© 2025 European Mathematical Society Published by EMS Press

Guy Henniart \cdot Alberto Mínguez \cdot Vincent Sécherre

Corrigendum to "Local transfer for quasi-split classical groups and congruences mod ℓ "

Received April 7, 2025; revised July 4, 2025

Abstract. Proposition B.1 of our article [J. Eur. Math. Soc. (online first, 2025)] is false. We prove a weaker statement which is sufficient for our purpose.

Keywords: classical group, functorial transfer, Galois representation, Langlands correspondence.

Proposition B.1 of [2] is false: given a p-adic field F with $p \neq 2$ and an integer $n \geq 2$, the split even special orthogonal group $SO_{2n}(F)$ has no cuspidal representation of level 0 whose transfer to $GL_{2n}(F)$ is cuspidal. The error lies in the proof of [2, Lemma B.2].

We prove that [2, Proposition B.1] holds for the split odd special orthogonal group $SO_{2n-1}(F)$ and the *unramified* non-split quasi-split even special orthogonal group. We then show that this is enough for proving the main theorem of [2].

1.1. Let p be a prime number different from 2, let F be a p-adic field and let W_F be the absolute Weil group of F.

Let ϕ be an irreducible smooth representation of W_F of dimension 2n for some integer $n \ge 1$. Suppose that ϕ is self-dual. It is thus either

- symplectic, that is, its image is contained in a conjugate of $\mathrm{Sp}_{2n}(\mathbb{C})$ in $\mathrm{GL}_{2n}(\mathbb{C})$, or
- orthogonal, that is, its image is contained in a conjugate of $O_{2n}(\mathbb{C})$ in $GL_{2n}(\mathbb{C})$.

If it is symplectic, it factors through a local Langlands parameter φ for $SO_{2n+1}(F)$. The packet $\Pi_{\varphi}(SO_{2n+1}(F))$ thus contains a cuspidal representation whose transfer to $GL_{2n}(F)$ is the cuspidal representation with parameter φ .

Guy Henniart: Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay, 91405 Orsay, France; guy.henniart@math.u-psud.fr

Alberto Mínguez: Faculty of Mathematics, University of Vienna, 1090 Wien, Austria; alberto.minguez@univie.ac.at

Vincent Sécherre: Laboratoire de Mathématiques de Versailles, Université de Versailles St-Quentin, 867666 Versailles, France; vincent.secherre@uvsq.fr

Mathematics Subject Classification 2020: 11F70 (primary); 22E50 (secondary).

If it is orthogonal, it factors through a Langlands parameter φ for a quasi-split special orthogonal group $SO_{2n}^{\alpha}(F)$ for some $\alpha \in F^{\times}/F^{\times 2}$ (see [2, Section 5.1]). More precisely (see [2, Section 5.3]), the determinant of φ corresponds through local class field theory to the character

$$x \mapsto (\alpha, x)_F \tag{1.1}$$

of F^{\times} , where $(\cdot, \cdot)_F$ is the Hilbert symbol over F. The packet $\Pi_{\varphi}(\mathrm{SO}_{2n}^{\alpha}(F))$ associated with the $\mathrm{O}_{2n}(\mathbb{C})$ -conjugacy class of φ thus contains a cuspidal representation whose transfer to $\mathrm{GL}_{2n}(F)$ is the cuspidal representation with parameter φ .

1.2. We prove the following result.

Proposition 1.1. Suppose that either $G = SO_{2n+1}(F)$, or $G = SO_{2n}^{\alpha}(F)$ for an $\alpha \in F^{\times}$ such that $F(\sqrt{\alpha})$ is quadratic and unramified over F. Then there is a cuspidal representation of level 0 of G whose transfer to $GL_{2n}(F)$ is cuspidal.

