially says that if a finite set A of vertices in a vertex-transitive
graph is sparse in every ball of radius r then its external vertex boundary @CVA has size at
least a constant times jAj=r .

Proposition 5.6 (Locally sparse sets have large boundary). Let G D .V; E/ be a locally
finite, vertex-transitive graph, and let A be a finite set of vertices of G. If � 2 .0; 1/ and
r � 1 are such that jA \ B.x; r/j � �jB.x; r/j for every x 2 V then

j@EAj � j@
C

VAj �
1 � �

6r
jAj:

Proposition 5.6 can be seen as a generalisation of [69, Proposition 4.1], and is impli-
citly contained in the proof of that result. We provide the details here for the convenience
of the reader.
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We now briefly recall some relevant definitions that will be used in the proof of
Proposition 5.6. Given a locally finite, vertex-transitive graph G, the group Aut.G/ of
automorphisms of G is a locally compact group with respect to the topology of pointwise
convergence, and every closed subgroup of Aut.G/ is also a locally compact group in
which vertex stabilisers are compact and open. Moreover, an arbitrary closed subgroup
� < Aut.G/ admits a (left) Haar measure �, the properties of which include that

(1) �.K/ <1 if K � � is compact,

(2) �.U / > 0 if U � � is open and non-empty,

(3) �.
A/ D �.A/ for every Borel set A � � and every 
 2 � ,

(4) if �0 is another Haar measure on � then there exists � > 0 such that �0 D � � �.

See [38, Section 15] for a detailed introduction to Haar measures. Given a locally compact
group � with left Haar measure �, we define the space L1.�/ with respect to �, so that
� acts on L1.�/ via 
f .x/ D f .x
/. Note that since a right translate of a Haar measure
is again a Haar measure, by property (4) there exists a homomorphism �� W � ! RC,
called the modular function of � , such that

�.A
/ D ��.

�1/�.A/

for every Borel set A. See also [43, Section 2.1] for background on the modular function
for probabilists.

Remark 5.7. A locally compact group is said to be unimodular if its modular function
is identically equal to 1, or equivalently if its left Haar measures are also right-invariant.
Every finite or countable discrete group is unimodular since its Haar measure is equal to
counting measure. Thus, in our primary setting of finite transitive graphs one may assume
that all the groups appearing below have � � 1, simplifying the analysis somewhat.

The following lemma follows implicitly from the proof of [69, Proposition 4.4].

Lemma 5.8. Let � be a locally compact group with a left Haar measure � and a precom-
pact symmetric open generating set S . Let A � � be a precompact open set. If � 2 .0; 1/
and r � 1 are such that �.A \ 
S r / � ��.S r / for every 
 2 � then

sup
s2S

�.As n A/ �
1 � �

6r
�.A/:

Proof. We follow the proof of [69, Proposition 4.4]. If there exists s 2 S such ��.s/ �
1C

log2
r

then

�.As�1 n A/ � �.As�1/ � �.A/ D .��.s/ � 1/�.A/ �
log 2
r
�.A/;

which certainly gives the required bound. We may therefore assume that��.s/� 1C
log2
r

for every s 2 S . This implies that

��.
/ �

�
1C

log 2
r

�r
� 2 (5.3)

for every 
 2 S r .
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Define a linear operator M W L1.�/! L1.�/ via

M.f /.x/ D
1

�.S r /

Z

2Sr

f .x
/ d�.
/:

The hypothesis on A implies that its indicator function 1A satisfies M.1A/.x/ � � for
every x 2 � , and hence

k1A �M.1A/k1 � .1 � �/�.A/: (5.4)

On the other hand, given 
 2 S r written as 
 D s1 � � � sr with each si 2 S , the triangle
inequality implies that

k1A � 
1Ak1 �

r�1X
iD0

ksr�iC1 � � � sr1A � sr�i : : : sr1Ak1

D

r�1X
iD0

��.sr�iC1 � � � sr /k1A � sr�i1Ak1:

