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Monodromy of double elliptic logarithms
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ABsTRACT — We determine the relative monodromy group of abelian logarithms with respect to
periods in the cases of fibered products of elliptic schemes. This gives rise to a result stronger
than a theorem due to Y. André and implies in particular the algebraic independence of the
logarithm of any non-torsion section and the periods. We then conjecture an analogous result
for the general case of an abelian scheme of arbitrary relative dimension. This generalizes
a theorem of Corvaja and Zannier which determines the said group in the case of a single
elliptic scheme.
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1. Introduction

The following paper is devoted to the study of the monodromy of double elliptic
logarithms, i.e. a generalized notion of logarithm defined on fibered products of elliptic
schemes.

Let us consider an abelian scheme A — B over an algebraic curve and a section
0: B — 4. Period functions, abelian logarithms of ¢ and the Betti map can always
be globally defined on the universal cover of B, but they cannot in general be well
defined on the whole of B. We are interested in studying the minimal unramified cover
on which abelian logarithm and periods become well defined in the case of products of
elliptic schemes.
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This analysis starts from a paper by Corvaja and Zannier (see [4]), where they study
the monodromy problem in the case of a non-isotrivial elliptic scheme & — B. In
that case, we can consider the minimal unramified cover B* — B on which periods
become well defined and the minimal unramified cover By — B™* on which an elliptic
logarithm of o becomes well defined. They proved the following:

THeorREM 1.1. Given a non-torsion (rational) section 6: B — &, the cover B, —
B* has infinite degree and its Galois group is isomorphic to 7.2.

In the context of abelian schemes of arbitrary relative dimension, a theorem due to
André [1] provides, under suitable assumptions, the best possible information about
the Zariski closure of the image of the monodromy representation of the fundamental
group, associated to a section; here, we want to determine the relative monodromy
group, which is more than the information provided passing through the Zariski closure
of the monodromy group (see Remark 2.4). This paper aims at extending Theorem
1.1 to all fibered products of two non-isotrivial elliptic schemes, which are abelian
schemes of relative dimension 2. First we consider an abelian scheme 4 — B and
a section 0: B — +4. In analogy with the case of elliptic schemes, we can consider
the minimal unramified cover B* — B on which periods become well defined and
the minimal unramified cover B, — B™* on which an abelian logarithm of ¢ becomes
well defined. We begin by stating the following conjecture (which is beyond our aims
since it concerns abelian schemes of arbitrary relative dimension) and proving that it is
invariant under isogeny:

ConNJECTURE (Conjecture 3.1). Let w: A — B be an abelian scheme of relative
dimension g which has no fixed part. If the image of 0: B — A is not contained in any
proper group-subscheme, then the cover B, — B™ has infinite degree and its Galois
group is isomorphic to 7.%8 .

Observe that, as in the case of elliptic schemes, the previous conjecture is stronger
than André’s theorem and implies in particular the algebraic independence of the
logarithm of any non-torsion section and the periods.

Then we will consider the case where + is a fibered product of the form &, xp &, —
B, where an elliptic scheme is always assumed to be non-isotrivial.

Remark 1.2. If we consider a trivial elliptic scheme E x B — B, where E is
an elliptic curve defined over C, then the cover B, — B* can be trivial for some
non-torsion section o. First, let us observe that B* = B, since periods can be defined
on the whole of B. Moreover, let us consider a non-torsion point P € E and let us
define the non-torsion section

o:b+— (P,b) foreachb € B.
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In this case, the logarithm log,; is a constant function. Thus, it is well defined on the
whole of B and we have B, = B* = B.

If & — B is an isotrivial but non-trivial elliptic scheme then periods can be defined
on the whole of B, so that we again have B* = B. In this case the Mordell-Weil theorem
for function fields predicts that the group of C(B)-rational points of the generic fiber
of & — B is finitely generated. Thus, we can prove that a logarithm of a non-trivial
section cannot be defined on B* = B by arguing in the following way: if a non-zero
rational section admits an elliptic logarithm which is well defined on the whole of
B(C), then we may divide it, and hence the section, by any prescribed positive integer
and again we have maps well defined on B(C). Thus the section would be infinitely
divisible on B(C) (since the submultiples of the sections would be algebraic and well
defined on B(C), hence rational on B(C)). But this violates the Mordell-Weil theorem
for the generic fiber of & — B over the function field of B(C).

This remark shows that the case of an isotrivial elliptic scheme is well understood.
This is why we only focus on non-isotrivial elliptic schemes in what follows.

Let us go back to considering fibered products of two elliptic schemes. We will
distinguish two cases:

¢ the elliptic schemes & — B and &, — B are isogenous;
¢ the elliptic schemes &; — B and &, — B are not isogenous.

Distinguishing the two cases, a careful analysis of the relationship between periods
and logarithms of sections of the two factors leads us to the following two results:

TueoreM (Theorem 4.7). Leto1: B — &1,02: B — &, be rational sections of two
elliptic schemes such that at least one of them is non-torsion. Suppose that there exists
an isogeny ¢: &1 — &;. Let us consider the abelian scheme w: A := &) xp & — B
endowed with the (non-torsion) section ¢ = (01, 02). We have the following situation:

(1) If ¢ o 01,02 are linearly dependent over Z, the cover B, — B™* has infinite degree
and its Galois group is isomorphic to 7.

(2) If ¢ o 01, 05 are linearly independent over Z, the cover B, — B* has infinite
degree and its Galois group is isomorphic to 7*,

THEOREM (Theorem 4.11). Let0;: B — &;,i = 1,2, be rational sections of two
non-isogenous elliptic schemes and suppose they are not both torsion sections. Let us
consider the abelian scheme 7. A = & X 8y — B endowed with the (non-torsion)
section 0 = (01, 02). We have the following situation:

(1) If one of 01 and o5 is a torsion section, the cover By — B* has infinite degree
and its Galois group is isomorphic to {0} or to Z.2.
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(2) If neither o1 nor 05 is a torsion section, the cover B, — B™* has infinite degree
and its Galois group is isomorphic to 7.*.

These results determine the relative monodromy of abelian logarithms with respect
to periods in the cases of fibered products of elliptic schemes.

2. Abelian schemes and logarithms of sections

Let m: A — B be a complex abelian scheme of relative dimension g; here B is
a quasi-projective smooth curve, # is a quasi-projective variety and 7: A — B isa
proper surjective morphism all of whose fibers Aj := 7~1(b) are abelian varieties of
constant dimension g. We always suppose that the abelian scheme 77: A — B has no
fixed part and that there exists a section 09: B — # which marks the origin in each
fiber.

Over every point b € B, we have an abelian exponential map Lie(A) — +p, whose
kernel is the period lattice. Since Lie(+p) is a complex vector space of dimension
g, the period lattice can be seen as a lattice in C& for each » € B. The family of Lie
algebras Lie(+#4) — B defines a vector bundle over B and we have the exponential map

exp: Lie(A) — .

