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Abstract. Frøyshov invariants are numerical invariants of rational homology three-spheres derived
from gradings in monopole Floer homology. In the past few years, they have been employed to
solve a wide range of problems in 3- and 4-dimensional topology. In this paper, we look at connec-
tions with hyperbolic geometry for the class of minimal L-spaces. In particular, we study relations
between Frøyshov invariants and closed geodesics using ideas from analytic number theory. We dis-
cuss two main applications of our approach. First, we derive explicit upper bounds for the Frøyshov
invariants of minimal hyperbolic L-spaces purely in terms of volume and injectivity radius. Sec-
ond, we describe an algorithm to compute Frøyshov invariants of minimalL-spaces in terms of data
arising from hyperbolic geometry. As a concrete example of our method, we compute the Frøyshov
invariants for all spinc structures on the Seifert–Weber dodecahedral space. Along the way, we also
prove several results about the eta invariants of the odd signature and Dirac operators on hyperbolic
three-manifolds which might be of independent interest.
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Introduction

Understanding the relationship between hyperbolic geometry and Floer-theoretic invari-
ants of three-manifolds is one of the outstanding problems of low-dimensional topology.
In our previous work [32], as a first step in this direction, we studied sufficient condi-
tions for a hyperbolic rational homology sphere to be an L-space (i.e. to have simplest
possible Floer homology [27]) in terms of its volume and complex length spectrum. Our
approach was based on spectral geometry and its relation to hyperbolic geometry via the
Selberg trace formula. It was implemented explicitly (taking as input computations from
SnapPy [16]) to show that several manifolds of small volume in the Hodgson–Weeks
census [23] are L-spaces.

In the present paper we focus our attention on the Frøyshov invariants of rational
homology spheres. These are numerical invariants h.Y;s/2Q indexed by spinc structures
which are extracted from the gradings in monopole Floer homology (see [26, Chap-
ter 39] and [19]). The corresponding invariants in the context of Heegaard Floer homology
are known as correction terms [46], and the identity d.Y; s/ D �2h.Y; s/ holds under
the isomorphism between the theories (see [14, 28, 50] and subsequent papers). These
invariants have been applied in recent years to a wide range of problems in three- and
four-dimensional topology; see among the many [29,45,47]. Despite this, their computa-
tion in specific examples is still a very challenging problem, even under the assumption
that Y is an L-space.

The first basic question about them in the spirit of the present paper is the following.
Recall that given constants V; " > 0, the set of hyperbolic rational homology spheres Y
for which vol.Y / < V and inj.Y / > " is finite [4, Chapter 5], and therefore so is the set
of possible Frøyshov invariants h.Y; s/.

Question 1. Given V; " > 0, can one provide an explicit upper bound on jh.Y;s/j for all
hyperbolic rational homology spheres with vol.Y / < V and inj.Y / > "?

Of course, this is a challenging question even when restricted to the smaller class of
L-spaces with vol.Y / < V and inj.Y / > ". Another natural question in this spirit is the
following.

Question 2. Can one explicitly determine h.Y; s/ in terms of data coming from hyper-
bolic geometry .e.g. volume, injectivity radius, etc./?

While we are not able to address these questions in the stated generality, we will
answer them under the additional assumption that Y is a minimal hyperbolic L-space, i.e.
a rational homology sphere .Y; ghyp/ equipped with a hyperbolic metric ghyp for which
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sufficiently small perturbations of the Seiberg–Witten equations do not admit irreducible
solutions. One of the main results of [32] is that a hyperbolic rational homology sphere Y
for which ��1 > 2 (where ��1 is the first eigenvalue of the Hodge Laplacian acting on
coexact 1-forms) is a minimal hyperbolic L-space; furthermore, the inequality ��1 > 2

can be verified algorithmically in concrete examples, taking as input the length spectrum
up to a certain cutoff. The first result we present, which addresses Question 1, is the
following.

Theorem 1. Suppose Y is a minimal hyperbolicL-space with vol.Y /<V and inj.Y />".
Then there exists an explicit constant KV;" for which jh.Y;s/j � KV;" for all spinc struc-
tures on Y . For example, if Y is a minimal hyperbolic L-space with vol.Y / < 6:5 and
inj.Y / > 0:15 .e.g. any rational homology sphere in the Hodgson–Weeks census1 with
��1 > 2/, then for every spinc structure s, the inequality jh.Y; s/j� 67658 holds.

In general, the dependence of KV;" on V and " is easily computable but does not
admit a particularly pleasant closed form. In order to streamline our discussion, we take
a simple approach to prove Theorem 1 leading to bounds which are not asymptotically
optimal. More refined arguments might lead to significantly sharper estimates, especially
in the case of small injectivity radius (cf. Remark 5.2).

Remark 1. While there are many examples of minimal L-spaces with volume < 6:5 and
injectivity radius> 0:15, it is not known whether there are examples with arbitrarily large
volume or arbitrarily small injectivity radius; cf. [32, Section 5]. In the opposite direction,
we currently do not know any example of hyperbolic L-spaces which are not minimal
hyperbolic L-spaces.

The key observation behind the proof of Theorem 1 is the following: for minimal
hyperbolic L-spaces, the Frøyshov invariant h.Y; s/ can be expressed in terms of the eta
invariants �sign and �Dir of the odd signature operator �d acting on coexact 1-forms and
the Dirac operator DB0 corresponding to the flat connection B t0 on the determinant line
bundle. Recall that both operators are first order, elliptic and self-adjoint, and are therefore
diagonalizable in L2 with real discrete spectrum unbounded in both directions. The eta
invariant is a numerical invariant that intuitively measures the spectral asymmetry of an
operator, i.e. the difference between the number of positive and negative eigenvalues [2].
Of course, in our cases of interest, both of these quantities are infinite, and the eta invariant
is defined via suitable analytic continuation. While the latter was originally obtained using
the heat kernel, in our setup it can also be understood in terms of closed geodesics via
the Selberg trace formula for odd test functions. One should compare this with classical
work of Millson [39] and Moscovici–Stanton [41] expressing the eta invariants in terms
of values of suitable odd Selberg zeta functions. In particular, it is possible to provide
explicit expressions for �sign and �Dir in terms of spectral and geometric data:

1The Hodgson–Weeks census [23] consists of approximatively 11 thousand closed oriented
hyperbolic manifolds with vol.Y / < 6:5 and inj.Y / > 0:15, and most of these are rational homology
spheres. It is currently not known what percentage of such manifolds it encompasses.
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� In the case of �sign, the geometric input is the complex length spectrum we have already
exploited in [32]. The main difference is that in our previous paper we only needed
the trace formula for even test functions. This is because we were interested in the
Hodge Laplacian � acting on coexact 1-forms, and the trace formula involved spectral
parameters tj with t2j D �

�
j . When using even test functions, the choice of the sign tj

is irrelevant, but in fact there is a natural choice (for a fixed orientation of Y ) because
� is the square of �d .

� In the case of �Dir, the relevant new geometric data is encoded in the spinc length
spectrum of .Y; s/; this can be used to obtain information about the spectra of the
corresponding Dirac operator via a specialization of the Selberg trace formula for the
group

G D ¹g 2 GL2.C/ W jdet.g/j D 1º :

This should be thought of as the spinc analogue of the group PGL2.C/ D IsomC.H3/

which we studied in our previous paper.

Given this, Theorem 1 follows by applying ideas of analytic number theory and choos-
ing suitable compactly supported test functions. The most notable inputs are local Weyl
laws [42], which allow one to explicitly bound from above the number of eigenvalues of
the odd signature and Dirac operators in any given interval. The trace formula relates the
corresponding eta invariants quite explicitly to the hyperbolic geometry of the underlying
manifold, which allows us to prove explicit upper bounds. For example, we will show
that for any hyperbolic rational homology sphere Y with volume < 6:5 and injectivity
radius > 0:15, the explicit inequalities

j�signj� 108267; j�Dirj� 108249

hold, where the second estimate is independent of the choice of spinc structure. Let us
remark again that these estimates are not optimal even within the range of our techniques.

The injectivity radius makes its appearance in the assumptions of these results because
it equals half the length of the shortest closed geodesic [34, Section 4:3]. This implies
that the relevant trace formula takes a particularly simple form when evaluated using
test functions supported in the interval Œ�2 � inj.Y /; 2 � inj.Y /�, as the sum over closed
geodesics vanishes.

More generally, the explicit knowledge of the length spectrum up to a certain cutoff
provides much more detailed information about Frøyshov invariants and can in fact be
used to provide explicit computations for minimal hyperbolic L-spaces in the spirit of
Question 2. In the second part of the paper, we first showcase the main ideas behind this
approach in the simple case of the Weeks manifold. This is known [21] to be the hyper-
bolic three-manifold of smallest volume (� 0:94), and was shown in [32] to be a minimal
hyperbolic L-space. The Weeks manifold admits very simple topological descriptions,
and in particular its Frøyshov invariants can be computed in a purely topological fashion
using the techniques of [33].

With this example in mind, we will focus as proof of concept on the significantly more
challenging case of the Seifert–Weber dodecahedral space SW. It has volume � 11:199,
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and while it was one of the first examples of closed hyperbolic manifolds to be discov-
ered [51], it is a complicated space to study from the point of view of 3-dimensional
topology. For example, it took 30 years to verify Thurston’s conjecture that SW is not
Haken [10], and it is a complicated space to study using standard techniques in Floer
homology because it is not a branched double cover of S3 and it does not admit a
simple surgery description. In [31] we used our techniques to show that SW is a min-
imal hyperbolic L-space by taking into account its large symmetry group. The next
result determines its Frøyshov invariants for all the spinc structures on SW (recall that
H1.SWIZ/ D .Z=5Z/3/.

Theorem 2. Let s0 be the unique spin structure on SW, and consider a spinc structure
s D s0 C x on SW for x 2 H 2.SW;Z/. Then the Frøyshov invariant h.SW; s/ is as in
the following table, according to the value of the linking form lk.x; x/ 2 Q=Z.

lk.x; x/ h.SW; s/

0 �1=2

1=5 �1=10

2=5 �7=10

3=5 �3=10

4=5 1=10

Remark 2. As we will see in the proof, the case lk.x; x/ D 0 really encompasses two
distinct cases: the unique spin structure and a family of 24 (non-spin) spinc structures.

An important observation here is that the fractional parts of Frøyshov invariants of Y
admit partial interpretations in terms of the linking form of Y and the topology of mani-
folds bounding Y ; given the extra topological input, the problem boils down to computing
eta invariants up to a certain small (but reasonable) error. Towards this end, the main limi-
tation is that we can only access a limited amount of the length spectrum of SW. To prove
Theorem 2, it is most convenient to use dilated Gaussians as test functions, because both
the function and its Fourier transform (which is again a Gaussian) are rapidly decaying;
as Gaussians are not compactly supported, we need to truncate certain infinite sums over
closed geodesics that arise when estimating the �sign and �Dir via the odd trace formula for
coexact 1-forms and spinors. The main step in the proof is then to estimate the error intro-
duced in this procedure. This can be done by deriving explicit bounds on the number of
closed geodesics of a given length, in the spirit of the prime geodesic theorem with error
terms [11, Section 9:6]. Similarly, we will estimate the error introduced by truncation on
the spectral side via (explicit and refined versions of) the local Weyl law.

Remark 3. The approach we implement for SW can be in principle carried out for any
minimal hyperbolic L-space for which the linking form is known; the fundamental limi-
tation comes from computing length spectra. In fact, the same ideas can also be exploited
to obtain closed formulas for the Frøyshov invariants of minimal hyperbolic L-spaces
with finitely many terms with an explicit (but impractical) upper bound on the number of
terms. We will not pursue such a closed formula in the present paper.



F. Lin, M. Lipnowski 4206

Let us remark that explicit computations for the eta invariant of the odd signature
operator �sign for hyperbolic three-manifolds have been implemented in Snap [15], and
are based on a Dehn filling approach [44]. The key insight is that for a fixed oriented com-
pact four-manifold X bounding Y , the general Atiyah–Patodi–Singer index theorem [2]
relates �sign to the kernel of the odd signature operator on Y and the signature of X , both
of which are topological invariants.

However, while the APS index theorem also holds for the spinc Dirac operator, it is
well known that the dimension of its kernel on Y is not a topological invariant [22]; this
fact makes the computation of �Dir much more subtle than its odd signature operator coun-
terpart. In fact, the computations of Frøyshov invariants carried out in this paper for some
explicit minimal hyperbolic L-spaces provide as a byproduct explicit examples of hyper-
bolic three-manifolds for which one can compute Dirac eta invariants to high accuracy
(which are not zero for obvious geometric reasons, e.g. the existence of an orientation-
reversing isometry), and to the best of our knowledge these are the first such examples. For
example, our methods will show that for the unique spin structure on the Weeks manifold,

�Dir D 0:989992 : : : :

This relies on the fact that the Weeks manifold is a minimal hyperbolic L-space, together
with the computation of �sign given in [15]; in particular, the value is as precise as the
computations provided by Snap.

More generally, the odd trace formula allows one to obtain bounds on �Dir provided
one can access the spinc length spectrum of .Y; s/; in turn, we will describe an algorithm
to compute spinc length spectra taking as input information computed using SnapPy. In
particular, our method could in principle be applied to compute the invariants �Dir for any
hyperbolic three-manifold, even though at a practical level it might be infeasible to obtain
a decent approximation in a reasonable time.

Note for the reader. The paper is structured so that the various trace formulas (see Sec-
tion 3 for the statements) can be treated as black boxes, and all subsequent sections are
written in a way that is hopefully self-contained. In particular, in Section 4 we only use
some complex analysis to provide an explicit formula for the eta invariants in terms of
eigenvalues and complex (spinc) lengths. Given this, the remainder of the paper only uses
basic facts about Fourier transforms, and we will provide motivation and context for the
tools from analytic number theory which we employ. Detailed proofs of the various trace
formulas which we use can be found in the appendices; our discussion there assumes the
reader to be familiar with the proof of the even trace formula for coexact 1-forms in our
previous work [32, Appendix B].

Plan of the paper. Sections 1, 2 and 3 provide background about the main protagonists
of the paper: Frøyshov invariants, spinc length spectra, and trace formulas (both even and
odd). In Section 4 we use the odd trace formulas to provide an explicit expression for the
eta invariants of the odd signature and Dirac operators; this will be the main tool for the
present paper. In particular, we prove Theorem 1 in Sections 5 and 6 by providing explicit
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bounds on the terms appearing in the sum. In Section 7, we show how our analytical
expressions for eta invariants can be used to perform explicit computations on the Weeks
manifold, the simplest minimal hyperbolic L-space. This example is propaedeutic for the
significantly more challenging case of the Seifert–Weber space, which we discuss in detail
in Sections 8–10.

1. Background on Frøyshov and eta invariants

In this section we review some background topics that will be central for the purposes of
the paper.

1.1. Formal structure of monopole Floer homology and Frøyshov invariants

In [26] the authors associate to each three-manifold Y three ZŒU �-modules fitting in a
long exact sequence

� � �
i�
�!

b

HM�.Y /
j�
�!bHM�.Y /

p�
�! HM�.Y /

i�
�! � � � :

These are read respectively HM-to, HM-from and HM-bar, and we collectively refer to
them as monopole Floer homology groups. Such invariants decompose along spinc struc-
tures on Y ; for example we haveb

HM�.Y / D
M

s2Spinc.Y /

b
HM�.Y; s/:

The reduced Floer homology group HM�.Y; s/ is defined to be the kernel of the map p�.
In this paper, we will be only interested in the case of rational homology spheres. In this
situation the Floer homology groups for a fixed spinc struture admit an absolute grading
by a Z-coset in Q, and the action of U has degree �2. Furthermore,

HM�.Y; s/ Š ZŒU; U�1�

as graded modules (up to an overall shift), bHM�.Y; s/ vanishes in degrees high enough,
and p� is an isomorphism in degrees low enough.

A rational homology sphere Y is called an L-space if HM�.Y; s/ D 0 for all spinc

structures. Given a spinc rational homology sphere .Y;s/, denote the minimum degree of
a non-zero element in i�.HM�.Y; s// �

b

HM�.Y; s/ by �2h.Y; s/. The quantity h.Y; s/
is then called the Frøyshov invariant of .Y; s/.

1.2. Frøyshov invariants in terms of eta invariants

Recall [2, Theorem 4:14] that for an oriented three-manifold the odd signature operator
B acts on even forms �even as

.�1/p.�d � d�/ on 2p-forms.
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We identify 2-forms and 1-forms using �, so that the operator is�
�d d

d� 0

�
acting on�1˚�0. This is a first order elliptic self-adjoint operator, and is diagonalizable
in L2 with real discrete spectrum unbounded in both directions. Its eta function is defined
to be

�sign.s/ D
X

�¤0 eigenvalue

sgn.�/
j�js

I

this sum defines a holomorphic function for Re.s/ large. One of the key results of [2] is
that it admits a meromorphic continuation to the entire complex plane, with a regular value
at sD 0. In Section 4, we will quickly review the original proof of this (via the heat kernel)
and then provide an alternative interpretation via the trace formula. Intuitively, �sign D

�sign.0/ measures the spectral asymmetry of the operator. Similarly, the same procedure
works for the Dirac operator DB0 (and its perturbations), leading to �Dir.

Remark 1.1. For our purposes it is convenient to notice (cf. [2, Proposition 4:20]) that
the odd signature operator (assuming for simplicity b1.Y / D 0) under the Hodge decom-
position �1 D d�0 ˚ d��2 can be written as0@�d 0 0

0 0 d

0 d� 0

1A
acting on d��2 ˚ d�0 ˚�0. Now, the block�

0 d

d� 0

�
has symmetric spectrum because d and d� are adjoints; in particular, for Re.s/ large
enough we have

�sign.s/ D
X
tj

sgn.tj /
jtj js

; (1)

where the sum runs only over the eigenvalues ¹tj º of �d on coexact 1-forms (notice that
all the tj are non-zero). In particular, �sign coincides with the spectral asymmetry of the
action of �d on coexact 1-forms.

Remark 1.2. We have .�d/2 D � when acting on coexact 1-forms, and therefore the
squares of the parameters tj are exactly the eigenvalues ��j of � we studied in [32].
The crucial extra information for the purposes of the present paper is the sign of these
parameters.

The relation between eta invariants and the Frøyshov invariant is the following. Recall
that a minimal L-space is a rational homology sphere admitting a metric for which small
perturbations of the Seiberg–Witten equations do not have irreducible solutions.
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Proposition 1.1. Suppose .Y; g/ is a minimal L-space. Then for each spinc structure s,

h.Y; s/ D �
�sign

8
�
�Dir

2
;

where �Dir is the eta invariant of the Dirac operator DB0 corresponding to the flat con-
nection on the determinant line bundle B t0.

Classical examples of minimal L-spaces are rational homology spheres admitting
metrics with positive scalar curvature. In [32], we showed that a hyperbolic rational
homology sphere for which the first eigenvalue of the Hodge Laplacian coexact 1-forms
��1 satisfies ��1 > 2 is a minimal L-space (using the hyperbolic metric); we furthermore
provided several examples of such spaces.

While Proposition 1.1 is well-known to experts, we will dedicate the rest of the section
to its proof; our discussion will assume some familiarity with the content of [26], and will
not be needed later except in Section 10 where we will briefly use the explicit form of the
absolute grading (equation (3) below). The main idea behind the proof is the following.
Under the assumption that there are no irreducible solutions, after a small perturbation
the Floer chain complex has generator corresponding to the positive eigenspaces of (a
small perturbation of) the Dirac operator DB0 . From this description it readily follows
that they are L-spaces [26, Chapter 22:7], and that �2h.Y; s/ is the absolute grading of
the critical point corresponding to the first positive eigenvalue; the goal is then to express
this absolute grading in terms of eta invariants using the APS index theorem.

1.3. Proof of Proposition 1.1

We begin by recalling from [26, Chapter 28:3] how absolute gradings in monopole Floer
homology are defined for torsion spinc structures. As we only consider rational homology
spheres, the spinc structures in our context are automatically torsion. Consider a cobor-
dism .W; sW / from S3 to .Y; s/; equip S3 with a round metric and a small admissible
perturbation, and denote by Œa0� the first stable critical point of S3, corresponding to the
first positive eigenvalue of the Dirac operator. Consider onW a metric which is a product
near the boundary, and denote byW � the manifold obtained by attaching cylindrical ends.
We then define for a critical point Œa� of Y the rational number

grQ.Œa�/ D �gr.Œa0�; W �; sW ; Œa�/C
c1.sW /

2 � 2�.W / � 3�.W /

4
; (2)

where:

� gr.Œa0�; W �; sW ; Œa�/ is the expected dimension of the moduli space of solutions of
Seiberg–Witten equations in the spinc structure sW that converge to Œa0� and Œa�. Con-
cretely, this is the index of the linearized equations, after gauge fixing. Notice that
because b1.Y / D 0, there is only one homotopy class z of configurations, and we
dropped it from the notation.
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� c1.sW /
2 2 Q is the self-intersection of the class c1.sW / 2 H 2.W;Z/. Recall that this

is defined as
. Qc [ Qc/ŒW; @W �;

where Qc 2 H 2.W; @W;Q/ is any class whose image in H 2.W;Q/ is the same as the
image c1.sW / under the change of coefficients map H 2.W;Z/! H 2.W;Q/.

