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Abstract. We prove that any product of two non-abelian free groups, � D Fm � Fk , form;k � 2, is
not Hilbert–Schmidt stable. This means that there exist asymptotic representations �nW� ! U.dn/
with respect to the normalized Hilbert–Schmidt norm which are not close to actual representations.
As a consequence, we prove the existence of contraction matrices A, B such that A almost com-
mutes with B and B�, with respect to the normalized Hilbert–Schmidt norm, but A, B are not close
to any matrices A0, B 0 such that A0 commutes with B 0 and B 0�. This settles in the negative a natural
version of a question concerning almost commuting matrices posed by Rosenthal in 1969.

Keywords: almost commuting matrices, group stability, von Neumann algebras, lifting properties,
spectral gap, almost representations.

1. Introduction and statement of main results

A famous question, which can be traced back to the foundations of quantum mechan-
ics [60], is whether two matrices A, B , which almost commute with respect to a given
norm, must be close to two commuting matrices A0, B 0. It was first explicitly posed by
Rosenthal [50] for the normalized Hilbert–Schmidt norm and by Halmos [25] for the oper-
ator norm. Almost commuting matrices have since been studied extensively and found
applications in several areas of mathematics, including operator algebras and group the-
ory, quantum physics and computer science (see, e.g., the introductions of [16, 36]). The
most interesting case of this question is when the matrices are contractions, and “almost”
and “close” are taken independent of their sizes. The answer depends both on the types of
matrices considered and the norms chosen. Historically, research has focused on the oper-
ator norm. In this situation, the answer is positive for self-adjoint matrices by a remarkable
result of Lin [35] (see also [20, 27, 33]), but negative for unitary and general matrices by
results of Voiculescu [58] and Choi [10], respectively (see [13, 17] for related results).

More recently, several works [18, 19, 21–24, 51] studied the question for the normal-
ized Hilbert–Schmidt norm and obtained affirmative answers for pairs of self-adjoint,
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unitary and normal matrices. In fact, the answer is positive if at least one of the matrices
is normal, see Remark 1.1 (1). Moreover, this question has a positive answer within per-
mutation matrices [2]. However, these results only apply when at least one of the matrices
is normal, leaving wide open the general situation when neither matrix is normal.

We make progress on this problem by proving that, in contrast to the case of normal
matrices, a version of Rosenthal’s question [50] has a negative answer for non-normal
matrices. The version that we consider is natural from the perspective of (self-adjoint)
operator algebras. Specifically, it requires that A almost commutes not only with B but
also with its adjoint B�.

Theorem A. There exist sequences of contractions An;Bn 2Mdn.C/, for some dn 2N,
such that

(a) limn!1 kAnBn � BnAnk2 D limn!1 kAnB
�
n � B

�
nAnk2 D 0, and

(b) infn2N.kAn � A
0
nk2 C kBn � B

0
nk2/ > 0, for any sequences of matrices A0n; B

0
n 2

Mdn.C/ such that A0nB
0
n D B

0
nA
0
n and A0nB

0�
n D B

0�
n A
0
n, for every n 2 N.

For A D .ai;j /ni;jD1 2Mn.C/, we denote by kAk, kAk2 D . 1n
Pn
i;jD1 jai;j j

2/
1
2 and

�.A/D 1
n

Pn
iD1 ai;i the operator norm, normalized Hilbert–Schmidt norm and normalized

trace of A, respectively.

Remark 1.1. We continue with two remarks on the statement of Theorem A.

(1) The conclusion of Theorem A fails if one of the matrices is normal. Moreover, the
following holds: let An; Bn 2Mdn.C/ be contractions such that kAnBn � BnAnk2 ! 0

and Bn is normal, for every n 2 N. Then there are A0n; B
0
n 2Mdn.C/ such that A0nB

0
n D

B 0nA
0
n and A0nB

0�
n D B 0�n A

0
n, for every n 2 N, and kAn � A0nk2 C kBn � B

0
nk2 ! 0

(see Lemma 7.1).
(2) Theorem A complements a result of von Neumann [59, Theorem 9.7] which

implies the existence of contractionsAn 2Mkn.C/, for some kn!1, such that any con-
tractions Bn 2Mkn.C/, which verify condition (a), must satisfy kBn� �.Bn/1k2! 0.
In particular, An, Bn are close to the commuting matrices An, �.Bn/1. Thus, the pair
An, Bn does not satisfy the conclusion of Theorem A, for any choice of contractions
Bn 2Mkn.C/.

Theorem A is a consequence of a non-stability result for the product group F2 � F2,
see Theorem B. To motivate the latter result, we note that whether almost commuting
matrices are near commuting ones is a prototypical stability problem. In general, fol-
lowing [28, 56], stability refers to a situation when elements which “almost” satisfy an
equation must be “close” to elements satisfying the equation exactly. In recent years,
there has been a considerable amount of interest in the study of group stability (see,
e.g., [30,54]). For a countable group � , one can define stability with respect to any class C

of metric groups endowed with bi-invariant metrics. This requires that any asymptotic
homomorphism from � to a group in C is close to an actual homomorphism [2,3,14,54].
Specializing to the class C of unitary groups endowed with the normalized Hilbert–
Schmidt norms leads to the following notion of stability introduced in [6, 23].
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Definition 1.2. A sequence of maps 'nW � ! U.dn/, for some dn 2 N, is called an
asymptotic homomorphism if it satisfies limn!1 k'n.gh/� 'n.g/'n.h/k2 D 0, for every
g; h 2 � . The group � is called Hilbert–Schmidt stable (or HS-stable) if for any asymp-
totic homomorphism 'nW� ! U.dn/, we can find homomorphisms �nW� ! U.dn/ such
that limn!1 k'n.g/ � �n.g/k2 D 0, for every g 2 � .

The class of HS-stable groups includes the free groups Fm, virtually abelian groups
and one-relator groups with non-trivial center [23], certain graph product groups [5], and
is closed under free products. Moreover, the product of two HS-stable groups is HS-
stable, provided that one of the groups is abelian [23, Theorem 1] or, more generally,
amenable [31, Corollary D].

However, it remained a basic open problem whether HS-stability is closed under gen-
eral direct products and, specifically, if F2 � F2 is HS-stable (see [30, Remark 1.4]).
We settle this problem in the negative by proving that the product of two non-abelian
free groups is not HS-stable. Moreover, we show the following.

Theorem B. The group Fk � Fm is not flexibly HS-stable, for any integers k;m � 2.

Before discussing results related to Theorem B, let us recall the notion of flexible
HS-stability. It was shown in [6] that all infinite residually finite groups � with Kazh-
dan’s property (T) (e.g., SLm.Z/, for m � 3) are not HS-stable. The proof builds on the
observation that any sequence of homomorphisms �nW� ! U.dn/ with dn !1 can be
perturbed slightly to obtain an asymptotic homomorphism 'nW�!U.dn � 1/. To account
for this method of constructing asymptotic homomorphisms, the following weakening of
the notion of HS-stability was suggested in [6].

Definition 1.3. A countable group � is called flexibly HS-stable if for any asymptotic
homomorphism 'nW� ! U.dn/, we can find homomorphisms �nW� ! U.Dn/, for some
integers Dn � dn, such that

lim
n!1

Dn

dn
D 1 and lim

n!1
k'n.g/ � pn�n.g/pnk2 D 0;

for every g 2 � , where pnWCDn ! Cdn denotes the orthogonal projection for every
n 2 N.

If a Connes-embeddable countable group � is flexibly HS-stable, then it must be resid-
ually finite. On the other hand, deciding if a residually finite group is flexibly HS-stable or
not is a challenging problem. For instance, while the arithmetic groups SLm.Z/, m � 3,
are not HS-stable by [6], it is open whether they are flexibly HS-stable. The first examples
of residually finite groups which are not flexibly HS-stable were found only recently
in [32], where certain groups with the relative property (T), including Z2 Ì SL2.Z/, were
shown to have this property.

Theorem B provides the only other known examples of non-flexibly HS-stable resid-
ually finite groups, and the first examples that do not have infinite subgroups with the
relative property (T). Moreover, these are the first examples of residually finite non-HS-
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stable groups that neither satisfy property (T;FD) (see [6, Section 4.2]) nor have infinite
subgroups with the relative property (T).

Remark 1.4. We now compare Theorem B with two related results concerning other
notions of stability. A countable group � is called P-stable if it is stable with respect to
the class of finite permutation groups endowed with the normalized Hamming distance
(see [30] for a survey on P-stability). As shown in [30, Corollary B], P-stability is not
closed under direct products. Given the similarity between the notions of HS-stability
and P-stability [2], it should not be surprising that HS-stability is not closed under direct
products. We note however that the methods of [30] cannot be adapted to prove The-
orem B. The approach of [30], which exploits the discrete aspects of P-stability, allows
us to prove that the group F2 � Z is not P-stable, despite being HS-stable by [23, The-
orem 1]. As we explain at the end of the introduction, to prove Theorem B we introduce
an entirely new approach based on ideas from the theory of von Neumann algebras.

A countable group � is called W�-tracially stable if it is stable with respect to the
class of unitary groups of tracial von Neumann algebras endowed with their 2-norms [23].
Theorem B strengthens [31, Theorem E] which showed that Fk � Fm is not W�-tracially
stable, for any integers k; m � 2. Indeed, being W�-tracial stable is stronger than being
HS-stable, which corresponds to restricting to the unitary groups of finite-dimensional
von Neumann algebras.

Next, we mention two operator algebraic consequences of Theorem B and explain
how the first of these implies Theorem A. Let .Mn; �n/, n 2 N, be tracial von Neumann
algebras and ! be a free ultrafilter on N. The tracial ultraproduct von Neumann algebraQ
!Mn is defined as the quotient `1.N;Mn/=I!.N;Mn/ of the C�-algebra `1.N;Mn/

of sequences .xn/2
Q

NMn with supkxnk<1 by its ideal I!.N;Mn/ of sequences .xn/
such that limn!! kxnk2 D 0.

First, by [31, Proposition C], if P ,Q are commuting separable subalgebras of a tracial
ultraproduct

Q
!Mn, and P is amenable, then there are commuting von Neumann sub-

algebras Pn,Qn ofMn, for all n 2N, such thatP �
Q
! Pn andQ�

Q
!Qn. In contrast,

Theorem B implies that, without the amenability assumption, this lifting property fails in
certain matricial ultraproducts.

Corollary C. There exist a sequence .dn/ � N and commuting separable von Neumann
subalgebras P ,Q of

Q
! Mdn.C/ such that the following holds: there are no commuting

von Neumann subalgebras Pn, Qn of Mdn.C/, for all n 2 N, such that P �
Q
! Pn and

Q �
Q
!Qn.

By [31, Theorem B], the conclusion of Corollary C holds for the ultrapower M!

of certain, fairly complicated, examples of II1 factors M . Corollary C provides the first
natural examples of tracial ultraproducts that satisfy its conclusion. We conjecture that
this phenomenon holds for any ultraproduct II1 factor

Q
!Mn.

Since F2 � F2 is not HS-stable by Theorem B, we can take P and Q in Corol-
lary C to be generated by pairs of unitaries ¹U1; U2º and ¹V1; V2º, respectively. Then P
andQ can be generated by contractions A and B . Represent AD .An/, B D .Bn/, where



Almost commuting matrices and stability for product groups 4031

An;Bn 2Mdn.C/ are contractions for every n2N. By Corollary C, there are no commut-
ing von Neumann subalgebrasPn,Qn of Mdn.C/, for all n2N, such thatA2

Q
! Pn and

B 2
Q
! Qn. This implies that, after passing to a subsequence, the contractions An, Bn

satisfy the conclusion of Theorem A.
Second, Theorem B can be reformulated as a property of the full group C�-algebra

C�.F2 � F2/. This has been an important object of study since the work of Kirchberg [34]
showed that certain properties of C�.F2 � F2/ (being residually finite or having a faithful
trace) are equivalent to Connes’ embedding problem (see [41, 44]).

Theorem B implies the existence of a �-homomorphism

'W C�.F2 � F2/!
Y
!

Mdn.C/;

for a sequence .dn/ � N, which does not “lift” to a �-homomorphism

z'W C�.F2 � F2/! `1.N;Mdn.C//:

Specifically, there is no �-homomorphism z' such that �ı z'D', where � W`1.N;Mdn/!Q
! Mdn is the quotient homomorphism. We do not know if ' admits a unital completely

positive (ucp) lift z'. If no ucp lift exists, then it would follow that C�.F2 � F2/ does
not have Kirchberg’s local lifting property (LLP) (see [41, Corollary 3.12]). Whether
C�.F2 � F2/ has the LLP is an open problem which goes back to [41] (see also [42, 44]).

Comments on the proof of Theorem B

We end the introduction with a detailed outline of the proof of Theorem B. Let us first
reduce it to a simpler statement. As we prove in Lemma 2.6, if �1, �2 are HS-stable, then
�1 � �2 is flexibly HS-stable if and only if it is HS-stable. Also, if .�1 �ƒ1/� .�2 �ƒ2/
is HS-stable, for groups �1, �2, ƒ1, ƒ2, then �1 � �2 must be HS-stable. These facts
imply that proving Theorem B is equivalent to showing that F2 � F2 is not HS-stable.
To prove the latter statement, we will reason by contradiction assuming that F2 � F2 is
HS-stable.

The proof of Theorem B is divided into two parts, which we discuss separately below.
A main novelty of our approach is the use of ideas and techniques from the theory of
(infinite-dimensional) von Neumann algebras to prove a statement concerning finite unit-
ary matrices. We combine small perturbation results for von Neumann algebras with
finite-dimensional analogues of two key ideas (the use of deformations and spectral gap
arguments) from Popa’s deformation/rigidity theory.

The first part of the proof, which occupies Sections 3–5, is devoted to proving the
following result. This asserts, roughly speaking, that if F2 � F2 is HS-stable, then given
any (arbitrarily large) finite sets U D ¹U1; : : : ; Ukº and V D ¹V1; : : : ; Vmº of unitaries
of arbitrary dimension which almost commute (in the sense that kŒU; V �k2 � 0, for all
U 2 U, V 2 V ), we can find sets of unitaries zU D ¹ zU1; : : : ; zUkº and zV D ¹ zV1; : : : ; zVmº
which commute and are close to U and V .
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Proposition 1.5. If F2 � F2 is HS-stable, then for every " > 0, there exists ı > 0 such
that the following holds: for every k;m; n 2 N and every U1; : : : ; Uk ; V1; : : : ; Vm 2 U.n/
satisfying 1

km

Pk
iD1

Pm
jD1 kŒUi ; Vj �k

2
2 � ı, we can find zU1; : : : ; zUk ; zV1; : : : ; zVm 2 U.n/

such that

(1) Œ zUi ; zVj � D 0, for every 1 � i � k and 1 � j � m,

(2) 1
k

Pk
iD1 kUi �

zUik
2
2 � " and 1

m

Pm
jD1 kVj �

zVj k
2
2 � ".

To illustrate the strength of the conclusion of Proposition 1.5, we make the following
remark.