By (5.3), this implies k1A � 
1Ak1 � 2r sups2S k1A � s1Ak1 D 2r sups2S �.A M As/,
and averaging this bound over S r then gives

k1A �M.1A/k1 � 2r sup
s2S

�.A M As/: (5.5)

To conclude, simply note that for all s 2 S we have

�.A M As/ D �.A n As/C �.As n A/

D ��1� .s
�1/�.As�1 n A/C �.As n A/

� 3 sup
s02S

�.As0 n A/ (by (5.3));

so that the desired bound follows from (5.4) and (5.5).

Proof of Proposition 5.6. We follow the proof of [69, Proposition 4.1]. Set � D Aut.G/
and fix a vertex o of G. By transitivity we may pick, for each x 2 V , an automorphism

x 2 � such that 
xo D x. Write �o for the stabiliser of o in � , and given an arbitrary
subset X � V , write �o!X D ¹
 2 � W 
o 2 Xº, noting that

�o!X D
[
x2X


x�o:

The stabiliser �o is open by definition, and it is shown in [70, Lemma 4.4] that it is
compact, so �o!X is compact and open whenever X is finite. Normalising the left Haar
measure � on � so that �.�o/ D 1, we also have

�.�o!X / D jX j; (5.6)

since the sets 
x�o D ¹
 2 � W 
o D xº are disjoint.
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It is shown in [70, Lemma 4.8] that the set S D ¹
 2 � W d.
o; o/ � 1º is a compact
open generating set for � containing the identity, and in [70, Lemma 3.4] that

S r D �o!B.o;r/ (5.7)

for every r 2 N. For every 
 2 � we have

�o!A \ 
S
r
D �o!A \ 
�o!B.o;r/ (by (5.7))

D �o!A\B.
o;r/;

and hence

�.�o!A \ 
S
r / D jA \ B.
o; r/j (by (5.6))

� �jB.o; r/j (by hypothesis)

D ��.S r / (by (5.6) and (5.7)).

Lemma 5.8 and (5.6) therefore imply that

sup
s2S

�.�o!As n �o!A/ �
1 � �

6r
jAj:

It is shown in [69, (4.7)] that �.�o!AS n �o!A/ D j@CVAj, so this implies the required
bound.

Corollary 5.9. For each d � 1 there exists a positive constant c D c.d/ such that the
following holds. If G D .V; E/ is a connected, locally finite, vertex-transitive graph, o is
a vertex of G, � 2 .0; 1/, and n � 1 then

j@EAj � j@
C

VAj � c.d/.1 � �/min
²
1;
1

n
jB.o; n/j1=d

³
� jAj.d�1/=d

for every set A � V such that jA \ B.x; n/j � �jB.x; n/j for every x 2 V .

Proof. If jAj � 1
2
jB.o;n/j then the desired bound follows immediately from Theorem 5.3.

Meanwhile, if jAj > 1
2
jB.o; n/j then the desired bound

j@EAj � j@
C

VAj �
1 � �

6n
jAj �

1 � �

12n
jAj.d�1/=d jB.o; n/j1=d

follows from Proposition 5.6.

Proof of Proposition 5.5. We apply an argument similar to one used by Le Coz and
Gournay [26, Lemma 3.2]. Let "0 D "0.d/ be the constant c.d/ from Theorem 5.2. Fix
" > 0 and n � 1 such that "nd � jB.o; n/j � "0nd . Let ` � 1 and consider the quantity

�.`/ D min
²
j@EAj

jAj.d�1/=d
W A � B.o; 2`n/

³
:
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Writing Br D B.o; r/ and noting that j@EBr j � kj@�VBr j D k.jBr j � jBr�1j/, we have

�.`/ � k �
jBr j � jBr�1j

jBr j.d�1/=d

for every 0 � r � 2`n. Averaging over `n < r � 2`n, we deduce from Theorem 5.2 that
there exist constants C1 and C2 depending only on d such that