Any fiber #Aj is analytically isomorphic to a complex torus C& /Ay, where Ay
is a lattice of (maximal) rank 2g. On suitable open subsets U C B in the complex
topology, we can find holomorphic functions wy 1, ..., @y2g: U — C# such that
wy,1(b), ..., wu24(b) is abasis of Aj for each b € U. Moreover, we may assume that
U is simply connected and that B is covered by such sets.

Observe that by restricting the map exp to U x C&, we obtain the covering map

UxC® — Ay,
where we denote 71 (U) by Ay.

DerintTION 2.1. Let 0: B — A be a section of the abelian scheme and let U C B
be an open set as above. A logarithm of o in U is a lifting of oy to U x C¢.

In other words, we have the following commutative diagram:

UxCé&

£ T l

-

-1
BDUT?T (U)C:Al
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Observe that £ is of the form & = (id, 6); the holomorphic map 6: U — C#& will be
called a logarithm of o in U. By definition, saying that £(b) is a logarithm of o ()
means that exp, o 6(b) = o (b) on U. In what follows, we will denote a logarithm of
a section o by log, (instead of 7).

2.1 — Monodromy representations

Given an abelian scheme 4 — B, let us consider the fundamental group G =
m1(B,b), where b € B is a fixed base point. Given & € G, we can consider the analytic
continuation of the periods along any loop in B belonging to the homotopy class 4: to
be more precise, if / is the homotopy class of a loop «: [0, 1] — B and w is a period,
when we need it we will denote by cj, (@) the analytic continuation of w in (1) along
«. This procedure induces a change of basis of the lattice Aj. In other words, the
monodromy action of G on periods induces a homomorphism to GL,, (Z); since the
action preserves the orientation of the basis, the image of the said homomorphism
is contained in SL,¢ (Z), so that we obtain a representation p: G — SLyg (Z) which
describes the monodromy of periods. If @ = ujw; + -+ 4+ uzgws, is a period, the
monodromy action on the Z-module generated by periods is given by

Ui ui

h-1 + | =ph)
Uzg Usg
Moreover, given a section : B — +, observe that two branches of a logarithm

over b € B have to differ by an element of A: thus, for fixed 4 € G we have that log,,
transforms in the following way:

w1
log, — log, +(u1,....u2¢) - | : |,
W2g
where u1, ..., uze € Z. Observe that the monodromy group of the logarithm, as

a function defined locally on the B* considered in the introduction, is a subgroup
of 728,

REMARK 2.2. Let us consider a torsion section o: B — +. The Betti map of such
a section (see [2] for a definition) is constant and a logarithm is a rational constant
combination of periods. In other words, we have

logo, = q1w1 + .- 4 ngwzg’
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where q1, ..., q2¢ € Q. Therefore, a loop which leaves unchanged periods via analytic
continuation, also leaves the logarithm of such a section unchanged. In other words,
the cover B, — B™* defined in the introduction is trivial in this case. This is why we
only consider non-torsion sections in what follows.

In the particular case of an elliptic scheme 7: & — B, if we look at the simultaneous
monodromy action of G := 71(B) on periods and logarithm of a sectiono: B — &,
we provide a representation

0s: G — SL3(Z),

where every matrix 0, (g) is of the form

0o (¢) = (Tog “’lg) ,

where T, = p(g) € SL2(Z) is a matrix acting on periods (so it does not depend on o),
and wg = (ug,vg)T € Z? is a vector which corresponds to the following monodromy
action on logarithm:

log,, 5 log, +ugwi + vgws.

Theorem 1.1, which determines the relative monodromy group of the logarithm
with respect to periods, can be restated in terms of representations as follows:

THeOREM 2.3. Given a non-torsion (rational) section 6: B — &, the kernel of the
homomorphism 0,(G) — SL,(Z) is isomorphic to 7.2, which is equivalent to saying

0o (ker p) = Z2.

REmMARK 2.4. Observe that the conclusion of Theorem 2.3 is stronger than knowing
the kernel of the homomorphism 0, (G)** — SL,, obtained by taking the Zariski
closure of the group 6,(G), as the following example shows. Define H to be the
subgroup of SL3(Z) generated by the matrices

1 2 U1 1 0 w1
A B
A=10 1 vy =:(00 11)) B=12 1 w, =:(00 If)
0 0 1 0 0 1
where Ay, By are the standard unipotent generators of I'; and v, w are a basis for Z2.
It can be shown that the Zariski closure of H is the full semidirect product of SL, by

Gg, whereas the kernel of the natural map to SL; is trivial; the details can be found
in [3].
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3. Monodromy of abelian logarithms: Invariance under isogeny

Let m: A — B be a complex abelian scheme of relative dimension g and let us
consider a section 0: B — 4. We will call B* — B the minimal (unramified) cover
of B on which a basis for the period lattice can be globally defined; moreover, we set
Bs — B™ to be the minimal cover of B* on which we can define the logarithm of o.
The tower of covers is represented in the diagram

B, - B* — B.

Our aim is to prove something similar to Theorem 2.3 for double elliptic schemes
(i.e. fibered products of elliptic schemes). Let us start by formulating the following
conjecture (which is beyond our aims since it concerns abelian schemes of arbitrary
relative dimension) and by proving it is invariant under isogeny:

CoNJECTURE 3.1. Let w: A — B be an abelian scheme of relative dimension g
which has no fixed part. If the image of 0: B — 4 is not contained in any proper
group-subscheme, then the cover By — B* has infinite degree and its Galois group is
isomorphic to 7.%8.

Observe that the hypothesis that the image of 0: B — + is not contained in any
proper group-subscheme is necessary, as shown by the following example.

ExampLE 3.2. Let mg: & — B be an elliptic scheme with zero-section denoted
by 0p and let 0: B — & be a non-torsion section. By Theorem 2.3, we know that the
Galois group of B, — B* is isomorphic to Z2. We can consider the fibered product
w4 A =& xp & — B, which gives rise to an abelian scheme of relative dimension
2. If we denote by & := ”8_1 (b) the fiber of the elliptic scheme over a point b, then
the fiber 4y, is given by the product &, x &p. The morphism

5= (00,0): B > A, b (0p,0(b))

is a section of the abelian scheme, whose image is contained in the proper group-
subscheme 0¢(B) xg & — B of A — B. Note that the cover B* — B is the same
for the two schemes A — B and & — B. Moreover, the cover B; — B™ is the same
as the cover B, — B*, i.e. the Galois group of B — B* is isomorphic to Z2, thus in
this case it is not as large as possible.

More generally, similar examples can be obtained by considering a section ¢ =
(01, 02) where 01, 0, are linearly dependent sections of the elliptic scheme & — B.
The case of the abelian scheme & xp & — B is fully covered in Section 4.1, where
we prove the conjecture for the product of isogenous elliptic schemes.
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Proof of “invariance under isogeny”

Consider two abelian schemes 7: A — B, n’: A" — B. Recall the following defi-
nition:

DEerINITION 3.3. A morphism f: 4 — 4’ of group schemes over a scheme B
is said to be an isogeny if f is surjective and if its kernel ker f is a flat finite group
B-scheme.