Remark 1.6. Suppose that k; m 2 N. Then Fk � Fm is HS-stable if and only if for
every " > 0, there exists ı > 0 such that the following holds: for every n 2 N and every
U1; : : : ;Uk ;V1; : : : ;Vm 2U.n/ satisfying kŒUi ;Vj �k2 � ı, for all 1� i � k and 1� j �m,
we can find zU1; : : : ; zUk ; zV1; : : : ; zVm 2 U.n/ such that

Œ zUi ; zVj � D 0; kUi � zUik2 � " and kVj � zVj k2 � ";

for all 1 � i � k and 1 � j � m. In view of this, Proposition 1.5 can be interpreted as
follows: if F2 � F2 is HS-stable, then Fk � Fm is HS-stable and, moreover, it satisfies an
“averaged” version of HS-stability, uniformly over all k;m 2 N.

We continue with some comments on the proof of Proposition 1.5 under the stronger
assumption that F3 �F3 is HS-stable. The proof of Proposition 1.5 has three main ingredi-
ents. All subalgebras of matrix algebras considered below are taken to be von Neumann
(i.e., self-adjoint) subalgebras.

The first ingredient is a small perturbation result for subalgebras of a tensor product
of three matrix algebras

M DMk.C/˝Mn.C/˝Mm.C/

(see Lemma 3.5). Informally, we prove that any subalgebra P � M which almost con-
tains Mk.C/˝ 1˝ 1 and is almost contained in Mk.C/˝Mn.C/˝ 1 must be close to
a subalgebra of the form Mk.C/˝ S ˝ 1, for some subalgebra S �Mn.C/. Here, for
subalgebras P;Q �M and " > 0, we say that P is "-contained inQ if for all x 2 P with
kxk � 1 there is y 2 Q with kx � yk2 � ", and that P is "-close to Q if P �" Q and
Q �" P [40]. A crucial aspect of Lemma 3.5 is that the constants involved are independ-
ent of k; n;m 2 N. Its proof is based on ideas from [11, 45, 46] and in particular uses the
basic construction as in [11].

The second ingredient in the proof of the Proposition 1.5 is the existence of pairs of
unitaries satisfying the following “spectral gap” condition: for a universal constant � > 0
and every n 2 N, we can find X1; X2 2 U.n/ such that

kx � �.x/1k2 � �.kŒX1; x�k2 C kŒX2; x�k2/;

for every x 2 Mn.C/ (see Lemma 4.3). This is a consequence of a result of Hastings
[26, 43] on quantum expanders.
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To finish the proof of Proposition 1.5, we combine the first two ingredients with
a “matrix trick”. Let U1; : : : ; Uk ; V1; : : : ; Vm 2 U.n/ such that kŒUi ; Vj �k2 � 0 for ev-
ery i , j . Let X1; X2 2 U.k/ and Y1; Y2 2 U.m/ be pairs of unitaries with spectral gap.
We define M DMk.C/˝Mn.C/˝Mm.C/ and unitaries Z1; Z2; Z3; T1; T2; T3 2M
by letting

Z1 D X1 ˝ 1˝ 1; Z2 D X2 ˝ 1˝ 1; Z3 D

kX
iD1

ei;i ˝ Ui ˝ 1;

T1 D 1˝ 1˝ Y1; T2 D 1˝ 1˝ Y2; T3 D

mX
jD1

1˝ Vj ˝ ej;j :

Then kŒZi ; Tj �k2 � 0, for every 1 � i; j � 3. Since F3 � F3 is assumed to be HS-
stable, there are unitaries Z0i ; T

0
j 2 M such that ŒZ0i ; T

0
j � D 0, kZi � Z0ik2 � 0 and

kTj � T
0
j k2 � 0, for every 1 � i; j � 3.

Let P be the subalgebra of M generated by Z01, Z02, Z03, and let Q be its commut-
ant. Since P almost commutes with T1, T2, using the spectral gap property of Y1, Y2
via an argument inspired by [47, 48], we deduce that P is almost contained in Mk.C/˝
Mn.C/˝ 1. Similarly, it follows that Q is almost contained in 1˝Mn.C/˝Mm.C/.
Since P is the commutant of Q, the bicommutant theorem implies that Mk.C/˝ 1˝1
is almost contained in P . The first ingredient of the proof now provides commuting sub-
algebras R; S � Mn.C/ such that P is close to Mk.C/ ˝ R ˝ 1 and Q is close to
1˝ S ˝Mm.C/. At this point, the conclusion of Proposition 1.5 follows easily.

In the second part of the proof of Theorem B, presented in Section 6, we construct
a counterexample to the conclusion of Proposition 1.5 and derive that F2 � F2 is not
HS-stable. Our construction, which we describe in detail below, is inspired by Popa’s
malleable deformation for noncommutative Bernoulli actions, see [46,57], and its variant
introduced in [29].

Construction 1.7. Let n 2 N and t 2 R.

(1) We denoteMnD
Nn
kD1M2.C/ŠM2n.C/ andAnD

Nn
kD1C2ŠC2n . We viewAn

as a subalgebra of Mn, where we embed C2 �M2.C/ as the diagonal matrices.

(2) For 1� i � n, letXn;i D 1˝� � �˝ 1˝ � ˝ 1˝� � �˝ 1 2An, where � D
�
1 0
0 �1

�
2C2

is placed on the i -th tensor position.

(3) Let Gn be a finite group of unitaries which generates An ˝Mn.

(4) We define Ut 2 U.C2 ˝ C2/ by Ut D P C eit .1 � P /, where P W C2 ˝ C2 !

C2 ˝C2 is the orthogonal projection onto the one-dimensional space spanned by
e1 ˝ e2 � e2 ˝ e1.

(5) We identifyMn˝MnD
Nn
kD1.M2.C/˝M2.C// and let �t;n be the automorphism

of Mn ˝Mn given by �t;n.
Nn
kD1 xk/ D

Nn
kD1 UtxkU

�
t .

(6) Finally, consider the following two sets of unitaries in Mn ˝Mn: Un D ¹Xn;i ˝ 1 j

1 � i � nº and Vt;n D Gn [ �t;n.Gn/.
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Then Un and Vt;n almost commute: kŒU; V �k2 � 4t , for U 2 Un, V 2 Vt;n. This is
because Un commutes withGn and k�t;n.U /�U k2 � 2t , for every U 2Un. Using this,
we show that if t > 0 is small enough, then the sets Un, Vt;n contradict the conclusion of
Proposition 1.5 for large n 2 N.

To informally outline our argument, suppose that F2 � F2 is HS-stable. Then Pro-
position 1.5 provides commuting subalgebras Pn, Qn of Mn ˝Mn such that Pn almost
contains Un and Qn almost contains Vt;n. Thus, Pn almost commutes with Vt;n and
hence with the generating groups Gn and �t;n.Gn/ of An ˝Mn and �t;n.An ˝Mn/,
respectively. By passing to commutants, we derive that Pn is almost contained in both
An ˝ 1 and �t;n.An ˝ 1/. By perturbing Pn slightly, we can assume that Pn is a sub-
algebra of An ˝ 1 which is almost contained in �t;n.An ˝ 1/ (see Corollary 3.3).

Assume for a moment that nD1 in the above construction. Then .�t;1/t2R recovers
the malleable deformation of the Bernoulli action on the hyperfinite II1 factor M1 D
x
N1
kD1M2.C/, see [46,57]. In this case, if a subalgebra P ofM1˝ 1 is almost contained

in �t;1.M1˝ 1/, then it must have a finite-dimensional direct summand [29]. While this
result cannot be used in our finite-dimensional setting, we use the intuition behind its
proof and a dimension argument to derive a contradiction.

Since Pn � An ˝ 1 is almost contained in �t;n.An ˝ 1/, it is almost contained in
the subspace spanned by tensors from An D

Nn
kD1 C2 of length at most l , for some l

independent on n. This forces the dimension of Pn to be at most polynomial in n. But Pn
also almost contains Un and so all tensors of length 1. This forces the dimension of Pn
to grow exponentially in n, giving a contradiction as n!1.

Remark 1.8. The last step of the proof is of independent interest, so let us explain it in
more detail. Let Cn be a subalgebra of An D

Nn
kD1 C2 which satisfies

1

n

nX
iD1

kXn;i � ECn.Xn;i /k
2
2 � "; (?)

where " 2 .0; 1
8
/ and ECn is the conditional expectation onto Cn. Lemma 6.6 implies that

lim inf
log2 .dim.Cn//

n
� 1 � H.4"/;

where
H.ı/ D �ı log2.ı/ � .1 � ı/ log2.1 � ı/

is the binary entropy function of ı 2 .0; 1/.
In fact, this estimate is essentially sharp: Lemma 6.8 implies that for every n 2 N,

there is a subalgebra Cn of An which satisfies (?) and that

lim sup
log2 .dim.Cn//

n
� 1 � H

� "
8

�
:

Remark 1.9. Let � D Fk � Fm, for integers k; m � 2. Note that Un and Vt;n almost
commute in the operator norm: kŒU; V �k � 4t , for U 2 Un, V 2 Vt;n. Using this fact,



Almost commuting matrices and stability for product groups 4035

a close inspection of the proof of Theorem B shows that we proved the following stronger
statement: the asymptotic homomorphism 'nW� ! U.dn/, which witnesses that � is not
flexibly HS-stable, is an asymptotic homomorphism in the operator norm, i.e.,

lim
n!1

k'n.gh/ � 'n.g/'n.h/k D 0;

for all g; h 2 � . Therefore, � fails a hybrid notion of stability which weakens both the
notion of matricial stability studied in [12, 15] and (flexible) HS-stability.

2. Preliminaries

While the main results of this paper concern matrix algebras, the proofs are based on
ideas and techniques from the theory of von Neumann algebras. Moreover, our proofs
often extend with no additional effort from matrix algebras to general tracial von Neu-
mann algebras. As such, it will be convenient to work in the latter framework. In this
section, we recall several basic notions and constructions concerning von Neumann algeb-
ras (see [1, 52] for more information).

2.1. Von Neumann algebras

For a complex Hilbert space H , we denote by B.H / the algebra of bounded linear oper-
ators on H and by U.H /D ¹u 2 B.H / j u�uD uu� D 1º the group of unitary operators
on H . For x 2 B.H /, we denote by kxk its operator norm. A set of operators S � B.H /

is called self-adjoint if x� 2 S , for all x 2 S . We denote by S 0 the commutant of S , i.e.,
the set of operators y 2 B.H / such that xy D yx, for all x 2 S .

A self-adjoint subalgebra M � B.H / is a von Neumann algebra if it is closed in the
weak operator topology. By von Neumann bicommutant’s theorem, a unital self-adjoint
subalgebra M � B.H / is a von Neumann algebra if and only if it is equal to its bicom-
mutant, M D .M 0/0. From now on, we assume that all von Neumann algebras M are
unital. We denote by Z.M/DM 0 \M the center ofM , by .M/1 D ¹x 2M j kxk � 1º

the unit ball of M , by MC D ¹x 2 M j x � 0º the set of positive elements of M , and
by U.M/ the group of unitary operators in M . We call M a factor if Z.M/ D C1. Two
projections p; q 2 M are Murray–von Neumann equivalent if there is a partial isometry
v 2M such that v�v D p and vv� D q. A linear functional 'WM ! C is called

(a) a state if '.1/ D 1 and '.x/ � 0, for every x 2MC,

(b) faithful if having '.x/ D 0, for some x 2MC, implies that x D 0, and

(c) normal if sup'.xi / D '.sup xi /, for any increasing net .xi / �MC.

A tracial von Neumann algebra is a pair .M; �/ consisting of a von Neumann algebra M
and a trace � , i.e., a faithful normal state � WM ! C which satisfies �.xy/ D �.yx/, for
all x; y 2 M . We endow M with the 1- and 2-norms given by kxk1 D �..x�x/

1
2 / and

kxk2 D �.x�x/
1
2 , for all x 2 M . Then kxyk2 � kxkkyk2 and kxyk2 � kxk2kyk, for

all x; y 2 M . We denote by L2.M/ the Hilbert space obtained as the closure of M with
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respect to k � k2, and consider the standard representation M � B.L2.M// given by the
left multiplication action of M on L2.M/. For further reference, we recall the Powers–
Størmer inequality (see [9, Proposition 6.2.4] and [1, Theorem 7.3.7])

kh � kk22 � kh
2
� k2k1 � kh � kk2khC kk2; for every h; k 2MC; (2.1)

and the following inequality

j�.p/ � �.q/j � kp � qk22; for every projections p; q 2M: (2.2)

The latter inequality holds because kp � qk22 D �.p/ C �.q/ � 2�.pq/ and �.pq/ �
min¹�.p/; �.q/º. We also note that (2.1) and (2.2) more generally hold when � WM ! C
is a semifinite trace.

The matrix algebra Mn.C/ D B.Cn/ with its normalized trace � WMn.C/! C giv-
en by

�.x/ D
1

n

nX
iD1

xi;i ; for x D .xi;j /ni;jD1 2Mn.C/;

is a tracial von Neumann algebra. The associated 2-norm is the normalized Hilbert–
Schmidt norm

kxk2 D

�
1

n

nX
i;jD1

jxi;j j
2

� 1
2

; for x D .xi;j /ni;jD1 2Mn.C/:

Since Mn.C/ has a trivial center, it is a tracial factor. Any tracial factor is either finite-
dimensional and isomorphic to Mn.C/, for some n 2 N, or infinite-dimensional and
called a II1 factor.

Moreover, any finite-dimensional von Neumann algebra M is isomorphic to a direct
sum of matrix algebras and therefore is tracial. Indeed, if z1; : : : ; zk 2 Z.M/ are the
minimal projections, thenM D

Lk
iD1Mzi , whereMzi is a finite-dimensional factor and

thus a matrix algebra, for 1 � i � k. We claim that there is a finite subgroup G �U.M/

which generates M . If M D Mn.C/, we can take G to be a group of unitaries of the
form ."iı�.i/;j /

n
i;jD1, where "1; : : : ; "n 2 ¹˙1º and � is a permutation of ¹1; : : : ; nº. In

general, if Gi �U.Mzi / is a generating group, for every 1 � i � k, then the finite group
G D ¹u1 ˚ � � � ˚ uk j u1 2 G1; : : : ; uk 2 Gkº generates M .

A subalgebra of a matrix algebra Mn.C/ is a von Neumann subalgebra if and only
if it is self-adjoint. Nevertheless, for consistency, we will call self-adjoint subalgebras
of Mn.C/ von Neumann algebras.

2.2. The basic construction

Let .M; �/ be a tracial von Neumann algebra together with a von Neumann subalgebra
Q � M . Then we have an embedding L2.Q/ � L2.M/. We denote by eQW L2.M/!

L2.Q/ the orthogonal projection onto L2.Q/. We denote by EQWM !Q the conditional
expectation onto Q, i.e., the unique map satisfying �.EQ.x/y/ D �.xy/, for all x 2 M
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and y 2 Q. If we consider the natural embedding M � L2.M/, then eQ.M/ � Q and
EQ D eQ jM .