�.`/ �
k

`n

2`nX
rD`nC1

jBr j � jBr�1j

jBr j.d�1/=d
�
k

`n

jB2`nj

jB`nj.d�1/=d

�
C1k

`n
jB2`nj

1=d
�
C2k

`n
.nd`d�1/1=d D C2k`

�1=d :

The only important feature of this bound is that the right hand side tends to zero as `!1,
at a rate depending only on d and k. Indeed, letting c1 D c1.d/ be the constant from
Corollary 5.9, if I � B.o; 2`n/ is a set attaining the minimum in the definition of �.`/
then there exists x 2 V such that

jI \ B.x; n/j �

�
1 �

�.`/

c1"1=d

�
jB.x; n/j:

It follows that there exists a constant ` D `.d; k; �; "/ such that if I � B.o; 2`n/ is a set
attaining the minimum in the definition of �.`/ then there exists x 2 V such that

jI \ B.x; n/j � �jB.x; n/j:

Fix one such set I and x 2 V . Since I � B.x; 5`n/, it suffices to prove that the
subgraph of G induced by I satisfies a d -dimensional isoperimetric inequality with con-
stants depending only on d , k, " and �. Since jB.o; 2`n/j � jB.o; n/j � "nd , we can
apply Theorem 5.3 to deduce that there exists a positive constant c2 D c2.d; k; �; "/ such
that

j@EAj � c2jAj
.d�1/=d

for every subset A with jAj � jI j=2 � jB.o; 2`n/j=2. We are not done at this point of
course, since what we really need is a lower bound on the size of the boundary of A
considered as a subset of the subgraph of G induced by I . Write @IA for this boundary.
Fix A � I with jAj � jI j=2, write A0 D I n A and, following Le Coz and Gournay, note
that

2j@IAj D j@EAj C j@EA
0
j � j@EI j: (5.8)

By minimality of I we have

j@EAj

jAj.d�1/=d
�
j@EI j

jI j.d�1/=d
and

j@EA
0j

jA0j.d�1/=d
�
j@EI j

jI j.d�1/=d
:

Thus, writing ˛ D jAj=jI j and 
 D .d � 1/=d , it follows that

j@EI j � j@EA
0
j � .1 � .1 � ˛/
 /j@EI j �

1 � .1 � ˛/


˛

j@EAj
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and hence by (5.8),

j@IAj �
˛
 C .1 � ˛/
 � 1

2˛

j@EAj �

21=d � 1

21=d
j@EAj � c3jAj

.d�1/=d

for some positive constant c3 D c3.d; k; �; "/, where in the central inequality we used the
readily verified fact that ˛


C.1�˛/
�1
2˛


is a decreasing function of ˛ on Œ0; 1=2�.

6. Proofs of the main theorems

Theorem 1.7, which concerns infinite vertex-transitive graphs, can be deduced easily from
Theorems 5.1 and 5.3 together with Theorems 1.4 and 3.20.

Proof of Theorem 1.7. By Corollary 2.16 we may assume that G is transitive. Set m D
sup ¹n 2 N W jB.o; n/j � n5º. If m D 1 then the theorem follows from Theorems 5.3
and 1.4. If m <1 then let M be the constant M.5/ appearing in Theorem 5.1, and note
that theorem implies that there exist groups H C Aut.G/ and � < Aut.G=H/ such that
� acts transitively on V=H and has a nilpotent subgroup of step and index at most M ,
and such that the stabiliser in � of each orbitHv with v 2 V has size at mostM . Propos-
ition 5.4 implies that S D ¹
 2 � W d.
.Ho/;Ho/ � 1º is a finite symmetric generating
set for � , and since the growth of G is superlinear, the same proposition also implies that
the growth of Cay.�; S/ is superlinear. As is well-known (see e.g. [74, Lemma 11.1.2
and Proposition 11.1.3]), this means that � is not virtually cyclic. Theorem 3.20 there-
fore implies that there is an absolute constant " > 0 such that pc.Cay.�; S// � 1 � "0.
Proposition 5.4 implies that G=H is isomorphic to a quotient of Cay.�; S/ by a subgroup
of Aut.Cay.�; S// of order at most M , so Lemma 2.9 implies that pc.G=H/ � 1 � " for
some absolute constant " > 0. The theorem then follows from Proposition 2.8.

