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Abstract – We determine the relative monodromy group of abelian logarithms with respect to
periods in the cases of fibered products of elliptic schemes. This gives rise to a result stronger
than a theorem due to Y. André and implies in particular the algebraic independence of the
logarithm of any non-torsion section and the periods. We then conjecture an analogous result
for the general case of an abelian scheme of arbitrary relative dimension. This generalizes
a theorem of Corvaja and Zannier which determines the said group in the case of a single
elliptic scheme.
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1. Introduction

The following paper is devoted to the study of the monodromy of double elliptic
logarithms, i.e. a generalized notion of logarithm defined on fibered products of elliptic
schemes.

Let us consider an abelian scheme A! B over an algebraic curve and a section
� WB ! A. Period functions, abelian logarithms of � and the Betti map can always
be globally defined on the universal cover of B , but they cannot in general be well
defined on the whole of B . We are interested in studying the minimal unramified cover
on which abelian logarithm and periods become well defined in the case of products of
elliptic schemes.
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This analysis starts from a paper by Corvaja and Zannier (see [4]), where they study
the monodromy problem in the case of a non-isotrivial elliptic scheme E ! B . In
that case, we can consider the minimal unramified cover B� ! B on which periods
become well defined and the minimal unramified cover B� ! B� on which an elliptic
logarithm of � becomes well defined. They proved the following:

Theorem 1.1. Given a non-torsion (rational) section � WB ! E , the cover B� !
B� has infinite degree and its Galois group is isomorphic to Z2.

In the context of abelian schemes of arbitrary relative dimension, a theorem due to
André [1] provides, under suitable assumptions, the best possible information about
the Zariski closure of the image of the monodromy representation of the fundamental
group, associated to a section; here, we want to determine the relative monodromy
group, which is more than the information provided passing through the Zariski closure
of the monodromy group (see Remark 2.4). This paper aims at extending Theorem
1.1 to all fibered products of two non-isotrivial elliptic schemes, which are abelian
schemes of relative dimension 2. First we consider an abelian scheme A! B and
a section � WB ! A. In analogy with the case of elliptic schemes, we can consider
the minimal unramified cover B� ! B on which periods become well defined and
the minimal unramified cover B� ! B� on which an abelian logarithm of � becomes
well defined. We begin by stating the following conjecture (which is beyond our aims
since it concerns abelian schemes of arbitrary relative dimension) and proving that it is
invariant under isogeny:

Conjecture (Conjecture 3.1). Let � WA! B be an abelian scheme of relative
dimension g which has no fixed part. If the image of � WB ! A is not contained in any
proper group-subscheme, then the cover B� ! B� has infinite degree and its Galois
group is isomorphic to Z2g .

Observe that, as in the case of elliptic schemes, the previous conjecture is stronger
than André’s theorem and implies in particular the algebraic independence of the
logarithm of any non-torsion section and the periods.

Then we will consider the case where A is a fibered product of the form E1 �B E2!

B , where an elliptic scheme is always assumed to be non-isotrivial.

Remark 1.2. If we consider a trivial elliptic scheme E � B ! B , where E is
an elliptic curve defined over C, then the cover B� ! B� can be trivial for some
non-torsion section � . First, let us observe that B� D B , since periods can be defined
on the whole of B . Moreover, let us consider a non-torsion point P 2 E and let us
define the non-torsion section

� W b 7! .P; b/ for each b 2 B:
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In this case, the logarithm log� is a constant function. Thus, it is well defined on the
whole of B and we have B� D B� D B .

If E ! B is an isotrivial but non-trivial elliptic scheme then periods can be defined
on the whole ofB , so that we again haveB�DB . In this case the Mordell–Weil theorem
for function fields predicts that the group of C.B/-rational points of the generic fiber
of E ! B is finitely generated. Thus, we can prove that a logarithm of a non-trivial
section cannot be defined on B� D B by arguing in the following way: if a non-zero
rational section admits an elliptic logarithm which is well defined on the whole of
B.C/, then we may divide it, and hence the section, by any prescribed positive integer
and again we have maps well defined on B.C/. Thus the section would be infinitely
divisible on B.C/ (since the submultiples of the sections would be algebraic and well
defined on B.C/, hence rational on B.C/). But this violates the Mordell–Weil theorem
for the generic fiber of E ! B over the function field of B.C/.

This remark shows that the case of an isotrivial elliptic scheme is well understood.
This is why we only focus on non-isotrivial elliptic schemes in what follows.