Jones’ basic construction hM; eQi of the inclusion Q � M is defined as the von
Neumann subalgebra of B.L2.M// generated byM and eQ. Let J WL2.M/! L2.M/ be
the involution given by J.x/ D x�, for all x 2M . Then hM; eQi is equal to both JQ0J ,
the commutant of the right multiplication action of Q on L2.M/, and the weak operator
closure of the span of ¹xeQy j x; y 2M º.

The basic construction admits a normal semifinite trace TrW hM; eQiC ! Œ0;C1�

which satisfies

Tr.xeQy/ D �.xy/; for every x; y 2M:

It also admits a normal semifinite center-valued tracial weight ˆW hM; eQiC ! 1Z.Q/C
which satisfies TrD � ıˆ,ˆ.X�X/Dˆ.XX�/, for everyX 2 hM;eQi, andˆ.ST �/D
EZ.Q/.T

�S/, for all bounded right Q-linear operators S; T W L2.Q/! L2.M/ (see [1,
Section 9.4]). Here, 1Z.Q/C denotes the set of positive operators affiliated with Z.Q/. If S
and T are the left multiplication operators by x and y�, for x; y 2M , then ST � D xeQy
and T �S D EQ.yx/. Thus, we conclude that

ˆ.xeQy/ D EZ.Q/.yx/; for every x; y 2M:

If z 2 Z.Q/, then eQJ zJ D eQz� and thus

ˆ.xeQyJ zJ / D ˆ.xeQz
�y/ D EZ.Q/.z

�yx/ D ˆ.xeQy/z
�; for every x; y 2M:

Therefore, it follows that

ˆ.TJ zJ / D ˆ.T /z�; for every T 2 hM; eQiC and z 2 Z.Q/: (2.3)

We note that if M is finite-dimensional, then hM; eQi is finite-dimensional and Tr
and ˆ are finite, i.e., Tr.1/ < 1 and ˆ.1/ 2 Z.Q/. We next record two well-known
properties of ˆ.

Lemma 2.1. Given two projections p; q 2 hM; eQi, the following hold:

(1) p is equivalent to a subprojection of q if and only if ˆ.p/ � ˆ.q/.

(2) There is a projection r 2 hM; eQi such that r � p and ˆ.r/ D min¹ˆ.p/;ˆ.q/º.

Proof. For (1), see [1, Proposition 9.1.8.]. For (2), it is easy to see that any maximal
projection r � p, which is equivalent to a subprojection of q, has the desired property.

2.3. Almost containment

Let us recall the notion of "-containment studied in [11, 37, 40]. Let P � pMp, Q �
qMq be von Neumann subalgebras of a tracial von Neumann algebra .M; �/, for pro-
jections p; q 2 M . For " � 0, we write P �" Q and say that P is "-contained in Q if
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kx � EQ.x/k2 � ", for all x 2 .P /1. We also define the distance between P and Q by
letting

d.P;Q/ WD min¹" � 0 j P �" Q and Q �" P º:

Convention. To specify the trace � , we sometimes write kxk2;� ,�";� , d� instead of kxk2,
�", d.

In the rest of this subsection, we prove several useful lemmas. We start with two well-
known results.

Lemma 2.2. The following hold:

(1) LetM be a von Neumann algebra with a faithful normal semifinite trace � . If p; q2M
are equivalent finite projections, then there is u 2 U.M/ satisfying upu� D q and
ku � 1k2 � 3kp � qk2.

(2) Let .M; �/ be a tracial von Neumann algebra, P � M a von Neumann subalgebra
and u 2 U.M/. Then there is v 2 U.P / satisfying ku � vk2 � 3ku � EP .u/k2.

Proof. For (1), see [11, Lemma 2.2]. For (2), using the polar decomposition of EP .u/
we find v 2 U.P / such that EP .u/ D vjEP .u/j. Then ku � vk2 � ku � EP .u/k2 C
k1� jEP .u/jk2. Since k1� jEP .u/jk2 � k1� jEP .u/j2k2 D ku�u� EP .u/�EP .u/k2 �
2ku � EP .u/k2, (2) follows.

Lemma 2.3. Let .M; �/ be a tracial von Neumann algebra and P � pMp;Q � qMq

be von Neumann subalgebras, for some projections p; q 2M . Assume that P �" Q and
kp � qk2 � ", for some " > 0. Then Q0 \ qMq �4" P

0 \ pMp.

Proof. Let y 2 .Q0\ qMq/1. Then for every u2U.P /, we have that Œu;pyp�DpŒu;y�p
and thus kŒu;pyp�k2 � kŒu;y�k2 D kŒu� EQ.u/;y�k2 � 2ku� EQ.u/k2� 2". Since this
holds for every u2U.P /, it follows that kpyp�EP 0\pMp.pyp/k2� 2". Since yD qyq,
we also have that ky � pypk2 D kqyq � pypk2 � 2kp � qk2 � 2". By combining the
last two inequalities, we derive that ky � EP 0\pMp.y/k2 � ky � EP 0\pMp.pyp/k2 � 4",
which finishes the proof.

The following lemma is a simple application of the basic construction.

Lemma 2.4. Let .M; �/ be a tracial von Neumann algebra and let P;Q � M be von
Neumann subalgebras. Assume that P is finite-dimensional and G � U.P / is a finite
subgroup which generates P and satisfies 1

jGj

P
U2G kU � EQ.U /k22 � ", for some " > 0.

Then P �p2" Q.

Proof. Consider the basic construction hM; eQi with its canonical semifinite trace TrW
hM; eQi ! C. Denote f D 1

jGj

P
U2G UeQU

� 2 hM; eQi. Then an easy calculation
shows that

kf � eQk
2
2;Tr D

1

jGj

X
U2G

kU � EQ.U /k22 � ": (2.4)
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Since G is a group, f commutes with G and thus with P . Therefore, if x 2 .P /1, then
using that x commutes with f and (2.4), we get that

kx � EQ.x/k22 D
1

2
kxeQ � eQxk

2
2;Tr D

1

2
kx.eQ � f / � .eQ � f /xk

2
2;Tr

� 2keQ � f k
2
2;Tr � 2":

This proves the conclusion.

Our next goal is to establish the following useful elementary lemma.

Lemma 2.5. Let .M; �/ be a tracial factor and P �M a von Neumann subalgebra. Let
" 2 .0; 1

8
� and assume that q 2 M is a projection such that �.1 � q/ D ". Then there is

a von Neumann subalgebra Q � qMq such that d.P;Q/ � 14" 14 .

Proof. We claim that P or P 0 \M contains a projection p such that �.p/ 2 Œ"; "
1
2 �.

Assume that P does not contain a projection p with �.p/ 2 Œ"; "
1
2 �. Since 2" < "

1
2 , there

is a minimal projection r 2 P such that �.r/ > "
1
2 . Let z 2 P be the smallest central

projection such that r � z. Then we can find d 2N such that �.z/D d�.r/,PzŠMd .C/
and there is a �-isomorphism � W rMr ! z.P 0 \M/z such that �.�.x// D d�.x/, for
every x 2 rMr . SinceM is a factor and �.1� q/D ", rMr contains a projection of trace ".
Thus, P 0 \M contains a projection of trace d". Since d" � " and d" D .d"

1
2 /"

1
2 �

.d�.r//"
1
2 D �.z/"

1
2 � "

1
2 , the claim follows.

Let p be a projection in P or P 0 \M with �.p/ 2 Œ"; "
1
2 �. Since �.1� p/ � 1� " D

�.q/ andM is a factor, there is projection q0 2 qMq such that �.q0/D �.1�p/� 1� "
1
2 .

Then 1� p and q0 are equivalent projections in M such that k.1� p/� q0k2 � kpk2 C
k1 � q0k2 D 2�.p/

1
2 � 2"

1
4 . By Lemma 2.2 (1), we can find a unitary u 2 M such that

u.1 � p/u� D q0 and ku � 1k2 � 6"
1
4 .

Finally, since 1 � p belongs to P or P 0 \M , .1 � p/P.1 � p/ is a von Neumann
algebra. Define Q WD u.1� p/P.1� p/u� ˚C.q � q0/. Then Q � qMq is a von Neu-
mann subalgebra and for x 2 .P /1,

kx � u.1 � p/x.1 � p/u�k2 � 2k1 � u.1 � p/k2 � 2.k1 � uk2 C kpk2/ � 14"
1
4 :

Since u.1 � p/x.1 � p/u� 2 Q, we get that P �
14"

1
4
Q. Conversely, let y 2 .Q/1 and

write y D uxu� C ˛.q � q0/, for some x 2 .P /1 and ˛ 2 C with j˛j � 1. Then

ky � xk2 � kuxu
�
� xk2 C kq � q0k2 � 2ku � 1k2 C k1 � q0k2 � 13"

1
4 :

Hence, Q �
13"

1
4
P , and the conclusion follows.

We end this section by illustrating the usefulness of Lemma 2.5 in proving the follow-
ing assertion.

Lemma 2.6. Let �1 and �2 be HS-stable countable groups. Then �1 � �2 is HS-stable
if and only if it is flexibly HS-stable.
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Proof. Let � D �1 � �2. To prove the lemma, we only have to argue that if � is flexibly
HS-stable, then it is HS-stable. To this end, assume that � is flexibly HS-stable.

For n 2 N, denote by �n the normalized trace of Mn.C/. Let �nW� ! U.kn/ be an
asymptotic homomorphism. Since � is flexibly HS-stable, we can find homomorphisms
�nW�!U.Kn/, forKn� kn, such that limn!1

Kn
kn
D 1 and, denoting by enWCKn!Ckn

the orthogonal projection,

lim
n!1

k�n.g/ � en�n.g/enk2;�kn D 0; for every g 2 �: (2.5)

Since limn!1
Kn
kn
D 1 and ken � 1k2;�Kn D

q
Kn�kn
Kn

, for every n 2 N, we get that

lim
n!1

ken � 1k2;�Kn D 0: (2.6)

Let Pn � MKn.C/ be the von Neumann algebra generated by �n.�1/. By using (2.6)
and applying Lemma 2.5, we can find a von Neumann subalgebraQn � enMKn.C/en �
Mkn.C/ such that

lim
n!1

d�Kn .Pn;Qn/ D 0: (2.7)

Next, by combining (2.6), (2.7) and Lemma 2.3 we derive that

lim
n!1

d�Kn .P
0
n \MKn.C/;Q

0
n \Mkn.C// D 0: (2.8)

Since �n.�1/ � Pn and �n.�2/ � P 0n \MKn.C/, combining (2.5), (2.6), (2.7) and (2.8)
implies that

lim
n!1

k�n.g1/ � EQn.�n.g1//k2;�kn D 0

and
lim
n!1

k�n.g2/ � EQ0n\Mkn .C/
.�n.g2//k2;�kn D 0;

for every g1 2 �1 and g2 2 �2. By putting together these facts and Lemma 2.2 (2), we
can find maps �1n W�1 ! U.Qn/ and �2n W�2 ! U.Q0n \Mkn.C// such that

lim
n!1

k�n.g1/ � �
1
n .g1/k2;�kn D 0 and lim

n!1
k�n.g2/ � �

2
n .g2/k2;�kn D 0;

for every g1 2 �1 and g2 2 �2.
Then .�1n / and .�2n / are asymptotic homomorphisms of �1 and �2, respectively. Since

�1 and �2 are HS-stable, we can find homomorphisms ı1nW�1 ! U.Qn/ and ı2nW�2 !
U.Q0n \Mkn.C// such that

lim
n!1

k�1n .g1/ � ı
1
n.g1/k2;�kn D 0 and lim

n!1
k�2n .g2/ � ı

2
n.g2/k2;�kn D 0;

for every g1 2 �1 and g2 2 �2. Then we have limn!1 k�n.g1/ � ı
1
n.g1/k2;�kn D 0 and

limn!1 k�n.g2/ � ı
2
n.g2/k2;�kn D 0, for every g1 2 �1 and g2 2 �2.

Finally, since ı1n and ı2n have commuting images for every n 2 N, we can define
a homomorphism ınW�!U.kn/ by letting ın.g1; g2/D ı1n.g1/ı

2
n.g2/, for every g1 2 �1

and g2 2 �2. It is then clear that limn!1 k�n.g/ � ın.g/k2;�kn D 0, for every g 2 � .
This proves that � is HS-stable.
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3. Perturbation results

In this section, we study the almost containment relation for tracial von Neumann algeb-
ras. A crucial feature of the results is that they do not depend on the dimensions of the
algebras involved.

3.1. A “small perturbation” lemma

Our main result is the following small perturbation lemma. If P and Q are subalgebras
of a tracial von Neumann algebra such that P is almost contained in Q, we show that P
must be close to a subalgebra of M2.C/˝Q. For a tracial von Neumann algebra .M; �/,
we equip M2.C/ ˝M with the trace z� given by the formula z�.

P2
i;jD1 ei;j ˝ xi;j / D

1
2
.�.x1;1/C �.x2;2//.

Lemma 3.1. Let .M; �/ be a tracial von Neumann algebra and let P;Q � M be von
Neumann subalgebras. Assume that P �" Q, for some " 2 .0; 1

200
/. Then there exists a

�-homomorphism � WP !M2.C/˝Q such that k�.x/� e1;1˝ xk2;z� � 30"
1
8 , for every

x 2 .P /1.

Lemma 3.1 implies that there is a non-trivial �-homomorphism fromP to M2.C/˝Q.
This generalizes [11, Theorem 4.7] where the same conclusion was proved assuming
that Q is a factor. As shown in [45, Theorem A.2] under certain conditions (e.g., if
P;Q � M are irreducible subfactors and P � M is regular) P �" Q implies the exist-
ence of u 2 U.M/ such that uPu� � Q. However, such a strong conclusion does not
hold in general even for irreducible subfactors P;Q �M (see [49, Proposition 5.5]).

The proof of Lemma 3.1 relies on ideas of Christensen [11] and Popa [45, 46]. As
in [11], we use the basic construction hM; eQi and find a projection f 2 P 0 \ hM; eQi
which is close to eQ. Then, inspired by an argument in [46], we show that after repla-
cing f by fJ zJ , for a projection z 2 Z.Q/ close to 1, one may assume that e1;1 ˝ f is
subequivalent to 1˝ eQ in M2.C/˝ hM; eqi.

Proof of Lemma 3.1. Let TrW hM; eQi ! C be the canonical tracial weight. Since

kueQu
�
� eQk

2
2;Tr D 2.1 � Tr.ueQu�eQ// D 2.1 � �.uEQ.u/�// D 2ku � EQ.u/k22;

we get that
kueQu

�
� eQk2;Tr �

p
2"; for every u 2 U.P /: (3.1)

Let C � hM; eQi be the weak operator closure of the convex hull of the set ¹ueQu� j
u 2 U.P /º. Then C is k � k2;Tr-closed and admits an element h of minimal k � k2;Tr-
norm which satisfies 0 � h � 1, h 2 P 0 \ hM; eQi and kh � eQk2;Tr �

p
2" by (3.1)

(see [11, Section 3] or [3, Lemma 14.3.3]).
Define the spectral projection f WD 1Œ1�ı 12 ;1�.h/, where ı D

p
2". Then f 2 P 0 \

hM; eQi and kf � eQk2;Tr � ı
1
2 .1 � ı

1
2 /�1 by [11, Lemma 2.1]. As " < 1

200
, we have

that .1 � ı
1
2 /�1 <

p
2 and thus

kf � eQk2;Tr � 2"
1
2 : (3.2)
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Since keQk2;Tr D 1 and 2"
1
2 < 1, we get that kf C eQk2;Tr � 3. Combining the Powers–

Størmer inequality (2.1) and (3.2), we further get that

kf � eQk1;Tr � kf � eQk2;Tr � kf C eQk2;Tr � 6"
1
2 : (3.3)

LetˆW hM;eQiC!1Z.Q/C be the center-valued tracial weight defined in Section 2.2.
Define the spectral projection zWD 1Œ0;" 14 �.ˆ.jf � eQj//. Then z 2Z.Q/ and "

1
4 .1� z/�

ˆ.jf � eQj/. Since TrD � ıˆ, (3.3) implies that �.ˆ.jf � eQj//Dkf � eQk1;Tr � 6"
1
2 .