The remainder of this section is dedicated to the proof of Theorem 1.2. We begin with
some simple and standard geometric lemmas.

Lemma 6.1 (cf. Ruzsa’s covering lemma [61]). Let A be a subset of a graph G, and let
m 2N. Let X be a maximal subset of A such that the balls B.x;m/ are pairwise disjoint.
Then A �

S
x2X B.x; 2m/.

Proof. The maximality of X implies that for every a 2 A there exists x 2 X such that
B.x;m/ \ B.a;m/ ¤ ¿, and hence a 2 B.x; 2m/.

Lemma 6.2. Let G be a graph of diameter at least n and let v be a vertex of G. Then
B.v;n/ contains at least .n� 2m/=.4mC 2/ disjoint balls of radiusm for eachm� n=2.
Hence, if G is transitive and 1 � m1 � m2 � diam.G/ then

jB.v;m2/j

jB.v;m1/j
� 1 _

m2 � 2m1

4m1 C 2
�

m2

8m1
:
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Proof. The second claim follows easily from the first by a small calculation. We now
prove the first, following [69, Lemma 5.3]. Since diam.G/ � n, there exists a geodesic
of length k D dn=2e starting at v. Let x0 D v; x1; x2; : : : ; xk be the vertices of this
geodesic, written in increasing order of distance from v. The balls B.x.2mC1/i ; m/ with
0 � i � .k � m/=.2m C 1/ are then disjoint subsets of B.v; n/. This is easily seen to
imply the claim.

Proof of Theorem 1.2. Throughout the proof, we will write �, �, and � for equalities
and inequalities holding to within positive multiplicative constants depending only on
k; �, and ". Note that small values of jV j can be handled by increasing p, so that we may
assume wherever necessary that jV j is larger than any given constant depending on k, �;
and ".

By Corollary 2.16 we may assume that G is transitive. Let M be the absolute con-
stant M D M.14/ _M.13/, where M.13/ and M.14/ are the constants coming from
Theorem 5.1. We will prove the theorem with the constant aDM C 400. Indeed, we will
prove that for each k; � � 1 and " > 0 there exists a constant p0 D p0.k; �; "/ < 1 such
that if G D .V;E/ is a finite, connected, vertex-transitive graph of degree at most k and

diam.G/ �
�jV j

.log jV j/MC400

then PGp .x$ y/ � 1� " for every x; y 2 V ; this suffices by the first part of Lemma 2.1.
Fix one such choice of k; � � 1, " > 0, and G D .V; E/. Let "0 be the positive absolute
constant 1 ^ c.14/ ^ "0.12/ ^ "0.13/ ^ "0.14/, where c.14/ is as in Theorem 5.2 and
"0.12/, "0.13/, and "0.14/ are as in Proposition 5.5. Fix a vertex o of G and consider the
three scales 1 � m1 � m2 � m3 defined by

m1 D max
®
n � diam.G/ W jB.o; n/j � 1

2
"0n

14
¯
;

m2 D max
®
n � diam.G/ W jB.o; n/j � 1

2
"0n

13
¯
;

m3 D max
®
n � diam.G/ W jB.o; n/j � 1

2
"0n

12
¯
:

If m3 D diam.G/ then the theorem follows from Theorems 5.3 and 1.5. If m1 �
10156 _M 2 then lettingRD 1078 _M we may apply Theorem 5.1 with d D 14 to obtain
groups H C Aut.G/ and � < Aut.G=H/ such that � acts transitively on V=H and has a
nilpotent subgroup of step and index at mostM , such that the stabiliser in � of each orbit
Hv with v 2 V has size at mostM , and each such orbit has diameter at mostR, and hence
size at most R14. Proposition 5.4 then implies that S D ¹
 2 � W d.
.Ho/;Ho/ � 1º is a
symmetric generating set for � of size at most .k C 1/M , diamS .�/ D diam.G=H/, and
j�j D j�Hoj jV=H j � jV j, and hence

diamS .�/ D diam.G=H/ � diam.G/ �
�jV j

.log jV j/M
�

j�j

.log j�j/M
:

It then follows from Theorem 3.19, Proposition 5.4, Lemma 2.9 and Proposition 2.8 that
for every " > 0 there exists q1 D q1.k; �; "/ < 1 such that

PGp .u$ Hv/ �
p
1 � "
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for every u; v 2 V and p � q1. Since the orbits of H have diameter at most R, there also
exists q2 D q2."/ < 1 such that

PGp .u$ v/ �
p
1 � "

for p � q2 and every u; v belonging to the same orbit of H . Letting q3 be defined by
1 � q3 D .1 � q1/.1 � q2/, we find as usual that Bernoulli-q3 percolation is distributed
as the union of two independent copies of Bernoulli-q1 and Bernoulli-q2 percolation, so
that

PGq3.u$ v/ � PGq1.u$ Hv/ �min ¹PGq2.w $ v/ W w 2 Hvº � 1 � "

for every u; v 2 V and the theorem is proved in this case.
From now on we assume that 10156 � m1 � m2 � m3 < diam.G/, which covers all

outstanding cases of the theorem. Note in this case that the three scales m1, m2; and m3
satisfy the hypothesis of Proposition 5.5 and are well separated from each other. Indeed,
we have

1
2
"0m

15�i
i � jB.o;mi /j � jB.o;mi C 1/j <

1
2
"0.mi C 1/

15�i
� "0m

15�i
i

for each i D 1; 2; 3, from which it follows that

m2 > m
14=13
1 � 1 and m3 > m

13=12
2 � 1 (6.1)

and hence

m2 � 10
12
�m1 � 10

168
_M 2 and m3 � 10

14
�m2 � 10

182: (6.2)

Let H C Aut.G/ and � < Aut.G=H/ be the groups given by applying Theorem 5.1
with d D 13. Thus � acts transitively on V=H and has a nilpotent subgroup of step and
index at most M , the stabiliser in � of each orbit Hv with v 2 V has size at most M ,
and each such orbit has diameter at most m1=22 _M . The orbits of H all have the same
cardinality by [70, Lemma 3.3], and we divide the proof into two cases: the case in which
the orbits ofH have size at most .log jV j/400, and the case in which they have size greater
than .log jV j/400.

Small H -orbits. We begin with the case in which jHvj � .log jV j/400 for every v 2 V .
Proposition 5.4 implies that S D ¹
 2 � W d.
.Ho/; Ho/ � 1º is a symmetric gen-
erating set for � of size at most .k C 1/M , diamS .�/ D diam.G=H/, and j�j D
j�Hoj jV=H j. The bounds on the sizes of the H -orbits and their stabilisers thus imply
that jV j=.log jV j/400 � j�j �M jV j, and hence

diamS .�/ D diam.G=H/ � diam.G/ �
�jV j

.log jV j/a
�

j�j

.log j�j/M
:

It then follows from Theorem 3.19, Proposition 5.4, Lemma 2.9 and Proposition 2.8 that
for every " > 0 there exists q1 D q1.k; �; "/ < 1 such that

PGp .u$ Hv/ �
p
1 � "
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for every u; v 2 V and p � q1. To complete the proof in this case, it will suffice to prove
that there exists q2 D q2.k; �; "/ < 1 such that

PGp .u$ v/ �
p
1 � "; (6.3)

for every p � q2 and every u; v belonging to the same orbit of H since we may then
conclude as in the m1 � 10156 case above.