We start by showing that the above conjecture is isogeny invariant; in other words,
if A and A’ are isogenous, then the conjecture for 4’ implies the conjecture for +4. In
order to prove this, let consider a non-torsion section o: B — «# and suppose that the
theorem is true for A" — B.

Lemma 34, If f: A — A’ is an isogeny of abelian schemes, then the map b +—
#ker( f|4,) is constant.

T\ ker f
Proor. Let us consider the B-scheme ker f 7. B and recall that the fiber of
T|xer £ OVEr a point b € B is given by

(ker f)p = ker(fj4,) = ker f xp Spec C(b).
By definition of isogeny, the restriction
Tker roker f — B
is a flat finite morphism. Then the map
B — N, b dimce) (70 )b ®0p, C(b))
is locally constant. Since B is connected, then this function is constant, say
dimc ) (74 Oxer )b ®0p, C(b)) = q foreachb € B,

where ¢ € N. Then (74O )b ®0, C (D) is isomorphic to C(b)? as a vector space.
Since the fiber (ker f'); is an algebraic group (in characteristic zero), hence it is reduced,
then ker( f|, ) is a disjoint union of g points. ]

Let consider the diagram
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where given o as above we define o’ := f o ¢. Obviously, this last is a section of
A’ — B since
7'oo’ =n"o foo =mo0o =idp.
PrOPOSITION 3.5. If 0 is a non-torsion section of & — B, then o' is a non-torsion
section of A’ — B.

Proor. Aswe have just observed, o’ is a section of A” — B. We prove the equivalent
«w /

statement “o” torsion = o torsion”. So suppose ko’ = 0 for some k. Since f|4, is a
morphism, we have

fka(b)) = k(f o0(b)) =ko'(b) =0

for each b. This means ko (b) € ker( f|.4,) for each b. By Lemma 3.4, ker( f|4,) is a
finite group of fixed order ¢ for each b € B. Therefore gko (b) = 0 for each b. This
means (¢k)o = 0; in other words, o is torsion. n

THEOREM 3.6 (Invariance under isogeny). Let A — B, A" — B be two abelian
schemes of relative dimension g and f: A — A’ an isogeny. If Conjecture 3.1 holds
for A" — B, then it holds for A — B.

Proor. Let 0: B — A be a non-torsion section and define, as above, 0’ := f o 0.
We have the following two towers of coverings:
B, — B{ — B,
B,» — B> — B,
which correspond to the relative monodromy problems for log, log,,, respectively.
Since # and A’ are isogenous, the periods of #4 are related to those of A’ through a
matrix in GL,g (Q) (this matrix does not depend on b € B). In order to prove this, let
us consider the fibers Ay, J\az and let us denote by w;, w; € C# (as row vectors), for

i =1,...,2g, the corresponding periods. The isogeny f induces an isogeny on the
fibers, i.e. fj: Ay — o). So there exists M(= Mj) € GL; (C) such that

/ I
w1 M = a1y + -+ al,zngg,

wag - M = azg,lwi + -+ azg,zga)ég,
where a; ; € Z for each i, j. Thus we obtain the relation
a)lM a);
(3.1 : =¢l |

’
a)ng wzg

where we denote by ¢ the matrix (a;,j);, j=1,..2¢ € GL2g(Q).
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ReEMARK 3.7. Let us consider an isogeny f: A; — Aj between complex abelian
varieties of dimension g. Then we have a commutative diagram

ce — % g

| |

ce/ny —L cE/ns,
where ¢ is an isomorphism obtained by covering theory. The isomorphism ¢ can be
expressed by right multiplication by a matrix M € GL,;(C). Let us prove that M is
uniquely determined by f. In fact, if two matrices M, N induce the same isogeny, we
have
z:M=z-N (mod A,) forallz e Cé&.

Hence the map z +— z - (M — N) sends C# to A,. Since A5 is discrete, the map must
be constant. This implies M = N.

REmaARk 3.8. By the previous remark, the matrix M = M} considered above is
uniquely determined by f3; moreover, the function » — My}, is a holomorphic function
on B. In fact, we can consider the diagram

UxCs¢ 25 Uxcs

lexP Y lexp/
“

Ay —L— Al
where U is a simply connected open set, i := f o exp and ¢ is a lift of ¥ (it exists

because U x C# is simply connected). We necessarily have
Plpyxce = [Mp],

where [Mjp] is right multiplication by Mj. Since ¢ is holomorphic, so is b — Mp.
Moreover, since M}, is uniquely determined by fp, then the function b — M} cannot
have non-trivial monodromy along loops. So it is well defined on the whole of B.

Now let us return to equation (3.1). In particular, it means that the monodromy action
of 71 (B) on periods of « is determined by the monodromy action on the periods of «4’.
To be more precise, let us consider a period o’ with coordinate vector (1}, ..., u) g)
with respect to the basis 7, i.e.

/
W
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By (3.1), we obtain
a)lM
a)/ = (u/l, ey u/zg)é'_l
a)ng
Let us look at the monodromy action on the bases w; and w;; denote by p, p’ the

monodromy representations of «#, A’ respectively. Since M}, varies holomorphically
and without monodromy with respect to b € B and ¢ does not depend on b € B, we

obtain
heo'=h-@ ) | | = @b WT ]
Whe W
a)lM Cl)]M
h_w/:h'(ull""’ulzg)é-_l =(u/1,...,u/2g)§_1p(h)T
Q)ZgM Cl)ZgM

Combining the previous relations, we obtain

w] oM
Wty DT | | = o )6 p ()T
wég wre M
)

= (uy, . up )T oML ]
Whg
forall u),... ,uj ¢ € Z. In other terms, the two representations are conjugated between
them, i.e. p'(h) = {Tp(h)(¢T)™ L. Therefore, the periods of +# are defined over a cover
B* — B if and only if the periods of A’ are. In other words, we have B} = Bj.

Now let us study the logarithms of the two abelian schemes. Let U C B be a simply
connected open set and consider log, log,/:

UxC8 25 UxcCse
(idlogy) _-7T l l )’\\ (id,log/)
- exp exp ~

-
g ~
~

- ~

BDUT>A|U;>A1U<U—/UcB.

As stated above, the periods of 4 are related to those of 4’ through a matrix ¢ in
GL,, (Q); we continue to use the above notation. The induced isogeny f is given
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by right multiplication with a matrix M, € GLg(C); in other words, we have the
commutative diagram

Ce % Ce
Lo
Ay — A;’
This means that we can choose log,, (b) = log, (b) - M}, for a point b € B. For fixed
h € G let us recall that log,, transforms in the following way:
w1
log, — log, +(u1,...,uzg) -
Wag

Moreover, as remarked above, My = M varies holomorphically with respect to b and
there is no monodromy action on it. Therefore, for ¢’ we have

w1
log,, =log, -Mp > | log, +(u1,...,uzg) | - Mp
Wag
oM
=log, M + (uy,...,uzg) -
wrg M
@}
=log, +(u1,...,u2g)¢
a)ég

Thus we obtain that the monodromies of logarithms are related in the following way:
u’l [Z51
=7 ¢ |,
M/Z g Uzg

where u; and u; describe the monodromies of log,, log,., respectively. It follows
that By = By; this means that if Conjecture 3.1 holds for A" — B, then it holds for
A — B. ]

4. Monodromy of double elliptic logarithms

Now we will analyze double elliptic schemes over the same base, usually a curve.
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Such a scheme may be seen as a fiber product of elliptic schemes, or a pair of elliptic
curves defined over a function field of the (same) curve.