Thus, �.1 � z/ � 6"
1
4 and hence

k1 � zk2;� � 3"
1
8 : (3.4)

Let J W L2.M/! L2.M/ be the canonical involution given by J.x/ D x�, and put
z0D J zJ . Since hM;eQi D JQ0J , we have that z0 2M 0 \Z.hM;eQi/. Thus, gD f z0 2
P 0 \ hM; eQi is a projection. Moreover, we have that eQz0 D eQz, while (2.3) gives that
ˆ.x/z D ˆ.xz0/, for every x 2 hM;eQi. Altogether, since ˆ.jf � eQj/z � "

1
4 z, we get

that

ˆ.jg � eQzj/ D ˆ.jf z
0
� eQz

0
j/ D ˆ.jf � eQjz

0/ D ˆ.jf � eQj/z

� "
1
4 z D "

1
4ˆ.eQz/:

From this we deduce that

.1 � "
1
4 /ˆ.eQz/ � ˆ.g/ � .1C "

1
4 /ˆ.eQz/: (3.5)

By Lemma 2.1 (2), we can find a projection p1 2 hM;eQi such that p1 � g andˆ.p1/D
min¹ˆ.g/;ˆ.eQz/º. Put p2 D g � p1. Since ˆ.p1/ � ˆ.eQz/, by Lemma 2.1 (1), there
is a projection q1 2 hM; eQi such that q1 � eQz and q1 is equivalent to p1. Since
ˆ.g � p1/ D max¹0; ˆ.g/ � ˆ.eQz/º, (3.5) implies that ˆ.g � p1/ � "

1
4ˆ.eQz/ and

thus Tr.g �p1/� "
1
4 . Similarly, since p1 and q1 are equivalent, we haveˆ.p1/Dˆ.q1/,

thus ˆ.eQz � q1/ D ˆ.eQz � p1/ � "
1
4ˆ.eQz/ and hence Tr.eQz � q1/ � "

1
4 .

The last paragraph gives that kg � p1k2;Tr � "
1
8 and keQz � q1k2;Tr � "

1
8 . Moreover,

(3.2) gives that

kg � eQzk2;Tr D k.f � eQ/z
0
k2;Tr � kf � eQk2;Tr � 6"

1
2 : (3.6)

As " < 1
200

, we have that 6"
1
2 < "

1
8 and the triangle inequality gives that kp1 � q1k2;Tr �

3"
1
8 . By [11, Lemma 2.2], there is a partial isometry v1 2 hM; eQi such that v1v�1 D p1,

v�1v1D q1 and kv1 �p1k2;Tr � 6kp1 � q1k2;Tr � 18"
1
8 . Since Tr.p2/D Tr.g�p1/� "

1
4 ,

we get kp2k2;Tr � "
1
8 and so

kv1 � gk2;Tr � kv1 � p1k2;Tr C kp2k2;Tr � 19"
1
8 : (3.7)

Next, since ˆ.p2/ D ˆ.g � p1/ � "
1
4ˆ.eQz/ � ˆ.eQz/, by Lemma 2.1 (1) we can

find a partial isometry v2 2 hM; eQi with v2v�2 D p2 and v�2v2 � eQ. Then

kv2k2;Tr D kp2k2;Tr � "
1
8 : (3.8)
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Let v D .v1 v2/ 2 M1;2.C/ ˝ hM; eQi. Then v is a partial isometry with v�v 2
M2.C/˝ hM; eQi, v�v � 1˝ eQ and vv� D g. As g 2 P 0 \ hM; eQi, the map P 3
x 7! v�xv 2M2.C/˝ hM; eQi is a �-homomorphism. If x 2 P , then

v�xv 2 .1˝ eQ/.M2.C/˝ hM; eQi/.1˝ eQ/ DM2.C/˝QeQ:

Since Q 3 y 7! ye 2 QeQ is a �-isomorphism, there is a �-homomorphism � W P !

M2.C/˝Q such that

�.x/.1˝ eQ/ D v
�xv; for every x 2 P: (3.9)

As 6"
1
2 < "

1
8 , (3.4) and (3.6) give that kg� eQk2;Tr �kg� eQzk2;TrCk1 � zk2;� � 4"

1
8 .

Let x 2 .P /1. Since g commutes with x, we have gxg D xg, and the above inequality
and (3.7) imply

kv�1xv1 � xeQk2;Tr � kv
�
1xv1 � gxgk2;Tr C kxg � xeQk2;Tr

� 2kv1 � gk2;Tr C kg � eQk2;Tr � 42"
1
8 : (3.10)

Finally, for y D
P2
i;j ei;j ˝ yi;j 2M2.C/˝ hM; eQi, we denote

eTr.y/ D
1

2
.Tr.y1;1/C Tr.y2;2// and kyk2;eTr D .

eTr.y�y//
1
2 :

Then kz.1˝ eQ/k2;eTr D kzk2;z� , for every z 2M2.C/˝M . This fact together with (3.8),
(3.9) and (3.10) gives that for every x 2 .P /1, we have

k�.x/ � e1;1 ˝ xk2;z�

D k�.x/.1˝ eQ/ � e1;1 ˝ xeQk2;eTr D kv
�xv � e1;1 ˝ xeQk2;eTr

D

�kv�1xv1 � xeQk22;Tr C kv
�
1xv2k

2
2;Tr C kv

�
2xv1k

2
2;Tr C kv

�
2xv2k

2
2;Tr

2

� 1
2

� 30"
1
8 ;

which finishes the proof.

3.2. From almost containment to containment

Let P and Q be von Neumann subalgebras of a tracial von Neumann algebra. If P is
close to a subalgebra of Q, then P is almost contained in Q. In this subsection, we use
Lemma 3.1 to prove that the converse holds provided thatQ is a factor (see Corollary 3.2)
or a finite-dimensional abelian algebra (see Corollary 3.3).

Corollary 3.2. For any " > 0, there is ı D ı1."/ > 0 such that the following holds. Let
.M; �/ be a tracial von Neumann algebra and P;Q � M be von Neumann subalgebras
such thatP �ı Q. Assume thatQ is a factor. Then there exists a von Neumann subalgebra
R � Q such that d.P;R/ � ".
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Proof. Given " > 0, we will prove that any ı > 0 such that ı < 10�16 and 400ı
1
16 < "

works. Assume that P �ı Q. Then Theorem 3.1 gives a �-homomorphism � W P !

M2.C/ ˝ Q with k�.x/ � e1;1 ˝ xk2;z� � 30ı
1
8 , for all x 2 .P /1. Let q D �.1/ and

A D �.P /. Then ke1;1 ˝ 1 � qk2;z� � 30ı
1
8 and dz� .e1;1 ˝ P;A/ � 30ı

1
8 .

Since Q is a factor, we can find projections r 2 q.M2.C/˝Q/q and s 2 e1;1 ˝Q
such that z�.r/ D z�.s/ D min¹z�.q/; 1

2
º. By (2.2), we get that z�.q � r/ � jz�.q/ � 1

2
j �

kq � e1;1 ˝ 1k
2
2;z�
� 900ı

1
4 , so kq � rk2;z� � 30ı

1
8 . In particular, z�.q/ � 1

2
� 900ı

1
4 �

1
3

.
Similarly, ke1;1 ˝ 1 � sk2;z� � 30ı

1
8 , thus

ks � rk2;z� � ks � e1;1 ˝ 1k2;z� C ke1;1 ˝ 1 � qk2;z� C kq � rk2;z� � 90ı
1
8 : (3.11)

By Lemma 2.5, we can find a von Neumann subalgebra B � r.M2.C/˝Q/r such
that

dz� .A;B/ � 14
�
z�.q � r/

z�.q/

� 1
4

� 200ı
1
16 : (3.12)

Since z�.r/D z�.s/ andQ is a factor, using Lemma 2.2 (1) and (3.11) we find a unitary
u 2M2.C/˝Q such that uru� D s and ku � 1k2;z� � 3ks � rk2;z� � 270ı

1
8 . Let C D

uBu� ˚C.e1;1 ˝ 1 � s/. Then C � e1;1 ˝Q is a von Neumann subalgebra such that

dz� .B; C / � 2ku � 1k2;z� C ke1;1 ˝ 1 � sk2;z� � 570ı
1
8 : (3.13)

IfR�Q is a von Neumann subalgebra such thatC D e1;1˝R, then (3.12) and (3.13)
imply that

d� .P;R/ D
p
2dz� .e1;1 ˝ P;C / �

p
2.dz� .e1;1 ˝ P;A/C dz� .A;B/C dz� .B; C //

�
p
2.30ı

1
8 C 200ı

1
16 C 570ı

1
8 / � 400ı

1
16 :

This finishes the proof of the lemma.

Corollary 3.3. For any " > 0, there is ı D ı2."/ > 0 such that the following holds. Let
.M; �/ be a tracial von Neumann algebra and P;Q �M be finite-dimensional von Neu-
mann subalgebras such that P �ı Q. Assume that Q is abelian. Then there exists a von
Neumann subalgebra R � Q such that d.P;R/ � ".

Proof. Given " > 0, we will prove that any ı > 0 such that ı < 1
200

and 200ı
1
8 < " works.

Assume that P �ı Q. We will first show that P has a large abelian direct summand.
Let z 2 Z.P / be the largest projection such that Pz is abelian. Since P.1� z/ has no

abelian direct summand, we can find a projection p 2 P.1 � z/ with �.p/ � �.1�z/
3

and
a unitary u 2 P.1 � z/ such that p and upu� are orthogonal. Thus,

kŒu; p�k2;� D
p
2kpk2;� �

r
2

3
k1 � zk2;� :

On the other hand, since P �ı Q and Q is abelian, we get that

kŒu; p�k2;� � 2.ku � EQ.u/k2;� C kp � EQ.p/k2;� / � 4ı:
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By combining the last two inequalities, we derive that

k1 � zk2;� � 4

r
3

2
ı � 5ı: (3.14)

Let ¹piºmiD1 and ¹qj ºnjD1 be the minimal projections of Pz and Q, so that Pz DLm
iD1Cpi andQD

Ln
jD1Cqj . SinceP �ı Q, Lemma 3.1 provides a �-homomorphism

� WP!M2.C/˝Q such that k�.x/� e1;1 ˝ xk2;z� � 30ı
1
8 , for every x 2 .P /1. In par-

ticular, using (3.14) we get that

k�.z/ � e1;1 ˝ 1k2;z� � k�.z/ � e1;1 ˝ zk2;z� C ke1;1 ˝ .1 � z/k2;z�

� 30ı
1
8 C 5ı � 31ı

1
8 : (3.15)

Write �.z/D
Pn
jD1 j̨ ˝ qj , where j̨ 2M2.C/ is a projection, for every 1� j � n.

Let S be the set of all j 2 ¹1; : : : ; nº such that j̨ has rank one. DefinewD
P
j2S qj 2Q.

If j … S , then j̨ is equal to 0 or 1 and thus

k j̨ ˝ qj � e1;1 ˝ qj k
2
2;z� D

�.qj /

2
:

This implies that

k1 � wk22;� D
X
j…S

�.qj / D 2
X
j…S

k j̨ ˝ qj � e1;1 ˝ qj k
2
2;z� � 2k�.z/ � e1;1 ˝ 1k

2
2;z� :

In combination with (3.15), we derive that

k1 � wk2;� � 31
p
2ı

1
8 : (3.16)

Since �.z/.1˝ w/ D
P
j2S j̨ ˝ qj and j̨ has rank one, for every j 2 S , we get

that there is a partition S D S1 t � � � t Sm such that �.pi /.1 ˝ w/ D
P
j2Si j̨ ˝ qj ,

for every 1 � i � m. Define a �-homomorphism �WP ! Q by letting �.1 � z/ D 0 and
�.pi / D

P
j2Si

qj , for every 1 � i � m.

Claim 3.4. We have that k�.x/ � xk2;� � 150ı
1
8 , for every x 2 .P /1.

Proof. Let x 2 .P /1 and write x D c0 C
Pm
iD1 cipi , where c0 2 .P.1� z//1 and ci 2 C

satisfies jci j � 1, for 0 � i � m. Let y D
Pm
iD1 cipi . Then

e1;1 ˝ �.x/ D

mX
iD1

X
j2Si

ci .e1;1 ˝ qj /;

�.y/.1˝ w/ D

mX
iD1

ci�.pi /.1˝ w/ D

mX
iD1

X
j2Si

ci . j̨ ˝ qj /:

Since the projections ¹qj ºj2S are pairwise orthogonal, the sets ¹SiºmiD1 partition S , and
jci j � 1, for every 1 � i � m, we get that

ke1;1˝ �.x/� �.y/.1˝w/k
2
2;z� �

X
j2S

ke1;1˝ qj � j̨ ˝ qj k
2
2;z� � ke1;1˝ 1� �.z/k

2
2;z� :
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In combination with (3.15), we derive that

ke1;1 ˝ �.x/ � �.y/.1˝ w/k2;z� � 31ı
1
8 : (3.17)

Since k�.y/ � e1;1 ˝ yk2;z� � 30ı
1
8 , using (3.16) and (3.17), we further get that

k�.x/ � yk2;� D
p
2ke1;1 ˝ �.x/ � e1;1 ˝ yk2;z�

�
p
2.ke1;1 ˝ �.x/ � �.y/.1˝ w/k2;z� C k�.y/.1˝ .1 � w//k2;z�

C k�.y/ � e1;1 ˝ yk2;z� /

� 140ı
1
8 :

As x � y 2 .P.1 � z//1, (3.4) implies that kx � yk2;� � k1 � zk2;� � 5ı. The last
displayed inequality gives that k�.x/� xk2;� � k�.x/� yk2;� C k1� zk2;� � 140ı

1
8 C

5ı � 150ı
1
8 , proving the claim.

Finally, Claim 3.4 gives that d� .P;�.P //� 150ı
1
8 . LetRD �.P /

L
C.1�w/. Since

�.1/ D w, R is a von Neumann subalgebra of Q. By (3.16), we get that d� .�.P /; R/ �
k1 � wk2;� � 31

p
2ı

1
8 � 50ı

1
8 . Thus, we conclude that d� .P; R/ � d� .P; �.P // C

d� .�.P /;R/ � 200ı
1
8 .