Let us go back to considering fibered products of two elliptic schemes. We will
distinguish two cases:

• the elliptic schemes E1 ! B and E2 ! B are isogenous;

• the elliptic schemes E1 ! B and E2 ! B are not isogenous.

Distinguishing the two cases, a careful analysis of the relationship between periods
and logarithms of sections of the two factors leads us to the following two results:

Theorem (Theorem 4.7). Let �1WB ! E1; �2WB ! E2 be rational sections of two
elliptic schemes such that at least one of them is non-torsion. Suppose that there exists
an isogeny �WE1 ! E2. Let us consider the abelian scheme � WA WD E1 �B E2 ! B

endowed with the (non-torsion) section � D .�1; �2/. We have the following situation:

(1) If � ı �1; �2 are linearly dependent over Z, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to Z2.

(2) If � ı �1; �2 are linearly independent over Z, the cover B� ! B� has infinite
degree and its Galois group is isomorphic to Z4.

Theorem (Theorem 4.11). Let �i WB ! Ei ; i D 1; 2, be rational sections of two
non-isogenous elliptic schemes and suppose they are not both torsion sections. Let us
consider the abelian scheme � WA WD E1 �B E2 ! B endowed with the (non-torsion)
section � D .�1; �2/. We have the following situation:

(1) If one of �1 and �2 is a torsion section, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to ¹0º or to Z2.
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(2) If neither �1 nor �2 is a torsion section, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to Z4.

These results determine the relative monodromy of abelian logarithms with respect
to periods in the cases of fibered products of elliptic schemes.

2. Abelian schemes and logarithms of sections

Let � WA! B be a complex abelian scheme of relative dimension g; here B is
a quasi-projective smooth curve, A is a quasi-projective variety and � WA! B is a
proper surjective morphism all of whose fibers Ab WD �

�1.b/ are abelian varieties of
constant dimension g. We always suppose that the abelian scheme � WA! B has no
fixed part and that there exists a section �0WB ! A which marks the origin in each
fiber.

Over every point b 2B , we have an abelian exponential map Lie.Ab/!Ab , whose
kernel is the period lattice. Since Lie.Ab/ is a complex vector space of dimension
g, the period lattice can be seen as a lattice in Cg for each b 2 B . The family of Lie
algebras Lie.A/! B defines a vector bundle over B and we have the exponential map

expWLie.A/! A:

Any fiber Ab is analytically isomorphic to a complex torus Cg=ƒb , where ƒb
is a lattice of (maximal) rank 2g. On suitable open subsets U � B in the complex
topology, we can find holomorphic functions !U;1; : : : ; !U;2g WU ! Cg such that
!U;1.b/; : : : ; !U;2g.b/ is a basis ofƒb for each b 2 U . Moreover, we may assume that
U is simply connected and that B is covered by such sets.

Observe that by restricting the map exp to U �Cg , we obtain the covering map

U �Cg
! AjU ;

where we denote ��1.U / by AjU .

Definition 2.1. Let � WB ! A be a section of the abelian scheme and let U � B
be an open set as above. A logarithm of � in U is a lifting of �jU to U �Cg .

In other words, we have the following commutative diagram:

U �Cg

B � U ��1.U / � A:
�jU

�
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Observe that � is of the form � D .id; Q�/; the holomorphic map Q� WU ! Cg will be
called a logarithm of � in U . By definition, saying that �.b/ is a logarithm of �.b/
means that expb ı Q�.b/ D �.b/ on U . In what follows, we will denote a logarithm of
a section � by log� (instead of Q� ).

2.1 – Monodromy representations

Given an abelian scheme A! B , let us consider the fundamental group G WD
�1.B; b/, where b 2 B is a fixed base point. Given h 2 G, we can consider the analytic
continuation of the periods along any loop in B belonging to the homotopy class h: to
be more precise, if h is the homotopy class of a loop ˛W Œ0; 1�! B and ! is a period,
when we need it we will denote by ch.!/ the analytic continuation of ! in ˛.1/ along
˛. This procedure induces a change of basis of the lattice ƒb . In other words, the
monodromy action of G on periods induces a homomorphism to GL2g.Z/; since the
action preserves the orientation of the basis, the image of the said homomorphism
is contained in SL2g.Z/, so that we obtain a representation �WG ! SL2g.Z/ which
describes the monodromy of periods. If ! D u1!1 C � � � C u2g!2g is a period, the
monodromy action on the Z-module generated by periods is given by

h �

0B@ u1:::
u2g

1CA D �.h/
0B@ u1:::
u2g

1CA :
Moreover, given a section � WB ! A, observe that two branches of a logarithm

over b 2 B have to differ by an element ofƒb: thus, for fixed h 2 G we have that log�
transforms in the following way:

log� 7! log� C.u1; : : : ; u2g/ �

0B@ !1:::
!2g

1CA ;
where u1; : : : ; u2g 2 Z. Observe that the monodromy group of the logarithm, as
a function defined locally on the B� considered in the introduction, is a subgroup
of Z2g .