Sincem2 �M 2, each orbit ofH has diameter at mostm1=22 inG andHx � B.o;m2/
for every x 2 B.o;m02/, where we set m02 D bm2 �m

1=2
2 c, which satisfies m02 � m2=2 �

2m1 by (6.2). Applying Theorem 5.2 with d D 14 at the scale m1 therefore implies that
there exists an absolute constant 0< c1� 1 such that jB.o;m02/j � c1jB.o;m2/j. Applying
Proposition 5.5, we find that there exists a constant `2 D `2.k/ such that for each v 2 V
there exists a subset I2;v � B.v; `2m2/ such that the subgraph of G induced by I2;v
satisfies a 13-dimensional isoperimetric inequality .ID13;c2/ for some c2 D c2.k/ > 0

and

jI2;v \ B.v;m2/j �

�
1 �

c1

4

�
jB.v;m2/j �

3

4
jB.v;m2/j:

(Here we use the subscript 2 to remind the reader that I2;v is an object associated to the
scalem2.) LettingO �B.o;m2/ be the union of theH -orbits of the elements ofB.o;m02/,
we have jOj � jB.o;m02/j � c1jB.o;m2/j and hence

jI2;o \Oj D jOj � jO n I2;oj � jOj � jB.o;m2/ n I2;oj

� jOj �
c1

4
jB.o;m2/j �

3

4
jOj:

It follows in particular that there exists y 2 B.o; m02/ such that jI2;o \ Hyj � 3
4
jHyj.

Since � acts transitively on V=H , we may apply an automorphism 
 of G mapping some
element of I2;o \Hy to o to obtain a set 
I2;o such that o 2 
I2;o and j.
I2;o/ \Hoj �
3
4
jHoj. Applying Theorem 1.5 and Lemma 2.1 to the subgraph of G induced by 
I2;o

shows that there exists q2 D q2.k; "/ such that

PGp .o$ v/ � .1 � "/1=4

for every v 2 .
I2;o/ \Ho and p � q2. Since j.
I2;o/ \Hoj � 3
4
jHoj, we may apply

Lemma 2.7 to conclude that
PGp .o$ v/ �

p
1 � "

for every v 2 Ho and p � q2. This immediately implies the claim (6.3).

Large H -orbits. We now consider the second case, in which jHvj � .log jV j/400 for
every v 2 V . We will continue to use the sets .I2;v/v2V as constructed in the case of small
H -orbits. Note that B.o;m2/ contains the orbit Ho, and since jB.o;m2/j � .m2 C 1/13,
this implies that m132 � .log jV j/400, and hence

m2 � .log jV j/400=13: (6.4)
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Note in particular that this implies we may assumem2 to be larger than any given constant
depending on k; �; ", the theorem being trivial for graphs of bounded volume.

Let the constant `2 D `2.k/ be as in the construction of the sets I2;v above, so that
for each v 2 V there exists a subset I2;v � B.v; `2m2/ such that the subgraph of G
induced by I2;v satisfies a 13-dimensional isoperimetric inequality .ID13;c2/ for some
c2 D c2.k/ > 0 and

jI2;v \ B.v;m2/j �
3
4
jB.v;m2/j:

By (6.1), we may assume that m2 is sufficiently large that m3 � 2.`2m2 C 1/. It follows
from Lemma 6.2 and (6.1) that there exists a subsetX0 �B.o;m3 � `2m2 � 1/ satisfying

jX0j � m3=m2 � m
1=12
2 (6.5)

that is maximal such that the balls B.x; `2m2/ with x 2 X0 are pairwise disjoint.
Lemma 6.1 then implies that B.o; m3 � `2m2 � 1/ is covered by the sets B.x; 2`2m2/
with x 2 X0, so that B.o;m3/ is covered by the sets B.x; 3`2m2 C 1/ with x 2 X0 and
hence

jB.o;m3/j � jX0j � jB.o; 3`2m2 C 1/j: (6.6)