Thanks to Section 1.1, it suffices to prove that there exist

- a symplectic self-dual irreducible representation ϕ of W_F of dimension 2n of level 0,
- an orthogonal self-dual irreducible representation ϕ of W_F of dimension 2n of level 0 whose determinant is unramified and has order 2.

1.3. Let L be the unramified extension of degree 2n of F in $\overline{\mathbb{Q}}_p$, and let $K \subseteq L$ be the unramified extension of degree n of F. Thus L has degree 2 over K. Let

$$\xi: L^{\times} \to \mathbb{C}^{\times}$$

be a tamely ramified character such that all conjugates ξ^{α} , $\alpha \in \operatorname{Gal}(L/F)$, are pairwise distinct. Let η denote the unramified character of L^{\times} of order 2. Thus

$$\sigma = \operatorname{Ind}_{L/F}(\xi \eta)$$

(where $\operatorname{Ind}_{L/F}$ denotes induction from W_L to W_F) is an irreducible 2n-dimensional representation of level 0 of W_F . Through local class field theory, the determinant of σ corresponds to the restriction of ξ to F^{\times} (see for instance [1, Theorem 2]).

Likewise.

$$\tau = \mathrm{Ind}_{L/K}(\xi \eta)$$

is an irreducible two-dimensional representation of W_K whose determinant corresponds to the restriction of ξ to K^{\times} . One has $\sigma = \operatorname{Ind}_{K/F}(\tau)$.

Let $\gamma \in \operatorname{Gal}(L/K) \subseteq \operatorname{Gal}(L/F)$ denote the element of order 2. Then $L^{\gamma} = K$. Suppose that σ is self-dual. This is equivalent to $\xi^{\gamma} = \xi^{-1}$. Indeed, the fact that the representation σ is self-dual implies $\xi^{-1} = \xi^{\alpha}$ for some $\alpha \in \operatorname{Gal}(L/F)$. Applying α twice gives $\xi^{\alpha^2} = \xi$, which implies that $\alpha^2 = \operatorname{id}_L$, thus $\alpha = \gamma$ thanks to the regularity assumption on ξ . Note that the restriction of ξ to K^{\times} is unramified since ξ is trivial on $\operatorname{N}_{L/K}(L^{\times})$.

Note that τ is self-dual, with the same parity as σ . Indeed, if $\langle \cdot, \cdot \rangle_{\tau}$ is a τ -invariant ε -symmetric non-degenerate bilinear form on the space of τ , for some sign $\varepsilon \in \{-1, 1\}$,

Corrigendum 3

then

$$\langle f, g \rangle_{\sigma} = \sum_{w \in W_K \backslash W_F} \langle f(w), g(w) \rangle_{\tau}$$

is a σ -invariant ε -symmetric non-degenerate bilinear form on the space of $\sigma = \operatorname{Ind}_{K/F}(\tau)$, where w ranges over a set of representatives of $W_K \setminus W_F$ in W_F .

Suppose that ξ is trivial on K^{\times} . Then the representation τ has determinant 1, that is, it takes values in $SL_2(\mathbb{C}) = Sp_2(\mathbb{C})$. It is thus symplectic. It follows that σ is symplectic.

Now suppose that ξ is non-trivial on K^{\times} . The representation τ is orthogonal, thus σ is orthogonal. Its determinant is the restriction of ξ to F^{\times} , which is unramified non-trivial (since the restriction of ξ to K^{\times} is unramified non-trivial and K is unramified over F). It has order 2 since σ is self-dual.

In order to prove Proposition 1.1, it thus remains to prove the existence of a tamely ramified character $\xi: L^{\times} \to \mathbb{C}^{\times}$ such that

- (1) all conjugates ξ^{α} , $\alpha \in Gal(L/F)$, are pairwise distinct,
- (2) the restriction of ξ to K^{\times} is a given character of K^{\times} trivial on $N_{L/K}(L^{\times})$.