This completes the proof of Corollary 3.3.

The following consequence of Corollary 3.2 is a key ingredient of the proof of Pro-
position 1.5.

Lemma 3.5. For any " > 0, there is ı D ı3."/ > 0 such that the following holds. For
i 2 ¹1; 2; 3º, let Mi be a finite-dimensional factor and denote by 1Mi its unit. Let M D
M1 ˝M2 ˝M3 and P �M be a von Neumann subalgebra. Assume that M1 ˝ 1M2 ˝

1M3 �ı P and P �ı M1 ˝M2 ˝ 1M3 . Then there exists a von Neumann subalgebra
S �M2 such that d.P;M1 ˝ S ˝ 1M3/ � ".

Proof. Let ı1W .0;C1/! .0;C1/ be the function provided by Corollary 3.2. Let " > 0.
Let "0 > 0 such that "0 � "

2
and ı."0/C "0 � 1

4
ı1.

"
8
/. We will show that ı WD ı."0/ works.

Since M1, M2 are factors, so is M1 ˝M2. Since P �ı."0/ M1 ˝M2 ˝ 1M3 , Corol-
lary 3.2 implies the existence of a von Neumann subalgebra Q �M1 ˝M2 such that

d.P;Q˝ 1M3/ � "
0
�
"

2
: (3.18)

AsM1˝ 1M2 ˝ 1M3 �ı1."0/ P , (3.18) implies thatM1˝ 1M2 �ı1."0/C"0 Q. LetN D
Q0 \ .M1 ˝M2/. Since .M1 ˝ 1M2/

0 \ .M1 ˝M2/ D 1M1 ˝M2 and 4.ı1."0/C "0/ �
ı1.

"
8
/, Lemma 2.3 gives that

N �ı1. "8 / 1M1 ˝M2:

SinceM2 is a factor, applying Corollary 3.2 gives a von Neumann subalgebraR�M2

such that
d.N; 1M1 ˝R/ �

"

8
:
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As M1 ˝M2 is a finite-dimensional factor, the bicommutant theorem gives that N 0 \
.M1 ˝M2/ D Q. By applying Lemma 2.3 again, we deduce that if S D R0 \M2, then

d.Q;M1 ˝ S/ �
"

2
: (3.19)

Finally, by combining (3.18) and (3.19) we derive that d.P;M1 ˝ S ˝ 1M3/ � ".

4. Pairs of unitary matrices with spectral gap

The goal of this section is to prove the following two results giving pairs of unitary
matrices with spectral gap properties. These results provide the first step towards proving
Theorem B. For n 2 N, we denote by � the normalized trace on Mn.C/, and by k � k2
and k � k1 the associated norms.

Proposition 4.1. There is a constant � > 0 such that the following holds. LetADMk.C/
and B DMn.C/, for k; n 2 N. Then there are Z1; Z2 2 U.A˝ 1/ such that

kx � E1˝B.x/k2 � �.kŒZ1; x�k2 C kŒZ2; x�k2/; for every x 2 A˝ B:

Proposition 4.1 suffices to prove that F3 � F3, and thus Fm � Fn, for all m; n � 3,
is not HS-stable. However, to prove the failure of HS-stability for F2 � F2, we will need
the following result.

Proposition 4.2. There is a constant �> 0 such that the following holds. LetADMk.C/,
B DMn.C/ and w 2 U.A˝ B/, for k; n 2 N. Then there are Z1; Z2 2 U.M3.C/˝
A˝ B/ such that

(1) kx � E1˝1˝B.x/k2 � �.kŒZ1; x�k2 C kŒZ2; x�k2/, for every x 2M3.C/˝ A˝ B ,

(2) Z1 2M3.C/˝ A˝ 1, and

(3) Z2 D
�
0 0 1
1 0 0
0 w 0

�
.

4.1. Pairs of unitary matrices with spectral gap

The proofs of Propositions 4.1 and 4.2 rely on the following result.

Lemma 4.3. There exist a constant � > 0, a sequence .kn/ of natural numbers with
kn !1, and a pair of unitaries .un; vn/ 2 U.kn/2, for every n 2 N, such that

kx � �.x/1k2 � �.kŒun; x�k2 C kŒvn; x�k2/; for every x 2Mkn.C/:

Moreover, we can take kn D n, for every n 2 N.

This result is likely known to experts, but, for completeness, we indicate how it fol-
lows from the literature. We give two proofs of the main assertion based on property (T)
and quantum expanders, respectively. The second proof will allow us to also derive the
moreover assertion.
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4.2. First proof of the main assertion of Lemma 4.3

The first proof combines an argument from the proof of [8, Proposition 3.9(4)], which we
recall below, with the fact that � WD SL3.Z/ is 2-generated. Indeed, by [55], the following
two matrices generate �:

a D

0@0 1 0

0 0 1

1 0 0

1A and b D

0@1 0 0

1 1 0

0 0 1

1A :
Since � has Kazhdan’s property (T) (see, e.g., [9, Theorem 12.1.14]), we can find � > 0
such that if �W� ! U.H / is any unitary representation and P WH !H is the orthogonal
projection onto the subspace of �.�/-invariant vectors, then

k� � P.�/k � �.k�.a/� � �k C k�.b/� � �k/; for every � 2 H : (4.1)

Since � is residually finite and has property (T), it has a sequence of finite-dimensional
irreducible representations �nW � ! U.kn/, n 2 N, with kn !1 (see the proof of [8,
Proposition 3.9 (4)]). Alternatively, if p is a prime, then any non-trivial representation of
SL3.Z=pZ/ has dimension at least p�1

2
(see [53, Exercise 3.0.9]). Thus, we can take �n

to be any irreducible representation of � factoring through SL3.Z=pnZ/, for any n 2 N,
where .pn/ is a sequence of primes with pn !1.

Since �n is irreducible, the only matrices which are invariant under the unitary rep-
resentation �nW� ! U.Mkn.C// given by �n.g/x D �n.g/x�n.g/� are the scalar mul-
tiples of the identity. Thus, applying inequality (4.1) to �n gives that kx � �.x/1k2 �
�.kŒ�n.a/; x�k2 C kŒ�n.b/; x�k2/, for every x 2Mkn.C/. Hence, un D �n.a/ and vn D
�n.b/ satisfy the conclusion of Lemma 4.3.

We are grateful to one of the referees for pointing out that the following fact holds.

Lemma 4.4. Let � be a non-virtually abelian, residually finite, countable group. Then
� admits a sequence of finite-dimensional irreducible representations �nW � ! U.kn/,
n 2 N, with kn !1.

This fact is used in the above proof for � D SL3.Z/. As pointed out by the referee,
Lemma 4.4 shows that this fact is not specific to SL3.Z/ and that its proof does not need
to use property (T).

Proof of Lemma 4.4. Assume by contradiction that there exists M 2 N such that for
every irreducible finite-dimensional representation � W � ! U.k/, we have that k � M .
Let ¹�nºn be a decreasing sequence of finite index normal subgroups of � such thatT
n �n D ¹eº. Denote by G D lim

 �
�=�n the profinite completion of � with respect

to ¹�nº. Since
T
n�n D ¹eº, the natural homomorphism �!G gives a dense embedding

� � G. Since G is compact, the Peter–Weyl theorem implies that every irreducible con-
tinuous unitary representation � WG!U.H / is finite-dimensional. Since � �G is dense,
the restriction of � to � is still irreducible and thus dim.H /�m. Hence, every irreducible
continuous unitary representation � WG ! U.H / satisfies dim.H / � m. Applying [38,
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Proposition 3.1] gives that G has an open abelian subgroup G0. Then �0 D � \ G0 is
a finite index abelian subgroup of � . This proves that � is virtually abelian, which is
a contradiction.

We next give a second proof of the main assertion of Lemma 4.3 showing that one
can take kn D n. This relies on the notion of quantum expanders introduced in [7,26] (see
also [43]). For a related application of quantum expanders, see the recent article [39]. For
k � 2 and a k-tuple of unitaries uD .u1; u2; : : : ; uk/ 2 U.n/k , let TuWMn.C/!Mn.C/
be the operator given by

Tu.x/ D

kX
iD1

uixu
�
i ; for every x 2Mn.C/:

Endow Mn.C/ with the normalized Hilbert–Schmidt norm, note that the space Mn.C/	
C1 of matrices of trace zero is Tu-invariant, and denote by T 0u the restriction of Tu to
Mn.C/	C1.

Remark 4.5. We clearly have that kT 0u k � k. Moreover, equality holds if k D 2. To see
this, let u D .u1; u2/. Then Tu.u�2u1/ D 2u1u

�
2 and ku�2u1 � ˛1k2 D ku1u

�
2 � ˛1k2 Dp

1 � j˛j2, where ˛ D �.u�2u1/ D �.u1u
�
2/. If j˛j < 1, then since Tu.u�2u1 � ˛1/ D

2.u1u
�
2 � ˛1/, we get that kT 0u k D 2. If j˛j D 1, then u1 D ˛u2 and so Tu.x/D 2u1xu�1 ,

for every x 2Mn.C/, which gives that kT 0u k D 2.

A sequence of k-tuples un D .un1; : : : ; u
n
k
/ 2 U.n/k is called a quantum expander

if supn kT
0
unk < k. By Remark 4.5, this forces that k � 3. The following result due to

Hastings [26] (formulated here following [43, Lemma 1.8]) shows that random unitaries
provide quantum expanders for k � 3.

Lemma 4.6. For n 2 N, let �n be the Haar measure of U.n/. Then for every " > 0, we
have that

lim
n!1

�kn.¹u 2 U.n/k j kT 0u k � 2
p
k � 1C "kº/ D 1:

4.3. Proof of Lemma 4.3

We claim that there is N 2 N such that the main assertion of Lemma 4.3 holds for
any constant � greater than 3 C 2

p
2 and kn D n, for every n > N . Assuming this

claim, note that if n 2 N is fixed, then we can find two unitaries un; vn 2 U.n/ such
that ¹un; vnº0 \Mn.C/ D C1. Using the compactness of the unit ball of Mn.C/ with
respect to the k � k2-norm, we can find a constant �n > 0 such that kx � �.x/1k2 �
�n.kŒun; x�k2CkŒvn; x�k2/, for every x2Mn.C/. It is now clear that the moreover asser-
tion of Lemma 4.3 holds after replacing � with max¹�; �1; : : : ; �N º.

To prove our claim, fix a constant � > 3C 2
p
2. Note that

1

�
<

1

3C 2
p
2
D 3 � 2

p
2
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and let " WD 3�2
p
2� 1�
2

> 0. By applying Lemma 4.6 in the case k D 3, we deduce that

lim
n!1

�3n.¹u 2 U.n/3 j kT 0u k � 2
p
2C 2"º/ D 1: (4.2)

Let Sn be set of pairs of unitaries .u1; u2/ 2 U.n/2 such that kT 0
.u1;u2;I /

k � 2
p
2C 2".

Since

kT0
.u1;u2;u3/

k D kT 0
.u�
3
u1;u

�
3
u1;I /
k; for every .u1; u2; u3/ 2 U.n/3;

(4.2) implies that limn!1 �
2
n.Sn/ D 1.

Now, let .u1; u2/ 2 Sn. Then for every x 2Mn.C/	C1, we have

.2
p
2C 2"/kxk2 � ku1xu

�
1 C u2xu

�
2 C xk2 � 3kxk2 � kŒu1; x�k2 � kŒu2; x�k2;

and hence kxk2 � �.kŒu1; x�k2 C kŒu2; x�k2/. If x 2 Mn.C/, then applying this last
inequality to x � �.x/1 2Mn.C/	C1 gives that

kx � �.x/1k2 � �.kŒu1; x�k2 C kŒu2; x�k2/:

Since limn!1 �
2
n.Sn/ D 1, we have that Sn 6D ;, for n large enough. Then any pair

.un; vn/ 2 Sn, for n large enough, will satisfy the conclusion of Lemma 4.3.
We end this subsection by proving the following property for pairs of unitaries with

spectral gap.

Lemma 4.7. Let � > 0 and .u1; u2/ 2 U.n/2 such that kx � �.x/1k2 � �.kŒu1; x�k2 C
kŒu2; x�k2/, for all x 2Mn.C/. Then kxk2 � 105�6.ku1xv � xk2 C ku2xv � xk2/, for
all v 2 U.n/ and x 2Mn.C/.

Proof. We claim that ı WD ku1 � u2k2 � 1
8�2

. Indeed, ku1 � �.u1/1k2 � �kŒu1; u2�k2 �
2�ı and similarly ku2 � �.u2/1k2 � 2�ı. If x 2 U.n/ and �.x/ D 0, then kŒu1; x�k2 �
2ku1 � �.u1/1k2 � 4�ı and similarly kŒu2;x�k4 � 2�ı. Thus, 1Dkxk2 � �.kŒu1;x�k2C
kŒu2; x�k2/ � 8�

2ı, proving our claim. Note also that since 1 D kxk2 � �.kŒu1; x�k2 C
kŒu2; x�k2/ � 4�, we have that � � 1

4
.

To prove the conclusion of the lemma, let x 6D 0 and put " D kxk�12 .ku1xv � xk2 C
ku2xv � xk2/. Let w 2 ¹u1; u2º. Then wxx�w� D .wxv/.wxv/� and the Cauchy–
Schwarz inequality implies that

kwxx�w� � xx�k1 � k.wxv � x/.wxv/
�
k1 C kx.wxv � x/

�
k1 � 2"kxk

2
2:

Let y D .xx�/
1
2 and ˛ D �.y/ � 0. Then the Powers–Størmer inequality (2.1) implies

that

kwyw� � yk2 � kwy
2w� � y2k

1
2

1 D kwxx
�w� � xx�k

1
2

1 �
p
2"kxk2;

for every w 2 ¹u1; u2º.
Thus, we get that ky � ˛1k2 � 2�

p
2"kxk2. Since kyk2 D kxk2, it follows that

˛ � .1 � 2�
p
2"/kxk2:
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Next, by the polar decomposition we can find a unitary z 2 U.n/ such that x D yz.
Then we have kx � ˛zk2 D ky � ˛1k2 � 2�

p
2"kxk2. Since

k.u1 � u2/xvk2 � ku1xv � xk2 C ku2xv � xk2 D "kxk2;

we further get that

˛ı D k.u1 � u2/.˛z/vk2 � k.u1 � u2/xvk2 C kx � ˛zk2 � ."C 2�
p
2"/kxk2:

Since x 6D 0, by combining the fact that ı � 1
8�2

with the last inequality, we conclude
that

1 � 2�
p
2"

8�2
� "C 2�

p
2":

Since � � 1
4

and " � 4, it follows that " � 1
105�6

, which finishes the proof.

4.4. Proof of Proposition 4.1

Let � > 0 be as given by Lemma 4.3. The moreover assertion of Lemma 4.3 provides
u; v 2 U.A/ such that kx � �.x/k2 � �.kŒu; x�k2 C kŒv; x�k2/, for every x 2 A.