For our purposes, it will be convenient to work with a closed manifoldX with boundary Y
over which s extends instead; this can be obtained from W by gluing in a ball D4 to fill
the S3 boundary component. In this case the formula

grQ.Œb�/ D �gr.X�; sX ; Œb�/C
c1.sX /

2 � 2�.X/ � 3�.X/ � 2

4
2 Q (3)

holds, where gr.X�; sX ; Œb�/ is again defined as the expected dimension of the relevant
moduli space. This readily follows via the excision principle for the index from the defi-
nition in formula (2) and the computation for D4 in [26, Chapter 27:4].

Let us point out the following observation.

Lemma 1.2. Suppose .Y; g/ is a minimal L-space. Then for each spinc structure s, the
Dirac operator DB0 corresponding to the flat connection B t0 has no kernel.

Remark 1.3. As a consequence, the minimal hyperbolic L-spaces we exhibited in [32]
(e.g. the Weeks manifold) do not admit harmonic spinors. These seem to be the first known
examples of hyperbolic three-manifolds having no harmonic spinors; more examples can
be found using the trace formula techniques we discuss later.

Proof of Lemma 1.2. Consider the small perturbation of the Chern–Simons–Dirac func-
tional

Lı D LC
ı

2
k‰k2

L2
;

for which the corresponding perturbed Dirac operator at .B0; 0/ is DB0 C ı. For small
values of ˙ı, this operator has no kernel and the Seiberg–Witten equations still have no
irreducible solutions (because Y is a minimalL-space). By adding additional small pertu-
bations, we can assure that the spectra of these two operators are simple, and they still do
not have kernel, so we obtain transversality in the sense of [26, Chapter 12]. In particular,
they both determine chain complexes computing the Floer homology, hence both the two
first stable critical points have the same absolute grading �2h.Y;s/. This implies that the
moduli space of solutions to the perturbed equations connecting them on a product cobor-
dism R � Y (for which the induced map is an isomorphism) is 0-dimensional, hence the
spectral flow of the corresponding linearized operator at the reducible is also zero. After
performing a small homotopy (cf. [26, Chapter 14]), this implies that the spectral flow
for a family of operators of the form DB0 C f .t/, where f .t/ is a monotone function
with f .t/ D ˙ı for t > 1 and t < �1 respectively, equals zero. In particular,DB0 has no
kernel.
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In this argument, one can avoid adding extra small perturbations to make the spec-
tra simple when working with Morse–Bott singularities instead [32]. To streamline the
argument below, we will assume that the first positive eigenspace of DB0 is simple, and
the general case can be dealt with by either adding a small perturbation or by working
in a Morse–Bott setting. Consider first a reducible critical point Œb0�, which lies over
the reducible solution ŒB0; 0�. Under our assumptions, its absolute grading is exactly
�2h.Y; s/. Taking A to be a spinc connection of sX restricting to B0 in a neighborhood
of the boundary, linearizing the equations at .A; 0/ we have

gr.X�; sX ; Œb0�/ D indL2.X/.d
�
C dC/C 2 indC

L2.X/
.DCA /

where
d� C dC W i�1.X/! i�0.X/˚ i�C.X/

has index

b1.X/ � b
C
2 .X/ � 1 D �

�.X/C �.X/C 1

2
:

The Atiyah–Patodi–Singer for the odd signature operator says in our case

�.X/ D �sign C
1

3

Z
X

p1;

where p1 is the first Pontryagin form of the metric, and �sign is the eta invariant of the
odd signature operator. Let us point out that the different sign comes from our convention
for boundary orientations from that of [2]: we think of X as a ‘filling’ of Y , rather than a
‘cap’, and this in turns implies that our boundary conditions involve the negative spectral
projection [26, Chapter 17]. For the Dirac operator, we obtain

indC
L2.X/

.DCA / D
1

2
�DDir C

1

8

Z
X

�
�
1

3
p1 C c1.A/

2

�
;

where c1.A/ is the Chern form of A, and the term involving the dimension of the kernel
of DB0 is not present because of Lemma 1.2. Putting everything together, we see that

grQ.Œb0�/ D
1
4
�sign C �Dir;

and the result follows.

2. Torsion spinc structures and spinc length spectra

Consider a closed geodesic 
 (oriented and possibly a multiple of another one) in an
oriented hyperbolic three-manifold. We denote its complex length by

C`.
/ WD `.
/C i � hol.
/ 2 R>0 C iR=2�Z;

where `.
/ is the usual length of 
 and hol.
/ is its holonomy, defined geometrically as
follows (an algebraic interpretation is provided below). Consider a unit speed parametriza-
tion 
 W Œ0; `.
/�! Y of the geodesic, and fix an orthonormal basis ¹v;wº of the normal
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planeN to 
 at 
.0/ so that ¹ P
.0/; v;wº induces the orientation of Y . We use this conven-
tion to orient N . We obtain a new orthonormal basis ¹v0; w0º of N via parallel transport
along 
 and the identification 
.0/ D 
.`.
//, and hol.
/ is angle needed in order to
obtain ¹v;wº from ¹v0; w0º with a rotation in N .

In this section we discuss a refinement of this notion when the manifold is equipped
with a torsion spinc structure; this refinement of complex length appears on the geometric
side of the trace formula for spinors. We also discuss how the refinement can be computed
in explicit examples, taking as input SnapPy’s Dirichlet domain and complex length spec-
trum computations.

2.1. Torsion spinc structures and G

Let us begin by discussing the simpler case of a genuine spin structure s0 on Y (see
[24, Chapter IV] for additional background). The choice of a spin structure s0 allows us
to lift the holonomy of a closed geodesic 
 W S1 ! Y from an element in R=2�Z to
an element in R=4�Z. From a topological perspective, this is because, using the Lie spin
structure (the one corresponding to 1 2Z=2ZD�spin

1 , and the disconnected double cover
of S1) on the tangent bundle of 
 , s0 induces a spin structure on the normal bundle of 
 ;
and a spin structure on a rank 2 real vector bundle is simply a trivialization well-defined
up to adding an even number of twists. In particular, it makes sense to talk about hol.
/=2
as an element in R=2�Z.

Remark 2.1. For a covering space S1 ! S1, the pullback of the Lie spin structure is
again the Lie spin structure. This implies that with our conventions, when considering
multiples of a given closed geodesic 
 , we have

hol.
n/=2 D n � .hol.
/=2/ in R=2�Z:

This would not hold if we chose instead the other spin structure on S1 (corresponding to
0 2 �

spin
1 , and the connected double cover of S1).

From the point of view of hyperbolic geometry, we think of �1.Y / � IsomC.H3/ Š

PSL2.C/. As H3 is simply connected, it admits a unique spin structure Qs, and its group
of spin automorphisms is given by SL2.C/ (with˙1 corresponding to the two spin auto-
morphisms lifting id 2 IsomC.H3/). Hence a spin structure on Y is a lift

SL2.C/

�1.Y / PSL2.C/

where the vertical map is the quotient by the subgroup ¹˙1º.
Notice that all orientable three-manifolds are spin because their second Stiefel–

Whitney class w2 vanishes [40, Chapter 11], so such a lift always exists. Any two such
lifts differ by a homomorphism �1.Y /! ¹ ˙ 1º, i.e. an element in H 1.Y;Z=2/. From
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this viewpoint, recall that complex length of a hyperbolic element 
 is given by

C`.
/ D 2 log�
 ;

where �
 is the root of
x2 � .tr
/x C 1 D 0

with j�
 j > 1. Of course, for an element 
 2 PSL2.C/ the trace is well-defined only up
to sign, and we see that the two choices of the trace correspond to ˙�
 ; this implies that
the argument of �2
 , which is hol.
/, is well-defined modulo 2� .

It is then clear that a spin structure, which provides a well-defined trace, also fixes
a choice between ˙�
 ; the argument of this choice, which is hol.
/=2, is well-defined
modulo 2� . Very concretely, this is implies that the lift z
 2 SL2.C/ is conjugate to�

e`.
/=2Cihol.
/=2 0

0 e�`.
/=2�ihol.
/=2

�
:

The case of general torsion spinc structures is analogous, where we use instead the group

G D ¹g 2 GL2.C/ W jdet.g/j D 1º � GL2.C/:

There is a natural map
� W G ! PSL2.C/

obtained by expressing
G D .SL2.C/ � U1/=¹˙1º;

where U1 � G is the subgroup of multiples of the identity, and projecting onto the first
factor.

Now, H3 admits a unique spinc structure, namely the torsion one induced by the spin
structure. Because it is simply connected, it also admits a unique flat spinc connection
up to gauge. Arguing as in the case of spin structures, we see then that a torsion spinc

structure together with a flat spinc connection on Y corresponds to a homomorphism

' W �1.Y /! G

for which � ı ' W�1.Y /! PSL2.C/ is the inclusion map. We see that two spinc structures
then differ by a homomorphism

�1.Y /! U1;

which can be thought of as an element inH 1.Y;R=Z/. The Bockstein long exact sequence
for the coefficients

0! Z! R! R=Z! 0

reads in this case

H 1.Y;Z/! H 1.Y;R/! H 1.Y;R=Z/! H 2.Y;Z/! H 2.Y;R/:

The latter allows us to interpret topological classes of torsion spinc structure as an affine
space over the torsion of H 2.Y;Z/.



F. Lin, M. Lipnowski 4214

Throughout the paper, we will study rational homology spheres, for which all spinc

structures are torsion. In this case, we have identifications

H 1.Y;Q=Z/ Š H 1.Y;R=Z/ Š H 2.Y;Z/

We will further fix a base spin structure s0 and accordingly identify spinc structures with
H 1.Y;Q=Z/. For simplicity, ' will interchangeably refer to both the lift and the differ-
ence homomorphism. In this case, the element 
 has lift conjugate to�

ei'.
/e`.
/=2Cihol.
/=2 0

0 ei'.
/e�`.
/=2�ihol.
/=2

�
and the spinc length spectrum keeps track of the value '.
/. We will refer to the latter as
the twisting character.

2.2. Computations of spinc lifts

For eventual use of the trace formula for spinors on G, we need to explicitly compute the
torsion spinc data, namely hol.
/=2 and �.
/ for representatives of all conjugacy classes
in � up to some specified real length. We refer to this data as the spinc length spectrum
of .Y; s/. We discuss a concrete algorithm to compute such information, taking as input
data provided by SnapPy.

2.2.1. Input for spinc length spectrum: SnapPy Dirichlet domain and complex length
spectrum. In order to compute the spinc length spectrum up to some real length thresh-
old R, we take as input the following objects (both pre-computable in SnapPy):

� A Dirichlet domain D for � D �1.Y / centered at o D .1; 0; 0; 0/ in the hyperboloid
model of H3, i.e. the upper sheet of

¹.t; x; y; z/ W Q.t; x; y; z/ D �1º;

where Q.t; x; y; z/ D �t2 C x2 C y2 C z2. In particular, this includes a list of all
elements 
 of the identity component SO.Q/0 of the orthogonal group for which
some domain within the bisector of o and 
o is a face F � D. For hyperbolic three-
manifolds Y , such elements 
 come in inverse pairs: for the above element 
; 
�1F is
the face of D opposite F . The group � is generated by the face-pairing elements (see
Section 2.2.4).

� For each conjugacy class C in � with `.C / � R, a matrix gC in SO.Q/0, which is the
image in SO.Q/0 of some element of � representing C . One can extract the complex
length of C from gC , but of course it contains more information.

2.2.2. Converting � � SO.Q/0 to � � PSL2.C/. Minkowski space R1;3 can be identi-
fied with the space iu2 of 2 � 2 hermitian matrices via the map

.t; x; y; z/ 7!

�
t C z x � iy

x C iy t � z

�
:
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Under this identification, the quadratic formQ equals the determinant of the above matrix.
The group PSL2.C/ acts on iu2 by

g �X D gXg�;

preserving the determinant. The resulting homomorphism

PSL2.C/
�
�! SO.Q/0

is in fact an isomorphism. To transform � to a corresponding subgroup of PSL2.C/
amounts to inverting the above isomorphism. In turn, this amounts to solving the fol-
lowing linear algebra problem:

Given f 2 End.iu2/ preserving Q, find g 2 GL2.C/ satisfying

Xg� D .det.g/ � g�1/f .X/ for all X 2 iu2: (4)

The entries of det.g/ � g�1 are linear in the entries of g, so (4) defines a linear algebra
problem (over R), which is readily solved. Rescaling the solution g to (4) as needed, we
solve (4) with some matrix g 2 PSL2.C/.

2.2.3. Reduction theory via Dirichlet domains for conjugacy classes C � � . We discuss
how to express a given element 
 2 � in terms of the face-pairing elements 
i of D.

Lemma 2.1. Suppose x 2 H3 n D. There is some face-pairing element 
 for which
d.
�1 � x; o/ < d.x; o/:

Proof. Because 
1; : : : ; 
m support the faces of the Dirichlet domain D,

D D ¹x 2 H3
W d.x; o/ � d.x; 
i � o/ for i D 1; : : : ; mº:

In particular, if x … D, then

d.x; o/ > d.x; 
i � o/ D d.

�1
i � x; o/

for some face-pairing element 
i :

This yields the following Dirichlet domain reduction algorithm for �:

� Initialize x D 
 � o. Let L D Œ� be an empty list. Note: if 
 is not the identity element,
then x … D:

� While x is not inD: find a face-pairing element 
 for which d.
�1x; o/ < d.x; o/; this
is always possible by Lemma 2.1. Then:

– Append 
 to the right end of L.

– Replace x by 
�1x.

� Once x 2 D, output ı D
Q
g2L g, product taken in left-to-right order.

Lemma 2.2. The Dirichlet domain reduction algorithm for � terminates. Its output
equals 
:
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Proof. Let x D 
 � o: If the while loop did not terminate, we would find an infinite
sequence of face-pairing elements 
1; 
2; : : : for which x; 
�11 � x; 


�1
2 � 


�1
1 � x; : : : all

lie off D and for which

d.x; o/ > d.
�11 � x; o/ > d.

�1
2 � x; o/ > � � � :

But the latter is not possible since the action of � on H3 is properly discontinuous. Sup-
pose now L D Œ
1; : : : ; 
n� at the point of the algorithm when x 2 D. That means that


�1n 
�1n�1 � � � 

�1
1 � .
 � o/ 2 D:

The latter point is evidently �-equivalent to o and lies in D. Since o does not lie on the
boundary of D, o is the unique point of D which is �-equivalent to o. So

.
�1n 
�1n�1 � � � 

�1
1 � 
/ � o D o:

Since the action of � on H3 is fixed-point free, it follows that 
 D 
1 � � � 
n:

2.2.4. Computing one spin structure. As mentioned above, it is convenient to fix a base
genuine spin structure s0 (so that all the others spinc structures are obtained by twisting it
via a character). To compute the corresponding lift z� � SL2.C/, we use the presentation
of � � PSL2.C/ afforded to us by the Dirichlet domain D. Let �abs denote the (abstract)
group with a generator Œ
� for each face-pairing element 
 and satisfying the following
relations:

� (Opposite face relations) Œ
� � Œ
�1� D 1 for all face-pairing elements 
 .

� (Edge cycle relations) The edges of D are partitioned into edge cycles. This is an
ordered sequence of edges e1; : : : ; en for which 
1 � e1 D e2; 
2 � e2 D e3; : : : ; 
n � en
D e1 for some 
1; 
2; : : : ; 
n. Every edge cycle yields a corresponding relation:
Œ
n� � � � Œ
1� D 1:

The opposite face and edge cycle relations hold for the corresponding elements of � . The
assignment

� W �abs ! � � PSL2.C/; Œ
� 7! 
; (5)

thus extends to a well-defined homomorphism. According to the Poincaré polyhedron
theorem [35], � is an isomorphism.

For every face-pairing element 
 2� � PSL2.C/, choose arbitrarily a lift z
 2 SL2.C/.
Because � is well-defined, all of the defining relations have an associated sign. For
example, if Œ
n� � � � Œ
1� D 1 is an edge cycle relation, then

e
n � � � e
1 D �Œ
n����Œ
1� �1 0

0 1

�
;

where �Œ
n����Œ
1� D ˙1. Let �Œ
� D ˙1 be unknowns we will solve for. Then


 7! �Œ
� � z
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extends to a well-defined lift of � to z� � SL2.C/ iff the opposite face and edge cycle
relations are satisfied. This immediately reduces to the following linear algebra problem
(over Z=2Z): ´

�Œ
��Œ
�1� D �Œ
��Œ
�1� opposite face relations;

�Œ
n� � � � �Œ
1� D �Œ
n����Œ
1� edge cycle relations:

We know abstractly that some solution must exist (because Y is spin), and we readily
solve for one.

Remark 2.2. The collection of lifts z� is a torsor for H 1.�nH3;Z=2/. No preferred lift
exists in general. We note, however, that SW, the protagonist of the second part of our
paper, satisfiesH 1.SW;Z=2/D 0, so �1.SW/ admits a unique lift to B�1.SW/ � SL2.C/.

2.2.5. Computing all homomorphisms � ! Q=Z. From the previous subsection, �abs

gives a presentation for � . Let e1; : : : ; em denote the images of the face-pairing elements

1; : : : ; 
m in the abelianization �ab. The abelian group �ab can be presented as

Zhe1; : : : ; emi=R;

where R are the abelian versions of the opposite face and edge cycle relations from Sec-
tion 2.2.4. We assume that b1.Y /D 0, so that �ab DH1.Y;Z/ is a finite group. Using the
Smith normal form, we compute a basis b1; : : : ; bm of Zhe1; : : : ; emi for which a basis
for the span of R is given d1b1; : : : ; dmbm for some non-zero integers d1; : : : ; dm with
di j diC1. In particular,

�ab
D H1.Y;Z/ D

M
Z=diZ:

Homomorphisms from �ab to Q=Z are uniquely determined by the images y WD
.y1; : : : ; ym/ of b1; : : : ; bm; we define �y by

bi 7! yi 2

�
1

di
Z

�
=Z:

If A D .b1j � � � jbm/ is the matrix with j th column bj , then

yA�1 D .�y.e1/; : : : ; �y.em//:

2.2.6. Indexing all lifts of � to z� � G. We index the lifts of � � PSL2.C/ to z� � G as
follows:

� Compute one spin lift s0 W � ! �spin � SL2.C/, by the procedure described in Sec-
tion 2.2.4.

� A general lift of � to G is of the form 
 7! �.
/ � s0.
/ for some twisting character
� W � ! U1:

Thus, ²

 7! e2�i�y.
/ � s.
/ W y1 2

�
1

d1
Z

�
=Z; : : : ; ym 2

�
1

dm
Z

�
=Z

³
parametrizes all lifts of � to G:
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2.2.7. Computing the spinc length spectrum. Suppose we have computed one lift s0 W
� ! SL2.C/ specified by the images of the face-pairing generators for D; SnapPy pro-
vides the images in SO.Q/0 for all of the face-pairing generators, so we can apply the
inverse isomorphism from Section 2.2.2 to each face-pairing generator followed by the
procedure described in Section 2.2.4 to compute a lift s0. Suppose also that we have
computed a homomorphism � W � ! Q=Z, specified by its values on the face-pairing
generators, e.g. the homomorphisms �y from Section 2.2.5.

For every �-conjugacy class of translation length at most R, SnapPy specifies the
image in SO.Q/0 of some representative element 
 of its conjugacy class. Notice that

 lies in the group generated by the face-pairing elements of the Dirichlet domain D.
Applying the Dirichlet domain reduction algorithm from Section 2.2.3, we can express

 D 
1 � � � 
k for some face-pairing elements 
1; : : : ; 
k for D. Having computed s0 on
the face-pairing generators, s0.
/D s0.
1/ � � � s0.
k/ is some explicit element of SL2.C/.
We readily compute its SL2.C/-conjugacy class:

s0.
/ �SL2.C/

�
eu=2ei� 0

0 e�u=2e�i�

�
;

and we see that u D `.
/ and � D hol.
/=2 2 R=2�Z.
Finally, since the values of the twisting character � are known on the face-pairing

generators, we readily compute �.
/ D �.
1/ C � � � C �.
k/. In the lift z� � G of �
corresponding to s0 and �, we have

z
 �G e
2�i�
�

�
eu=2ei� 0

0 e�u=2e�i�

�
D

�
eu=2ei�e2�i� 0

0 e�u=2e�i�e2�i�

�
:

Following this procedure for every conjugacy class C of length at most R computes the
spinc length spectrum for the lift z� � G of � corresponding to the pair s0 W � ! SL2.C/
and � W � ! Q=Z:

3. Trace formulas for functions, forms and spinors

While our previous work [32] only used the trace formula to sample coexact 1-form eigen-
values with even test functions, the present paper requires that we extend our toolkit to
sample the eigenvalue spectrum for functions and spinors (the latter using both even and
odd test functions). In this section, we collect statements of the trace formula specialized
to the latter three contexts. For the purposes of our work, the various statements can be
treated as a black box, and their detailed proofs can be found in the appendices to the
paper. For simplicity, in the statements we will restrict to smooth compactly supported
functions, but we will ultimately need to apply the trace formula using more general test
functions; this is made precise in Section 3.5.
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3.1. Notation and conventions

� Throughout the paper, we will use the convention for Fourier transforms

yH.t/ D

Z
R
H.x/e�itx dx:

� For a closed geodesic 
 , we denote by 
0 a prime geodesic which 
 is a multiple of.