To settle things in precise terms, let us suppose we are given two non-isotrivial
elliptic schemes &; — B, fori = 1,2, over the same base B, supposed to be an affine
(ramified) cover of S := P; — {0, 1, co}. By taking a cover of B if necessary, we may
assume that these elliptic schemes are pullbacks of the Legendre scheme (i.e. the elliptic
scheme £ — S defined by the equation y2z = x(x — z)(x — Az), A € S). Each of
these elliptic schemes has associated periods and monodromy action of 7 (B) on the
corresponding periods: this action yields subgroups G, G, of I'; C SL;,(Z), both of
finite index. In other words, we have the corresponding monodromy representations:

pg,:m1(B) — G C Iy C SLa(Z),
pe, T1(B) = G, C I', C SLy(Z).

This setting is equivalent to considering the abelian scheme A = &, xp & — B.
Hence, putting together what we said about &1, &,, we have a representation

p = (pg,»pe,):m1(B) = Gy X Ga C 'y x I'; C SLa(Z) x SLp(Z),

where we identify SL,(Z) x SL,(Z) as a subgroup of SL4(Z). Observe that p is exactly
the monodromy representation associated with #, so we denote it by p4. Thus, we

have

0 pe,(g)

If &, — B, 6, — B are isogenous elliptic schemes (we may assume the isogeny to
be defined over C(B)), then the periods of &; are related to those of &, through a matrix
in GL,(Q). This reflects in the fact that there exists a constant matrix { € GL;,(Q)
such that pg, = ¢ _1P81 . Thus, in particular, the image of p,4 is a graph, and the
same holds for its Zariski closure in SL,(C) x SL,(C), so we may express this by
considering it to be “small”. The following theorem, which we only state, establishes a
converse assertion, namely whether a “small” image necessarily implies the existence
of an isogeny. A detailed proof of it is carried out by Lang in a different setting in [5]
with methods which take the Galois action directly into account; instead, an alternative
treatment based entirely on the Galois action as induced by the monodromy action is
given by Corvaja and Zannier [3].

THeOREM 4.1 (Isogeny theorem). Let &1, &, be elliptic schemes over B, as above,
and consider the monodromy representations as above. Then either the Zariski closure
of the image of p is the whole of SL, x SL,, or &1, &, are isogenous (over a cover of
B) and there exists 0 € GL5(Q) such that p»(g) = 0~ p1(g)o forall g € w1(B).
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Also, for a large enough prime number p, either the image of p in SLy(Zp) X
SL,(Zp) is dense in the whole group or we fall into the same conclusion.

Now let us consider two sections o7 and 0, of &1 — B and &, — B, respectively.
This setting is equivalent to considering the abelian scheme A := §; xgp & — B
with a section o, whose components are o1, 0. Any loop Y whose homotopy class
g isin w1 (B, bg) gives rise to a matrix p4(g) € SL»(Z) x SL,(Z) which describes
the monodromy of periods and to a column vector w, € Z* which describes the
monodromy of logarithm. Thus we have a representation of the fundamental group
1(B) in SL5(Z), given by

Oo:71(B) — SLs(Z).

pa(g) w
gr—>( 0 lg),

where
ul,g
p&’](g) 0 Uz.g
pA(g) = . W =
( 0 pe(9) £ v
Uz,g

Observe that the logarithms log, , log,, transform in the following way:

g
logo'l = logo'l +u1:ga)1381 + Mz,ga)z,gl ’

g
log,, = log,, +v1,gw1,e, + V2,002.6,,

where w1,g,, w2,¢, denote the periods of & — B. Moreover, we have
Ulg Ut,h
k] + 8 ( . )
U1, U1,h
( g)+p82(g)~< )
V2,g V2.h

Finally, let us recall the following notation for the elliptic schemes & — B,i = 1,2:

Wep = Wg + palg) - wp =

Oo;: m1(B) — SL3(Z),

7> pe; (&) wig
0 1)



Monodromy of double elliptic logarithms 59

where

Before dealing with the main theorems, we prove a lemma which will be very useful in
what follows.

LemMma 4.2, Let H 4G = m((B) be anormal subgroup of w1 (B). If H C ker pg,
(resp. H C ker pg, ), then 05, (H) (resp. 0,,(H)) is isomorphic to either {0} or 7.2

Proor. We will give the proof only for the case H C ker pg, , since the other case
is analogous. Since we are going to work only with the scheme &; — B, let us denote
the periods w1 g, , w2,g, simply by w1, @> in this lemma.

First, since H C ker pg, observe that 05, (H ) is a subgroup of Z?; so it is isomorphic
to either {0} or Z or Z?. We want to prove that the case Z is excluded. Suppose by
contradiction that 6, (H) is infinite cyclic: this means that for every 4 € H, the
logarithm log,, of 01 is transformed by £ as

h
log,, + log,, +x(h)ws,,

for a fixed non-zero period wy, and a homomorphism y: H — Z. In particular, let us
choose / such that y(h) = 1. Recall that, for g € G = 71(B), the logarithm log,; will
be sent by g to a new determination of the form

log(,l +wg,

where wy is a period. Recall that the monodromy group G = pg, (G) is Zariski dense
in SLy(Z): in fact, up to a finite base change, an arbitrary non-isotrivial elliptic scheme
can always be supposed to be obtained as a pullback of the Legendre elliptic scheme,
which has a Zariski-dense monodromy group (for more details see [3]). Therefore,
the group G = pg, (G) acts irreducibly on the lattice of periods, since it is Zariski
dense in SL»(Z). Then there exists g € G such that wy, is not an eigenvector of pg, (g).
Since H < G, we have i’ = g~ 'hg € H, where g, h are the ones just considered. Let
us calculate the action of the element 4/ = g~ !hg. Recalling the notation introduced
in Section 2.1, given & € 71(B) and a period w, we denote by cj(w) the analytic
continuation of @ along any loop whose homotopy class is . Thus, we have

h —1
log,, Fs log,, +wg —> log,, +wg + wg, AN log,, +c¢g—1(we,).

Since ¢p—1(wsy) = pg, (g YHwe,, we obtain pg, (g7 )wys, = x(h')wy,, but this is
a contradiction since @y, is not an eigenvector of pg, (g) (nor of pg, (g~1)). This
concludes the proof. ]
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4.1 — Case 1: Product of isogenous elliptic schemes

In this section we will formulate a result on the monodromy of the logarithm
of a section ¢ in the case in which &;, &, are isogenous; we use the above notation
A = &1 xp &;. Inthis case the monodromy representations are conjugate (see Theorem
4.1), so we have

ker p4 = ker pg, = ker pg,.