It is a standard fact that Z1 D u˝ 1, Z2 D v ˝ 1 2U.A˝ 1/ satisfy the conclusion
for � D

p
2�. For completeness, let us recall the argument. Let ¹�iºi2I be an orthonor-

mal basis of B with respect to the scalar product given by its trace. Let x 2 A˝ B and
write x D

P
i2I xi ˝ �i , with xi 2 A. Then E1˝B.x/ D

P
i2I �.xi /1 ˝ �i , ŒZ1; x� DP

i2I Œu; xi �˝ �i , ŒZ2; x� D
P
i2I Œv; xi �˝ �i and therefore

kx � E1˝B.x/k22 D
X
i2I

kxi � �.xi /1k
2
2 �

X
i2I

�2.kŒu; xi �k2 C kŒv; xi �k2/
2

� �2
X
i2I

.kŒu; xi �k
2
2 C kŒv; xi �k

2
2/ D �

2.kŒZ1; x�k
2
2 C kŒZ2; x�k

2
2/

� .�.kŒZ1; x�k2 C kŒZ2; x�k2//
2:

This finishes the proof.

4.5. Proof of Proposition 4.2

Let � > 0 be as given by Lemma 4.3. The moreover assertion of Lemma 4.3 gives u; v 2
U.A/ such that kx � �.x/1k2 � �.kŒu; x�k2 C kŒv; x�k2/, for every x 2 A. The proof of
Proposition 4.1 shows that

kx � E1˝B.x/k2 �
p
2�.kŒu˝ 1; x�k2 C kŒv˝ 1; x�k2/; for every x 2 A˝B: (4.3)

By Lemma 4.7, kxk2 � 105�6.kuxt � xk2Ckvxt � xk2/, for every t 2U.A/ and x 2A.
Then the argument from the proof of Proposition 4.1 implies that for every t 2U.A/ and
x 2 A˝ B , we have

kxk2 �
p
2 � 105�6.k.u˝ 1/x.t ˝ 1/ � xk2 C k.v ˝ 1/x.t ˝ 1/ � xk2/: (4.4)
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Define Z1; Z2 2 U.M3.C/˝ A˝ B/ by letting

Z1 D

0@u˝ 1 0 0

0 u˝ 1 0

0 0 v ˝ 1

1A and Z2 D

0@0 0 1

1 0 0

0 w 0

1A :
Then Z1, Z2 satisfy conditions (2) and (3) from the conclusion and

Z2Z1Z
�
2 D

0@v ˝ 1 0 0

0 u˝ 1 0

0 0 w.u˝ 1/w�

1A :
We will show that condition (1) is satisfied for � D 107.1 C �6/. To this end, fix

x 2M3.C/˝ A˝ B with x D x�. Write x D Œxij �, where xi;j 2 A˝ B are such that
x�i;j D xj;i , for every 1 � i; j � 3. Our goal is to show that

kx � E1˝1˝B.x/k2 �
�

2
.kŒZ1; x�k2 C kŒZ2; x�k2/: (4.5)

Towards this goal, we denote " D kŒZ1; x�k2 C kŒZ2; x�k2 and record the following
elementary fact.

Fact 4.8. Let d1; d2; d3 2U.A˝B/ and put d D Œdiıi;j � 2U.M3.C/˝A˝B/. Then
we have kŒd; x�k22 D

P3
i;jD1 kdixi;jd

�
j � xi;j k

2
2, hence kdixi;jd�j � xi;j k2 � kŒd; x�k2,

for every 1 � i; j � 3.

Fact 4.8 implies that kŒ.u ˝ 1/; x1;1�k2 � kŒZ1; x�k2 � " and kŒ.v ˝ 1/; x1;1�k2 �
kŒZ2Z1Z

�
2 ; x�k2 � 3". Together with (4.3) this gives that

kx1;1 � yk2 � .
p
2�/ � .4"/ �

�

6
"; (4.6)

where y WD E1˝B.x1;1/ 2 1˝ B .
By using Fact 4.8, we also derive that k.u˝ 1/x1;2.u˝ 1/�� x1;2k2�kŒZ1;x�k2 � "

and that k.v ˝ 1/x1;2.u ˝ 1/� � x1;2k2 � kŒZ2Z1Z�2 ; x�k2 � 3". Applying (4.4) to
x D x1;2 and t D u�, we get

kx1;2k2 � .
p
2 � 105�6/ � .4"/ �

�

6
": (4.7)

Next, note that

ŒZ2; x� D

0@ x3;1 � x1;2 x3;2 � x1;3w x3;3 � x1;1
x1;1 � x2;2 x1;2 � x2;3w x1;3 � x2;1
wx2;1 � x3;2 wx2;2 � x3;3w wx2;3 � x3;1

1A :
Since kŒZ2; x�k2 � ", we get that kx2;2 � x1;1k2 � " and kx3;3 � x1;1k2 � ". Together
with (4.6), this gives that

kx2;2 � yk2 � .
p
2 � 8� C 1/" �

�

6
"; kx3;3 � yk2 � .

p
2 � 8� C 1/" �

�

6
": (4.8)
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Since kŒZ2; x�k2 � ", we also get that kx2;3w � x1;2k2 � " and kx3;1 � x1;2k2 � ".
Together with (4.7), this gives that

kx2;3k2 � .8 �
p
2 � 104�6 C 1/" �

�

6
"; jx3;1k2 � .8 �

p
2 � 104�6 C 1/" �

�

6
": (4.9)

Since x D x�, by using (4.6)–(4.9), we get that

kx � 1˝ yk22 D kx1;1 � yk
2
2 C kx2;2 � yk

2
2 C kx3;3 � yk

2
2

C 2kx1;2k
2
2 C 2kx1;3k

2
2 C 2kx2;3k

2
2 � 9

��
6
"
�2
:

Since 1˝ y 2 1˝ 1˝ B , we get that kx � E1˝1˝B.x/k2 � kx � 1˝ yk2 �
�
2
", hence

(4.5) holds.
Finally, given x 2M3.C/˝A˝B , write xD x1C ix2, where x1D x�1 and x2D x�2 .

Then kŒu; x�k22 D kŒu; x1�k
2
2 C kŒu; x2�k

2
2, for every unitary u and by using (4.5) for x1

and x2, we get that

kx � E1˝1˝B.x/k2 � kx1 � E1˝1˝B.x1/k2 C kx2 � E1˝1˝B.x2/k2

�
�

2
.kŒZ1; x1�k2 C kŒZ2; x1�k2 C kŒZ1; x2�k2 C kŒZ2; x2�k2/

� �.kŒZ1; x�k2 C kŒZ2; x�k2/:

This finishes the proof.

5. Proof of Proposition 1.5

This section is devoted to the proof of Proposition 1.5. We first prove Proposition 1.5
under the stronger assumption that F3 � F3 is HS-stable, since the proof is more transpar-
ent in this case and relies on the simpler Proposition 4.1 instead of Proposition 4.2.

5.1. Proof of Proposition 1.5 assuming that F3 � F3 is HS-stable

Let " > 0. Let � > 0 be the constant provided by Proposition 4.1. Let ı3W .0;C1/!
.0;C1/ be the function provided by Lemma 3.5. Let "0 > 0 such that "0 < "

24
and

16�"0 < ı3.
"
16
/.

Since F3 � F3 is HS-stable, we can find ı > 0 such that for any finite-dimensional
factor M and Z˛; Tˇ 2 U.M/ such that kŒZ˛; Tˇ �k22 � ı, for every ˛; ˇ 2 ¹1; 2; 3º, we
can find zZ˛; zTˇ 2U.M/ such that k zZ˛ �Z˛k2 � "0, k zTˇ � Tˇk2 � "0 and Œ zZ˛; zTˇ �D 0,
for every ˛; ˇ 2 ¹1; 2; 3º.

Let k;m; n 2 N and U1; : : : ; Uk ; V1; : : : ; Vm 2 U.n/ such that

1

km

kX
iD1

mX
jD1

kŒUi ; Vj �k
2
2 � ı:
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Denote A DMk.C/, B DMn.C/, C DMm.C/ and M D A˝ B ˝ C . By applying
Lemma 4.1 twice, we can find Z1; Z2 2 U.A ˝ 1 ˝ 1/ and T1; T2 2 U.1 ˝ 1 ˝ C/

such that

kx � E1˝B˝C .x/k2 � �.kŒZ1; x�k2 C kŒZ2; x�k2/; for every x 2M; (5.1)

and

kx � EA˝B˝1.x/k2 � �.kŒT1; x�k2 C kŒT2; x�k2/; for every x 2M: (5.2)

Let Z3 2 U.A˝ B ˝ 1/ and T3 2 U.1˝ B ˝ C/ be given by

Z3 D

kX
iD1

ei;i ˝ Ui ˝ 1 and T3 D

mX
jD1

1˝ Vj ˝ ej;j :

Then ŒZ3; T3� D
Pk
iD1

Pm
jD1 ei;i ˝ ŒUi ; Vj �˝ ej;j and thus

kŒZ3; T3�k
2
2 D

1

km

kX
iD1

mX
jD1

kŒUi ; Vj �k
2
2 � ı:

On the other hand, ŒZ˛; Tˇ � D 0 if ˛; ˇ 2 ¹1; 2; 3º are not both equal to 3. Altogether, we
get that

kŒZ˛; Tˇ �k
2
2 � ı; for every ˛; ˇ 2 ¹1; 2; 3º:

The second paragraph of the proof implies that there are zZ˛; zTˇ 2 U.M/ such that
k zZ˛ �Z˛k2 � "0, k zTˇ � Tˇk2 � "0 and Œ zZ˛; zTˇ � D 0, for all ˛; ˇ 2 ¹1; 2; 3º.

Denote by P � M the von Neumann subalgebra generated by ¹ zZ1; zZ2; zZ3º. Let
x 2 .P /1. If ˇ 2 ¹1; 2º, then since x commutes with zTˇ , we get that kŒTˇ ; x�k2 �
2k zTˇ � Tˇk2 � 2"0 and (5.2) gives that kx � EA˝B˝1.x/k2 � 4�"0. As x 2 .P /1 is
arbitrary, we get P �4�"0 A˝ B ˝ 1.

Similarly, using that Q D P 0 \M commutes with zZ1, zZ2 and (5.2), we get that
Q �4�"0 1˝ B ˝ C . Since M is a finite-dimensional factor, the bicommutant theorem
gives that Q0 \M D P . By applying Lemma 2.3, we derive that A˝ 1˝ 1 �16�"0 P .

Since 16�"0 < ı3. "16 /, by combining the last two paragraphs and Lemma 3.5 we find
a von Neumann subalgebra S � B such that

d.P;A˝ S ˝ 1/ �
"

16
: (5.3)

Denote T D S 0 \ B . By Lemma 2.3, we get that

d.Q; 1˝ T ˝ C/ �
"

4
: (5.4)

Since zZ3 2 P , (5.3) gives that k zZ3 � EA˝S˝1. zZ3/k2 � "
16

. As kZ3 � zZ3k2 � "0, we
get that

kZ3 � EA˝S˝1.Z3/k2 �
"

16
C 2"0 <

"

3
:
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Similarly, by (5.4) we get

kT3 � E1˝T˝C .T3/k2 �
"

4
C 2"0 <

"

3
:

The last two inequalities imply that

1

k

kX
iD1

kUi � ES .Ui /k22 �
"

9
and

1

m

mX
jD1

kVj � ET .Vj /k22 �
"

9
:

Finally, by Lemma 2.2 we can find zUi 2 U.S/; zVj 2 U.T / such that kUi � zUik2 �
3kUi � ES .Ui /k2 and kVj � zVj k2 � 3kVj � ET .Vj /k2, for every 1 � i � k and 1 �
j � m. Since S and T commute, the conclusion follows.

5.2. Proof of Proposition 1.5

Assume that F2 � F2 is HS-stable. Let " > 0. Let � > 0 be the constant provided by
Proposition 4.2. Let ı3W .0;C1/! .0;C1/ be the function provided by Lemma 3.5.
Let "0 > 0 be such that "0 < "

24
and 16�"0 < ı3. "32 /.

Since F2 � F2 is HS-stable, we can find ı > 0 such that for any finite-dimensional
factorM and Z˛; Tˇ 2U.M/ such that kŒZ˛; Tˇ �k22 � ı, for every ˛;ˇ 2 ¹1; 2º, we can
find zZ˛; zTˇ 2U.M/ such that k zZ˛ �Z˛k2 � ", k zTˇ � Tˇk2 � " and Œ zZ˛; zTˇ � D 0, for
every ˛; ˇ 2 ¹1; 2º.

Let k;m; n 2 N and U1; : : : ; Uk ; V1; : : : ; Vm 2 U.n/ such that

1

km

kX
iD1

mX
jD1

kŒUi ; Vj �k
2
2 � ı:

Denote A DMk.C/, B DMn.C/, C DMm.C/ and M DM3.C/˝ A˝ B ˝ C ˝
M3.C/. Let W 2 U.A˝ B/ and W 0 2 U.B ˝ C/ be given by W D

Pk
iD1 ei;i ˝ Ui

and W 0 D
Pm
jD1 Vj ˝ ej;j . By applying Lemma 4.2 twice, we can find Z1; Z2; T1; T2 2

U.M/ such that

(1) kx � E1˝1˝B˝C˝M3.C/.x/k2 � �.kŒZ1; x�k2 C kŒZ2; x�k2/, for every x 2M ,

(2) Z1 2M3.C/˝ A˝ 1˝ 1˝ 1,

(3) Z2 D
�
0 0 1
1 0 0
0 W 0

�
˝ 1˝ 1 2M3.C/˝ A˝ B ˝ 1˝ 1,

(4) kx � EM3.C/˝A˝B˝1˝1.x/k2 � �.kŒT1; x�k2 C kŒT2; x�k2/, for every x 2M ,

(5) T1 2 1˝ 1˝ 1˝ C ˝M3.C/, and

(6) T2 D 1˝ 1˝
�
0 0 1
1 0 0
0 W 0 0

�
2 1˝ 1˝ B ˝ C ˝M3.C/.

Next, we have ŒZ2; T2� D e3;2 ˝ ŒW ˝ 1; 1˝W 0�˝ e3;2 D 1
km

Pk
iD1

Pm
jD1 e3;2 ˝

ei;i ˝ ŒUi ; Vj �˝ ej;j ˝ e3;2 and thus kŒZ2; T2�k22 D
1
9km

Pk
iD1

Pm
jD1 kŒUi ; Vj �k

2
2 � ı.

On the other hand, ŒZ˛; Tˇ � D 0 if ˛; ˇ 2 ¹1; 2º are not both equal to 2. Altogether,
we have that kŒZ˛; Tˇ �k22 � ı, for every ˛; ˇ 2 ¹1; 2º.
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The second paragraph of the proof implies that we can find zZ˛; zTˇ 2U.M/ such that
k zZ˛ �Z˛k2 � "0, k zTˇ � Tˇk2 � "0 and Œ zZ˛; zTˇ � D 0, for every ˛; ˇ 2 ¹1; 2º.