� When dealing with the odd trace formula, it will be important to have a clear orien-
tation convention, as for example the spectrum of �d on Y and NY are opposite to
each other. We use the identification H3 D PSL2=PSU2 (obtained by thinking of the
upper half-plane model), for which the tangent space at .0; 1/ is isu.2/. We declare the
(physicists’) Pauli matrices

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
to be a positively oriented basis.

3.2. Trace formula for functions

We begin with the classical trace formula for functions. Here, to each eigenvalue of the
Laplacian operator,

0 D �0 < �1 � �2 � � � � ;

we associate the parameter rn 2R[ i Œ0; 1� for which �n D 1C r2n (in particular, �0 D i ).
Non-zero eigenvalues less than 1 (i.e. such that rn 2 i.0; 1/ ) are referred to as small; the
value 1 is important because it is the bottom of the L2-spectrum of the Laplacian on H3

(see [13]).

Theorem 3.1. For H 2 C1c .R/ an even test function, we have the identity

1X
nD0

yH.rn/ D
vol.Y /
2�

� .�H 00.0//C
X
Œ
�¤1

`.
0/

j1 � eC`.
/j j1 � e�C`.
/j
H.`.
//:

This formula is well-known, and essentially follows from the computation in [32,
Appendix B]. It can also be proved by direct integration via the Abel transform and inte-
gral kernels; see for example [13] (beware of an erroneous extra factor of 2).

3.3. Trace formula for coexact 1-forms

Each eigenvalue of the Hodge Laplacian � D .d C d�/2 acting on coexact 1-forms,

0 < ��1 � �
�
2 � � � � ;

is of the form ��n D t
2
j for some j , where

� � � � t�1 < 0 < t0 � t1 � t2 � � � �
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are the eigenvalues of �d: In our previous paper, we were only concerned with the abso-
lute values jtj j of the parameters and so even test functions sufficed for our purposes. In
the present paper, however, the signs of the parameters tj are crucial. Below, we state a
variant of the trace formula which samples the coexact 1-form eigenvalue spectrum using
odd test functions and is thus sensitive to these signs.

Theorem 3.2. For H 2 C1c .R/ an even test function, we have the identity

1

2
.b1.Y / � 1/ � yH.0/C

1

2

X
yH.tj / D

vol.Y /
2�

� .H.0/ �H 00.0//

C

X
`.
0/

cos.hol.
//
j1 � eC`.
/j j1 � e�C`.
/j

H.`.
//:

For K 2 C1c .R/ an odd test function, we have the identity

1

2

X
yK.tj / D i

X
`.
0/

sin.hol.
//
j1 � eC`.
/j j1 � e�C`.
/j

K.`.
//:

For the last identity, recall that if K is odd then its Fourier transform is purely imagi-
nary.

3.4. Trace formula for spinors

As in Section 2, we fix a base spin structure s0 and consider its twist by a character '.
The corresponding Dirac operator DB0 has discrete spectrum

� � � � s�1 < 0 � s0 � s1 � s2 � � � � ;

unbounded in both directions. Also, recall that we introduced the notation z
 for the lift of

 corresponding to the base spin structure s0.

Theorem 3.3. For H 2 C1c .R/ an even test function, we have the identity

1

2

X
yH.sj /

D
vol.Y /
2�

�

�
1

4
H.0/ �H 00.0/

�
C

X
`.
0/

cos.hol.z
// cos.'.
//
j1 � eC`.
/j j1 � e�C`.
/j

H.`.
//:

For K 2 C1c .R/ an odd test function, we have the identity

1

2

X
yK.sj / D i

X
`.
0/

sin.hol.z
// cos.'.
//
j1 � eC`.
/j j1 � e�C`.
/j

K.`.
//:

3.5. Allowing less regular functions

While for simplicity we stated the formulas only for smooth, compactly supported func-
tions, the same conclusions hold with less regularity. For example, in our previous work
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[32, Appendix C] we showed that the trace formula for coexact 1-forms holds for func-
tions of the form .1Œ�a;a�/�4, the fourth convolution power of the indicator function of the
interval Œ�a; a�. Rather than providing general statements, let us point out two specific
instances that will be used in this work:

(1) The even trace formulas hold for H.x/ D .1Œ�a;a�/�k with k � 6 and the odd trace
formulas hold forK DH 0. This follows directly from the results in [32, Appendix C].

(2) The even trace formulas hold for a Gaussian H.x/ D e�x
2=2c , and the odd trace

formulas hold for K D H 0. This is proved in Appendix D.

In the proof of Theorem 1 we will only use functions of the first type, but our proof of
Theorem 2 uses Gaussians.

4. Analytic continuation via the odd trace formula

The classical approach to the analytic continuation of the eta function (1) involves the
Mellin transform and the asymptotic expansion of the trace of the heat kernel; we start by
quickly reviewing the fundamental aspects of this for the reader’s convenience. For our
purposes, we will discuss a different interpretation using the odd trace formulas described
in the previous section.

4.1. Analytic continuation via the Mellin transform

For the reader’s convenience, we recall basic facts about the Mellin transform and its rel-
evance for the definition of the � invariant. Our account loosely follows [13, Section 3:4],
suitably adapted to the simpler situation we are dealing with. Given a continuous function
f W R>0 ! R, we define its Mellin transform to be

Mf .s/ D

Z 1
0

f .t/t s
dt

t
:

This is essentially the Fourier transform for the multiplicative group R>0 equipped with
the Haar measure dt=t . Assuming that f .t/DO.t�a/ for t ! 0, and f .t/DO.t�n/ for
t!1 for all n, we see that the integral absolutely converges on the half-plane Re.s/ > a,
and that Mf is a holomorphic function there.

Under additional assumptions, Mf admits an explicit analytic continuation to the
whole plane. For our purposes, suppose for example that f admits an asymptotic expan-
sion

f .t/ �

1X
kD0

ckt
ik for t ! 0; (6)

where ¹ikº is a strictly increasing sequence of real numbers with lim ik D C1. Then
Mf extends to a meromorphic function on C with a simple pole at �ik with residue ck
for all k, and holomorphic everywhere else. To see this, choose L > 0 and let us write
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Mf .s/ DM�.s/CMC.s/ where

M�.s/ D

Z L

0

f .t/t s
dt

t
; MC.s/ D

Z 1
L

f .t/t s
dt

t
:

Our assumption on the behavior of f at infinity implies that MC is an entire function.
Regarding the first integral, the asymptotic expansion (6) implies that for a given N we
can write

f .t/ D

N�1X
kD0

ckt
ik C rN .t/

with rN .t/ D O.t iN / for t ! 0. Integrating, for Re.s/ > �iN we can therefore write

M�.s/ D

Z L

0

f .t/t s
dt

t
D

N�1X
kD0

ck � L
sCik

s C ik
C

Z L

0

rN .t/t
s dt

t
: (7)

This expression provides a meromorphic continuation of M� to the half-plane
Re.s/ > �iN . This continuation has simple poles at �i0; : : : ; �iN�1 with residues
c0; : : : ; cN�1 and is holomorphic everywhere else in the half-plane. Because our choice
of N was arbitrary, this proves the claim.

Remark 4.1. Though M� and MC both depend on L, one readily checks that their sum
does not.

The above discussion readily generalizes to the case in which f .t/ D O.t�n/ for
some fixed n when t ! 1. In this case, the analytic continuation (obtained again by
breaking the integral Mf .s/ DM�.s/CMC.s/) defines a meromorphic continuation on
the half-plane Re.s/ < n.

4.2. The heat kernel

We briefly recall the classical analytic continuation of the eta function of the odd signature
operator

�sign.s/ D
X
tn¤0

sgn.tn/
jtnjs

:

using the asymptotic expansion of the heat kernel; see [2] for details. The key observation
to relate this to the previous discussion is the identity

jaj�s D
1

�.s/

Z 1
0

e�jajt t s
dt

t
; (8)

where �.s/ D
R1
0
e�t t s dt

t
is the classical Gamma function.

In the simpler case of the Riemann zeta function, we have for Re.s/ > 1 (which
ensures absolute convergence) the identity

�.s/ D

1X
nD1

1

ns
D

1X
nD1

1

�.s/

Z 1
0

e�nt t s
dt

t
D

1

�.s/

Z 1
0

1

et � 1
t s
dt

t
:
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Recall that �.s/ has poles at s D 0;�1;�2; : : : with residue .�1/k=k at s D �k. Given
the asymptotic expansion for t ! 0 in terms of Bernoulli numbers

1

et � 1
�

1X
kD�1

BkC1

.k C 1/Š
tk ;

and 1=.et � 1/ D O.t�n/ for all n when t !1, we recover the classical fact that �.s/
admits a meromorphic extension with only one pole at s D 1.

Let us now focus on the case of the eta function of the odd signature operator (the
case of the Dirac operator is analogous). In [2], the authors study the quantity2

K.t/ D �
X sgn.tn/

2
erfc.jtnj

p
t /;

where

erfc.t/ D
2
p
�

Z 1
t

e��
2

d�

is the complementary error function. As 0 is not an eigenvalue by assumption, Weyl’s law
(Section 5) implies that K.t/! 0 exponentially fast for t !1. The derivative of K.t/
is computed to be

K 0.t/ D
1
p
4�t

X
tne
�t2n t :

Using .8/ and integrating by parts we get the formula

�sign.2s/ D
2
p
�

�.s C 1=2/

Z 1
0

K 0.t/t sC1
dt

t
D �

2s
p
�

�.s C 1=2/

Z 1
0

K.t/t s
dt

t
: (9)

The key point is that K.t/ admits an asymptotic expansion of the form

K.t/ �
X
k��n

akt
k=2 for t ! 0; (10)

and therefore its Mellin transform has at worst a simple pole at 0. In .9/, this pole is can-
celed by the term s in the numerator, and we see therefore that �sign.s/ is holomorphic
near 0. We conclude by mentioning that the asymptotic expansion .10/ follows by inter-
pretingK as the trace of the heat kernel on R�0 � Y with the (now-called) APS boundary
conditions; see [2, Section 3] for details. As will define the analytic continuation of � in a
completely different way, we will not need the K in what follows, and have discussed it
only for motivational purposes.

4.3. Analytic continuation via the trace formula

While the analytic continuation via the heat kernel we have just discussed holds in general,
for the specific case of hyperbolic three-manifolds we can take a different route using the

2To be precise, they study the odd signature operator on coclosed 1-forms, which leads to an
additional term involving b1.Y / in their discussion.
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odd trace formula. Let us discuss first in detail the case of the eta invariant for the odd
signature operator (the case of the Dirac operator is essentially the same). Recall that in
this case we only need to consider the spectral asymmetry of �d acting on coexact 1-
forms (1). Given an even test function H (in our case H will either be a Gaussian or
compactly supported, as in Section 3.5), we consider the trace formula applied to the odd
test function H 0. Recalling that with our conventioncH 0.t/ D i t yH.t/;
we obtain the identityX

n

tn yH.tn/ D 2
X
1¤Œ
�

`.
0/ �
sin.hol.
//

j1 � eC`.
/j j1 � e�C`.
/j
�H 0.`.
//: (11)

For a fixed even test function G, and given T > 0, we apply this to the function H.x/ D
G.x=T /, for which yH.t/ D T yG.T t/, and obtain the family of identitiesX

n

T tn yG.T tn/ D 2
X
1¤Œ
�

`.
0/ �
sin.hol.
//

j1 � eC`.
/j j1 � e�C`.
/j
�
1

T
G0
�
`.
/

T

�
: (12)

We will denote either side of the identity by GT (and refer to them as spectral and geo-
metric respectively). Now, for any real number a ¤ 0 we have the identity

Z 1
0

aT yG.aT /T s�1dT D a �

Z 1
0

yG.aT /T s dT D a �

Z 1
0

yG.jajT /T s dT

D
sgn.a/
jajs

�

Z 1
0

yG.T /T s dT;

where we have used the fact that yG is even in the second equality and performed a change
of variables in the last equality above. Therefore, for Re.s/ large enough (so that the sums
converge absolutely), we have

�sign.s/ D
X
tn

sgn.tn/
jtnjs

D

R1
0

P
.tnT yG.tnT //T

s dT
TR1

0
yG.T /T sdT

D

R1
0
GT T

s dT
TR1

0
yG.T /T sdT

: (13)

We can recognize at the numerator and denominator the Mellin transforms of GT and
T yG.T / respectively. We have the following.

Lemma 4.1. Suppose that G is either:

� a Gaussian function x 7! e�x
2=.2c/;

� the k-th convolution power of an indicator function 1
2a

1Œ�a;a� for some even k � 6; or

� one of the test functions introduced in Section 5.1 below.
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Then the identity

�sign.s/ D

R1
0
GT T

s dT
TR1

0
T yG.T /T s dT

T

holds in an open domain in C containing s D 0, where we interpret the right hand side
using the Mellin transform.

Of course, the lemma is valid in much greater generality, but for simplicity we have
restricted to the class of functions that will be used in the rest of the paper.

Proof of Lemma 4.1. Let us start with the case of a Gaussian. We claim that the quantity
GT is rapidly decaying for both T ! 0 and T !1. The former follows by looking at
the definition of GT using the geometric side because by the prime geodesic theorem the
number of prime closed geodesics of length less than x is O.e2x=.2x// (Section 9); for
the latter, it follows by looking at its definition using the spectral side, because the Weyl
law implies that the number of spectral parameters less than t in absolute value is O.t3/
(Section 5), and yG is still a Gaussian. By the properties of the Mellin transform discussed
in Section 4.1, this implies that the numerator

R1
0
GT T

s dT
T

is an entire function of s. On
the other hand, the integrand in the denominator T yG.T / is rapidly decaying for T !1,
and by looking at the Taylor series at t D 0 one obtains an asymptotic expansion with only
odd exponents. Hence the denominator admits an analytic continuation to the whole plane
which is regular and non-zero at 0 because

R1
0
yG.T / dT > 0. The claim then follows by

uniqueness of the analytic continuation.
The case of . 1

2a
1Œ�a;a�/�k with k � 6 even is analogous. Assume for simplicity aD 1.

First of all, the derivative of this function is regular enough for the odd trace formula to
hold (see Section 3.5). Notice that in this case

yG.t/ D

�
sin.t/
t

�k
:

Looking at the spectral side, we see that

jGT j�
1

T k�1
�

X
n

1

jtnjk�1
D O.T �kC1/

for T !1. Furthermore,GT is still rapidly decaying for T ! 0, becauseG is compactly
supported on the geometric side. The numerator is therefore a holomorphic function on
the half-plane Re.s/ < k � 1. As in the case of Gaussians, T yG.T / has a Taylor expansion
at 0 with only odd exponent terms, and

R1
0
T yG.T / dT

T
> 0; it is also O.T �kC1/ for

T !1. The denominator is therefore a meromorphic function on Re.s/ < k � 1, regular
and non-vanishing at zero, and we conclude as in the case of the Gaussian.

Finally, the case of the test functions introduced in Section 5.1 follows in the same
way, and is in fact much simpler because they are both compactly supported and smooth.
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Let us unravel the statement of the above result in a way that is useful for concrete
computations. If we choose a cutoff L > 0, we have the formula

�sign D

R L
0
GT

dT
T
C
R1
L
GT

dT
TR1

0
T yG.T / dT

T

; (14)

where at the numerator we evaluate the integral near zero using the geometric definition,
and the integral near infinity using the spectral definition. Explicitly, for the eta invariant
of the odd signature operator,Z L

0

GT
dT

T
D

X
`.
0/ �

2 sin.hol.
//
j1 � eC`.
/j j1 � e�C`.
/j

Z L

0

1

T
G0
�
`

T

�
dT

T

D

X
`.
0/ �

2 sin.hol.
//
j1 � eC`.
/j j1 � e�C`.
/j

�
1

`.
/
�

Z 1
`=L

yG0.y/
dy

y

D

X
`.
0/ �

2 sin.hol.
//
j1 � eC`.
/j j1 � e�C`.
/j

�
1

`.
/
�

Z 1
`=L

G0.y/ dy

D

X
`.
0/ �

2 sin.hol.
//
j1 � eC`.
/j j1 � e�C`.
/j

�
1

`.
/
�

�
�G

�
`.
/

L

��
:

and Z 1
L

GT
dT

T
D

XZ 1
L

T tn yG.T tn/
dT

T

D

X
sgn.tn/

Z 1
Ljtnj

T yG.T /
dT

T

D

X
sgn.tn/

Z 1
Ljtnj

yG.T / dT ;

where we have made a simple substitution in the integral.
Finally, the case of spinors follows in the same way by using the identity

GT D
X
n

T sn yG.T sn/

D 2
X
1¤Œ
�

`.
0/ �
sin.hol.z
// � cos.'z
 /
j1 � eC`.
/j j1 � e�C`.
/j

�
1

T
G0
�
`.
/

T

�
instead. The only additional observation is that the computation in (13) still holds even
when the Dirac operator has kernel. In fact, we have

�Dir.s/ D
X
sn¤0

sgn.sn/
jsnjs

D

R1
0

P
.snT yG.snT //T

s dT
TR1

0
yG.T /T s dT

D

R1
0
GT T

s dT
TR1

0
yG.T /T s dT

as in the second row the parameters sn equal to zero do not contribute.
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5. Explicit local Weyl laws

In this section, we discuss upper bounds for the number of spectral parameters in a given
interval for our operators of interest. These upper bounds are expressed purely in terms
of injectivity radius and volume, and we refer to such bounds as local Weyl laws; see
also [42].

To place this in context, recall the classical Weyl law: for every dimension n, there
exists a constant Cn such that for every Riemannian n-manifold .X; g/, the asymptotic

#¹eigenvalues � of �g with
p
� � T º � Cn � volg.X/ � T n (15)

holds, where �g is the Hodge Laplacian acting on functions. Analogous versions
hold more generally for squares of Dirac type operators, such as the Hodge Laplacian
.d C d�/2 acting on k-forms or the Dirac LaplacianD2

B0
(see [5]). From (15), one expects

the following local version of Weyl law to hold:

#¹eigenvalues � of �g with
p
� 2 ŒT; T C 1�º � n � Cn � volg.X/ � T n�1:

However, for our purposes it will be important not to just understand the asymptotic
behavior of the number of the eigenvalues in a given interval, but also to provide con-
crete upper bounds on it; in particular, our goal is to prove upper bounds of the form

#¹eigenvalues � of �g with
p
� 2 ŒT; T C 1�º � A � T n�1 C B (16)

for explicit constants A; B , and similar bounds for the other operators we are interested
in, namely the odd signature and Dirac operators. For our application, it is crucial to
express the upper bound in (16) (and its analogues for all operators we study) uniformly
in the parameter T , where the constants A and B are expressed explicitly in terms of the
geometry of X . The leading constant A appearing in our upper bounds will generally be
larger than the optimal one, C 0n � volg.X/:

To prove these local Weyl laws, we will evaluate the trace formulas using even test
functions of support so small that the sum over the closed geodesics vanishes. The esti-
mates we will prove are explicit in terms of volume and injectivity radius, but not of a nice
form in terms of the input; for this reason, at the end of our computations we will special-
ize to the concrete case in which inj > 0:15 and vol < 6:5, e.g. the case of a manifold in
the Hodgson–Weeks census. We will also assume throughout that b1 D 0.

5.1. Preliminaries on test functions

Fix a value of R > 0 (which will later be a given lower bound on the injectivity radius).
Choose a non-negative even function ' with support in Œ�2; 2� and non-negative Fourier
transform. Again, our convention is

b'.t/ D Z '.x/e�ixtdt:

To simplify our discussion, we will make the following assumption.



F. Lin, M. Lipnowski 4228

Assumption. We will assume for simplicity throughout this section that both ' and b'
achieve their maximum at 0, and that the minimummR ofb' in Œ�R;R� is achieved at˙R.

Example 5.1. For the specialization R D 0:15, we will choose '0 D ˇ � ˇ, where

ˇ.x/ D

´
e�1=.1�x

2/ if jxj < 1;

0 otherwise.

This function satisfies the assumptions, and mR � 0:19643.

Remark 5.1. Of course, this implies that '0 satisfies the assumption also for R < 0:15.
To obtain a function that satisfies the assumption for large values of R, we can look at
functions of the form '0.Cx/.