Moreover, in what follows we will make the following identifications: if g € ker p 4
we identify 0y, (g) = w; ¢ € Z? and 0,(g) = w, € Z*. Moreover, we define

Hy = 05,(kerby,), Hj := 04 (kerby,).
Now we are ready for the results of this section.
LemMa 4.3. The groups Hy, H, are isomorphic to either {0} or Z.>.

Proor. This follows by Lemma 4.2, since ker 85, and ker 6, are normal subgroups
of 71 (B) and ker pg, = ker pg,. ]

ProrosiTioN 4.4. Suppose that at least one of o1 and o, is non-torsion. The group
O, (ker p4) is isomorphic to either Z? or 7.*.

Proor. We prove the theorem supposing that o; is non-torsion.

Recall that by Theorem 2.3, we have 0, (ker pg,) = Z?. Since ker p,4 = ker pg, ,
then we have 2 < rank 6, (ker p4) < 4. By the previous lemma, we only have two
possibilities for Hy,i.e. Hy = {0} or H; =~ Z2.

Case 1: Hy = {0}. The condition H; = {0} means that foreach g € kerp4 ifu; o =
Uz ¢ = 0, then vy ¢ = v3 ¢ = 0, where the notation is the same as above. Let us prove
that rank 6, (ker p4) = 2 by proving that any three elements of the form wg, wy, wy €
05 (ker p.4) are linearly dependent on Z.

Since 6, (ker pg,) = Z?, given any three elements g, h, k € ker py C ker pg,,
there always exists ng,np, ng € Z, not all zero, such that

u u u 0
ng 1.2 + ny Lh + ng Lk = .
Us,g U U k 0

0
. 0
] id4
O (k"5 h"h g"¢) = NgV1,g + NpVL K + NEVLE
Nglp g +NpV2p +NEVsk
0 1

Thus we have
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For what we observed at the beginning of this proof, H; = {0} implies that

0
ng Vg +np Lk + ng ULk .
U2,g Uz.h V2 k 0

Therefore, any three elements of Z* of the form w ¢» Wh, Wi are linearly dependent on
7,50 O (ker py) = 7Z2.

Case 2: Hy =~ Z?. Observe that this condition says that 03 is a non-torsion section
too.

Since Hy 2= 72, we can consider a Z-basis for it and the following corresponding
elements of O, (ker py):

0 0
0 0
w3 = , Wyg = . wherek,l € kerf,, Ckerpy.
U1,k V1,1
V2. k V21

Since 0, (ker pg, ) also has rank 2, let us choose a Z-basis (Z;i,’ ) (Z;Z ) of it, where

g.h € ker p4, and consider the corresponding elements of 6, (ker p4):

Uig Uth

| Uzg U2
Z1 = , 22 =

Vi,g U1,k

V2.g U2.h

With an appropriate linear combination of z, z5, w3, w4 we obtain that

Ul,g Ui,k

_ | U2 _ | 42.n
wl - 0 ) w2 - 0
0 0

are elements of 65 (ker p4). Moreover, w1, w», w3, wy are linearly independent over
Z. Thus O, (ker pg) = Z*. n

4.1.1. Maintheorem. Recall that we are considering an abelian scheme A := &; xp &>,
where we assume that &; and &, are isogenous, i.e. there exists an isogeny ¢: &1 — &.
This isogeny induces an isogeny ¢4 = (¢, idg,): &1 xp &2 — &, xp &,. Since our
theorem is invariant under isogeny, we can just study the case 4 := & xp &, where
& — B is an elliptic scheme.
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THEOREM 4.5. Let 01,0,: B — & be rational sections of an elliptic scheme and
suppose that at least one of the sections o1, 0, is non-torsion. Let us consider the abelian
scheme mw: A = & xg & — B endowed with the (non-torsion) section ¢ = (01, 02).
We have the following situation:

(1) If o1, 02 are linearly dependent over Z, the cover B, — B™ has infinite degree
and its Galois group is isomorphic to 7.%.

(2) If 01, 05 are linearly independent over 7., the cover B, — B™* has infinite degree
and its Galois group is isomorphic to 7.*.

Proor. Let us prove the two cases separately.

(1) We are supposing that o1, 0, are linearly dependent over Z. So there existn,n, € Z
such that
ni101 + npop = 0.

Now let us consider the corresponding elliptic logarithms log,, , log,,. On some
domain U C B on which they are well defined, the linear dependence relation
between the sections induces the relation

nylog, +nzlog,, = w,

where w(b) € Ay is a period for each b € U. By Theorem 2.3 we know that
0o, (ker pg) = Z2. So let us fix a loop & in B whose homotopy class is g € ker pg
and also denote

u v
Wi,g = 901 (g) = ( 1,g> » W2, = Qaz(g) = ( l’g) e 72.

Uz.g V2,¢

Now we analytically continue the relation n; log,, +nzlog,, = w along «, by
considering that @ remains unchanged since g € ker pg. So we obtain

niy log(,1 +niuygwr +nius gwy + nzlogo2 +n201,gw1 + N2V g2 = W.
Therefore we have
(nquy,g + navig)wr + (n1ua,g + nava g)ws =0,

which is the same as writing
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By the arbitrariness of g we have njwi,g + now,,z = 0 for all g € ker p4. In

other words, we have
ni
w2, = ——wl, .
g ny L€

Wi
o wr,
W2.¢

Oy (ker pg) = Z>

Then the map

is an isomorphism, so

and the first part is proved.

(2) Now let o1, 07 be linearly independent sections and let us suppose by contradiction
that 0, (ker p.4) is not isomorphic to Z*. Let us introduce the following notation:
Ulg

K = 0,(kerpy) = 2.8 tg €kerpy ¢,
Ulg
V2,g

Ky =0y, (kerpy) = {(ul’g g€ kerp,,‘,} ,

Uz.g

v
K> == 05, (kerpg) = {(v;,g g€ kerpA} .
&

By Proposition 4.4, we have that K =~ 7Z?%. Moreover, by Theorem 2.3, since o7,

o, are linearly independent hence in particular non-torsion, we also have K =~ Z?
and K, =~ Z2.

CrLamM 1. There exists a matrix M € GL,(Q) such that
M. Ul,g — VUi,g
Uz g V2,g

Proor or Cramu 1. Let us define the projections p;: K — K; and p;: K —
K> as

forall g € ker p.