Let P � M be the von Neumann subalgebra generated by ¹Z1; Z2º. Let x 2 .P /1.
If ˇ 2 ¹1;2º, then since x commutes with zTˇ , we get that kŒTˇ ;x�k2 � 2k zTˇ �Tˇk2 � 2"0
and (4) gives that kx � EM3.C/˝A˝B˝1˝1.x/k2 � 4�"0. As x 2 .P /1 is arbitrary, we get
P �4�"0 M3.C/˝ A˝ B ˝ 1˝ 1.

Similarly, using that Q D P 0 \M commutes with zZ1, zZ2 and (1), we deduce that
Q �4�"0 1˝ 1˝ B ˝ C ˝M3.C/. Since M is a finite-dimensional factor, the bicom-
mutant theorem gives that Q0 \M D P . By applying Lemma 2.3, we get that M3.C/˝
A˝ 1˝ 1˝ 1 �16�"0 P .

Since 16�"0 < ı3. "32 /, using the last two paragraphs and Lemma 3.5, we find a von
Neumann subalgebra S � B such that

d.P;M3.C/˝ A˝ S ˝ 1˝ 1/ �
"

32
: (5.5)

Denote T D S 0 \ B . By Lemma 2.3, we get that

d.Q; 1˝ 1˝ T ˝ C ˝M3.C// �
"

8
:

Since zZ2 2 P , formula (5.5) gives that k zZ2 � EM3.C/˝A˝S˝1˝1.
zZ2/k2 �

"
32

. Since
kZ2 � zZ2k2 � "0, we get that kZ2 � EM3.C/˝A˝S˝1˝1.Z2/k2 �

"
32
C 2"0 <

"
6

. Sim-
ilarly, using (5.4) we get that kT2 � E1˝1˝T˝C˝M3.C/.T2/k2 �

"
8
C 2"0 <

"
6

. By the
definition of Z2, T2, the last two inequalities imply that

1

3k

kX
iD1

kUi � ES .Ui /k22 �
"

36
and

1

3m

mX
jD1

kVj � ET .Vj /k22 �
"

36
:

Finally, by Lemma 2.2 we can find zUi 2 U.S/, zVj 2 U.T / such that kUi � zUik2 �
3kUi � ES .Ui /k2 and kVj � zVj k2 � 3kVj � ET .Vj /k2, for every 1 � i � k and 1 �
j � m. Since S and T commute, the conclusion follows.

6. Proof of Theorem B

6.1. Construction

In this section, we prove Theorem B by constructing a counterexample to the conclusion
of Proposition 1.5. We start by recalling our construction presented in the introduction.

Notation 6.1. Let n 2 N and t 2 R.

(1) We denoteMnD
Nn
kD1M2.C/ŠM2n.C/ andAnD

Nn
kD1C2ŠC2n . We viewAn

as a subalgebra of Mn, where we embed C2 �M2.C/ as the diagonal matrices.
(2) For 1� i � n, letXn;i D 1˝� � �˝ 1˝ � ˝ 1˝� � �˝ 1 2U.An/, where � D

�
1 0
0 �1

�
2

C2 is placed on the i -th tensor position.
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(3) Let Gn � U.An ˝Mn/ be a finite subgroup which generates An ˝Mn.
(4) We define Ut 2 U.C2 ˝ C2/ by Ut D P C eit .1 � P /, where P W C2 ˝ C2 !

C2 ˝C2 is the orthogonal projection onto the one-dimensional space spanned by
e1 ˝ e2 � e2 ˝ e1.

(5) We identify Mn ˝Mn D
Nn
kD1.M2.C/˝M2.C//, and let �t;n be the automorph-

ism of Mn ˝Mn given by �t;n.
Nn
kD1 xk/ D

Nn
kD1 UtxkU

�
t .

(6) Finally, consider the following two sets of unitaries in Mn ˝Mn: Un D ¹Xn;i ˝ 1 j

1 � i � nº and Vt;n D Gn [ �t;n.Gn/.

We begin with the following elementary lemma. For t 2 R, we let �t D
1Ccos.t/

2
2

Œ0; 1�. We endow Mn with its unique trace � and the scalar product given by hx; yi D
�.y�x/, for every x; y 2Mn. For 1 � l � n, we denote by el WMn !Mn the orthogonal
projection onto the subspace of tensors of length at most l , i.e., the span of

Nn
kD1 xk ,

with xk 2M2.C/ and j¹k j xk 6D 1ºj � l .

Lemma 6.2. The following hold:

(1) P.x ˝ 1/P D �.x/P , for every x 2M2.C/.
(2) �..x ˝ 1/Ut .y ˝ 1/U �t / D �t�.xy/C .1 � �t /�.x/�.y/, for every x; y 2M2.C/.
(3) EUt .M2.C/˝1/U

�
t
.x ˝ 1/ D �tUt .x ˝ 1/U

�
t , for every x 2M2.C/ with �.x/ D 0.

(4) kE�t;n.Mn˝1/.x ˝ 1/k
2
2 � .1 � �

2l
t /kel .x/k

2
2 C �

2l
t kxk

2
2, for every x 2Mn and 1 �

l � n.

Proof. It is immediate that P.ei;j ˝ 1/P is equal to 1
2
P , if i D j , and 0, if i 6D j ,

which implies (1), where ei;j is the matrix whose .i; j / entry is equal to 1 and all other
entries are equal to 0. Part (2) follows via a straightforward calculation by using (1) and
that �.P / D 1

4
. If x 2M2.C/ and �.x/ D 0, then (2) gives �..x ˝ 1/Ut .y ˝ 1/U �t / D

�t�.xy/ D �t�.Ut .x ˝ 1/U
�
t Ut .y ˝ 1/U

�
t /, for every y 2 M2.C/. This clearly im-

plies (3).
To prove (4), for 0 � i � n, we denote by Vi � Mn the span of tensors of the formNn
kD1 xk , such that xk D 1 or �.xk/ D 0, for every 1 � k � n, and j¹k j xk 6D 1ºj D i .

Let fi WMn!Mn be the orthogonal projection onto Vi . If x D
Nn
kD1 xk 2 Vi , then using

part (3) we get that

E�t;n.Mn˝1/.x ˝ 1/ D
nO
kD1

EUt .M2.C/˝1/U
�
t
.xk ˝ 1/ D �

i
t�t;n.x ˝ 1/:

Thus, for every x 2 Mn we have E�t;n.Mn˝1/.x ˝ 1/ D
Pn
iD0 �

i
t�t;n.fi .x/ ˝ 1/ and

therefore

kE�t;n.Mn˝1/.x ˝ 1/k
2
2 D

nX
iD0

�2it kfi .x/k
2
2: (6.1)

Since
Pl
iD0 kfi .x/k

2
2 D kel .x/k

2
2 and

Pn
iDlC1 kfi .x/k

2
2 D kxj

2
2 � kel .x/k

2
2, (6.1) im-

plies part (4).

Next, we show that the sets of unitaries Un and Vt;n almost commute.
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Lemma 6.3. We have that kŒU; V �k2 � kŒU; V �k � 4jt j, for all U 2 Un, V 2 Vt;n.

Proof. Let U 2 Un and V 2 Vt;n. If V 2 Gn � An ˝Mn, then as U 2 An ˝ 1 and An
is abelian, we get ŒU; V � D 0. Thus, we may assume that V D �t;n.Y /, for Y 2 Gn. Then
since Œ�t;n.U /; V � D 0, we get

kŒU; V �k � 2kU � �t;n.U /k D 2k.� ˝ 1/ � Ut .� ˝ 1/U
�
t k

� 4kUt � 1k D 4je
it
� 1j � 4jt j:

6.2. A consequence of HS-stability of F2 � F2

To prove Theorem B, we show that if t > 0 is small enough, the almost commuting sets
of unitaries Un and Vt;n contradict the conclusion of Proposition 1.5 for large n 2 N.
To this end, we first use Proposition 1.5 to deduce the following.

Corollary 6.4. Assume that F2 � F2 is HS-stable. Then for every " > 0, there exists t > 0
such that the following holds: for every n 2 N, we can find a von Neumann subalgebra
C � An such that

(1) C ˝ 1 �" �t;n.An ˝ 1/, and

(2) 1
n

Pn
iD1 kXn;i � EC .Xn;i /k22 � ".

Proof. Let " 2 .0; 1/. Let � > 0 such that � < "2

256
and � < ı2.

"
2 /
2

64
, where ı2W .0;C1/!

.0;C1/ is the function provided by Corollary 3.3.
By Lemma 6.3, we have that 1

jUnj�jVt;nj

P
U2Un;V 2Vt;n

kŒU; V �k22 � 16t
2, for every

n 2 N and t 2 R. Since F2 � F2 is HS-stable, Proposition 1.5 implies that if t > 0 is
small enough, then the following holds: given any n 2 N, we can find a von Neumann
subalgebra P �Mn ˝Mn such that

1

jUnj

X
U2Un

kU � EP .U /k22 � � (6.2)

and
1

jVt;nj

X
V 2Vt;n

kV � EP 0.V /k22 � �: (6.3)

Then (6.3) gives that

1

jGnj

X
V 2Gn

kV � EP 0.V /k22 � 2� and
1

jGnj

X
V 2�t;n.Gn/

kV � EP 0.V /k22 � 2�:

Since Gn generates An ˝Mn, by Lemma 2.4 we conclude that

An ˝Mn �2
p
� P

0 and �t;n.An ˝Mn/ �2
p
� P

0: (6.4)

Since Mn ˝Mn is a finite-dimensional factor, then the bicommutant theorem gives that
.P 0/0 D P . SinceAn �Mn is a maximal abelian subalgebra, we have that .An ˝Mn/

0 D
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An ˝ 1. By combining these facts with (6.4) and Lemma 2.3, we derive that P �8p�
An ˝ 1 and P �8p� �t;n.An ˝ 1/.

SinceAn˝ 1 is abelian and we have chosen � > 0 so that 8
p
�� ı2.

"
2
/, Corollary 3.3

implies that we can find a von Neumann subalgebraQ � An ˝ 1 such that d.P;Q/ � "
2

.
Since 8

p
� � "

2
, we also have that P � "

2
�t;n.An ˝ 1/. By combining the last two facts,

we derive that Q �" �t;n.An ˝ 1/.
Thus, if C � An is a von Neumann subalgebra such that Q D C ˝ 1, then condi-

tion (1) is satisfied. To verify condition (2), let U 2 U.Mn ˝Mn/. Since d.P;Q/ � "
2

,
we have that

kU � EQ.U /k2 � kU � EP .U /k2 C kEP .U / � EQ.EP .U //k2 C kEQ.EP .U / � U/k2

� 2kU � EP .U /k2 C
"

2
:

Hence, kU � EQ.U /k22 � 2.4kU � EP .U /k22 C
"2

4
/ D 8kU � EP .U /k22 C

"2

2
. In com-

bination with (6.2), we derive that

1

n

nX
iD1

kXn;i � EC .Xn;i /k22 D
1

jUnj

X
U2Un

kU � EQ.U /k22 � 8�C
"2

2
:

Since � < "2

256
and " 2 .0; 1/, we have that 8�C "2

2
< " and condition (2) follows.

Let " 2 .0; 1
16
/. Assuming that F2 � F2 is HS-stable, Corollary 6.4 implies that there

is t > 0 such that for every n 2 N, we can find a subalgebra Cn � An such that

(a) Cn ˝ 1 �" �t;n.An ˝ 1/, and

(b) 1
n

P
iD1 kXn;i � ECn.Xn;i /k

2
2 < ".

We will derive a contradiction as n!1 by showing that (a) and (b) imply the following
incompatible facts:

� dim.Cnzn/ � P.n/, where P is a polynomial (see Lemma 6.5), and

� dim.Cnzn/ � 2�n, where � 2 .0; 1/ (see Lemma 6.6), for a projection zn 2 Cn.

6.3. A polynomial upper bound on dimension

Lemma 6.5. LetC�Mn be a von Neumann subalgebra such thatC ˝ 1�"�t;n.Mn˝1/,
for some n 2 N, t 2 .0; �

4
� and " 2 Œ0; 1

16
�. Then there exists a projection z 2 Z.C / such

that
dim.Cz/ � 2.6n/64

"

t2
C1 and �.z/ �

1

2
:

Proof. For simplicity, we denote D D �t;n.Mn ˝ 1/. Since C ˝ 1 �" D, we get that

kED.u˝ 1/k2 � 1 � "; for every u 2 U.C /: (6.5)

Let ¹zj ºmjD1 be an enumeration of the minimal projections of Z.C /. ThenC D
Lm
jD1Czj ,

where Czj is a factor and thus isomorphic to a matrix algebra Mnj .C/, for some nj 2N.
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Assume that S is the set of 1 � j � m such that kED.u˝ 1/k22 � .1 � 4"/kuk
2
2 D

.1 � 4"/�.zj /, for every u 2 U.Czj /. Let T D ¹1; : : : ; mº n S . Then for every j 2 T ,
there exists uj 2 U.Czj / such that

kED.uj ˝ 1/k22 � .1 � 4"/�.zj /: (6.6)

We will prove that z D
P
j2S zj 2 Z.C / satisfies the conclusion. To estimate �.z/, for

every j 2 S , let uj D 1. Denote by �m the Haar measure of Tm, where T D ¹z 2 C j
jzj D 1º. By applying (6.5) to

Pm
jD1 �juj 2 U.C /, for �1; : : : ; �m 2 T , we get that

mX
jD1

kED.uj ˝ 1/k22 D
Z

Tm





ED

� mX
jD1

�juj ˝ 1

�



2
2

d�m.�1; : : : ; �m/

� .1 � "/2 � 1 � 2": (6.7)

On the other hand, (6.6) implies that
Pm
jD1 kED.uj ˝ 1/k

2
2 � �.z/C .1 � 4"/�.1 � z/.

In combination with (6.7), we deduce that �.z/ � 1
2

.
To estimate dim.Cz/, let l be the smallest positive integer such that �2lt � 1 � 8".

We claim that

kel .u/k
2
2 �
kuk22
2
; for every j 2 S and u 2 U.Czj /: (6.8)

If u 2 U.Czj /, for some j 2 S , then Lemma 6.2 (4) gives that

.1 � 4"/kuk22 � kED.u˝ 1/k
2
2

� �2lt .kuk
2
2 � kel .u/k

2
2/C kel .u/k

2
2

� .1 � 8"/.kuk22 � kel .u/k
2
2/C kel .u/k

2
2;

which implies (6.8).
If j 2 S , then since Czj is isomorphic to the matrix algebra Mnj .C/, it admits an

orthonormal basis Bj whose every element is of the form u
kuk2

, for some u 2 U.Czj /.
Then B D

S
j2S Bj is an orthonormal basis for Cz D

L
j2S Czj and (6.8) implies that

kel .�/k
2
2 �

1
2

, for every � 2 B. Recall that el is the orthogonal projection onto the sub-
space Wl � Mn of tensors of length at most l and let O be an orthonormal basis for Wl .
Then we have that

dim.Cz/ D jBj � 2
X
�2B

kel .�/k
2
2 D 2

X
�2B;�2O

jh�; �ij2 � 2jOj D 2 dim.Wl /: (6.9)

On the other hand, we have the following crude estimate:

dim.Wl / D
lX
iD0

3i
�
n

i

�
� .l C 1/3lnl � .6n/l : (6.10)

Next, note that x � jlog.1 � x/j � 2x, for every x 2 Œ0; 1
2
�. Since " 2 Œ0; 1

16
�, we get that

jlog.1 � 8"/j � 16". Since t 2 .0; �
4
�, we also have that 1 � �t D 1�cos.t/

2
2 Œ0; 1

2
� and
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1 � �t �
t2

8
. Thus, jlog.�t /j � 1 � �t � t2

8
. By using these facts and the definition of l ,

we derive that

l �
jlog.1 � 8"/j
2jlog.�t /j

C 1 � 64
"

t2
C 1: (6.11)

Combining (6.9), (6.10) and (6.11) implies that dim.Cz/ � 2.6n/64
"

t2
C1, as desired.