Remark 2.2. Let us consider a torsion section � WB ! A. The Betti map of such
a section (see [2] for a definition) is constant and a logarithm is a rational constant
combination of periods. In other words, we have

log� D q1!1 C � � � C q2g!2g ;
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where q1; : : : ; q2g 2 Q. Therefore, a loop which leaves unchanged periods via analytic
continuation, also leaves the logarithm of such a section unchanged. In other words,
the cover B� ! B� defined in the introduction is trivial in this case. This is why we
only consider non-torsion sections in what follows.

In the particular case of an elliptic scheme � WE! B , if we look at the simultaneous
monodromy action of G WD �1.B/ on periods and logarithm of a section � WB ! E ,
we provide a representation

�� WG ! SL3.Z/;

where every matrix �� .g/ is of the form

�� .g/ D

 
Tg wg

0 1

!
;

where Tg D �.g/ 2 SL2.Z/ is a matrix acting on periods (so it does not depend on � ),
and wg D .ug ; vg/| 2 Z2 is a vector which corresponds to the following monodromy
action on logarithm:

log�
g
�! log� Cug!1 C vg!2:

Theorem 1.1, which determines the relative monodromy group of the logarithm
with respect to periods, can be restated in terms of representations as follows:

Theorem 2.3. Given a non-torsion (rational) section � WB ! E , the kernel of the
homomorphism �� .G/! SL2.Z/ is isomorphic to Z2, which is equivalent to saying

�� .ker �/ Š Z2:

Remark 2.4. Observe that the conclusion of Theorem 2.3 is stronger than knowing
the kernel of the homomorphism �� .G/

Zar ! SL2, obtained by taking the Zariski
closure of the group �� .G/, as the following example shows. Define H to be the
subgroup of SL3.Z/ generated by the matrices

A WD

0B@1 2 v1

0 1 v2

0 0 1

1CA DW  A0 v

0 1

!
; B WD

0B@1 0 w1

2 1 w2

0 0 1

1CA DW  B0 w

0 1

!
;

where A0, B0 are the standard unipotent generators of �2 and v, w are a basis for Z2.
It can be shown that the Zariski closure of H is the full semidirect product of SL2 by
G2
a, whereas the kernel of the natural map to SL2 is trivial; the details can be found

in [3].
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3. Monodromy of abelian logarithms: Invariance under isogeny

Let � WA! B be a complex abelian scheme of relative dimension g and let us
consider a section � WB ! A. We will call B� ! B the minimal (unramified) cover
of B on which a basis for the period lattice can be globally defined; moreover, we set
B� ! B� to be the minimal cover of B� on which we can define the logarithm of � .
The tower of covers is represented in the diagram

B� ! B� ! B:

Our aim is to prove something similar to Theorem 2.3 for double elliptic schemes
(i.e. fibered products of elliptic schemes). Let us start by formulating the following
conjecture (which is beyond our aims since it concerns abelian schemes of arbitrary
relative dimension) and by proving it is invariant under isogeny:

Conjecture 3.1. Let � WA! B be an abelian scheme of relative dimension g
which has no fixed part. If the image of � WB ! A is not contained in any proper
group-subscheme, then the cover B� ! B� has infinite degree and its Galois group is
isomorphic to Z2g .

Observe that the hypothesis that the image of � WB ! A is not contained in any
proper group-subscheme is necessary, as shown by the following example.

Example 3.2. Let �E WE ! B be an elliptic scheme with zero-section denoted
by �0 and let � WB ! E be a non-torsion section. By Theorem 2.3, we know that the
Galois group of B� ! B� is isomorphic to Z2. We can consider the fibered product
�AWA WD E �B E ! B , which gives rise to an abelian scheme of relative dimension
2. If we denote by Eb WD �

�1
E
.b/ the fiber of the elliptic scheme over a point b, then

the fiber Ab is given by the product Eb � Eb . The morphism

Q� WD .�0; �/WB ! A; b 7! .0b; �.b//

is a section of the abelian scheme, whose image is contained in the proper group-
subscheme �0.B/ �B E ! B of A! B . Note that the cover B� ! B is the same
for the two schemes A! B and E ! B . Moreover, the cover BQ� ! B� is the same
as the cover B� ! B�, i.e. the Galois group of BQ� ! B� is isomorphic to Z2, thus in
this case it is not as large as possible.