By Theorem 5.2 there exists a constant C D C.k/ such that jB.o; 3`2m2 C 1/j �

C jB.o;m2/j, and hence by (6.6) and the disjointness of the ballsB.x;`2m2/with x 2X0,ˇ̌̌ [
x2X0

B.x;m2/
ˇ̌̌
D jXoj � jB.o;m2/j � C

�1
jX0j � jB.o; 3`2m2 C 1/j � C

�1
jB.o;m3/j:

Hence, there exists a positive constant ı D ı.k/ such that ı � 1=4 and j
S
x2X0

B.x;m2/j

� 8ı.k C 1/jB.o;m3/j. Note also that[
x2X0

B.x;m2/ �
\

v2V Wd.o;v/�1

B.v;m3/ (6.7)

since X0 � B.o; m3 � `2m2 � 1/. A second application of Proposition 5.5, this time at
the scale m3, implies that there exists a constant `3 D `3.k/ such that for each v 2 V
there exists a set I3;v � B.v; `3m3/ such that

jI3;v \ B.v;m3/j � .1 � ı/jB.v;m3/j (6.8)

and the subgraph ofG induced by I3;v satisfies a 12-dimensional isoperimetric inequality
with constant depending only on k. For each v 2 V , set

J3;v D
\

u2V Wd.u;v/�1

I3;u:

(Again, the subscript 3 serves to emphasize that J3 is associated to the large scale m3.)
It follows from (6.7) and (6.8) that for each v equal or adjacent to o we haveˇ̌̌ [
x2X0

B.x;m2/ n I3;v

ˇ̌̌
� jB.v;m3/ n I3;vj � ıjB.v;m3/j �

1

8.k C 1/

ˇ̌̌ [
x2X0

B.x;m2/
ˇ̌̌
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and hence ˇ̌̌
J3;o \

[
x2X0

B.x;m2/
ˇ̌̌
�
3

4

ˇ̌̌ [
x2X0

B.x;m2/
ˇ̌̌
:

Letting X be the set of x 2 X0 such that jJ3;o \ B.x;m2/j � 1
2
jB.x;m2/j, it follows in

particular that jX j � jX0j=2. Since jI2;x \ B.x;m2/j � 3
4
jB.x;m2/j for every x 2 V , it

follows moreover that

jJ3;o \ I2;x \ B.x;m2/j �
1
4
jB.x;m2/j �

1
4
.log jV j/400 (6.9)

for every x 2 X .
For each x 2 V , let G2;x and G3;x be the subgraphs of G induced by I2;x and I3;x ,

both of which satisfy a 12-dimensional isoperimetric inequality .ID12;c/ for some con-
stant c D c.k/. Hence, Theorem 1.5 implies that there exists p0 D p0.k; "/ < 1 and
� D �.k/ > 0 such that if p � p0 then

P
G2;x
p .x $ y/ � 5=8 (6.10)

for every x 2 V and y 2 I2;x ,

P
G3;x
p .x $ y/ � .1 � "/1=4 (6.11)

for every x 2 V and y 2 I3;x , and moreover

PGp .A$ B/ � P
G3;x
p .A$ B/ � 1 � expŒ��.min ¹jAj; jBjº/10=12� (6.12)

for every x 2 V and any two non-empty sets A;B � I3;x .
Applying Markov’s inequality to the random variable jJ3;o \ I2;x \ B.x;m2/ nKxj,

it follows by (6.9) and (6.10) that

P
G2;x
p

�
jKx \ J3;o \ I2;x \ B.x;m2/j �

1
16
.log jV j/400

�
� P

G2;x
p

�
jKx \ J3;o \ I2;x \ B.x;m2/j �

1
4
jJ3;o \ I2;x \ B.x;m2/j

�
� 1=2

for every p � p0 and x 2 X . Since the sets I2;x with x 2 X are all disjoint, we may
couple Bernoulli-p bond percolation on G with independent copies of Bernoulli-p bond
percolation on each G2;x and conclude that