6.4. An exponential lower bound on dimension

Let HW .0; 1/ ! .0; 1� be the binary entropy function given by H.ı/ D �ı log2.ı/ �
.1 � ı/ log2.1 � ı/.

Lemma 6.6. Let C � An be a von Neumann subalgebra such that

1

n

nX
iD1

kXn;i � EC .Xn;i /k22 � "; for some " 2
h
0;
1

8

i
and n 2 N:

Then dim.Cz/ � 2n�H.4"/n�3, for any projection z 2 C with �.z/ � 1
2

.

Proof. Let p D
�
1 0
0 0

�
. For 1 � i � n, let pi D 1˝ � � � ˝ 1˝ p ˝ 1˝ � � � ˝ 1, where p

is placed on the i -th tensor position. Then Xn;i D 2pi � 1 and so Xn;i � EC .Xn;i / D
2.pi � EC .pi //, for every 1 � i � n. Thus, the hypothesis rewrites as

nX
iD1

kpi � EC .pi /k22 �
"

4
: (6.12)

Let ¹qj ºmjD1 be the minimal projections of C such that C D
Lm
jD1 Cqj . We claim

that

kp � EC .p/k22 D
mX
jD1

�.pqj /�..1 � p/qj /

�.qj /
; for every projection p 2 An: (6.13)

Since EC .p/D
Pm
jD1

�.pqj /

�.qj /
qj , we get that kEC .p/k22 D

Pm
jD1

�.pqj /
2

�.qj /
. By combin-

ing the last fact with the identity

kp �EC .p/k
2
2 D kpk

2
2 � kEC .p/k

2
2 D �.p/ � kEC .p/k

2
2;

(6.13) follows.
By combining (6.12) and (6.13), we deduce that

1

n

nX
iD1

mX
jD1

�.piqj /�..1 � pi /qj /

�.qj /
�
"

4
: (6.14)

Next, let S be the set of 1 � j � m such that

1

n

nX
iD1

�.piqj /�..1 � pi /qj / < "�.qj /
2:
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Define T D ¹1; : : : ;mº n S . Let r D
P
j2T qj . Since "�.qj /� 1

n

Pn
iD1

�.piqj /�..1�pi /qj /

�.qj /
,

for every j 2 T , by using (6.14) we derive that "�.r/ D "
P
j2T �.qj / �

"
4

and thus
�.r/ � 1

4
.

Claim 6.7. We have that �.qj / � 2H.4"/n�nC1 for every j 2 S .

Proof. We identify An with L1.¹0; 1ºn; �/, where � is the uniform probability measure
on ¹0; 1ºn. Then pi is identified with the characteristic function of the set ¹x 2 ¹0; 1ºn j
xi D 0º, for every 1 � i � n, and �.1Y / D �.Y / D jY j2n , for every Y � ¹0; 1ºn.

For x; y 2 ¹0; 1º, we denote the normalized Hamming distance:

dH.x; y/ D
j¹i 2 ¹1; : : : ; nº j xi 6D yiºj

n
:

Let j 2 S andZj � ¹0;1ºn be such that qj D 1Zj . As �.piqj /D�.¹x 2Zj j xi D 0º/
and �..1� pi /qj / D �.¹x 2 Zj j xi D 1º/, the inequality "�.qj /2 > 1

n

Pn
iD1 �.piqj / �

�..1 � pi /qj / rewrites as

"�.Zj /
2 >

1

n

X
iD1

.�.¹x 2 Zj j xi D 0º/ � �.¹x 2 Zj j xi D 1º//

D
1

2n

nX
iD1

.� � �/.¹.x; y/ 2 Zj �Zj j xi 6D yiº/

D
1

2

Z
Zj�Zj

dH.x; y/ d.� � �/.x; y/:

By Fubini’s theorem, we can find x 2 Zj such that
R
Zj

dH.x; y/ d�.y/ < 2"�.Zj /.
This implies that �.¹y 2Zj j dH.x;y/� 4"º/ <

�.Zj /

2
and hence �.¹y 2Zj j dH.x;y/ <

4"º/ >
�.Zj /

2
. Thus,

�.Zj / < 2�.¹y 2 ¹0; 1º
n
j dH.x; y/ < 4"º/

D 2�
�°
y 2 ¹0; 1ºn

ˇ̌ 1
n

nX
iD1

yi < 4"
±�

�
1

2n�1

b4"ncX
iD0

�
n

i

�
:

Since
Pbınc
iD0

�
n
i

�
� 2H.ı/n, for all n 2 N and ı 2 .0; 1

2
� (see [4, (4.7.4)]) in combination

with the last displayed inequality, we conclude that �.qj / D �.Zj / � 2H.4"/n�nC1.

To finish the proof of Lemma 6.6, let z 2 C be a projection with �.z/ � 1
2

. Since
�.1 � r/ D 1 � �.r/ � 3

4
, we have that �.z.1 � r// � 1

4
. Since z.1 � r/ 2 C.1 � r/ DL

j2S Cqj , there is a subset S0 � S such that z.1� r/ D
P
j2S0

qj . By Claim (6.7), we
get that 1

4
� �.z.1� r//D

P
j2S0

�.qj /� jS0j2
H.4"/n�nC1 and thus jS0j � 2n�H.4"/n�3.

Since Cz � Cz.1� r/ D
L
j2S0

Cqj , we have that dim.Cz/ � jS0j and the conclusion
follows.
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Although this will not be used later, we show that the estimate provided by Lemma 6.6
is optimal.

Lemma 6.8. Let " 2 .0; 1/. Then there is c > 0 such that for any n 2 N, we can find
a von Neumann subalgebra C � An satisfying 1

n

Pn
iD1 kXn;i � EC .Xn;i /k22 � " and

dim.C / � c
p
n2n�H. "8 /n.

Proof. We use the notation and the calculations established in the proof of Lemma 6.6.
For x 2 ¹0; 1ºn and ı > 0, we denote by Bı.x/ D ¹y 2 ¹0; 1ºn j dH.x; y/ � ıº the ball of
radius ı centered at x. Let x1; : : : ; xm 2 ¹0;1ºn be a maximal set such that dH.xj ; xk/ >

"
4

,
for every j 6D k. Then ¹0; 1ºn D

Sm
jD1B "

4
.xj /. Let Z1 D B "

4
.x1/ and Zj D B "

4
.xj / n

.
Sj�1

kD1
B "
4
.xk//, for 2 � j � m. Then the sets ¹Zj ºmjD1 form a partition of ¹0; 1ºn. Let

qj D 1Zj , for 1 � j � m.
Define C D

Lm
jD1 Cqj . We will show that C satisfies the conclusion of the lemma.

Let 1 � j � m. Since Zj � B "
4
.xj / we have that dH.x; y/ �

"
2

, for every x; y 2 Zj .
Thus, we get that

1

n

nX
iD1

�.piqj /�..1 � pi /qj / D
1

2

Z
Zj�Zj

dH.x; y/ d.� � �/.x; y/ �
"

4
�.Zj /

2

D
"

4
�.qj /

2:

By combining this inequality with (6.13) and the fact that
Pm
jD1 �.qj / D 1, we get that

1

n

nX
iD1

kXn;i � EC .Xn;i /k22 D
4

n

nX
iD1

mX
jD1

�.piqj /�..1 � pi /qj /

�.qj /
� ":

On the other hand, we have that dim.C / D m. To prove the desired lower bound for m,
note that the balls ¹B "

8
.xj /º

m
jD1 are pairwise disjoint. Thus, we deduce that

2n �

mX
jD1

jB "
8
.xj /j D m

bn"8 cX
iD0

�
n

i

�
: (6.15)

For ı 2 .0; 1
2
/ such that ın is an integer, we have

Pın
iD0

�
n
i

�
�

2H.ı/n
p
8nı.1�ı/

(see [4, (4.7.4)]).
This implies that

bn"8 cX
iD0

�
n

i

�
�

2H. bn"=8cn /nq
n".1 � "

8
/
:

Since the sequence ¹nH. "
8
/ � nH. b

n"
8 c

n
/º is bounded, it follows that we can find a constant

c > 0 depending only on " such that

bn"8 cX
iD0

�
n

i

�
�
2H. "8 /n

c
p
n
:

In combination with (6.15), we derive that dim.C / D m � c
p
n2n�H. "8 /n, which finishes

the proof.
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6.5. Proof of Theorem B

Assume by contradiction that F2 �F2 is HS-stable. Let "2 .0; 1
16
/. Then by Corollary 6.4,

there exists t > 0 such that for every n 2 N, we can find a von Neumann subalgebra
Cn � An such that

(a) Cn ˝ 1 �" �t;n.An ˝ 1/, and

(b) 1
n

Pn
iD1 kXn;i � ECn.Xn;i /k

2
2 � ".

Using (a), Lemma 6.5 gives a projection zn 2 Cn such that dim.Cnzn/� 2.6n/
64 "
t2
C1

and �.zn/ � 1
2

. On the other hand, using (b), Lemma 6.6 implies that dim.Cnzn/ �
2n�H.4"/n�3. Thus, 2.6n/64

"

t2
C1
� 2n�H.4"/n�3, for all n 2 N. Since H.4"/ < 1, letting

n!1 gives a contradiction.

7. Proofs of Theorem A and Corollary C

In this section, we give the proofs of Theorem A and Corollary C, and justify item (1) of
Remark 1.1.

In preparation for the proofs of Theorem A and Corollary C, we note that, as F2 � F2
is not HS-stable by Theorem B, there are sequences Un;1; Un;2; Vn;1; Vn;2 2 U.dn/, for
some dn 2 N, such that

(1) kŒUn;p; Vn;q�k2 ! 0, as n!1, for every 1 � p; q � 2, and

(2) infn2N.kUn;1 � zUn;1k2 C kUn;2 � zUn;2k2 C kVn;1 � zVn;1k2 C kVn;2 � zVn;2k2/ > 0,
for any sequences zUn;1; zUn;2; zVn;1; zVn;2 2 U.dn/ such that Œ zUn;p; zVn;q�D 0, for every
1 � p; q � 2.

Consider the matricial ultraproductMD
Q
! Mdn.C/. LettingUpD.Un;p/, VqD.Vn;q/ 2

U.M/, condition (1) implies that ŒUp; Vq� D 0, for every 1 � p; q � 2. Let P and Q be
the von Neumann subalgebras of M generated by ¹U1; U2º and ¹V1; V2º, respectively.
Then P and Q commute.

7.1. Proof of Corollary C

Assume by contradiction that the conclusion of Theorem A is false. Then we can find
commuting von Neumann subalgebras Pn, Qn of Mdn.C/, for all n 2 N, such that P �Q
! Pn and Q �

Q
!Qn.

Thus, Up 2 U.
Q
! Pn/ and Vp 2 U.

Q
! Qn/, so we can find zUn;p 2 U.Pn/ and

zVn;p 2 U.Qn/, for every n 2 N, such that Up D . zUn;p/ and Vp D . zVn;p/, for every
1 � p � 2. But then we have that

lim
n!!
kUn;p � zUn;pk2 D lim

n!!
kVn;p � zVn;pk2 D 0; for every 1 � p � 2:

Since Œ zUn;p; zVn;q� D 0, for every 1 � p; q � 2, this contradicts (2), which finishes the
proof.
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7.2. Proof of Theorem A

Assume by contradiction that the conclusion of Theorem A is false.
Let 1 � p � 2. Let f WT ! Œ�1

2
; 1
2
� be a Borel function satisfying exp.2�if .z//D z,

for all z 2 T , and define hp D f .Up/. Then hp 2 M is self-adjoint, generates the same
von Neumann algebra as Up and satisfies khpk � 1

2
and Up D exp.2�ihp/. Similarly, let

kp D f .Vp/.
Let A D h1 C ih2 and B D k1 C ik2. Then kAk � 1 and kBk � 1. As Œhp; kq� D 0,

for any 1 � p; q � 2, we have ŒA;B�D ŒA;B��D 0. Represent AD .An/ and B D .Bn/,
where An; Bn 2Mdn.C/ satisfy kAnk; kBnk � 1, for every n 2 N. Then

lim
n!!
kŒAn; Bn�k2 D lim

n!!
kŒAn; B

�
n �k2 D 0:

Since the conclusion of Theorem A is assumed false, we can find A0n;B
0
n 2Mdn.C/ such

that limn!! kAn �A
0
nk2 D limn!! kBn �B

0
nk2 D 0 and ŒA0n; B

0
n� D ŒAn; B

0�
n � D 0, for

every n 2N. For n 2N, denote by Pn andQn the von Neumann subalgebras of Mdn.C/
generated by A0n and B 0n. Then Pn and Qn commute and limn!! kAn � EPn.An/k2 D
limn!! kBn � EQn.Bn/k2 D 0.

ThenA 2
Q
! Pn andB 2

Q
!Qn, hence h1; h2 2

Q
! Pn and k1; k2 2

Q
!Qn. Thus,

Up 2U.
Q
! Pn/ and Vp 2U.

Q
!Qn/, for every 1� p � 2, and the proof of Corollary C

gives a contradiction.

7.3. Almost versus near commuting when one matrix is normal

The following result generalizes Remark 1.1 (1).

Lemma 7.1. Let .Mn; �n/, n 2 N, be a sequence of tracial von Neumann algebras. Let
xn; yn 2 .Mn/1 such that yn is normal, for every n 2 N, and kŒxn; yn�k2 ! 0. Then
there are x0n; y

0
n 2Mn such that x0ny

0
n D y

0
nx
0
n and x0ny

0�
n D y

0�
n x
0
n, for every n 2 N, and

kxn � x
0
nk2 C kyn � y

0
nk2 ! 0.

This result can be proved quantitatively by adapting [18, 21]. Instead, as in [22],
we give a short proof using tracial ultraproducts.

Proof of Lemma 7.1. Let us consider the ultraproduct von Neumann algebraMD
Q
!Mn,

where ! is a free ultrafilter on N. Let P and Q be the von Neumann subalgebras of M
generated by x D .xn/ and y D .yn/. Then Œx; y� D 0. Since y is normal, we get that
Œx; y�� D 0, so P and Q commute. Since y is normal, we also get that Q is abelian.
By applying [24, Theorem 2.7] or [31, Proposition C], we can represent x D .x0n/ and
y D .y0n/ so that the von Neumann subalgebras of Mn generated by x0n and y0n commute,
for all n 2N. Since kxn � x0nk2Ckyn � y

0
nk2! 0, as n!!, the conclusion follows.
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