Consider 'R.x/ D '.x=R/, which is supported in Œ�2R; 2R�. We have

'R.0/ D '.0/; '00R.0/ D
1

R2
'00.0/;

and c'R.t/ D Z '

�
x

R

�
e�ixt dx D

Z
'.x0/eiRx

0tRdx0 D Rb'.Rt/:
Consider also

'R;� D 'R.x/.e
i�x
C e�i�x/ D 2'R.x/ cos.�x/:

Then

'R;�.0/ D 2'.0/; '00R;�.0/ D 2

�
1

R2
'00.0/ � �2'.0/

�
;

and
b'R;�.t/ D c'R.t C �/Cc'R.t � �/:

5.2. Local Weyl law for coexact 1-forms

We begin with the case of coexact 1-forms, which is the simplest to analyze. For � � 0,
denote by ı�.�/ the number of spectral parameters tj with jtj j 2 Œ�;�C 1�. We evaluate the
trace formula in Theorem 3.2 for the test function 'R;�.x/ with R less than the injectivity
radius of Y . As 'R;� is supported in Œ�2R; 2R�, and the injectivity radius is exactly half
the length of the shortest geodesic of Y , the sum over the geodesics vanishes, and we have
the identity

vol.Y /
2�

.'R;�.0/ � '
00
R;�.0//C

1

2
b'R;�.0/ D

X
j

1

2
b'R;�.jtj j/:

By the identities of the previous subsection we therefore obtain

vol.Y /
�

�
'.0/ �

1

R2
'00.0/C �2'.0/

�
CRb'.R�/

D
1

2

X
j

�c'R.jtj j C �/Cc'R.jtj j � �/� �X
j

1

2
c'R.jtj j � �/ � 1

2
R �mR � ı

�.�/
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using first the fact that c'R is non-negative, and then that

c'R.t � �/ D R �b'.R � .t � �// � R �mR
for t 2 Œ�; � C 1�. For any choice of suitable test function ', this provides the following
upper bound on ı�.�/ in terms of vol.Y / and injectivity radius:

ı�.�/ �

�
2 � vol.Y / � '.0/

�R �mR

�
�2 C

2

R �mR

�
Rb'.0/C vol.Y /

�

�
'.0/ �

1

R2
'00.0/

��
;

where we have used the fact thatb' achieves its maximum at 0. Working out the computa-
tions using our test function '0, we obtain the following.

Proposition 5.1. Let Y be a hyperbolic rational homology sphere with vol.Y / < 6:5 and
inj.Y / > 0:15. Then

ı�.�/ � 18:7�2 C 2577:3:

Remark 5.2. The bound obtained with this approach gets worse as R goes to zero (and
the same is true for the spectral density on functions and spinors we will study later). In
fact, there cannot be an explicit bound independent of the injectivity radius: for example,
for large Dehn filling on a cusped three-manifold, the spectrum of the Laplacian on coex-
act 1-forms becomes dense in Œ0;1/ (see [17]).

One way to obtain significantly better estimates in this case is to consider a Margulis
number � > 0 for Y . Recall that for such a number, the set of points of Y with local injec-
tivity radius<�=2 is the disjoint union of tubes around the finitely many closed geodesics
with length < �. For example, in [38] it is shown � D 0:1 is a Margulis number for all
closed oriented hyperbolic three-manifolds. The number of closed geodesics shorter than
� can be bounded above in terms of the volume [20], and one obtains improved esti-
mates for the spectral density by applying the trace formula to test functions supported in
Œ��;��. We will not pursue the exact output of this approach in the present work.

5.3. Local Weyl law for eigenfunctions

The case of functions is more involved because of the possible appearance of small eigen-
values (i.e. the ones corresponding to imaginary parameters rj ). Set ı.�/ to be the number
of parameters in Œ�; � C 1�, and let ıs be the number of small eigenvalues. We apply The-
orem 3.1 choosing as before R to be less than the injectivity radius, again the sum over
geodesics vanishes, and we get the identityX

b'R;�.rn/ D �vol.Y /
2�

'00R;�.0/:

Here we recall that rn 2 R�0 [ i Œ0; 1� corresponds to the eigenvalue �n D 1C r2n .
We start by bounding the number of small eigenvalues. For this purpose, we set � D 0.

For real t , we have

b'.it/ D Z
R
'.x/e�tx dx D

Z
R
'.x/ cosh.tx/ dx;
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which as a function of t 2 R is non-negative, even, convex, and has minimum at 0. There-
fore we have

�
vol.Y /'00.0/
2�R2

D

Xc'R.rn/
�

X
rn imaginary

c'R.rn/ D R � X
rn imaginary

b'.Rrn/
� Rb'.0/ � ıs;

so that

ıs � �
vol.Y /'00.0/
2�R3b'.0/ :

To bound large eigenvalues, we look at b'R;� for � ¤ 0. Unfortunately, this is not
necessarily positive on the imaginary axis. On the other hand, for t 2 Œ0; 1� we have

jb'R;�.i t/j D
ˇ̌̌̌
2

Z 2R

�2R

'.x=R/ cos.�x/e�xt dx
ˇ̌̌̌

.because ' is supported on Œ�2; 2�/

D 2R

ˇ̌̌̌Z 2

�2

'.y/ cos.�Ry/e�Ryt dy
ˇ̌̌̌

� 2R'.0/

Z 2

�2

e�Rty dy D 2'.0/ �
e2Rt � e�2Rt

t
� 2'.0/.e2R � e�2R/;

where the last inequality holds because .e2Rt � e�2Rt /=t is increasing for t 2 Œ0; 1�. The
trace formula then implies

vol.Y /
�

�
�2'.0/ �

1

R2
'00.0/

�
C 2'.0/ � .e2R � e�2R/ıs

�

X
real

b'R;�.rn/ �
X
real

c'R.rn � �/ � R �mR � ı.�/
so that

ı.�/ �

�
vol.Y / � '.0/
�R �mR

�
�2 C

1

R �mR

�
�

vol.Y /'00.0/
�R2

C 2'.0/ � .e2R � e�2R/ıs

�
:

Concretely, using again the test function '0, we obtain the following result.

Proposition 5.2. Let Y be a hyperbolic rational homology sphere with vol.Y / < 6:5 and
inj.Y / > 0:15. Then

ıs � 637; ı.�/ � 9:4�2 C 4782:

5.4. Local Weyl law for spinors

This case is essentially the same as that of coexact 1-forms. For a given spinc struc-
ture, denote by ıD.�/ the number of Dirac eigenvalues with absolute value in Œ�; � C 1�.
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Choosing again R D inj.Y /, we have

vol.Y /
2�

�
1

4
'R;�.0/ � '

00
R;�.0/

�
D

X
j

1

2
b'R;�.sj /:

so that
vol.Y /
�

�
1

4
'.0/ �

1

R2
'00.0/C �2'.0/

�
�
1

2
R �mR � ı

D.�/

and

ıD.�/ �

�
2 vol.Y / � '.0/
�R �mR

�
�2 C

2 vol.Y /
�R �mR

�
1

4
'.0/ �

1

R2
'00.0/

�
:

Specializing using the test function '0, we obtain the following result.

Proposition 5.3. Let Y be a hyperbolic rational homology sphere with vol.Y / < 6:5 and
inj.Y / > 0:15. Then for any spinc structure,

ıD.�/ � 18:7�2 C 2561:3:

6. Geometric bounds for the Frøyshov invariant

In this section we will use the local Weyl laws from the previous section to prove bounds
on the eta invariants in terms of volume and injectivity radius. Combining this with Propo-
sition 1.1, we will be able to prove Theorem 1.

Remark 6.1. Our goal here is to prove explicit bounds; we will not try to optimize the
estimates within the set of choices we make, and simply make ‘reasonable’ choices for
the parameters.

For simplicity of notation, assume that we have the inequalities

ı�.�/ � A�2 C B .coexact 1-forms/;

ıs � C .0-form eigenvalues < 1/;

ı.�/ �
A

2
�2 CD .0-form eigenvalues � 1/;

ıD.�/ � A�2 CE: .spinor eigenvalues/;

where the specific values of the constants for a manifold with vol < 6:5 and inj > 0:15
were determined in the previous section.

6.1. Bounds on �sign

Recall from Section 4 (after settingLD 1) that for an arbitrary admissible test functionG,

�sign D

R 1
0
GT

dT
T
C
R1
1
GT

dT
TR1

0
yG.T / dT
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where

GT D
X
n

T tn yG.T tn/ D 2
X
1¤Œ
�

`.
0/ �
sin.hol.
//

j1 � eC`.
/j j1 � e�C`.
/j
�
1

T
G0
�
`.
/

T

�
:

For our purposes, it is convenient to restrict our attention toG.x/D .1
2

1Œ�1;1�/�k for even
k � 6. This function has support in Œ�k; k�, and its Fourier transform is yG.t/ D sinc.t/k

where sinc.t/ WD sin.t/=t . We will denote

ck WD

Z 1
0

sinc.t/k dt; dk WD

Z 1
1

sinc.t/k dt:

Let us consider the numerator of the expression for �sign; we will evaluate the first term
using the geometric side of the trace formula and the second term using the spectral side.
Starting with the second term, we haveZ 1

1

GT
dT

T
D

Z 1
1

X
tn

T tn � sinc.T tn/k
dT

T

D

Z 1
1

X
tn

sgn.tn/ � T jtnj � sinc.T jtnj/k
dT

T

D

X
tn

sgn.tn/ �
Z 1
jtnj

sinc.T /k dT:

We split the last sum into
P
jtnj�2

C
P
jtnj>2

. In absolute value, the first part can be
bounded above asX

jtnj�2

Z 1
jtnj

sinc.T /k dT � ı�.0/ �
Z 1
0

sinc.T /k dT C ı�.1/ �
Z 1
1

sinc.T /k dT

� ck � B C dk � .AC B/:

For the second part, using sinc.T /k � T �k , we haveX
jtnj�2

Z 1
jtnj

sinc.T /k dT �
X
jtnj�2

Z 1
jtnj

1

T k
dT

D
1

k � 1

X
jtnj�2

1

jtnjk�1
D

1

k � 1

1X
mD2

X
jtnj2Œm;mC1�

1

jtnjk�1

�
1

k � 1

1X
mD2

ı�.m/
1

mk�1
�

1

k � 1

1X
mD2

.Am2 C B/
1

mk�1

D
1

k � 1

�
A.�.k � 3/ � 1/C B.�.k � 1/ � 1/

�
and thereforeˇ̌̌̌Z 1
1

GT
dT

T

ˇ̌̌̌
� B � ck C .AC B/ � dk C

1

k � 1

�
A.�.k � 3/ � 1/C B.�.k � 1/ � 1/

�
:
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For the geometric side, using a simple substitution, we haveZ 1

0

GT
dT

T
D 2

Z 1

0

X
`.
0/

sin.hol.
//
j1 � eC`.
/j j1 � e�C`.
/j

G0
�
`.
/
T

�
T

dT

T

D �2
X

`.
0/
sin.hol.
//

j1 � eC`.
/j j1 � e�C`.
/j

G.`.
//

`.
/

As `.
/ � 2inj.Y /, by taking absolute values we haveˇ̌̌̌Z 1

0

GT
dT

T

ˇ̌̌̌
�

1

inj.Y /

X
`.
0/

1

j1 � eC`.
/j j1 � e�C`.
/j
G.`.
//:

To proceed, we notice that the right hand side is (up to a constant) the geometric side of
the trace formula for functions, and we can provide bounds in terms of the spectral density
of eigenfunctions. In particular, using Theorem 3.1, we haveX

`.
0/
1

j1 � eC`.
/j j1 � e�C`.
/j
G.`.
// D

vol.Y /
2�

G00.0/C
X
rn

yG.rn/

�

X
rn

yG.rn/;

because G00.0/ is negative. We deal with imaginary and real parameters separately. For
imaginary parameters, we have

yG.it/ D sinc.i t/k D
sinh.t/k

tk
;

which is increasing in t and therefore we obtain the inequalityX
imaginary rn

yG.rn/ � sinh.1/k � ıs � C � sinh.1/k :

For the real parameters, using yG � 1 and yG � 1=xk respectively we haveX
real rn

yG.rn/ D
X

rn2Œ0;1�

yG.rn/C

1X
mD1

X
rn2Œm;mC1�

yG.rn/

� ı.0/ � 1C

1X
mD1

ı.m/ �
1

mk
� D C

1X
mD1

.A=2/m2 CD

mk

D
A

2
�.k � 2/CD.�.k/C 1/:

Hence, putting everything in Section 6.1 together, we haveˇ̌̌̌Z 1

0

GT
dT

T

ˇ̌̌̌
�

1

inj.Y /

�
C � sinh.1/k C

A

2
�.k � 2/CD.�.k/C 1/

�
:

Putting everything together, we obtain the following.
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Proposition 6.1. For every even k � 6, we have

j�sign.Y /j�
1

ck

�
B � ck C .AC B/ � dk C

1

k � 1

�
A.�.k � 3/ � 1/C B.�.k � 1/ � 1/

�
C

1

inj.Y /

�
C � sinh.1/k C

A

2
�.k � 2/CD.�.k/C 1/

��
;

where we have used the notation introduced above.

Choosing for example k D 8, and plugging in the constants we found in the previous
section, we obtain the following explicit estimate.

Corollary 6.2. If Y is a hyperbolic rational homology sphere with vol.Y / < 6:5 and
inj.Y / > 0:15, then j�sign.Y /j� 108267.

6.2. Bounds on �Dir

The discussion for the case of spinors is identical, with the final result obtained by sub-
stituting the constant D with E. This is because the quantity to take it is based on the
identity

GT D
X
n

T sn yG.T sn/

D 2
X
1¤Œ
�

`.
0/ �
sin.hol.z
// � cos.'z
 /
j1 � eC`.
/j j1 � e�C`.
/j

�
1

T
G0
�
`.
/

T

�
:

Here we will again bound the integral
R1
1
GT

dT
T

using the bound for the spectral density
ıD.�/, and the integral

R 1
0
GT

dT
T

using the trace formula for functions. The final result
is the following:

Proposition 6.3. For every even k � 6, we have

j�Dir.Y /j�
1

ck

�
E � ck C .ACE/ � dk C

1

k � 1

�
A.�.k � 3/ � 1/CE.�.k � 1/ � 1/

�
C

1

inj.Y /

�
C � sinh.1/k C

A

2
�.k � 2/CD.�.k/C 1/

��
for all spinc structures.

Setting again k D 8, we have the following explicit estimate.

Corollary 6.4. If Y is a hyperbolic rational homology sphere with vol.Y / < 6:5 and
inj.Y / > 0:15, then j�Dir.Y /j� 108249 for every spinc structure.

6.3. Proof of Theorem 1

Given our discussion, Theorem 1 follows directly from the fact that for a minimal hyper-
bolic L-space,

h.Y; s/ D ��sign=8 � �Dir=2

(see Proposition 1.1).
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7. A concrete example: the Weeks manifold

In order to prove Theorem 1, we used test functions supported in Œ�2 � inj; 2 � inj�, as the
only geometric input we had about the length spectrum was the injectivity radius. On
the other hand, in specific examples one can access very concrete information about the
length spectrum, and therefore one can apply the trace formula to a much larger class
of test functions. In turn, one can use this to provide explicit computation of Frøyshov
invariants. In this section, we show how this approach can be implemented in a simple
example of minimal hyperbolicL-space, the Weeks manifold W; a similar approach works
also for other small volume hyperbolic minimal L-spaces in the Hodgson–Weeks census
we discussed in [32].

Recall that H1.W;Z/ D .Z=5Z/2. In our discussion, we will not discuss explicitly
error bounds, to keep the section streamlined; we will deal with rigorous estimates of
errors in our approximations when dealing with the Seifert–Weber dodecahedral space
in the proof of Theorem 2. To this end, one can think of this section as both a warm-
up exercise and a sanity check – the latter because the Frøyshov invariants of W can be
computed directly with other purely topological methods. We have indeed the following.

Proposition 7.1. The unique spin structure on W has Frøyshov invariant �1=2. For the
remaining 24 spinc structures the Frøyshov invariant is either ˙1=10, or ˙3=10, and
each value is the invariant of exactly six spinc structures.

This is essentially showed in [33], using the fact that W is the branched double cover
of the knot 949 [36]. The key point is that the 949 differs from an alternating knot only
for an extra twist, and the authors showed that under favorable circumstances this allows
computing the Frøyshov invariants in terms of a Goeritz matrix for the knot (generalizing
the method of Ozsváth and Szabó [48], which applies to alternating knots).

Going back to our spectral approach, the signature eta invariant was computed in [15]
to be

�sign D 0:040028711 : : :
3

We compute the eta invariant for the Dirac operators using our explicit expression from
Section 4. In order to do so, we first compute the spinc length spectra up to cutoffRD 6:5
using the algorithm described in Section 2 (applied to data obtained from SnapPy). We
then take the approach from [32] and use the even trace formula to obtain information
about the spectrum. More specifically, using ideas of Booker and Strombergsson, for each
spinc structure s we determine an explicit function

Js W R
�0
! R�0

with the property that if˙s are eigenvalues of the Dirac operator whose multiplicities add
to m, then Js.jsj/ � m. The pictures in the range Œ0; 6� can be found in Figure 1; Class 1

3A good approximation of this value can also be computed directly using our approach; we will
see this in detail in the case of the Seifert–Weber dodecahedral space in the next section.
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(a) Class 1 (the spin structure)
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(e) Class 5

Fig. 1. Pictures for the Weeks manifold.

is the class of the spin structure, and the remaining 24 spinc structures can be grouped in
four groups (each consisting of six elements) with identical picture.

Remark 7.1. In fact, this is a consequence of the action of the isometry group D12 on
the set of spinc structures [36]. We will exploit symmetry under the isometry group in the
more complicated case of SW in Section 10.
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We compute an approximation to �Dir via the formula (14) taking G to be a Gaussian
(see Lemma 4.1). In this process, we only consider the sum over geodesics with
length � 6:5, and only sum over eigenvalues where a precise guess can be made. More
specifically:

� In Classes 1, 4, 5, we consider the contribution of the smallest eigenvalue as suggested
by the picture (and consider the rest of the spectrum as an error term). Let us point out
that one can in principle use the method of [31] to actually prove that an eigenvalue is
with the right multiplicity in the tiny window suggested by the picture; here we also
use the fact that in the spin case eigenvalues always have even multiplicity, because the
corresponding Dirac operator is quaternionic linear. The sign of the eigenvalue can also
be determined by using the odd trace formula in Theorem 3.3.

� In Classes 2 and 3, where a precise value for the first eigenvalue is not available, we sim-
ply consider the whole spectrum to be an error term, and take a more dilated Gaussian
(which has a narrower Fourier transform) to make such error smaller. This works well
because there is a good spectral gap (but increases of course the error coming from
truncating the sum over the geodesics).

Using formula (14) with L D 1, we have obtained the following approximate values for
h D ��sign=8 � �Dir=2:

Spinc class Approximate value of h

1 �0:49997 : : :

2 0:09971 : : :

3 �0:09994 : : :

4 0:29994 : : :

5 �0:29994 : : :

which are very close to the exact values in Proposition 7.1.
In order to make this approximate computation into an actual proof of Proposition 7.1,

we need to provide estimates on the terms we did not take into account in the sum. Let us
discuss the various steps:

(1) We know that the Frøyshov invariants are rational numbers, and in fact information
about their fractional part can be obtained by purely topological means. For example,
in the case of Weeks, one can show a priori that all Frøyshov invariants have the form
.2n C 1/=10. Given this, one only needs to prove that the errors are less than 1

20
.

In fact, by taking into account additional topological information coming from the
linking form, one only needs to prove much weaker estimates for the error; this will
be crucial in our proof of Theorem 2.

(2) To bound the error resulting from truncating the sum over geodesics, we need to have
a good understanding of the geodesics with length in a certain interval; in a specific
example, this can be done concretely using the trace formula for functions (in the
same spirit as the prime geodesic theorem with errors [11]).
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(3) To bound the error on the spectral side, the key observation is that large eigenvalues
contribute very little to the error. For example (thinking about Classes 1, 4 and 5),
picking G.x/ D e�x

2=2 (for which yG.t/ D
p
2�e�x

2=2 and
R1
0
yG.t/ dt D �) and

L D 1, an eigenvalue with jt j > 3:5 contributes to the eta invariant at most

1

�

Z 1
3:5

p
2�e�x

2=2 dx D 0:00046 : : : :

The key point is then to get reasonable bounds on the spectral density (sharper than
those in Section 5).

While we will not pursue the details of this approach here for the Weeks manifold, we will
do so in subsequent sections for the more challenging case of the Seifert–Weber manifold
in order to prove Theorem 2. In particular, each of the next three sections will address
one of the three aspects discussed above. Notice that in the case of .2/ and .3/, the error
estimate can be improved by computing a larger portion of the (spinc) length spectrum.

Remark 7.2. Let us point out that combining Propositions 7.1 and 1.1 we obtain a for-
mula for the Dirac eta invariants �Dir of the Weeks manifold in terms of the signature eta
invariant �sign. In particular, this allows us to provide a computation of �Dir which is as
precise as the one provided by Snap; for example, as mentioned in the introduction we
have

�Dir D 0:989992 : : :

for the unique spin structure on the Weeks manifold.