PGp
�
9 x 2 X such that jKx \ J3;o \ I2;x \ B.x;m2/j � 1

16
.log jV j/400

�
� 1 � 2�jX j

for every p � p0. It follows from the definition of X that B.x;m2/ � B.o;m3/ for every
x 2 X , and from (6.4) and (6.5) that

jX j � m
1=12
2 � .log jV j/400=156:

Thus, if jV j is sufficiently large then jX j � .log jV j/2 and we deduce that

PGp
�
9 an open cluster K such that jK \ J3;o \ B.o;m3/j � 1

16
.log jV j/400

�
� 1 � 2�.log jV j/2
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for every p � p0. Since o was taken to be an arbitrary vertex of G, it follows by a union
bound that

PGp
�
8v 2 V 9 an open cluster QK.v/ with j QK.v/ \ J3;v \ B.v;m3/j � 1

16
.log jV j/400

�
� 1 � jV j � 2�.log jV j/2

for every p � p0. Since the right hand side tends to 1 as jV j !1 and small values of jV j
can be handled by increasing p, it follows that there exists p1 D p1.k; "/ 2 Œp0; 1/ such
that

PGp
�
8v 2 V 9 an open cluster QK.v/ with j QK.v/ \ J3;v \ B.v;m3/j � 1

16
.log jV j/400

�
� .1 � "/1=4 (6.13)

for every p � p1.
Let p2 D p2.k; "/ < 1 be defined by 1 � p2 D .1 � p0/.1 � p1/ and let A be the

event whose probability is estimated in (6.13). Let !0 and !1 be independent copies of
Bernoulli-p0 and Bernoulli-p1 percolation on G, so that !2 WD !0 _ !1 is distributed
as Bernoulli-p2 percolation. Write P for the joint law of !0; !1; and !2. Suppose that
!1 2 A and for each v 2 V let QK.v/ D QK.v; !1/ be an !1-open cluster such that

j QK.v/ \ J3;v \ B.v;m3/j �
1
16
.log jV j/400:

Write QK 0.v/ D J3;v \ B.v; m3/ \ QK.v/ for each v 2 V . Note that for every pair u; v
of neighbours in V we have QK 0.u/; QK 0.v/ � I3;u \ I3;v by definition of J3;v . Since
400 � .10=12/ � 2, we may condition on !1 and apply (6.12) to !0 to deduce that

P .!1 2 A and QK 0.u/ and QK 0.v/ are connected in !0 j !1/ � 1 � exp
�
�
�

16
.log jV j/2

�
for any two adjacent u; v 2 V on the event A . Since there are at most jV j2 pairs of
adjacent vertices, we may take a union bound to deduce that

P .!1 2 A and QK 0.u/ and QK 0.v/ are connected in !0 for all adjacent vertices u; v j !1/

� 1 � jV j2 exp
�
�
�

16
.log jV j/2

�
on the event A . Letting B be the event that there exists an open cluster K having non-
trivial intersection with I3;v for every v 2 V , it follows that

PGp2.B/ � .1 � "/
1=4

�
1 � jV j2 exp

�
�
�

16
.log jV j/2

��
:

Since the term in parentheses on the right hand side tends to 1 as jV j ! 1 and small
values of jV j can be handled by increasing p, it follows that there exists a constant
p3 D p3.k; "/ 2 Œp2; 1/ such that PGp .B/ � .1� "/

1=2 for every p � p3. Finally, letting
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p4 D p4.k; "/ < 1 be defined by 1 � p4 D .1 � p3/.1 � p0/2, we deduce by a similar
coupling argument to above that

PGp4.x $ y/ � PGp3.B/ �min ¹PGp0.x $ v/ W v 2 I3;xº �min ¹PGp0.y $ v/ W v 2 I3;yº

� 1 � "

for every x; y 2 V by (6.11), completing the proof.
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