Ulg Ulg

Uz Ulg Uz.g Vl,g
P1 = , D2 = .
Ulg Uz.g Ulg U2,¢

V2,g V2,¢
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Obviously, the projections p; and p, are surjective. Thus, in our hypothesis,
both the projections p;, p, have to be injective. In conclusion, p; and p, are
isomorphisms. Therefore, we can define the isomorphism ¢ := p; o pl_1 K1 —> K,

Ui U1
=2 N £
Uz,g V2,g

Since ¢ is an isomorphism between two full-rank subgroups of Z2, it induces

which maps

an automorphism of Q2. Then, there exists a matrix

_[x B
M = ()/ 5) € GL2(Q),

such that
Vg ) _ gy (Mg ) = (¥Hre T Puzg for all g € ker p4. ]
V2. Uz.g YUlg + Susg

Cramm 2. The matrix M is of the form
a 0
M =
(O a) ’

Proor or CLaiM 2. Now let us choose an element /2 € ker p4 and an element

where a € Q.

g € m1(B). Let us use the notation

u v
b, (h) = (u;”;), 0o (h) = (v;’Z),

and let us consider the periods
Wp,oy = U0 + U 2, Op g, = V101 + V2 p©3.

Moreover, we will indicate with wg ¢, ®g o, the variations of log, , log,, along
g, respectively.

Finally, let us consider the element /' := ghg™! € ker p,4 and use analogous
notation to above, i.e.

Op' o) = ULKOL T U @2, Op g, = V] @1 + V2 py@2.
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Recalling the notation introduced in Section 2.1, given & € 1 (B) and a period
w, we denote by ¢, (w) the analytic continuation of @ along any loop whose
homotopy class is /. If we look at the action of 4’ on the determination of log,,
we obtain

—1
g h
log(rl -— log(,1 —Cg-1 (wg,61) — log(,1 —Cg1 (wg,01) + @h,5,

g
— logo'l +cg (wh,O'l )
In the same way, if we look at the action of /" on the determination of log,,, we
obtain
h/
loga2 — log(72 +cg (Wh,o,)-

Equivalently, the following equations hold:
a)h’,al = Cg(wh,(rl)’ a)h’,O'Q = Cg (a)h,o’z)'

In terms of coordinates, this means

IZ5W/% U1lh AW /% V1.h
(4.1) ( 1’h)=p&(g)'( b ) ( b )=p£:(g)'< b )
Ua.n Uz.h % U2.h

Moreover, since i, i’ € ker py4, by Claim 1 we have that

4.2) M. [Her) — [Vih [V Rt I R
Uz p Ua.h ' Uz p V2, n
Now we are ready to put it all together: by (4.1) and (4.2) we obtain

Ul,h
(Mpe(g) — pe(g)M) - (ul ) =0
forall g € m1(B) and h € ker p4. Observe that the relation does not depend on
U1i,g, U2,g. By the arbitrariness of s, we obtain

Mpg(g) — pe(g)M =0

for every g € 71 (B). Since pg (711 (B)) is Zariski dense in SL, (Z), this last relation
has to be true for every matrix A € SL,(Z) in place of pg(g). In other words, we
have just proved that M commutes with SL,(7Z). Therefore, by the Schur lemma,
the matrix M is a scalar matrix, i.e. it has the form

M:(a O)’
0 «

m

where @ € Q, say o := .
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Claims 1 and 2 mean that vy, = au; p, V2, = Quy  forall i € ker p4. In
other words, the logarithm of o, has the following variation under the action of
each i € ker py:

log(72 > log(,2 +ouy pwr + aup pws.

Now let us consider the sections m - 07 and no,. Observe that for each & € ker p4
we have

log,m71 = mlog(71 = mlog(71 +muy pw1 + Muy pws,

log,;, = nlog,, = nlog,, +muypwy + mus pws.

Therefore, we can define the section ¢ := mo; — no, of & — B. Observe that
for each h € ker p4 = ker pg the action of /1 on log; is trivial. This means that
0z (ker pg) is trivial. By Theorem 2.3, it follows that & is a torsion section, i.e. we
have

ko =0,

and this means that oy and o, are linearly dependent over Z; this contradiction
concludes the proof. ]

ReEMARK 4.6. Let us consider the abelian scheme 4 := & xgp & — B. Itis well
known that a pair (P, P;) € #y is contained in a proper group-subscheme of A — B
if and only if there exist nq,n, € Z such that ny Py + n, P, = 0 (see for example
[8, Lemma 1] or [6, Section 3.3, Lemma 2], remembering that the generic fiber of a
non-isotrivial elliptic scheme has no complex multiplication). In other words, saying
that the image of a section ¢ = (07, 02) is not contained in a proper group-subscheme
is equivalent to saying that o1, 0, are linearly independent over Z. Thus, Theorem 4.5
proves Conjecture 3.1 for the case A = & xp &.

By Proposition 3.6, we deduce the theorem in the case of the product of two
isogenous elliptic schemes, which reads as follows:

THEOREM 4.7. Let 01: B — &1, 02: B — &, be rational sections of two elliptic
schemes such that at least one of them is non-torsion. Suppose that there exists an
isogeny ¢: &1 — &,. Let us consider the abelian scheme mw: A .= &) xp & — B
endowed with the (non-torsion) section ¢ = (01, 02). We have the following situation:

(1) If ¢ o 01, 0y are linearly dependent over Z, the cover B, — B™ has infinite degree
and its Galois group is isomorphic to 7.

(2) If ¢ o 01, 02 are linearly independent over 7, the cover B, — B* has infinite
degree and its Galois group is isomorphic to 7.*.
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ExampLE 4.8. Let us consider the following two algebraic sections of the Legendre
scheme:

01(A) = (2.v/22-2)). ) =(*A+1LVAA+D).

The base B on which the two sections become well defined may be taken as the
(ramified) cover of P; — {0, 1, 0o} defined by taking the square roots of 2 — A and of
A(A + 1). This cover has degree 4 and is ramified above A = 2 and A = —1. Let us
define the elliptic scheme & — B obtained extending the Legendre scheme by base
change to B and consider the abelian family A4 := & xp & — B (observe that the
abelian family # is obtained as the fiber square of the Legendre scheme, extended by
base change to B). The above two sections give a rational section o: B — +4, whose
components we continue to denote by o7, 05.

Note that none of the sections is identically torsion: in fact, it is known that every
torsion section can be defined over a base which is an unramified cover of P; — {0, 1, 0o},
whereas to define o; (resp. 0,) we need the base B to be ramified (at least) above the
point 2 (resp. —1) of P; — {0, 1, co}. Moreover, the fact that the minimal ramification
necessary to define o1, 0, is different for the two sections implies that they are linearly
independent over Z. To prove this assertion, let us look at the monodromy action on
a possible relation n107 4+ n,0, = 0 and observe that for these sections a different
choice of the square root would merely change sign to the section. Thus, if we look at
the monodromy action induced by a “small loop” turning around 2 in P; — {0, 1, oo}
on the dependence relation, we change sign to o but leave unchanged o, and so obtain
n1 = 0. Analogously, we obtain n, = 0.

Theorem 4.7 yields that the relative monodromy group of the logarithm of ¢ with
respect to periods is isomorphic to Z*. Moreover, we are able to construct an explicit
loop which leaves periods unchanged but not logarithms. In [7] we constructed such a
loop T for the logarithm of ;. This loop I' is one of the loops we are looking for: in
fact it obviously also works for the logarithm of ¢ with respect to the periods of the
abelian scheme, since the periods of A — B are determined by the periods of & — B.