More generally, similar examples can be obtained by considering a section Q� D
.�1; �2/ where �1, �2 are linearly dependent sections of the elliptic scheme E ! B .
The case of the abelian scheme E �B E ! B is fully covered in Section 4.1, where
we prove the conjecture for the product of isogenous elliptic schemes.
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Proof of “invariance under isogeny”

Consider two abelian schemes � WA! B , � 0WA0 ! B . Recall the following defi-
nition:

Definition 3.3. A morphism f WA! A0 of group schemes over a scheme B
is said to be an isogeny if f is surjective and if its kernel ker f is a flat finite group
B-scheme.

We start by showing that the above conjecture is isogeny invariant; in other words,
if A and A0 are isogenous, then the conjecture for A0 implies the conjecture for A. In
order to prove this, let consider a non-torsion section � WB ! A and suppose that the
theorem is true for A0 ! B .

Lemma 3.4. If f WA! A0 is an isogeny of abelian schemes, then the map b 7!
# ker.fjAb / is constant.

Proof. Let us consider the B-scheme ker f
�j kerf
����! B and recall that the fiber of

�j kerf over a point b 2 B is given by

.ker f /b D ker.fjAb / D ker f �B Spec C.b/:

By definition of isogeny, the restriction

�j kerf W ker f ! B

is a flat finite morphism. Then the map

B ! N; b 7! dimC.b/..��Okerf /b ˝OB;b C.b//

is locally constant. Since B is connected, then this function is constant, say

dimC.b/..��Okerf /b ˝OB;b C.b// D q for each b 2 B;

where q 2 N. Then .��Okerf /b ˝OB;b C.b/ is isomorphic to C.b/q as a vector space.
Since the fiber .kerf /b is an algebraic group (in characteristic zero), hence it is reduced,
then ker.fjAb / is a disjoint union of q points.

Let consider the diagram

A A0

B

f

� � 0

� � 0WDf ı�
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where given � as above we define � 0 WD f ı � . Obviously, this last is a section of
A0 ! B since

� 0 ı � 0 D � 0 ı f ı � D � ı � D idB :

Proposition 3.5. If � is a non-torsion section of A! B , then � 0 is a non-torsion
section of A0 ! B .

Proof. As we have just observed,� 0 is a section of A0!B . We prove the equivalent
statement “� 0 torsion) � torsion”. So suppose k� 0 D 0 for some k. Since fjAb is a
morphism, we have

f .k�.b// D k.f ı �.b// D k� 0.b/ D 0

for each b. This means k�.b/ 2 ker.fjAb / for each b. By Lemma 3.4, ker.fjAb / is a
finite group of fixed order q for each b 2 B . Therefore qk�.b/ D 0 for each b. This
means .qk/� D 0; in other words, � is torsion.

Theorem 3.6 (Invariance under isogeny). Let A! B , A0 ! B be two abelian
schemes of relative dimension g and f WA! A0 an isogeny. If Conjecture 3.1 holds
for A0 ! B , then it holds for A! B .

Proof. Let � WB ! A be a non-torsion section and define, as above, � 0 WD f ı � .
We have the following two towers of coverings:

B� ! B�1 ! B;

B� 0 ! B�2 ! B;

which correspond to the relative monodromy problems for log� , log� 0 , respectively.
Since A and A0 are isogenous, the periods of A are related to those of A0 through a
matrix in GL2g.Q/ (this matrix does not depend on b 2 B). In order to prove this, let
us consider the fibers Ab , A0

b
and let us denote by !i ; !0i 2 Cg (as row vectors), for

i D 1; : : : ; 2g, the corresponding periods. The isogeny f induces an isogeny on the
fibers, i.e. fbWAb ! A0

b
. So there exists M.DMb/ 2 GLg.C/ such that

!1 �M D a1;1!
0
1 C � � � C a1;2g!

0
2g ;

:::

!2g �M D a2g;1!
0
1 C � � � C a2g;2g!