A tamely ramified character ξ of L^{\times} is entirely determined by

- the character $\chi: k_L^{\times} \to \mathbb{C}^{\times}$, where k_L denotes the residue field of L, whose inflation to \mathcal{O}_L^{\times} is the restriction of the character ξ to \mathcal{O}_L^{\times} ,
- the non-zero scalar $z = \xi(\varpi_F) \in \mathbb{C}^{\times}$, where ϖ_F is a fixed uniformizer of F.

Then the two conditions (1) and (2) are equivalent to the following two conditions:

- (1') all conjugates χ , χ^q ,..., $\chi^{q^{2n-1}}$ are pairwise distinct, where q is the cardinality of the residue field of F,
- (2') $\chi^{-1} = \chi^{q^n}$ and the scalar z takes a given value in $\{-1, 1\}$.

The existence of characters ξ satisfying conditions (1) and (2) thus follows for instance from (the proof of) [3, Lemma 2.17].

- 1.4. Let us now adapt the proof of [2, Lemma 9.1] in the case where G is a quasi-split special orthogonal group over F. Let ℓ be a prime number different from p. Let Q be a non-degenerate quadratic form over F such that G = SO(Q). Let k, w and q be as in [2, Theorem 2.8]. Thus
- k is a totally real number field of even degree,
- w is a finite place of k such that $k_w = F$,
- q is a non-degenerate quadratic form over k such that $q \otimes F$ and Q are equivalent, and the group $SO(q \otimes k_v)$ is compact for all real places v and quasi-split for all finite places v.

We may even assume that the discriminant of q (in the sense of [2, Section 2.1]) is equal to any given element $\delta \in k^{\times}/k^{\times 2}$ such that δ_w is equal to the discriminant of Q, and $\delta_v > 0$ for all real places v of k (see [2, Propositions 2.2, 2.4]). We may thus assume that there is a finite place $u \neq w$, not dividing 2ℓ , such that the extension of k_u generated by a square root of $(-1)^n \delta_u$ is unramified and of degree 2.

Let **G** be the k-group SO(q).

Lemma 1.2. There is a finite place u of k different from w, not dividing ℓ , such that there is a unitary cuspidal irreducible complex representation ρ of $\mathbf{G}(k_u)$ with the following properties:

- (1) ρ is compactly induced from some compact mod centre, open subgroup of $G(k_u)$,
- (2) the local transfer of ρ to $GL_{2n}(k_u)$ is cuspidal.

Proof. Recall that, if u does not divide 2, any cuspidal representation of $G(k_u)$ is compactly induced from some compact mod centre, open subgroup of $G(k_u)$.

If $\dim(q)$ is odd, it suffices to choose any finite place $u \neq w$ not dividing 2ℓ , and then apply Proposition 1.1.

If $\dim(q) = 2n$ for some $n \ge 1$, it suffices to choose any finite place $u \ne w$ not dividing 2ℓ such that the extension of k_u generated by a square root of $(-1)^n \delta_u$ is quadratic and unramified, that is, such that $\mathrm{SO}(q \otimes k_u)$ is non-split and unramified, and then apply Proposition 1.1.

The main theorem of [2] now follows, since its proof (see [2, Section 9.1]) relies on Lemma 9.1, Proposition 6.3, and Theorems 4.4, 5.5, 5.6, 8.2 only.

References

- Bushnell, C. J., Henniart, G.: Explicit functorial correspondences for level zero representations of p-adic linear groups. J. Number Theory 131, 309–331 (2011) Zbl 1205.22012 MR 2736858
- [2] Mínguez, A., Sécherre, V.: Local transfer for quasi-split classical groups and congruences mod ℓ (with an appendix by G. Henniart). J. Eur. Math. Soc. (online first, 2025)
- [3] Sécherre, V.: Supercuspidal representations of $GL_n(F)$ distinguished by a Galois involution. Algebra Number Theory **13**, 1677–1733 (2019) Zbl 1432.22019 MR 4009674