4.2 — Case 2: Product of non-isogenous elliptic schemes

In this last section, we now formulate a result on the monodromy of the logarithm
of asectiono: B — A = &; xp &, in the case in which &;, &, are not isogenous.

In what follows we will make the following identifications: if g € ker pg, we identify
b5, (g) = wi g € Z?;if g € ker p,4, we identify 6,(g) = wg € Z*. Moreover, we denote
by wy,g,, w2,g; the periods of & — B.
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Recall that unlike the case in which &1, &, are isogenous schemes, in this case the
representations pg, and pg, are not conjugate. Rather, the image p4 (71 (B)) is Zariski
dense in SL,(Z) x SL,(Z) (see Theorem 4.1).

Now we are ready for the results of this section. First of all, suppose that both o,
and o, are non-torsion and let us take a look at the difference from the case where
the two schemes are isogenous. In both cases, we can use Theorem 2.3 for o1, 0, and
obtain that

O, (ker pg,) = O, (ker pg,) = z2.

The problem is that when the schemes are isogenous, we have
ker pg, = ker pg, = ker p4

(since the monodromy groups of periods are conjugate). Thus we deduce immediately
that 6, (ker p4) # 0.

Instead, when the two schemes are not isogenous, the group ker p4, = ker pg, N
ker pg, can be smaller than ker pg, and ker pg, . Therefore, this time Theorem 2.3 does
not allow us to conclude directly that 6, (ker p4) 7% 0. However, the conclusion is still
true and we prove it (and a little more) in the next proposition.

ProrosiTioN 4.9. If 01, 0, are both non-torsion, then 05 (ker py4) # 0. Moreover,
at least one of the two groups 0y, (ker p4) and 0, (Ker p,) is isomorphic to Z.2.

Proor. Firstof all, observe thatif ker pg, < ker pg,, then we have ker p 4 = ker pg, .
Thus, the conclusion follows directly by Theorem 2.3 applied to &; — B: in fact, we
obtain

90‘1 (kerps) = 90‘1 (ker pg, ) = Z27

which in particular implies 6, (ker p4) # O.
Similarly, if ker pg, C ker pg, , by Theorem 2.3 applied to &, — B we obtain

Ooy (et pa) = 0o, (Ker pg,) = Z2, Oy ker g # 0.
In particular, if we have ker pg, = ker pg,, we obtain
0o, (ker pa) = Z>, O, (kerpa) = Z*, Oy ker py # 0.

Thus, for the rest of this proof we suppose we are not in one of the previous cases.
In other words, we suppose that the two sets ker pg, \ ker pg, and ker pg, \ ker pg,
are not empty.
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Letus consider g1 € ker pg, and g, € ker pg,. We want to prove that the commutator
g182 gl_1 g 1 is an element of ker p . To this end, by looking at the representation 6,
we obtain the following two matrices:

u u
L o M® pe(g2) 0
u2331 u25g2
6 = v , 0 = v
- (g1) 0 pe,(g1) v;,gl 5 (g2) 0 I v;,gz
81 282
0 0 1 0 0 1

If we compute 0, (g18287 g5 ") we obtain

Ul,g Ul,g
L 0 — P&
2 (uz,gl) P 1(g2) <u2,g1)
43)  O5(g18287'¢") = v v
e 0 I pey(e)| 2=

2,82 V2,25
0 0 1

In particular, this proves that g; g» gl_1 g5 1 ¢ ker p4 for each g1 € ker pg 1> &2 €kerpg,.
Observe that we have not proved that 6, (ker p4) # 0 yet: in fact, a priori, the first
four components of the last column of the matrix in (4.3) could be zero for the chosen

&1, 82-
For fixed g, € ker pg, \ ker pg, , by Theorem 2.3 applied to &; — B, we can choose

g1 € ker pg, in such a way that

Ui, Ui,
( lg‘) —pgl(ga( g‘) # 0.
Uz,gq Uz,gq

Similarly, for fixed g; € ker pg, \ ker pg,, by Theorem 2.3 applied to &, — B, we can
choose g, € ker pg, such that

V1, Uy,
e, (g1) ( g2> - ( g2) # 0.
vzagz vzagz
Since g1 gzgl_lgz_ ! € ker py for each g; € ker pg,> &2 € ker pg,, we conclude that
O (ker p4), Op, (ker ps), Os,(ker pa) # 0.

In particular, by Lemma 4.2 we have

Os, (ker py) = 72, Oy, (ker py) = Z2. [
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Let us define
Hy = 05,(ker 05, Nkerpy), Hy =05 (kerfs, Nkerpy).

Since ker 65, N ker p,4 is a normal subgroup of G which is contained in ker pg,, by
Lemma 4.2 we have that H, is isomorphic either to {0} or to Z?2. The same is true
for H.

Prorosition 4.10. If both 61, 02 are non-torsion, then the group O, (ker p4) is
isomorphic to either 7> or 7*.

Proor. First of all, we are going to prove a quick claim.
Cramm 3. O5(ker pg) # Z.

Proor or CLaiM 3. Let us suppose rank 8, (ker p4) < 2. Observe that

rank 0y, (ker p4) < rank 6, (ker p4),
rank 0, (ker p4) < rank 6, (ker p4).

Thus, by Lemma 4.2, this implies that
O, (ker pa) = {0} and 6, (ker pa) = {0},
which is in contradiction with Proposition 4.9. |

FinaL prooOF. Since both the sections are non-torsion, by Proposition 4.9 and by
Claim 3, we have that
2 <rank 6, (ker pys) < 4.

Moreover, by Proposition 4.9 we also have 0, (ker ) = Z? or 0, (ker 4 ) = Z?. Without
loss of generality, let us suppose

05, (kerp) = Z°

for the rest of this proof: if we have the other case we just need to consider H; in place
of H; in the following lines for the proof to work.

Let us consider the group H;. By Lemma 4.2, we only have two possibilities for
Hy,ie H; =~ {0} or H) =~ VA

Case 1: Hy = {0}. The condition H; = {0} means that for each g € ker p4 if u1,, =
us,e = 0, then vy,g = V2, = 0, where the notation is the same as above. Let us prove
that rank 8, (ker p4) = 2 by proving that any three elements of the form wg, wy, wx €
0o (ker p.4) are linearly dependent on Z.
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Since 6, (ker pg,) = Z?, given any three elements g, h, k € ker py C ker pg,,
there always exists ng,np, ng € Z, not all zero, such that

u u u 0
ng 1.8 + ny Lh + ng Lk) = .
Uzg Up U 0

Thus we have

0

| 0
0o (k"< h"hg"s) = | ™ nguig + npvig + ngvig
NgVzg +NpVap + NkV2k

0 1

The condition H; = {0} implies that

v v v 0
ng 1, +np, 1,h T Lk | _ .
U2, Vo V2 k 0
Therefore, any three elements of 7.4 of the form w ¢» Wh, Wi are linearly dependent on

Z, s0 Oy (ker py) = Z2.