8. The linking form of the Seifert–Weber dodecahedral space SW

In this section we compute the linking form of the Seifert–Weber dodecahedral space SW.
This will be the key (and only) topological input for our computation of its Frøyshov
invariants, and will give us concrete information on their fractional parts. Recall that for
oriented rational homology three-spheres, the linking form is the bilinear form

Q W H1.Y;Z/ �H1.Y;Z/! Q=Z

defined geometrically as follows: given elements x; y, choose n for which ny D 0 and
pick a chain T with @T D ny. Then Q.x; y/ is the intersection number of x and T ,
divided by n. More abstractly, the corresponding map

Q#
W H1.Y;Z/! Hom.H1.Y;Z/;Q=Z/ Š H 1.Y;Q=Z/

is the composition
H1.Y;Z/ Š H

2.Y;Z/ Š H 1.Y;Q=Z/;

where the first isomorphism is Poincaré duality and the second is the Bockstein homo-
morphism for the short exact sequence of coefficients

0! Z! Q! Q=Z! 0:

In particular, Q# is an isomorphism and Q is non-degenerate.
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Proposition 8.1. For the explicit basis a; b; c of H1.SW/ Š .Z=5Z/3 identified in the
proof below, the linking form QSW is represented by the matrix0@ 0 2=5 3=5

2=5 0 2=5

3=5 2=5 0

1A :
Remark 8.1. In fact, one can show that (up to scalar) every non-degenerate form has that
shape with respect to some basis. But our point is that we also can identify the basis a;b; c
geometrically in this specific case. Our computation also suggests that the linking form of
a hyperbolic three-manifold is computable by taking a Dirichlet domain with face-pairing
maps as input, so that the approach to the computation of the Frøyshov invariants of SW
we will discuss in the upcoming sections works more generally.

Proof of Proposition 8.1. Recall that SW is obtained from a dodecahedron by identifying
opposite faces by 3=5 of a full counterclockwise rotation. The identification is described
explicitly in [18]; see Figure 2. We find that:

� the 20 vertices are identified to a single point;

� the 30 edges are grouped into in 6 groups of 5 elements each, and we denote the corre-
sponding generators of homology a; b; c; d; e; f .

� the 12 faces are identified in pairs as follows: 1$ 12, 2$ 9, 3$ 10, 4$ 11, 5$ 7,
6$ 8.

The six pairs of faces give us relations between the generators of the first homology. We
will denote the corresponding chain by Fi , where i is the smallest of the two indices, and
orient it with the opposite orientation as the one inherited as a subset of the plane. We get

.@F1/ a C b C c C d C e D 0;

.@F2/ � a � b C c C e C f D 0;

.@F3/ a � b � c C d C f D 0;

.@F4/ b � c � d C e C f D 0;

.@F5/ a C c � d � e C f D 0;

.@F6/ � a C b C d � e C f D 0:

Simple elementary row operations reduce this system to

d D aC 2b C 3c;

e D 3aC 2b C c;

f D 3aC 4b C 3c;

and
5a D 5b D 5c D 0: (17)

We therefore see that a;b; c generate the first homologyH1.SW/Š .Z=5/3. Furthermore,
we can interpret equations (17) as the geometric identities

5a D @.F1 � F2 C F3 C F5 � F6/;
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5b D @.F1 � F2 � F3 C F4 C F6/;

5c D @.F1 C F2 � F3 � F4 C F5/:

To compute the linking form it is convenient to introduce a second basis of the homology:
let A, B , C be the generators corresponding to the oriented segments connecting the
centers of the faces 12 to 1, 9 to 2 and 10 to 3 respectively. Using Figure 2, it is easy to
compute that at the level of homology,

A D 4aC 2b C 4c;

B D 3aC b C 4c;

C D 4aC b C 3c:

For our choice of orientation, A has intersection C1 with F1, and 0 with the other pairs;
the analogous statement holds for B and F2 and C and F3 respectively. Using the geo-
metric descriptions of chains bounding for 5a; 5b and 5c above, we therefore get the
following values for the linking numbers between elements in A;B;C and a; b; c.

lk a b c

A 1=5 1=5 1=5

B �1=5 �1=5 1=5

C 1=5 �1=5 �1=5

1

2

3

4

5

6

7

89

10

11

e a

b
c

d

b

c

de

a

e

f

a

f

b
f

c

f

d

f
c

d

e

a

b

ab

c

d

e

Fig. 2. A graphic depiction of the Seifert–Weber dodecahedral space. The twelfth face is the one
formed by the five external edges, and we consider it to be on top of the others.
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Finally, a simple change of basis to express everything in terms of the basis a; b; c con-
cludes the proof.

A useful observation for what follows is that QSW.x; x/ for x ¤ 0 attains possible
values as in the following table.

QSW.x; x/ Number of x ¤ 0 that attain the value

0 24

1/5 30

2/5 20

3/5 20

4/5 30

Another useful observation can be made by looking at the isometry group of SW.
Recall that the latter is isomorphic to the symmetric group S5, and acts faithfully on the
first homology group [37]. In fact, from the description in [37] we see that the natural map

Isom.SW/ ,! O.QSW/

has image contained in SO.QSW/. The latter has 120 elements, and we get therefore an
isomorphism Isom.SW/ Š SO.QSW/. We have therefore the following.

Corollary 8.2. Consider two spinc structures s, s0 on SW which are not spin. Then there
is an isometry ' for which '�s D s0 if and only if

QSW.c1.s/; c1.s// D QSW.c1.s
0/; c1.s

0//:

Proof. This follows by the Witt extension theorem [49, Theorem 1:5:3]: because QSW

is non-degenerate, given two elements x; y ¤ 0 satisfying Q.x/ D Q.y/, there is A 2
SO.QSW/ for which Ax D y.

9. Explicit estimates for closed geodesics on SW

For practical purposes, the most effective way to evaluate the eta invariants using an
expression such as (14) is to use a suitably dilated Gaussian (as demonstrated by the
precise computations for the Weeks manifold in Section 7). The main complication is that
the function is not compactly supported, and therefore we need to provide explicit bounds
on the tail sums X

`.
/�R

`.
0/ �
2 sin.hol.
//

j1 � eC`.
/j j1 � e�C`.
/j
�
1

`
� .�G.`=L//:

for the signature case andX
`.
/�R

`.
0/ �
2 sin.hol.z
// � cos.'z
 /
j1 � eC`.
/j j1 � e�C`.
/j

� .�G.`=L//;
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in the Dirac case respectively. Here L is the parameter at which we split the integral
defining the eta function, and R is the cutoff for geodesics (later on we will take them
to be 1:7 and 7:5 respectively). For these purposes, we need a good understanding of the
behavior of the lengths of geodesics, and more specifically of the quantityX

`.
/2ŒT�1=2;TC1=2�

`.
0/:

To put this in context, the quantity X
`.
/�T

`.
0/ (18)

naturally appears when studying the asymptotic number of prime geodesics, and in par-
ticular it plays a key role in the proof of the prime geodesic theorem

#¹prime geodesics 
 with `.
/ � T º � e2T =.2T /

(see for example [13]). In fact, under the heuristic correspondence between closed
geodesics on a hyperbolic manifold and prime numbers (under which e`.
/ is the ana-
logue of p), the quantity (18) corresponds to the Chebyshev function

 .x/ D
X
pk�x

log.p/:

It is well-known [1, Chapter 4] that the prime number theorem

#¹prime numbers p � xº � x=log.x/

is equivalent to the asymptotic
 .x/ � x:

Precise asymptotics for (18) can be obtained by evaluating the trace formula for functions
in Theorem 3.1 for a smoothed version of the function cosh.t/1Œ�T;T � (see also [11] for the
case of hyperbolic surfaces). In our case, in order to obtain reasonable explicit constants,
we will use instead combinations of Gaussian functions. Furthermore, while the general
results of Section 5.3 apply to our case, we can obtain considerably sharper bounds for
the spectrum using as input our knowledge of the length spectrum of SW up to cutoff
R D 8 (rather than just the injectivity radius), as in [31]. Furthermore, we have computed
the spinc length spectrum of SW for all spinc structures up to cutoff R D 7:5 using the
method described in Section 2.

9.1. The spectral gap for the Laplacian on functions

The first step is to understand the spectral gap for the Laplacian on functions – as we saw
in Section 5.3, small eigenvalues are the main cause of large error estimates. In our case,
we have the following result.
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Proposition 9.1. The Laplacian on functions for SW has no small eigenvalues, and the
smallest parameter satisfies r1 > 2:8, corresponding to �1 > 8:84.

Remark 9.1. The absence of small eigenvalues in the statement of Proposition 9.1 was
to be expected, as it is a consequence of the generalized Ramanujan conjecture for GL2.
See for example [6].

The proof of the above proposition is based on the Booker–Strombergsson method
applied to the trace formula for functions (which is indeed, in the case of surfaces, the
original setup of their approach [7]). The main difference is that we now get two pictures,
one for the imaginary parameters (Figure 3) and one for the real ones (Figure 4).4 In both

4.5e-5

4e-5

3.5e-5

3e-5

2.5e-5

2e-5

1.5e-5

1e-5

0 0.2 0.4 0.6 0.8 1

Fig. 3. The picture for the imaginary parameters for the Laplacian on functions on SW.

1

2

3

4

5

6

1 2 3 4

Fig. 4. The picture for the real parameters for the Laplacian on functions on SW.

4Note the very different scales of Figures 3 and 4.
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cases, to exclude the parameter t , we minimized the quantity

1X
nD1

yH.rn/ (19)

over the same space of functions used in [32], subject to the constraint yH.t/ D 1, using
the trace formula in Theorem 3.1. Here the cutoff isRD 8, as in [31]. Notice that r0D i is
always a spectral parameter (corresponding to �0D 0), and is not included in the sum (19).

9.2. Spectral density on functions

We now use the spectral gap and our explicit knowledge of the length spectrum to provide
refined bounds on the spectral density. These two extra ingredients will allow us to greatly
improve the estimates from Section 5. Let us apply the trace formula to

H� D
�
1
2

1Œ�1;1�
��6
� .ei�x C e�i�x/ D 2 �

�
1
2

1Œ�1;1�
��6
� cos.�x/;

which is the same kind of function we used in Section 5. In this case, we have

�H 00� .0/ D 2 �
���

1
2

1Œ�1;1�
��6�00

.0/ � �2 �
�
1
2

1Œ�1;1�
��6
.0/
�

D
11
20
�2 C 1

4
;

and cH�.t/ D � sin.t C �/
t C �

�6
C

�
sin.t � �/
t � �

�6
:

We will use the fact that�
sin.x/
x

�6
� 0:777 for x 2 Œ�0:5; 0:5�:

To prove upper bounds, we will look again at the trace formula. In our setup, we can
compute explicitly an upper bound for the sum over geodesicsˇ̌̌̌X




`.
0/

j1 � eC`.
/j j1 � e�C`.
/j
H�.`.
//

ˇ̌̌̌
�

X



`.
0/

j1 � eC`.
/j j1 � e�C`.
/j
H0.`.
//

� 4:827

because H0 is supported in Œ�6; 6� and we know the length spectrum up to cutoff R D 8.
Furthermore, recalling that

jsin.i C �/j2 D cos.�/2 sinh.1/2 C sin.�/2 cosh.1/2 D sinh.1/2 C sin.�/2;

we see that the contribution of the zero eigenvalue is bounded above by

2 �

�
sinh.1/2 C sin.�/2

1C �2

�3
(20)
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We are interested in upper bounds for the number of spectral parameters in
Œ� � 1=2; � C 1=2� for T � 3. The quantity (20) is bounded above by 0:0055 for � � 3.
Putting everything together, and recalling that SW has volume about 11:19, we get the
following refined local Weyl law.

Proposition 9.2. For the eigenvalues of the Laplacian on functions on SW, we have the
upper bound

#¹parameters in Œ� � 1=2; � C 1=2�º � 1:262�2 C 6:793 for � � 3.

9.3. Bounds for closed geodesics

We will apply the trace formula of Theorem 3.1 to the function

Fc;T D e
�c.x�T /2=2

C e�c.xCT /
2=2;

which has Fourier transform

yFc;T D
p
2�=c � e�x

2=.2c/
� .eiT x C e�iT x/ D 2

p
2�=c � e�x

2=.2c/ cos.T x/:

Here c > 0 is a parameter to be determined later. Let us discuss its value at the various
terms in the trace formula, starting from the spectral side. The contribution of the zero
eigenvalue (corresponding to r0 D i ) is

2
p
2�=c � e1=.2c/ cosh.T /:

Using Proposition 9.1, the contribution of the real parameters is bounded above (indepen-
denty of T ) byX

rn real

yFc;T .rn/ D

1X
nD3

X
rn2Œn�1=2;nC1=2�

yFc;T .rn/

�

1X
nD3

.1:262n2 C 6:793/ � 2
p
2�=c � e�

.n�1=2/2

2c : (21)

The identity contribution is

�
vol.Y /
2�

F 00c;T .0/ D
vol.Y /
�
� e�cT

2=2
� .c � c2T 2/ (22)

(this is negative provided T 2 > 1=c).
All these terms are explicitly computable, and we will use this information to provide

upper bounds on X
`.
/2ŒT�1=2;TC1=2�

`.
0/

as follows. Notice that

j1 � eC`.
/
j j1 � e�C`.
/

j � .e` C 1/.1C e�`/ D 2 cosh.`/C 2
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and
Fc;T .`/ � e

�c=8 for ` 2 ŒT � 1=2; T C 1=2�:

We therefore haveX



`.
0/

j1 � eC`.
/j j1 � e�C`.
/j
Fc;T .`.
//

�

X
`.
/2ŒT�1=2;TC1=2�

`.
0/

2 cosh.T C 1=2/C 2
e�c=8

D
e�c=8

2 cosh.T C 1=2/C 2
�

X
`.
/2ŒT�1=2;TC1=2�

`.
0/;

and we can use the explicit upper bound for the first expression, obtained by combin-
ing the trace formula with the estimates (21) and (22), to get an upper bound for the
sum

P
`.
/2ŒT�1=2;TC1=2� `.
0/, depending on a parameter c. We see empirically that we

obtain the best estimate for c D 5, and we have the following:

Proposition 9.3. For T � 7:5, we haveX
`.
/2ŒT�1=2;TC1=2�

`.
0/ � A.T /;

where A.T / is an explicit expression in T readily obtained from the discussion above.

We do not write the explicit expression of A.T / as it is quite long and not particularly
illuminating, but we remark that the leading term is of the form C � e2T .

9.4. The geometric error for �

Finally, we will conclude by bounding the error in the evaluation of the eta invariant using
the standard Gaussian G.x/D e�x

2=2 in the (14), and evaluating the geometric side up to
length R D 7:5. We have yG.t/ D

p
2�e�t

2=2, andZ 1
0

yG.t/ dt D � I

these errors correspond to

2

�

X
`.
/�7:5

`.
0/ �
sin.hol.
//

j1 � eC`.
/j j1 � eC`.
/j
�
1

`.
/
� .�G.`=L//

for the signature case, and

2

�

X
`.
/�7:5

`.
0/ �
sin.hol.z
// � cos.'z
 /
j1 � eC`.
/j j1 � e�C`.
/j

�
1

`.
/
� .�G.`=L//

for the Dirac operator; again,L is the point at which we split the integral. We can therefore
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bound the error in the geometric side in all cases by

2

�

X
`.
/�7:5

`.
0/

j1 � eC`.
/j j1 � e�C`.
/j

G.`.
/=L/

`.
/
:

We can break the sum into two parts, one taking into account `.
/ 2 Œ7:5; 8� and one for
`.
/� 8. The first part can be computed explicitly because we know the (standard) length
spectrum of SW up to cutoff R D 8. For the second part, noticing that

j1 � eC`.
/
j j1 � e�C`.
/

j � .e` � 1/.1 � e�`/ D 2 sinh.`/ � 2;

we have

2

�

X
`.
/�8

`.
0/

j1 � eC`.
/j j1 � e�C`.
/j

G.`.
/=L/

`.
/

�
1

�

1X
nD8

e�n
2=.2L2/

.sinh.n/ � 1/ � n
�

X
`.
/2Œn;nC1�

`.
0/

D
1

�

1X
nD8

e�n
2=.2L2/

.sinh.n/ � 1/ � n
� A.nC 1=2/;

where A is the quantity from Proposition 9.3. Putting the pieces together, we obtain an
estimate on the total error for the truncated sum depending on the choice of the parame-
ter L. It is clear that the larger the value of L, the better our estimate for the error in the
truncated sum will be; on the other hand, we will see in the next section that larger values
ofL lead to significantly worse errors coming from the spectral side of the formula for the
eta invariant in (14). We empirically found that the value L D 1:7 provides a very good
bound for the sum of these two errors in our situation. In this case, for the geometric side
we have the following.

Proposition 9.4. When evaluating the � invariant for either the signature or the Dirac
operator using a standard Gaussian G.x/ D e�x

2=2, splitting point L D 1:7 and length
cutoffRD 7:5, the error coming from truncating the sum on the geometric side is bounded
above by 0:0376.5

10. The Frøyshov invariants of SW

In this section, we finally prove Theorem 2. Our proof is based on the fact that the Seifert–
Weber is a minimal hyperbolic L-space [31]. More generally, the approach of this final
section can in principle be adapted to any minimal hyperbolic L-space, provided the link-
ing form and a good portion of the length spectrum have been computed.

5For the evaluation of this sum, we have used the fact that the general term decays extremely
rapidly, as A.n/ D O.e2n/; for example, the term n D 31 is of the order of 10�57.
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10.1. The signature eta invariant

We have the following.

Proposition 10.1. The signature eta invariant of SW is �sign D 1:31111111 : : : :

Our result will be obtained by combining the Chern–Simons computations obtained
via SnapPy, together with computations involving the trace formula. In principle, this
result can be obtained directly via Snap [15]; unfortunately, we were not able to run the
software on our laptops. Also, the proof provides a good example of our technique, in
a simpler setup than the Dirac case (where our understanding of the spectrum is less
precise).

Proof of Proposition 10.1. SnapPy computes the Chern–Simons invariant of SW to be

cs D �0:033333 : : : :

The relation
3�sign D 2csC � mod 2Z

holds [3], where � , which is the number of 2-primary summands in H1.SW;Z/, is zero
in our case. Thus

�sign D �0:022222 : : :C
2
3
n (23)

for some n 2Z. Therefore, approximating the eta invariant to within error less than 1
3

pins
down its value to high accuracy. Approximating �sign well is straightforward because we
have a good understanding of the small coexact 1-form eigenvalues on SW (see Figure 5,
which we used in [31] to show ��1 > 2):

� The smallest eigenspace corresponds toq
��1 2 Œ1:42787720680237; 1:43033743858337� (24)

2

4

6

8

10

1 2 3 4

Fig. 5. The function JSW.t/ for coexact 1-forms, computed with cutoff R D 8 (cf. [31]).
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and has multiplicity exactly 6 (see [31]). Furthermore, using the odd trace formula one
readily shows that this eigenvalue is positive.

� The next spectral parameter is larger than 2.

We compute an approximation of the eta invariant using G.x/ D e�x
2=2 and L D 1:7

in (14), where

� we truncate the geometric sum at R D 7:5;

� in the spectral sum we approximate the first eigenvalue (with multiplicity 6) with the

midpoint ep��1 of the interval in (24), and consider the remaining part of the spectral
sum as an error term.

As
R1
0
yG.t/ dt D � , we have the approximation

�sign �
1

�

�
6 �

Z 1
1:7�ep��

1

p
2�e�t

2=2 dt

�

X
`.
/�7:5

`.
0/ �
2 sin.hol.
//

j1 � eC`.
/j j1 � e�C`.
/j
�
1

`.
/
� e�

`2

2 �.1:7/
2

�
D 1:31102382358 : : : ;

which is very close to the expression (23) for nD 2. All we need to do is provide an error
bound for our computation.

The error arising from truncating the geometric sum at R D 7:5 is bounded above by
0:0376 by Proposition 9.4, while the error arising from approximating the value of the
first eigenvalue is bounded above by

6

�
�

Z 1:7�1:4303375

1:7�1:427877

p
2�e�t

2=2 dt � 0:00105:

To estimate the error arising from truncating the spectral sum at the first eigenvalue,
we can refine the estimates from Section 5 (which only involved volume and injectiv-
ity radius) because we have a direct knowledge of the length spectrum. In particular, we
can use the test function

cos.T x/ �
�
1

2ı
1Œ�ı;ı�

��6
where ı D 8=6

and compute explicitly the value of the sum over geodesics (as we know it up to cutoff
R D 8), and use it to provide upper bounds on the number of eigenvalues in specific
intervals. In particular:

� there are at most 22 spectral parameters in Œ2; 3�, and each contributes at most

1

�

Z 1
1:7�2

p
2�e�t

2=2 dt < 0:00068I

� there are at most 21 spectral parameters in Œ3; 4�, and each contributes at most

1

�

Z 1
1:7�3

p
2�e�t

2=2 dt < 3:4 � 10�7I
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� it is clear that the contribution of larger eigenvalues is negligible, as their number grows
quadratically but the contribution decays superexponentially.

Taking all this into account, we obtain an error of at most 0:054, and the result follows.

Remark 10.1. As the numerical result suggests, �sign is a rational number. This follows

because the invariant trace field Q.
p
�1 � 2

p
5/ of SW is CM-embedded (see [43]). In

fact, one can show that
�sign D 59=45

using the multiplicativity of the Chern–Simons invariants under covers, and the fact that
SW admits a 60-fold cover with an orientation-reversing isometry (for which �sign is there-
fore 0).

10.2. The spin structure

We now focus on the computation of h.SW; s0/ where s0 is the unique spin structure
on SW. This is the simplest spinc structure to handle because

�2h.SW; s0/ D �sign=4C �Dir D n=4

for some n 2 Z. To see this, recall the classical theorem that every spin three-manifold
bounds a compact spin four-manifold .X; sX /; in fact, we can choose X to be simply
connected [24, Chapter VII] (this will be useful later). Then, looking at the expression of
the absolute grading (3) modulo integers, we have

�sign=4C �Dir D
1
4
.c1.sX /

2
� 2�.X/ � 3�.X/ � 2/ mod Z

D
1
4
.�2�.X/ � 3�.X/ � 2/ mod Z:

as gr.X�;sX ; Œb�/ is an integer (it is the expected dimension of a moduli space) and c1.sX /
is a torsion class, and the claim follows.

Therefore, we only need to approximate �Dir with a good error. The spectral picture
can be found in Figure 6. Here, we computed the spin length spectrum up to cutoffRD 7:5
using the algorithm described in Section 2.

For a spin structure, the Dirac operator is quaternionic and therefore all eigenspaces
have even multiplicity. We can therefore conclude that js1j � 1:45. We compute an
approximation to the eta invariant using G.x/ D e�x

2=2 and L D 1:7 by truncating the
geometric sum at R D 7:5 and considering the whole spectral side as an error term. We
obtain

�Dir � �
1

�

X
`.
/�7:5

`.
0/ �
2 sin.hol.z
// � cos.'z
 /
j1 � e`Ci� j j1 � e�.`Ci�/j

�
1

`.
/
� e�

`2

2 �.1:7/
2

D 0:641083369621 : : :

and therefore the approximate value

�2h.SW; s0/ � 0:968861147398778:



Closed geodesics and Frøyshov invariants of hyperbolic three-manifolds 4251

5

10

15

1 2 3 4

Fig. 6. The function JSW;s0.t/, computed with cutoff R D 7:5.

This shows h.SW; s0/ D �1=2 provided we can bound the error term for �Dir explic-
itly. Again, the error from truncating the sum on the geometric side is bounded above
by 0:0376 by Proposition 9.4. For the spectral side, we bound the number of spectral
parameters as in the proof of Proposition 10.1 using the even spinor trace formula for the
function

cos.T x/ �
�
1

2ı
1Œ�ı;ı�

��6
where ı D 7:5=6 (25)

(whose geometric side we can compute as it is supported in Œ�7:5; 7:5�). We find that there
are at most 8 spectral parameters in Œ1:45; 2�, and each contributes at most

1

�

Z 1
1:7�1:45

p
2�e�t

2=2 dt < 0:0108:

Furthermore, there are at most 12 parameters in Œ2; 3� and 31 parameters in Œ3; 4�; larger
parameters are again negligible. Putting everything together, we see that the error is
bounded above by 0:1564. Therefore, we have

�2h.SW; s0/ 2 Œ0:812; 1:126�

and the result in Theorem 2 follows because 1 is the only number of the form n=4 in that
interval.

10.3. Conclusion of the proof

We now complete the proof of Theorem 2. The arguments in this section will be quite
ad hoc because the spinc structures have a smaller spectral gap than the spin case, and
in particular the error bounds we will be able to provide will not be as good as in the
spin case. Of course, one could in principle obtain better bounds by computing larger
portions of the length spectrum, but this is a quite challenging task from the computational
viewpoint (compare with the discussion in [32]).
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A corollary of the computation of the previous section is that the simply connected
spin manifold .X; sX / bounding SW we fixed satisfies

1
4
.�2�.X/ � 3�.X/ � 2/ 2 Z:

As H 3.X; @X;Z/ D H1.X;Z/ D 0, the restriction map

H 2.X;Z/! H 2.@X;Z/

is surjective; therefore every spinc structure sD s0C x on SW extends to a spinc structure
Qs D sX C Qx on X . As c1. Qs/ equals 2 Qx up to torsion elements, we have

�sign=4C �Dir D
1
4
.c1. Qs/

2
� 2�.X/ � 3�.X/ � 2/ mod Z

D Qx2 mod Z:

As H1.X;Z/ D 0, we have Qx2 D lk.x; x/ mod Z, hence

�2h.SW; s/ D lk.x; x/ mod Z:

By the computations of Proposition 8.1 we know exactly the number of spinc which are
not spin and for which the self-linking number equals a given value in .1

5
Z/=Z. Also,

we know from Corollary 8.2 that the isometry group acts transitively on the set of non-
spin spinc structures with fixed self-linking number, so we expect a priori to only have
5 possible spectral pictures for the remaining spinc structures. This is indeed the case; see
Figure 7.

Comparing the number of spinc structures with a given linking form, we conclude the
following.

Lemma 10.2. The following statements hold:

(1) for the spinc structures in Class 2 and 3, �2h has fractional part 1=5 and �1=5, or
vice versa;

(2) for the spinc structures in Class 4, �2h has fractional part 0;

(3) for the spinc structures in Class 5 and 6, �2h has fractional part 2=5 and �2=5, or
vice versa.

As in the case of the spin structure, we compute an approximation to the Dirac eta invari-
ant using G.x/ D e�x

2=2 and L D 1:7 by truncating the geometric sum at R D 7:5 and
considering the whole spectral side as an error term. The results for the approximate
value of �2h.Y; s/ D �sign=4C �Dir are as in the following table.

Spinc class Approximate value of �sign=4C �Dir

2 0.292743626654778. . .

3 �0:133807427751222 : : :

4 0.645708045190778. . .

5 0.456382720492778. . .

6 0.542040336591778. . .
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(a) Class 2: 30 elements
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(c) Class 4: 24 elements
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(d) Class 5: 20 elements
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(e) Class 6: 20 elements

Fig. 7. Pictures for SW.

We then again need to bound errors, as in the case of the spin structure. The error
from truncating the sum on the geometric side is bounded above by 0:0376 (see Proposi-
tion 9.4). For the spectral side, using the even spinor trace formula for the function (25)
we can provide decent bounds on spectral parameters on any given interval. Using this,
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we can conclude the proof; each case requires a slightly different argument, and we treat
them separately.

Proof of Theorem 2 for Classes 2, 3 and 4. We begin with Class 4, which is the most
involved because it has the smallest spectral gap. Using our refined estimates on the num-
ber of spectral parameters as in the previous sections using the test functions (25), we see
that there are at most 1 eigenvalue in Œ0:545; 1:05�, 2 in Œ1:05; 1:39�, 4 in Œ1:39; 1:85�, 7 in
Œ1:85; 2:2�, 15 in Œ2:2; 3�, 30 in Œ3; 4�, for a total error of 0:6279. We therefore conclude
that

�2h 2 Œ0:017; 1:274�

so that is �2h D 1 in this case, as it is an integer by Lemma 10.2.
For Classes 2 and 3 the gap is wider, so it is easier to get good bounds. For Class 2 we

can obtain for example
�2h 2 Œ�0:197; 0:784�:

Because the fractional part is either �1=5 or 1=5, we find that �2h D 1=5. This in turn
implies that for Class 3, �2h has fractional part �1=5; since we obtain with the same
approach

�2h 2 Œ�0:614; 0:347�;

we conclude that �2h D �1=5 in this case.

The case of Classes 5 and 6, which have fractional part 2=5 and �2=5 or vice versa,
is more delicate because for Class 5 we can only prove a very small spectral gap. We first
obtain more information on the fractional parts as follows.

Lemma 10.3. For Class 5,�2h has fractional part 2=5, while for Class 6 it has fractional
part 3=5.

Proof. The output of our computations described in Section 2 provides the description of
a spinc structure as a homomorphism

' W Z=5Z˚ Z=5Z˚ Z=5Z! Q=Z;

where the natural basis is different from the one used in Section 8. It is easy to check that
the linking form in this new basis is given by

1

5

240 2 2

2 0 0

2 0 1

35 :
Indeed, this is the unique symmetric matrix that takes the correct values for the spinc

structures of Class 2; 3 and 4. The lemma is then proved by plugging in the explicit values
for Classes 5 and 6.

Proof of Theorem 2 for Class 6. For Class 6, we compute using again the test functions
(25) that there are at most 4 parameters in Œ1; 1:5�, 5 in Œ1:5; 2�, 16 in Œ2; 3� and 30 in Œ3; 4�.
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We therefore have a total error of at most 0:459, and therefore

�2h 2 Œ0:083; 1:002�;

hence by the previous lemma we have �2h D 3=5.

Finally, to deal with the case of Class 5, we need some additional information about
the small eigenvalues.

Lemma 10.4. For spinc Class 5, the smallest eigenvalue s1 satisfies

js1j 2 Œ0:0408361; 0:4077692� (26)

and has multiplicity 1. Furthermore, js2j > 1:55.

Proof. Using the same method as above involving the test functions (25) we conclude
that there are at most two eigenvalues in this interval.

To prove that there is exactly one, we apply the trace formula to the Gaussian
e�.x=1:7/

2=2 by truncating the sum over geodesics at R D 7:5. The computations of the
error bound involve the same quantities as in the proof of Proposition 9.4, and we obtain
the following estimate for the sum over the spectrum:X

sn

e�.1:7�sn/
2=2
2 Œ0:9678; 1:0789�:

Now, for t 2 Œ0:0408361; 0:4077692� we have e�.1:7�t/
2=2 2 Œ0:786417; 0:9976� and the

spectral picture shows that eigenvalues which are not in this interval are � 1:55. The
same trace formula argument used several times above to prove upper bounds on spectral
density shows that there are at most 6 parameters in Œ1:55; 2�, 16 in Œ2; 3�, 30 in Œ3; 4�, from
which we see that the contribution of the eigenvalues � 1:55 has to be at most 0:2432.
Using the fact that there are at most two eigenvalues in the interval, we conclude by direct
inspection that there has to be exactly one.

Proof of Theorem 2 for Class 5. For our purposes the main complication arises from the
fact that it is hard to determine the sign of the small eigenvalue using the trace formula.
This is because in order to study the sign we need to use odd test functions, and these will
be small near zero. We will therefore study the two possibilities separately. We approxi-
mate the contribution of the small eigenvalue with the average 0:7157945 of

1

�

Z 1
1:7�0:04

p
2�e�t

2=2 dt � 0:945786;

1

�

Z 1
1:7�0:41

p
2�e�t

2=2 dt � 0:485803;

which introduces an error of at most 0:229992. The total error is then computed to be at
most 0:3289 (luckily, js2j is large). If the small eigenvalue s1 were negative we would
have

�2h 2 Œ�0:588; 0:069�
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which does not contain any number with fractional part 2=5. Therefore s1 > 0, and we
have

�2h 2 Œ0:8432; 1:5011�;

from which we conclude �2h D 7=5.

Appendix A. Generalities on the group G and the trace formula

All the trace formulas we need in the present paper are obtained by specializing the gen-
eral trace formula for a cocompact torsion-free lattice z� in the Lie group

G D ¹g 2 GL2.C/ W jdet.g/j D 1º:

The strategy of the proof follows very closely that of [32, Appendix B], where we studied
the case of PGL2.C/:

(1) express the very general trace formula in terms of irreducible representations and
geometric data;

(2) understand the representation-theoretic incarnation of the differential operators under
consideration;

(3) choose suitable test functions to isolate the relevant representations.

In [32, Appendix B], we tackled the first step for PGL2.C/: we derived a general trace
formula for cocompact lattices in PGL2.C/ (which was called G there). So as not to
repeat ourselves, we simply state the trace formula for G and highlight the differences
between it and the very similar trace formula from [32].

Remark A.1. As will be clear from the discussion, this approach involving G is only
strictly necessary when dealing with spinors; the trace formulas for functions and forms,
both even and odd, can be derived from the general trace formula for PGL2.C/.

A.1. Notation for subgroups of G

We will work with the maximal torus T � G of diagonal matrices; we will use the
parametrizations

T D

²�
eu=2ei˛ 0

0 e�u=2eiˇ

�
W u 2 R; ˛; ˇ 2 R=2�Z

³
(27)

and

T D

²�
ei�evCi� 0

0 ei�e�v�i�

�
W v 2 R; �; � 2 R=2�Z

³
: (28)

The center Z of G is the diagonal copy of U1. We will equip T with the Haar measure

dt D du
d˛

2�

dˇ

2�
: (29)

The Weyl group W has two elements, and is generated by .u; ˛; ˇ/ 7! .�u; ˇ; ˛/.
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Remark A.2. Using this notation, the complex length of the image in PGL2.C/ of an
element of T is uC i2� .

We will denote by B the subgroup of upper triangular matrices; the modular function
is then

ı W B ! R>0;

�
t1 �

0 t2

�
7! jt1=t2j

2:

Finally, K D U2 is the maximal compact subgroup; we can identify

G=K D PGL2.C/=PU2 D H3

using the upper half-space model H3 � C � R>0. The tangent space at .0; 1/ is then
identified with p0 D isu.2/. We will also denote byp D p0 ˝C its complexification.

A.2. Unitary representations of G

Every irreducible unitary representation of G is isomorphic to one of the following:

(a) the 1-dimensional representation with character detk for some k 2 Z;

(b) the representation �s1;s2;n1;n2 with s1 D ir1; s2 D ir2 purely imaginary and n1; n2 2
Z, defined as follows. Consider the character

�s1;s2;n1;n2 W B ! C�;

�
t1 �

0 t2

�
7! jt1j

s1 � jt2j
s2 �

�
t1

jt1j

�n1
�

�
t2

jt2j

�n2
:

We then define �s1;s2;n1;n2 to be the representation induced on G by ı1=2�s1;s2;n1;n2 .
Because jt1j jt2j D 1, the representation �s1;s2;n1;n2 only depends on s1 � s2; n1; n2:

(c) complementary series representations, which are abstractly isomorphic to �s1;s2;0;0
where the difference s1 � s2 is real and lies in the interval Œ�1; 1�:

Again, there are some coincidences among these representations.

Lemma A.1. We have �s1;s2;n1;n2 Š �t1;t2;m1;m2 iff

.t1; t2; m1; m2/ D .s1; s2; n1; n2/ or .s2; s1; n2; n1/ 2
iR � iR

hi.1; 1/i
� Z � Z:

Proof. The proof is very similar to the case of PGL2.C/ covered in [32, Appendix B].
For every smooth compactly supported test function f on G,

trace.�s1;s2;n1;n2/ D cSf .��1s1;s2;n1;n2/;
where we view Sf as a W -invariant function on the diagonal torus T . By the main
theorem of Bouaziz [9], the Satake transform f 7! Sf maps f onto a W -invariant com-
pactly supported smooth function on T . Therefore, two representations �s1;s2;n1;n2 and
�t1;t2;m1;m2 are isomorphic iff

yF .�s1;s2;n1;n2/ D
yF .�t1;t2;m1;m2/
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for every smooth, compactly supported function F on T which is W -invariant, i.e.

F.u; ˛; ˇ/ D F.�u; ˇ; ˛/:

The function F is W -invariant iff yF .s; n; m/ D yF .�s; m; n/ (the forward implication is
immediate from the definition, and the converse follows from Fourier inversion). Since

yF .��1s1;s2;n1;n2/ D

Z
F.t/�s1;s2;n1;n2.t/ dt

D

Z
F.u; ˛; ˇ/ � eu=2�.s1�s2/ � ein1˛ � ein2ˇ du

d˛

2�

dˇ

2�

D yF .�.s1 � s2/;�n1;�n2/;

the result follows.

A.3. The trace formula for G

We have the following general result.

Proposition A.2. Let F be any smooth, compactly supported, W -invariant function on
the diagonal torus T . Let z� � G be a cocompact torsion-free lattice. We have the identityX
s1�s2;n;m

mz�.�s1;s2;n;m/ �
yF .��1s1;s2;n;m/C

X
k

1

jW j

Z
T

jD.t�1/j1=2 � det.t/k � F.t/ dt

D �
1

8�
� vol.Y / �

X
z2z�\Z

�
d2

dv2
C

d2

d�2

�
F

ˇ̌̌̌
tDz

C

X
Œ
�¤1

`.
0/ � jD.t
�1

 /j�1=2 � F.t
 /:

Here the second derivatives in v and � are taken with respect to the parametrization .28/
of T , and jW j D 2.

This is in fact a generalization of the trace formula from [32], which can be recovered
by using test functions on the diagonal torus T invariant by the center Z of G. The proof
of this result is essentially identical to the one of the formula in [32], so we will focus on
pointing out similarities and differences between Proposition A.2 and the trace formula
from our first paper.

� The “identity contribution” to the trace formula has a contribution for each element of
z� \ Z. The group Z is compact so this sum is finite. In our case of interest, z� is the
lift of a lattice � � PGL2.C/, and z� \Z D ¹1º.

� Recall that the function F.u; ˛; ˇ/ is W -invariant iff

F.u; ˛; ˇ/ D F.�u; ˇ; ˛/:

In particular, the formula F.u; ˛; ˇ/ D K˙.˛; ˇ/ �H˙.u/, where K˙ are symmetric
and antisymmetric respectively and H˙ are even and odd respectively, defines W -
invariant functions on T:
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� The universal constant � 1
8�

can be determined in several ways; for example, by spe-
cializing this formula to the case of the even trace formula for coexact 1-forms and
comparing it with the one from [32].

Appendix B. The odd signature and Dirac operators

We need to specialize the general trace formula in Proposition A.2 to our cases of inter-
est, namely to isolate the eigenvalue spectrum of the odd signature and Dirac operators.
In [32], we showed how to interpret the Hodge Laplacian and its spectrum in terms of the
representation theory of PGL2; in particular, we identified coexact 1-eigenforms in terms
of isotypic vectors in the irreducible representations, and the corresponding eigenvalue
using the Casimir eigenvalue. We will do the same here, where we consider the maximal
compact subgroup K D U2. In particular, we show the following two results.6

Proposition B.1. Eigenforms of �d correspond to p-isotypic vectors where pD p0 ˝C.
An irreducible unitary representation of G contains a p-isotypic vector if and only if
it is isomorphic to �s1;s2;1;�1 with s1; s2 purely imaginary. Furthermore, each copy of
�s1;s2;1;�1 � L

2.z�nG/ contains exactly a 1-dimensional eigenspace of �d , spanned by
an eigenform with eigenvalue i.s1 � s2/=2.

Recall that a p-isotypic vector in a G-representation � is a non-zero element of
HomK.p; �/. Notice that as the Hodge Laplacian on coexact 1-forms is the square of �d ,
this result implies (after changing the parametrization) those in [32]; in that case we com-
puted the corresponding eigenvalue via Kuga’s lemma. Notice that while this result can
be proved directly using the group PGL2, the following one relies essentially on the larger
group G.

Proposition B.2. Eigenspinors correspond to S_-isotypic vectors where S_ is the dual
of the standard representation of K D U2 on C2. An irreducible unitary representation
of G contains an S_-isotypic vector if and only if it is isomorphic to �s1;s2;�1;0 with s1; s2
purely imaginary. Furthermore, each copy of �s1;s2;�1;0 �L

2.z�nG/ contains exactly a 1-
dimensional eigenspace of the Dirac operator, spanned by an eigenspinor with eigenvalue
i.s1 � s2/=2.

The present Appendix is dedicated to the proof of these results. The new main ingre-
dient is to describe the Dirac and �d operators in terms of representation theory, which
we do in Sections B.1–B.3. We then identify the relevant representations in Section B.4,
and the corresponding eigenvalues in Section B.5.

6Recall that our convention is that

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
form a positively oriented basis of p0 D isu.2/.
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B.1. Generalities on associated bundles and connections for the principal K-bundle
G ! G=K

B.1.1. The invariant connection on G ! G=K. We follow the notation of Section A.1.
Note that G

�
�! G=K (with K acting on the right by multiplication) is a principal

K-bundle. The assignment
Hg WD .Lg/�p0 � Tg.G/

defines a subbundle H � TG. Observe that:

(1) The projection Hg ! Tg.G/
��
�! TgK.G=K/ is an isomorphism.

(2) The subbundle H is right K-invariant:

.Rk/�Hg D .Rk/�.Lg/�p0

D .Lg/�.Rk/�p0 (left and right multiplications commute)

D Œ.Lg/�.Lk/��Œ.Lk/
�1
� .Rk/��p0

D .LgLk/�.conjugation by k�1/�p0
D .Lgk/�Ad.k�1/p0
D .Lgk/�p0 (because p0 is invariant under Ad.K//:

(3) The subbundle H is left G-invariant: .Lh/�Hg D .Lh/�.Lg/�p0 D Hhg :

Items (1) and (2) imply that H defines a connection on G ! G=K. Item (3) implies that
H is left G-invariant.

B.1.2. Associated bundles and covariant derivatives. Let � WK! GL.V / be a represen-
tation of K. The associated vector bundle FV WD G �� V ! G=K has sections

�.FV / D ¹s W G ! V W s.gk/ D �.k/�1s.g/º:

The covariant derivative rV on FV associated to the connection H � TG is given by

r
V
X W �.FV /! �.FV /; s 7! ds. zX/;

where zX denotes the horizontal lift of X to TG via the invariant connection H from
Section B.1.1. Via the trivialization

p0 �G ! H; .X; g/ 7! .Lg/�X;

from Section B.1.1, we may regard rV s 2 �.FV ˝ �1.G=K//, which is the bundle
associated to the representation V ˝ p_0 ' Hom.p0; V / of K, as the function

r
V s W G ! Hom.p0; V /; g 7!