Case 2: Hy = 7Z?. Since H, = 7?2 we can consider a Z-basis for it and the following
corresponding elements of 6, (ker p):

0 0
0 0
w3 = ., W4 = . where k,l € ker05, Nkerpy C ker pa.
U1,k V1,1
U2k U1

Recall that 6, (ker p4) = Z? by hypothesis. Therefore, let us choose a Z-basis of it,

say (us ), (us™) where g, h € ker p4, and consider the corresponding elements of
O (ker p4):
Ul,g Ui,h
2 = Uz,g . zy = U2,k
U1,g U1,k
U2, U2,k

With an appropriate linear combination of z, z», w3, w4 we obtain that

Ulg Uik
Uz g Uz h
wy = 0 , W2 = 0

0 0
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are elements of 65 (ker p4). Moreover, wy, w2, w3, w4 are linearly independent over
Z. Thus 0, (ker p4) = Z*. ]

4.2.1. Main theorem. Now recall that we are considering an abelian scheme 4 =
&1 xp &>, where &1 and &, are not isogenous.

THEOREM 4.11. Letoi: B — &;,i = 1,2, be rational sections of two non-isogenous
elliptic schemes and suppose they are not both torsion sections. Let us consider the
abelian scheme 7. A .= &1 xg & — B endowed with the (non-torsion) section o =
(01, 02). We have the following situation:

one of o1 and o is a torsion section, the cover B, — as infinite degree
DI d 7 tion, th B B* h te deg
and its Galois group is isomorphic to {0} or to 7.

(2) If neither o1 nor o5 is a torsion section, the cover B, — B™* has infinite degree
and its Galois group is isomorphic to 7*.

Proor. Let us prove the two cases separately.

(1) Suppose that one of o1 and o, is a torsion section, say for example 1. We suppose
that 6, (ker p4) # 0 and prove that 6, (ker p.4) = Z?. Since o7 is torsion, we have
05, (ker pg,) = 0 (see Remark 2.2); in particular, this implies that 8, (ker p.4) = 0.
The two conditions

Os(kerpys) #0 and 0Oy, (kerpy) =0
imply that
O (ker p4) = 0o, (kerps) and O, (ker pa) # 0.

By Lemma 4.2, we have
o, (ker pg) = 7>,
Thus, it follows that 8, (ker p4) = Z? and the first part is proved.

(2) Now let o1, 0, both be non-torsion sections and let us suppose by contradiction
that 0, (ker p4) is not isomorphic to Z*. By Proposition 4.10, we can only have
the case

Oy (ker py) = Z>.
With the same calculations detailed in the case of the product of isogenous curves,
we obtain that there exists a matrix M € GL,(Q) such that

(4.4) 78 Bl I e
Uz g V2,g

for all g € ker p4.
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CLAM 4. The matrix M is the zero matrix, i.e. M = 0.

Proor oF CLaim 4. Now let us choose an element & € ker p4 and an element
g € m1(B). Let us use the notation

u v
= (1) o= (122)

and let us consider the periods
Oh,g, = U1, p01,8, + U2 hW2,8,, Whoy = V1,h01,8, + V2 h®2,8,-

Moreover, we will indicate with wg o, Wg,0, the variation of log,, , log,, along g,
respectively.

Finally, let us consider the element /' := ghg™! € ker p.4 and use analogous
notation to above, i.e.

Oy gy = ULDLE T U2 D28, O gy = V1 01,6, T V2 /@2.6,-

If we look at the action of /2’ on the determination of log,, we obtain

g™! _ h _
logo'] — logal _1081 (g 1)(a)g,01) — 10g0'1 _IOS] (g 1)(a)g,01) + a)h,Ul

g
—> log,, +pe, (&) (@h,q,)-

In the same way, if we look at the action of 4’ on the determination of log,, we
obtain

h/
logag - logaz +p82 (g) (a)h,az)-
Equivalently, the following equations hold:

Op o, = g (&) @ho,)s  On.o, = Per(8)(Wh,0,).

In terms of coordinates, this means

AW% Ui,k U1,n U1,k
(45) ’ = pg . ’ , ’ = pg . > )
o pe, () wr Vo pe>(g) Vo

Moreover, since /1, ' € ker p 4, by (4.4) we have

(46) M . ul’h — vlah , M . ul,h/ — vl,h/ )
Uz,h Uz,h Uy p U
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Now we are ready to put it all together: by (4.5) and (4.6) we obtain

4.7 (Mpg, (g) — pe,(g)M) - (Zl’h) =0

s

for all g € 71(B) and h € ker p4. Observe that the relation does not depend on
U1,g, U, g. By the arbitrariness of h, equation (4.7) reads

Mpg, (8) = pe,(8)M

for every g € 1 (B). Since the two representations pg, , pg, are not equivalent, by
the Schur lemma we deduce that M = 0. ]

Since M € GL,(Q), this is a contradiction, concluding the proof. ]

ReEmaARK 4.12. Observe that if £y, E;, are complex elliptic curves which are not
isogenous, then every proper connected algebraic subgroup of E; x Ej is of one of the
shapes 0 x E; or E; x 0. In other words, if A4 = & xp & — B is a product of two
non-isogenous elliptic schemes, then saying that the image of a section 0 = (01, 03)
is not contained in a proper group-subscheme is equivalent to saying that neither o
nor o, is a torsion section. Thus, Theorem 4.11 proves Conjecture 3.1 in the case of a
fibered product of non-isogenous elliptic schemes.

ExampLE4.13. Letus consider the line B in S? (where S = IP; — {0, 1, 00}) defined
by x + y = 2, which is isomorphic under the first projection to P; — {0, 1,2, co}. Let
us consider the scheme over B whose fiber over the point (A, 1) € B is the product
&£, x &£, of the corresponding Legendre curves; denote it by 4 — B. This is a product
of two non-isogenous elliptic schemes, since the curve &£ is not isogenous generically
to £,_,: in fact, if two elliptic schemes are isogenous then their j-invariants must
have the same poles in B; but in this case, the schemes corresponding to £, &£,, have
a different set of bad reduction. We may consider the section : B — A given by

Py —{0,1,2,00} 3 A = ((2, V2 — 1), (2,V21)),

whose components are non-torsion sections. Theorem 4.11 yields that the relative
monodromy group of the logarithm of o with respect to periods is isomorphic to Z*.

Can we say something about an explicit loop which leaves periods unchanged but
not logarithms? We have such a loop I'; (resp. I'2) for the logarithm of o7 (resp. 02).
Unlike Example 4.8, this time the loops I';, I'; do not work for the logarithm of o,
since the periods of the two factors of A — B are not the same. Anyway, we can obtain
such a loop as explained in the proof of Proposition 4.9, i.e. taking the commutator of
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suitable loops which work for log,, and log,, (these last can be found by looking at

the construction in [7]).
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