�
X 7! ds..Lg/�X/ D X.s ı Lg/

�
: (30)

Let r denote the representation

r W K ! End.Hom.p0; V //; k 7! .T 7! �.k/ ı T ı Ad.k/�1/:

Note that rV s, as defined by (30), has the K-equivariance property

.rV s/.gk/ D r.k/�1 � .rV s/.g/:
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B.1.3. Dual picture for sections of FV and the covariant derivative rV . For our pur-
poses it will be convenient to rephrase everything in terms of a dual picture, which is
more manifestly representation-theoretic. There is a canonical isomorphism

ˆV W C1.G; V /
�
�! Hom.V _; C1.G//; s 7! .` 7! .g 7! `.s.g////: (31)

The inverse mapping .ˆV /�1 is most easily expressed using a basis ¹viº for V and its
corresponding dual basis ¹v_i º for V _:

.ˆV /�1 W Hom.V _; C1.G// ��! C1.G; V /;

T 7!
�
g 7!

X
i

T .v_i /.g/ � vi

�
:

(32)

The map ˆ WD ˆV has the following equivariance properties:

(1) ˆ.Lgs/ D Lgˆ.s/ and ˆ.Rgs/ D Rgˆ.s/. In C1.G; V /,

Lgs.x/ D s.gx/; Rgs.x/ D s.xg/;

and on Hom.V _; C1.G//, the corresponding actions are

V _ ! C1.G/
left or right translation by g
���������������! C1.G/:

(2) ˆ carries the subspace �.FV /D ¹s W G! S W s.gk/D �.k/�1s.g/º to the subspace
HomK.V _;C1.G//, whereK acts by right translation on C1.G/ and by �_ on V _:

(3) Upon combining (30) with the explicit formula for ˆ�1 from (32), we see that ˆ
intertwines the covariant derivative rV with the operator

‚V W Hom.V _; C1.G//! Hom..V ˝ p_0 /
_; C1.G//;

T 7!

�
`˝X 7!

�
g 7!

X
i

d

dt

ˇ̌̌̌
tD0

ŒT .v_i /.ge
tX /� � `.vi /

��
;

where `˝X 2 V _ ˝ p0 Š .V ˝ p_0 /
_, i.e. there is a commutative diagram

C1.G; V / C1.G; V ˝ p_0 /

Hom.V _; C1.G// Hom.V _ ˝ p0; C
1.G//

rV

ˆ ˆ

‚V

The above restricts to a commutative diagram

�.FV / �.FV˝p_
0
/

HomK.V _; C1.G// HomK.V _ ˝ p0; C
1.G//

rV

ˆ ˆ

‚V

(4) K-equivariant maps ˛ W V !W induce maps �.FV /!�.FW / (by post-composition
with ˛) and on HomK.V _; C1.G//! HomK.W _; C1.G// (by pre-composition
with ˛_). These induced maps commute with the isomorphism ˆ:
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B.1.4. Going automorphic. Everything in Sections B.1.1–B.1.3 is left invariant. So the
connections, vector bundles, covariant derivatives and bundle maps defined thus far all
descend to z�nG=K. We denote descended objects with an x�, e.g. for the descended vector
bundle xFV over z�nG=K,

�. xFV / D ¹s W z�nG ! S W s.z�gk/ D �.k/�1s.z�g/º;

which is identified, via the isomorphism ˆV , with HomK.V _; C1.z�nG//:
The descended covariant derivative xrV and its incarnation x‚V in the dual picture

admit the “same formulas mod z�”. In particular,

x‚V W HomK.V _; C1.z�nG//! HomK..V ˝ p_0 /
_; C1.z�nG//;

T 7!

�
`˝X 7!

�
g 7!

X
i

d

dt

ˇ̌̌̌
tD0

ŒT .v_i /.ge
tX /� � `.vi /

��
;

and there is a commutative diagram

�. xFV / �. xFV˝p_
0
/

HomK.V _; C1.z�nG// HomK.V _ ˝ p0; C
1.z�nG//

xrV

x̂ x̂

x‚V

Given a K-equivariant map ˛ W V ! W , we denote the associated bundle map (obtained
by post-composition with ˛ on �. xFV / or with pre-composition by ˛_ in the dual picture)
by x̨. We also have commutative diagrams

�. xFV / �. xFV˝p_
0
/

HomK.V _; C1.z�nG// HomK.V _ ˝ p0; C
1.z�nG//

x̨

x̂ x̂

x̨

Because xrV is built from the derivative of the right translation action of G on
C1.z�nG/, the operators x‚V are amenable to representation-by-representation analysis.
Likewise, the bundle maps x̨ are amenable to representation-by-representation analysis.
For irreducible (unitary) representations � ofG, denote by �1 � � the dense subspace of
smooth elements. We define the following �-isotypic versions of the operators x‚V and x̨:

x‚V� W HomK.V _; �1/! HomK..V ˝ p_0 /
_; �1/;

T 7!
�
`˝X 7!

X
i

.X � T .v_i /
�
� `.vi //; (33)

and

x̨� W HomK.V _; �1/! Homk.W
_; �1/; T 7! T ı ˛_:
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Given a subrepresentation � � L2.z�nG/, the above �-isotypic operators fit into commu-
tative diagrams

HomK.V _; �1/ HomK..V ˝ p_0 /
_; �1/

HomK.V _; C1.z�nG// HomK..V ˝ p_0 /
_; C1.z�nG//

x‚V�

� �

x‚V

(34)

and
HomK.V _; �1/ HomK.W _; �1/

HomK.V _; C1.z�nG// HomK.W _; C1.z�nG//

x̨�

� �

x̨

(35)

where the vertical maps � in both diagrams are induced by the inclusion � � L2.z�nG/:

B.2. Automorphic incarnation of the spinor bundle and Dirac operator

Denote as before by S the standard representation of U2 on C2.

Definition B.1. Let z� �G be a lattice lifting the closed hyperbolic three-manifold lattice
� � PGL2.C/. The spinor bundle over �nH3 D z�nH3 D z�nG=K associated to the lift
z� � G of � is the vector bundle xFS . It comes equipped with the covariant derivative xrS :

B.2.1. Clifford multiplication on xFS . The linear map C W S ˝ p0! S given by 2i times
matrix multiplication is U2-equivariant:

C..std˝ Ad/.k/.s ˝X// D C.std.k/s ˝ Ad.k/X/ D 2i �.kXk�1/.ks/

D k.2i �Xs/ D std.k/C.s ˝X/:

In what follows, we will make use of the (physicists’) Pauli matrices

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
: (36)

Remark B.1. In the hyperbolic metric, the Pauli matrices �1; �2; �3 are orthogonal to
each other, but have norm 2. To see why the latter holds, notice that

et�3 D

�
et 0

0 e�t

�
:

In the upper half-space model, this maps .0; 0; 1/ to .0; 0; e2t /, and the geodesic segment
connecting them has length 2t . On the other hand, it has length k�3k � t , so k�3k D 2.
So the multiplier 2 in the above definition of C guarantees that Clifford multiplication is
isometric.
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Remark B.2. The above Clifford multiplication is compatible with the orientation �1 ^
�2 ^ �3 in the sense that

C.�1/C.�2/C.�3/ D 8

is positive.

The hyperbolic metric on p0 defines a K-equivariant isomorphism � W p_0 ! p0. We
define C 0 to be the composition of C with �:

C 0 D S ˝ p_0
1˝�
��! S ˝ p0

C
�! S:

We will refer to the associated map on sections,

�. xFS˝p_
0
/
xC 0

�! �. xFS /;

as Clifford multiplication.

B.2.2. The Dirac operator on �. xFS /.

Definition B.2. The Dirac operator xD on �. xFS / is defined to be the composition

�. xFS /
xrS

��! �. xFS˝p_
0
/
C 0

�! �. xFS /:

Let X1; X2; X3 be an oriented orthonormal basis for p0. The canonical isomorphism
Hom.p0; S/ ' p_0 ˝ S can be expressed as

T 7!

3X
iD1

h�; Xi i ˝ T .Xi /;

whereXi is any orthonormal basis for p. By the discussion from Sections B.1.2 and B.2.1,
the Dirac operator is given by the formula

xD W �. xFS /! �. xFS /;

.g 7! s.g// 7!
�
g 7!

3X
iD1

2i �mXiXi .s ı Lg/
�

D

�
g 7!

3X
iD1

2i �mXi
d

dt

ˇ̌̌̌
tD0

s.getXi /

�
;

where mXi denotes matrix multiplication by Xi 2 p0 D isu.2/.
In the dual picture, xD D xC 0 ı x‚S . Unraveling the formula for x‚S from (33), we find

that xD equals

xD W HomK.S_; C1.z�nG//! HomK.S_; C1.z�nG//;

T 7!

3X
iD1

�
S_

2i �m_
Xi

����! S_
T
�! C1.z�nG/

f 7!.g 7! d
dt
jtD0f .ge

tXi //

������������������! C1.z�nG/

�
:
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B.2.3. Representation-by-representation analysis of the Dirac operator. For every irre-
ducible representation � of G, we define the �-isotypic Dirac operators

xD� WD xC
0
� ı
x‚S� :

Suppose � � L2.z�nG/ is a subrepresentation. By the commutativity of the diagrams
(34) and (35), we obtain the commutative diagram

HomK.S_; �1/ HomK.S_; �1/

HomK.S_; C1.z�nG// HomK.S_; C1.z�nG//

xD�

� �

xD

(37)

where the vertical maps � in both diagrams are induced by the inclusion � � L2.z�nG/:
We will show in Proposition B.5 that if � is an irreducible (unitary) representation

of G and HomK.S_; �1/ is non-zero, then it is 1-dimensional. For all such represen-
tations � , xD� thus necessarily acts on HomK.S_; �1/ by some scalar �Dirac;� (which
will be later computed in Proposition B.7). Thus, �.HomK.S_; �1// corresponds to
an eigenline for the Dirac operator xD with eigenvalue �Dirac;� . In particular, the natu-
ral decomposition

L2. xFS / D
M
�2 yG

mz�.�/ � HomK.S_; �1/;

which is the analogue of the Matsushima decomposition we used in [32], corresponds to
the eigenspace decomposition of the Dirac operator.

B.3. Automorphic incarnation of q-form bundles and the �d operator

Retain all notation from Section B.2. As in [32], in this setup it is more convenient to
consider the operators on complex-valued forms; to this end, we will consider the K-
representation p D p0 ˝C. In particular, the vector bundle xFVq p_ is naturally identified
with the vector bundle of (complex-valued) q-forms over z�nH3.

B.3.1. Hodge star on xFVq p_ . Consider the Hodge star operator

� W
Vq p_ !

V3�q p_:

The action of U2 on p_ factors through PU2, the group of orientation preserving isome-
tries of H3 D G=K stabilizing eK. Thus, the actions of K on

Vq p_ and
V3�q p_

commute with �. We get the following result immediately.

Lemma B.3. The associated map on sections,

�. xFVq p_/
x�
�! �. xFV3�q p_

/;

is identified with Hodge star for the hyperbolic metric on z�nH3:
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B.3.2. Exterior derivative. Let xr WD xr
Vq p_ be the covariant derivative on xFVq p_

induced by the invariant connection on G ! G=K described in Section B.1.2. Let x‚ WD
x‚
Vq p_ be the corresponding operator in the dual picture, described in Section B.1.3.

Composing with the wedge product map, ^ W p_ ˝
Vq p_ !

VqC1 p_, which is K-
equivariant, recovers the exterior derivative:

d D �. xFVq p_/
xr
�! �. xFp_˝

Vq p_/
x̂
�! �. xFVqC1 p_

/:

In the dual picture, applying formula (33) for V D
Vq p_ yields the following formula

for d D x̂ ı x‚
Vq p_ :

d W HomK.
Vq p; C1.z�nG//! HomK.

VqC1 p; C1.z�nG//;

! 7!
�
X0 ^ � � � ^Xq 7!

X
i

Xi � !.X0 ^ � � � ^cXi ^ � � � ^Xq/�: (38)

See [8, Chapter 1, Section 1]. Implicitly in (38), we have used the canonical duality
between

Vq p_ and
Vq p:

B.3.3. Representation-by-representation analysis of �d . For every irreducible represen-
tation � of G, we define the �-isotypic �d operators

.�d/� WD x�� ı �x̂� ı x‚
V1 p_

� :

Suppose � � L2.z�nG/ is a subrepresentation. By the commutativity of the diagrams
(34) and (35), it follows that the diagram

HomK.
V1 p; �1/ HomK.

V1 p; �1/

HomK.
V1 p; C1.z�nG// HomK.

V1 p; C1.z�nG//

.�d/�

� �

�d

(39)

is commutative, where the vertical maps � in both diagrams are induced by the inclusion
� � L2.z�nG/:

Similarly to the case of the Dirac operator, we will show in Proposition B.6 that
if � is an irreducible (unitary) representation of G and HomK.

V1 p; �1/ is non-zero,
then it is 1-dimensional. For all such representations � , .�d/� thus necessarily acts on
HomK.

V1 p; �1/ by some scalar ��d;� (which will be computed in Proposition B.8).
Thus, �.HomK.

V1 p; �1// is an eigenline for the odd signature operator with eigenvalue
��d;� . In particular, the natural decomposition

L2.�1/ D
M
�2 yG

mz�.�/ � HomK.
V1 p; �1/;

which is the essentially the Matsushima decomposition we used in [32], corresponds to
the eigenspace decomposition of the odd signature operator. Notice that of course closed
forms are in the kernel of �d ; as in [32], we will identify exactly which representations
correspond to coexact forms.
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B.4. Frobenius reciprocity and K-isotypic vectors for induced representations

Let M D K \ B be the subgroup of diagonal unitary matrices. Let �n1;n2 denote the
character of M given by

�n1;n2 WM ! C�;

�
t1 0

0 t2

�
7! t

n1
1 � t

n2
2 ;

which is obtained by restricting the family of characters �s1;s2;n1;n2 of B .
Suppose � � L2.z�nG/ is a subrepresentation isomorphic to �s1;s2;n1;n2 : The follow-

ing lemma will allow us to characterize whether � contributes to the spinor (resp. �d )
eigenvalue spectrum. And if � contributes, it will allow us to write down explicit vectors
in HomK.S_; �1/ (resp. HomK.S_; �1/) whose images in HomK.S_; C1.z�nG//
(resp. in HomK.S_; C1.z�nG//) are Dirac eigenspinors (resp. �d eigen-1-forms), per
the discussion from Section B.2 (resp. Section B.3).

Lemma B.4. Let .V; �/ be a finite-dimensional representation of K. Then the map

HomM .V _; �n1;n2/! HomK.V _; �s1;s2;n1;n2/;

T 7!
�
` 7! �s1;s2;n1;n2.b/ı.b/

1=2
� T .�_.k/`/

�
;

where ı is the modular function, is an isomorphism.

In particular, this reduces the problem of determining V _-isotypic vectors to the
(essentially trivial) problem of understanding V _ as a representation of M .

Proof of Lemma B.4. This is proved in [32, Appendix B], to which we refer for a more
detailed discussion (and unraveling of the formulas). The isomorphism is the composite
of the Frobenius reciprocity isomorphism

HomM .V _; �n1;n2/! HomK.V _; IndKM �n1;n2/;

T 7!
�
` 7! f`.k/ WD T .�

_.k/`/
�
;

and the map

HomK.V _; IndKM �n1;n2/! HomK.V _; �s1;s2;n1:n2/;

S 7!
�
` 7! g`.bk/ WD �s1;s2;n1;n2.b/ı.b/

1=2
� ŒS.`/�.k/

�
:

The latter is an isomorphism because G D BK; M D B \ K, and �s1;s2;n1;n2 � ı
1=2

restricted to M equals �n1;n2 :

B.4.1. Representations contributing to the spinor spectrum. We need to apply Lemma
B.4 to the representation S_, where again S D C2 is the standard representation of U2.

Proposition B.5. Let � be an irreducible unitary representation of G. Then
HomK.S_; �1/ is either 0- or 1-dimensional. It is non-zero .and hence 1-dimensional/
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if and only if � is isomorphic to �s1;s2;�1;0 .or equivalently �s2;s1;0;�1/, in which case a
basis vector for HomK.S_; �1/ is given by

` 7! f`.bk/ WD �s1;s2;�1;0.b/ı.b/
1=2
� Œstd_.k/`�.e1/:

Proof. We easily check that HomK.S_; �1/ D 0 if � is isomorphic to some power of
the determinant. So we focus on the case � Š �s1;s2;n1;n2 :

By Lemma B.4, HomK.S_; �1/ is naturally isomorphic to HomM .S_; �n1;n2/.
Since S_jM is isomorphic to ��1;0 ˚ �0;�1, it follows that:

� HomK.S_; �1s1;s2;n1;n2/ is non-zero iff .n1; n2/ D .�1; 0/ or .0;�1/. If non-zero, it is
exactly 1-dimensional.

� The intertwining map ` 7! `.e1/ is a basis vector for the 1-dimensional space
HomM .S_; ��1;0/. Its image under the isomorphism from Lemma B.4, namely

` 7! f`.bk/ WD �s1;s2;�1;0.b/ı.b/
1=2
� Œstd_.k/`�.e1/;

thus defines a basis vector for the 1-dimensional space HomK.S_; �s1;s2;�1;0/:

This proves the proposition.

B.4.2. Representations contributing to the coclosed 1-form spectrum. We need to apply
Lemma B.4 to the representation

V1 p D p, where again p D p0 ˝ C and p0 D isu.2/

is acted on by K via the adjoint representation. Denoting again the Pauli matrices in (36)
by �i , we find that

w1 D �1 C i�2; w0 D �3; w�1 D �1 � i�2 (40)

are the M -weight vectors for
V1 p of respective weights .1;�1/; .0; 0/ and .�1; 1/. We

denote the corresponding dual basis by w_1 ; w
_
0 ; w

_
�1:

Proposition B.6. Let � be an irreducible unitary representation of G. Then the space
HomK.

V1 p;�1/ is either 0- or 1-dimensional. It is non-zero .and hence 1-dimensional/
if and only if � is isomorphic to �s1;s2;1;�1 .or equivalently �s2;s1;�1;1/ or �s1;s2;0;0; only
the representations of the form �s1;s2;1;�1 contribute to the coclosed 1-form spectrum, in
which case a basis vector for HomK.

V1 p; �1/ is given by

v 7! fv.bk/ WD �s1;s2;1;�1.b/ı.b/
1=2
� w_1 .Ad.k/v/:

Proof. We easily check that HomK.
V1 p; �1/ D 0 if � is isomorphic to some power of

the determinant. So we focus on the case � Š �s1;s2;n1;n2 :
By Lemma B.4, HomK.

V1 p; �1/ is naturally isomorphic to HomM .
V1 p; �n1;n2/.

Since
V1 pjM is isomorphic to �1;�1 ˚ �0;0 ˚ ��1;1, it follows that

� HomK.
V1 p; �1s1;s2;n1;n2/ is non-zero iff .n1; n2/ D .1;�1/; .0; 0/, or .�1; 1/. If non-

zero, it is exactly 1-dimensional. Furthermore, as argued in [32, Lemma B.11], the
representations �s1;s2;1;�1 and �s1;s2;�1;1, isomorphic respectively to �s1�s2;˙1 in the



Closed geodesics and Frøyshov invariants of hyperbolic three-manifolds 4269

notation from [32, Appendix B], only contribute to the coclosed 1-form spectrum,
while the representations �s1;s2;0;0, isomorphic to �s1�s2;0 in the notation from [32,
Appendix B], only contribute to the closed 1-form spectrum.

� The intertwining map v 7! w_1 .v/ is a basis vector for the 1-dimensional space
HomM .

V1 p; �1;�1/. Its image under the isomorphism from Lemma B.4, namely

` 7! fv.bk/ WD �s1;s2;1;�1.b/ı.b/
1=2
� w_1 .Ad.k/v/;

thus defines a basis vector for the 1-dimensional space HomK.
V1 p; �s1;s2;1;�1/:

This proves the proposition.

B.5. Representation-by-representation calculation of Dirac and �d eigenvalues

We conclude the proofs of the main results of this Appendix by computing the eigenvalues
��d;� and �Dirac;� of the eigenforms/eigenspinors corresponding to isotypic vectors.

Remark B.3. While in [32, Appendix B] we performed the computations in the natural
Killing metric, and then normalized the result to obtain the answer for the hyperbolic
metric, we will now work directly with the hyperbolic metric.

Proposition B.7 (Calculation of �Dirac;� ). Let � D �s1;s2;�1;0. Then

�Dirac;� D i �
s1 � s2

2
:

Proof. The space HomT\K.S
_; ��1;0/ has basis ` 7! `.e1/. Thus according to Lemma

B.4, the unique (up to scaling) element T of HomK.S_; �s1;s2;�1;0/ equals

T .`/ D f` W G ! C; f`.bk/ D ı
1=2.b/�s1;s2;0;�1.b/ � Œstd_.k/`�.e1/:

Suppose xD�s1;s2;�1;0T D cT . Then, as T .e_1 /.1/ D 1, we have

�Dirac;� D c D cT .e
_
1 /.1/ D .

xD�s1;s2;�1;0T /.e
_
1 /.1/;

so we will evaluate the latter next. We calculate:

m_�1 W e
_
1 7! e_2 ; e_2 7! e_1 ;

m_�2 W e
_
1 7! �ie

_
2 ; e_2 7! ie_1 ;

m_�3 W e
_
1 7! e_1 ; e_2 7! �e

_
2 ;

Therefore we have the explicit expression

xD�s1;s2;�1;0T .e
_
1 / D

2i

22
�
�
�1 � Tm

_
�1
.e_1 /C �2 � Tm

_
�2
.e_1 /C �3 � Tm

_
�3
.e_1 /

�
D
i

2
� .�1 � fe_

2
C �2 � f�ie_

2
C �3 � fe_

1
/;
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where the factor 22 comes from the fact that the Pauli matrices have norm 2 in the hyper-
bolic metric (see Remark B.1). To evaluate the above expression at 1, we express each
Pauli matrix in the form Ki C Bi , where Ki 2 k and Bi 2 b (here k and b are the Lie
algebras of K and B respectively):

�1 D

�
0 �1

1 0

�
C 2

�
0 1

0 0

�
DW K1 C B1;

�2 D

�
0 i

i 0

�
� 2

�
0 i

0 0

�
DW K2 C B2;

�3 D

�
0 0

0 0

�
C

�
1 0

0 �1

�
DW K3 C B3

Notice that B1; B2 2 n, the Lie algebra of the group N of unipotent matrices. Because
the functions f` are invariant under left translation by elements of N;

xD�s1;s2;�1;0T .e
_
1 / D

i

2
� .�1 � fe_

2
C �2 � f�ie_

2
C �3 � fe_

1
/

D
i

2
� .K1 � fe_

2
CK2 � f�ie_

2
C B3 � fe_

1
/:

We calculate each summand, evaluated at 1, individually:

.K1 � fe_
2
/.1/ D 1 �

d

dt

ˇ̌̌̌
tD0

Œe_2 �.e
�tK1e1/ D Œe

_
2 �.�K1e1/ D �1;

.K2 � f�ie_
2
/.1/ D 1 �

d

dt

ˇ̌̌̌
tD0

Œ�ie_2 �.e
�tK2e1/ D Œ�ie

_
2 �.�K2e1/

D Œ�ie_2 �.�ie2/ D �1;

.B3 � fe_
1
/.1/ D

d

dt

ˇ̌̌̌
tD0

ı1=2
�
et 0

0 e�t

�
� �s1;s2;�1;0

�
et 0

0 e�t

�
� Œe_1 �.e1/

D
d

dt

ˇ̌̌̌
tD0

e2t � et �.s1�s2/ � 1 D s1 � s2 C 2:

Summing these contributions, xD�s1;s2;�1;0 acts on HomK.S_; �s1;s2;�1;0/ by the scalar

c D xD�s1;s2;�1;0T .e
_
1 /.1/ D

i

2
� ..�1/C .�1/C .s1 � s2 C 2//

D i �

�
s1 � s2

2

�
; (41)

and the proof is complete.

We conclude by computing ��d;� , obtaining the desired refinement of the result
of [32].

Proposition B.8 (Calculation of ��d;� ). Let � D �s1;s2;1;�1. Then

��d;� D i �
s1 � s2

2
:
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Proof. We will use the notation from (40). According to Proposition B.6, the unique (up
to scaling) element T of HomK.

V1 p; �s1;s2;1;�1/ equals

T .v/ D fv W G ! C; fv.bk/ D ı
1=2.b/�s1;s2;1;�1.b/ � w

_
1 .Ad.k/v/:

Recall the �-isotypic version .�d/� of �d from Section B.3.3. Because the space
HomK.

V1 p; �s1;s2;1;�1/ is 1-dimensional, .�d/� acts on it by a scalar. We next cal-
culate the eigenvalue of .�d/� acting on HomK.

V1 p; �/ for � D �s1;s2;1;�1. To lighten
notation, we refer to d� ; �� and .�d/� simply by d; �, and �d respectively. Suppose
.�d/T D cT . Then

��d;� D c D cT .w1/.1/ D ..�d/T /.w1/.1/;

so we will evaluate the latter next. Observe that

dT .�1 ^ �2/ D �1 � T .�2/ � �2 � T .�1/;

dT .�2 ^ �3/ D �2 � T .�3/ � �3 � T .�2/;

dT .�3 ^ �1/ D �3 � T .�1/ � �1 � T .�3/;

implying that

2 � �dT .�3/ D dT .�1 ^ �2/ D �1 � T .�2/ � �2 � T .�1/;

2 � �dT .�1/ D dT .�2 ^ �3/ D �2 � T .�3/ � �3 � T .�2/;

2 � �dT .�2/ D dT .�3 ^ �1/ D �3 � T .�1/ � �1 � T .�3/;

where the factor of 2 appears because the norm of the Pauli matrices in the hyperbolic
metric is 2 (see Remark B.1). It thus follows that

2 � �dT .w1/ D 2 � .�dT .�1/C i � dT .�2//

D �2 � T .�3/ � �3 � T .�2/C i.�3 � T .�1/ � �1 � T .�3//:

To evaluate the above expression at 1, recall the decomposition of the Pauli matrices
�i D Ki C Bi introduced in the proof of Proposition B.7. Again, the functions fv are
invariant under left translation by elements of N , and therefore we compute

2 � �dT .w1/ D �2 � T .�3/ � �3 � T .�2/C i.�3 � T .�1/ � �1 � T .�3//

D K2 � f�3 � B3 � f�2 C i.B3 � f�1 �K1 � f�3/:

We calculate each summand, evaluated at 1, individually. The terms involving B3 are

.B3 � f�2/.1/ D
d

dt

ˇ̌̌̌
tD0

ı1=2
�
et 0

0 e�t

�
� �s1;s2;1;�1

�
et 0

0 e�t

�
� w_1 .�2/

D
d

dt

ˇ̌̌̌
tD0

e2t � et �.s1�s2/ �
1

2
.�i/

D .2C s1 � s2/ �
1

2
.�i/;
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.B3 � f�1/.1/ D
d

dt

ˇ̌̌̌
tD0

ı1=2
�
et 0

0 e�t

�
� �s1;s2;1;�1

�
et 0

0 e�t

�
� w_1 .�1/

D
d

dt

ˇ̌̌̌
tD0

e2t � et �.s1�s2/ �
1

2

D .2C s1 � s2/ �
1

2
;

while those involving the Ki are

.K2 � f�3/.1/ D 1 �
d

dt

ˇ̌̌̌
tD0

w_1 .Ad.etK2/�3/

D w_1 .ŒK2; �3�/ D w
_
1 .2�2/ D �i;

.K1 � f�3/.1/ D 1 �
d

dt

ˇ̌̌̌
tD0

w_1 .Ad.etK1/�3/

D w_1 .ŒK1; �3�/ D w
_
1 .2�1/ D 1:

Summing these contributions, �d acts on HomK.
V1 p; �s1;s2;1;�1/ by the scalar

c D �dT .w1/.1/

D
1

2
�

�
�i � .2C s1 � s2/ �

1

2
.�i/C i

�
.2C s1 � s2/ �

1

2
� 1

��
D i �

s1 � s2

2
;

completing the proof.

Appendix C. Proof of the explicit trace formulas

We will now prove the results in Section 3, starting with the more involved case of spinors
in Theorem 3.3.

C.1. Isolating the spinor spectrum

We discuss suitable choices of test function to specialize the general trace formula for G
in Proposition A.2. According to Proposition B.5, the irreducible unitary representations
of G contributing to the spinor spectrum are precisely those isomorphic to �s1;s2;�1;0 or
�s1;s2;0;�1 for purely imaginary s1; s2. To isolate the latter representations, we use test
functions of the form

F

�
eu=2ei˛ 0

0 e�u=2eiˇ

�
D

´
HC.u/.e

i˛ C eiˇ /; HC even;

H�.u/.e
i˛ � eiˇ /; H� odd:

We now discuss how each term in the trace formula simplifies when choosing test func-
tions of the latter shapes.
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C.1.1. Regular geometric terms for spinors. For our normalization of Haar measure (29),
the covolume of the centralizer of 
 equals `.
0/. If its conjugacy class inG is represented
by �

e`=2ei�ei� 0

0 e�`=2e�i�ei�

�
;

then its complex length equals `C i2� and its corresponding summand on the geometric
side of the trace formula from Proposition A.2 equals

`0 �
1

j1 � e`Ci2� j j1 � e�`�i2� j
�H˙.`/ � .e

i.�C�/
˙ ei.��C�//:

Here we use the fact that the Weyl discriminant is the same as in the trace formula
from [32]:

jD.t
 /j
1=2
D

1

j1 � eC`.x
/j j1 � e�C`.x
/j
;

where x
 denotes the image of 
 in PGL2.C/. In particular, it is independent of �:

C.1.2. Contribution of central elements for spinors. Let z 2 Z � G be central, so

z D

�
ei� 0

0 ei�

�
for some � 2 R=2�Z. Recalling that for the two different parametrizations of T we have
uD 2v, the contribution of the conjugacy class of z in the trace formula of Proposition A.2
is then

�
1

8�
� vol.Y / �

�
@2

@v2
C

@2

@�2

�ˇ̌̌̌
tDz

F

D �
1

8�
� vol.Y / �

�
@2

@v2
C

@2

@�2

�ˇ̌̌̌
.v;�/D.0;0/

HC.2v/.e
i.�C�/

C ei.��C�//

D
1

8�
� vol.Y / � 2ei� � .HC.0/ � 4H 00C.0//

D
1

4�
� vol.Y / � ei� � .HC.0/ � 4H 00C.0//:

In our case, we will be interested in lifts of torsion-free lattices � � PSL2.C/, so that we
will only need to consider the case z D 1, corresponding to � D 0.

C.1.3. Regular spectral terms for spinors. Let s1 D ir1; s2 D ir2 2 iR. The summand on
the spectral side of the trace formula from Proposition A.2 corresponding to �s1;s2;n1;n2
then equals

yF .��1s1;s2;n1;n2/ D

Z
T

F.t/�s1;s2;n1;n2.t/ dt

D

ZZZ
H˙.u/ � .e

i˛
˙ eiˇ / � eu=2�s1e�u=2�s2 � ein1˛ � ein2ˇ du

d˛

2�

dˇ

2�
:
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In the case of HC � .ei˛ C eiˇ /, the latter equals

bHC
�
r2 � r1

2

�
�

´
C1 if .n1; n2/ D .�1; 0/ or .0;�1/;

0 otherwise;

while in the case of H� � .ei˛ � eiˇ /, it equals

bH�
�
r2 � r1

2

�
�

8̂̂<̂
:̂
C1 if .n1; n2/ D .�1; 0/;

�1 if .n1; n2/ D .0;�1/;

0 otherwise.

C.1.4. Contribution of detk to the spectral side. For every k 2Z, the contribution of detk

to the trace formula for the test function H˙.u/ � .ei˛ ˙ eiˇ / equals

1

jW j

Z
T

jD.t�1/j1=2 � det.t/k � F.t/ dt

D
1

jW j

ZZZ �
eu C e�u � .ei.˛�ˇ/ C ei.ˇ�˛//

�
� ek�i.˛Cˇ/

�H˙.u/ � .e
i˛
˙ eiˇ /

d˛

2�

dˇ

2�
du

D 0;

since the integral of every non-trivial character over the torus U1 � U1 equals 0.

C.2. Trace formula for spinors

We are finally ready to prove the trace formulas that appear in Theorem 3.3.

C.2.1. Even spinor trace formula. Let HC be a smooth, compactly supported, even test
function on R. Let z� be the lift to G of the closed hyperbolic three-manifold group � �
PGL2.C/ (so that z� \Z D ¹1º). For 
 2 z� , suppose that 
 is conjugate to�

z1 0

0 z2

�
D

�
eu=2ei˛ 0

0 e�ueiˇ

�
D

�
eu=2ei�ei� 0

0 e�u=2e�i�ei�

�
:

Let z D z1=z2. Let `0 denote the length of the primitive closed geodesic some multiple of
which corresponds to 
 . Unwinding all terms in the trace formula from Proposition A.2
as in Section C.1 yields the following trace formula:X

mz�.�s1;s2;�1;0/ �
bHC

�
r2 � r1

2

�
D

1

4�
� vol.Y / � .HC.0/ � 4H 00C.0//

C

X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .ei˛ C eiˇ / �HC.u/;
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where the LHS is summed over all isomorphism classes of irreducible unitary represen-
tations of G isomorphic to some �s1;s2;�1;0: Since HC is even, the left side is real. So
taking real parts yieldsX

mz�.�s1;s2;�1;0/ �
bHC

�
r2 � r1

2

�
D

1

4�
� vol.Y / � .HC.0/ � 4H 00C.0//

C

X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .cos˛ C cosˇ/ �HC.u/

D
1

4�
� vol.Y / � .HC.0/ � 4H 00C.0//

C

X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .2 cos � cos�/ �HC.u/: (42)

Finally, by Proposition B.7 the Dirac eigenvalue on HomK.S_; �s1;s2;0;�1/, with ori-
entation �1 ^ �2 ^ �3, equals i s1�s2

2
D

r2�r1
2

. Thus, by Proposition B.5 we can reexpress
the trace formula from (42) geometrically as

1

2
�

X
Dirac eigenvalues for z�

mz�.�/ �
bHC.�/

D
1

2�
� vol.Y / �

�
1

4
�HC.0/ �H

00
C.0/

�
C

X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .cos � cos�/ �HC.u/:

This is the even trace formula in Theorem 3.3.

C.2.2. Odd spinor trace formula: representation-theoretic form. Let H� be a smooth,
compactly supported, odd test function on R. Using the notation of the previous subsec-
tion, unwinding all terms in the trace formula from Proposition A.2 as in Section C.1
yields the following trace formula:X

mz�.�s1;s2;�1;0/ �
bH�

�
r2 � r1

2

�
D �

X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .ei˛ � eiˇ / �H�.u/;

where the LHS is summed over all isomorphism classes of irreducible unitary represen-
tations of G isomorphic to some �s1;s2;�1;0. Since H� is odd, its Fourier transform is
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purely imaginary. So looking at imaginary parts givesX
mz�.�s1;s2;�1;0/ �

bH�
�
r2 � r1

2

�
D i

X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .sin˛ � sinˇ/ �H�.u/

D i
X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .2 sin � cos�/ �H�.u/: (43)

By (B.7), the Dirac eigenvalue on HomK.S_; �s1;s2;�1;0/, with orientation �1 ^ �2 ^ �3,
equals i s1�s2

2
D

r2�r1
2

. Thus by Proposition B.5, we can reexpress the above trace formula
from (43) geometrically:

1

2

X
Dirac eigenvalues for z�

mz�.�/ �
bH�.�/

D i
X
Œ
�

`0 �
1

j1 � zj j1 � z�1j
� .sin � cos�/ �H�.u/: (44)

This is the odd trace formula in Theorem 3.3; let us point out again that in (44), the Dirac
operator is taken relative to the orientation �1 ^ �2 ^ �3 on H3:

C.3. The trace formula for coexact 1-forms

Specializing the trace formula to isolate coexact 1-forms is more straightforward than spe-
cializing the trace formula to isolate spinors as in Section C.2. We content ourselves with
highlighting the main differences between specializing to 1-forms versus specializing to
spinors.

� Irreducible unitary subrepresentations ofL2.z�nG/ contributing to the coclosed 1-form
spectrum are precisely those isomorphic to �s1;s2;1;�1 and �s1;s2;�1;1 for s1; s2 2 iR.
We isolate those representations using the test functions H˙.u/ � .ei.˛�ˇ/ ˙ ei.ˇ�˛//,
where HC is even and H� is odd.

� For the latter test functions H˙.u/ � .ei.˛�ˇ/ ˙ ei.ˇ�˛//, the summand corresponding
to the representation �s1;s2;1;�1 equals bH˙. r2�r12 /. By Proposition B.8, r2�r1

2
is the

eigenvalue of �d acting on the
V1 p-isotypic vector of � (for the orientation �1 ^ �2

^ �3 on H3). For a subrepresentation � � L2.z�nG/ isomorphic to �s1;s2;1;�1, the
latter equals the eigenvalue of �d acting on the

V1 p-isotypic vectors of �s1;s2;1;�1.

� The contribution of detk to the trace formula for 1-forms is non-trivial only if k D 0.
If k D 0, the contribution equals 0 for test functions H�.u/ � .ei.˛�ˇ/ � ei.ˇ�˛// for
odd H� and equals �bHC.0/ for the test function

HC.u/ � .e
i.˛�ˇ/

C ei.ˇ�˛// D 2HC.2v/ cos.2�/

with HC even.
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� In the even case for the test function 2HC.2v/ cos.2�/ the identity contribution is 1
2�
�

vol.Y / � 2.HC.0/ �H 00C.0//.

From this, one readily obtains the formulas for coexact 1-forms in Theorem 3.2.

Appendix D. Admissibility of Gaussian functions

Gaussian functions were convenient to use at several points in our arguments. The next
result proves that functions of sufficiently fast decay, e.g. Gaussians, are admissible for
use in the trace formula.

Proposition D.1. Let f be an even or odd smooth function on R. Suppose that

1X
nD0

en � sup
x2Œn;nC1�

jf .x/j <1:

Then both the geometric and spectral sides of the spinor trace formula for closed hyper-
bolic three-manifolds converge absolutely for the test function f and they are equal. The
same statement holds for the 1-form trace formula applied to even or odd test functions
and the 0-form trace formula applied to even test functions f:

Proof. We focus on the spinor case (arguments in the other cases being identical). Con-
vergence of the spectral side of the trace formula for f follows because yf is Schwartz
and the number of spectral parameters in Œ�; � C 1� is quadratic in � (see Section 5)

Convergence of the geometric side of the trace formula follows by our hypothesis.
Indeed,X




ˇ̌̌̌
`.
0/ �

.cos or sin/� cos�
j1 � eC`.
/j j1 � e�C`.
/j

� f .`.
//

ˇ̌̌̌
�

1X
nD0

� X
`.
/2Œn;nC1�

`.
0/
�
�
C

en
� sup
x2Œn;nC1�

jf .x/j

�

1X
nD0

D � e2n �
C

en
� sup
x2Œn;nC1�

jf .x/j

D CD �

1X
nD0

en � sup
x2Œn;nC1�

jf .x/j <1: (45)

Above, we have used the fact that
P
`.
/2ŒL;LC1� `.
0/ has order of magnitude e2L (cf.

the discussion in Section 9) and that j1 � eC`.
/j j1 � e�C`.
/j has order of magnitude
e`.
/ for `.
/ large.

The trace formula for f will be a consequence of the limit of the trace formulas
applied to the test functions f .x/ � b.x=R/, where b is a smooth even, compactly sup-
ported bump function with yb everywhere positive and b.0/D 1. AsR!1, the geometric
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and spectral sides of the trace formula for f .x/ � b.x=R/ respectively converge pointwise
to the geometric and spectral sides of the trace formula for f ; this is immediate for the
geometric side, and it follows on the spectral side because f .x/ � b.x=R/ has Fourier
transform . yf � gR/.t/, where

gR.t/ WD
1

2�
�R � yb.Rt/

is an approximate identity (i.e. it is everywhere positive of total mass 1 and concentrated
increasingly near the origin as R !1). Here we use the fact that for our definition of
Fourier transform, bf � g D 1

2�
yf �yg. It therefore suffices to prove that the tails of the geo-

metric and spectral sides of the trace formula, applied to the test function f .x/ � b.x=R/,
approach 0 uniformly as R!1:

Uniform smallness of the tail on the geometric side follows by our hypothesis. Indeed,X
`.
/�k

ˇ̌̌̌
`.
0/ �

.cos or sin/� cos�
j1 � eC`.
/j j1 � e�C`.
/j

� f .`.
//

ˇ̌̌̌
� CD �

1X
nDk

en � sup
x2Œn;nC1�

jf .x/b.x=R/j (exactly as in (45))

� CD � kbk1 �

1X
nDk

en � sup
x2Œn;nC1�

jf .x/j;

which converges uniformly to 0 as k !1, being the tail of one fixed convergent sum
(independent of R).

Uniform smallness of the tail on the spectral side follows by the following estimate:

yf � gR.t/ D

Z
R

yf .t � y/gR.y/ dy

D

Z
y2Œ�jt j=2;Cjt j=2�

yf .t � y/gR.y/ dy

C

Z
y…Œ�jt j=2;Cjt j=2�

yf .t � y/gR.y/ dy

D O
�

sup
y2Œjt j=2;3jt j=2�

j yf .y/j
�
CO

�
k yf k1 �

Z
y…Œ�Rjt j=2;CRjt j=2�

yb.z/ dz

�
:

Since yb and yf are Schwartz, for every p > 0 there is some constant Cp for which the
latter is bounded above by Cphti�p uniformly in R. In particular, since the number of
spectral parameters in Œ�; � C 1� grows quadratically with �, taking any p > 3, the tail of
the spectral side of the trace formula converges to 0 uniformly in R.
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