0
2g ;

where ai;j 2 Z for each i; j . Thus we obtain the relation

(3.1)

0B@ !1M:::
!2gM

1CA D �
0B@ !01:::
!02g

1CA ;
where we denote by � the matrix .ai;j /i;jD1;:::;2g 2 GL2g.Q/.
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Remark 3.7. Let us consider an isogeny f WA1 ! A2 between complex abelian
varieties of dimension g. Then we have a commutative diagram

Cg Cg

Cg=ƒ1 Cg=ƒ2;

'

f

where ' is an isomorphism obtained by covering theory. The isomorphism ' can be
expressed by right multiplication by a matrix M 2 GLg.C/. Let us prove that M is
uniquely determined by f . In fact, if two matrices M , N induce the same isogeny, we
have

z �M � z �N .mod ƒ2/ for all z 2 Cg :

Hence the map z 7! z � .M �N/ sends Cg to ƒ2. Since ƒ2 is discrete, the map must
be constant. This implies M D N .

Remark 3.8. By the previous remark, the matrix M DMb considered above is
uniquely determined by fb; moreover, the function b 7!Mb is a holomorphic function
on B . In fact, we can consider the diagram

U �Cg U �Cg

AjU A0
jU
;

'

exp  
exp0

f

where U is a simply connected open set,  WD f ı exp and ' is a lift of  (it exists
because U �Cg is simply connected). We necessarily have

'j¹bº�Cg D ŒMb�;

where ŒMb� is right multiplication by Mb . Since ' is holomorphic, so is b 7! Mb .
Moreover, since Mb is uniquely determined by fb , then the function b 7!Mb cannot
have non-trivial monodromy along loops. So it is well defined on the whole of B .

Now let us return to equation (3.1). In particular, it means that the monodromy action
of �1.B/ on periods of A is determined by the monodromy action on the periods of A0.
To be more precise, let us consider a period !0 with coordinate vector .u01; : : : ; u

0
2g/

with respect to the basis !0i , i.e.

!0 WD .u01; : : : ; u
0
2g/ �

0B@ !
0
1
:::

!02g

1CA :
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By (3.1), we obtain

!0 D .u01; : : : ; u
0
2g/�

�1

0B@ !1M:::
!2gM

1CA :
Let us look at the monodromy action on the bases !0i and !i ; denote by �, �0 the
monodromy representations of A, A0 respectively. Since Mb varies holomorphically
and without monodromy with respect to b 2 B and � does not depend on b 2 B , we
obtain

h � !0 D h � .u01; : : : ; u
0
2g/

0B@ !
0
1
:::

!02g

1CA D .u01; : : : ; u02g/�0.h/|
0B@ !

0
1
:::

!02g

1CA ;
h � !0 D h � .u01; : : : ; u

0
2g/�

�1

0B@ !1M:::
!2gM

1CA D .u01; : : : ; u02g/��1�.h/|
0B@ !1M:::
!2gM

1CA :
Combining the previous relations, we obtain

.u01; : : : ; u
0
2g/�

0.h/|

0B@ !
0
1
:::

!02g

1CA D .u01; : : : ; u02g/��1�.h/|
0B@ !1M:::
!2gM

1CA
D .u01; : : : ; u

0
2g/�

�1�.h/|�

0B@ !
0
1
:::

!02g

1CA ;
for all u01; : : : ; u

0
2g 2 Z. In other terms, the two representations are conjugated between

them, i.e. �0.h/ D �|�.h/.�|/�1. Therefore, the periods of A are defined over a cover
B� ! B if and only if the periods of A0 are. In other words, we have B�1 D B

�
2 .

Now let us study the logarithms of the two abelian schemes. Let U � B be a simply
connected open set and consider log� , log� 0 :

U �Cg U �Cg

B � U AjU A0
jU

U � B:

exp

'

exp0

�

.id;log� /

f

� 0

.id;log�0 /

As stated above, the periods of A are related to those of A0 through a matrix � in
GL2g.Q/; we continue to use the above notation. The induced isogeny fb is given
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by right multiplication with a matrix Mb 2 GLg.C/; in other words, we have the
commutative diagram

Cg Cg

Ab A0
b
:

�Mb

fjAb

This means that we can choose log� 0.b/ D log� .b/ �Mb , for a point b 2 B . For fixed
h 2 G let us recall that log� transforms in the following way:

log� 7! log� C.u1; : : : ; u2g/ �

0B@ !1:::
!2g

1CA :
Moreover, as remarked above, Mb DM varies holomorphically with respect to b and
there is no monodromy action on it. Therefore, for � 0 we have

log� 0 D log� �Mb 7!

0B@log� C.u1; : : : ; u2g/ �

0B@ !1:::
!2g

1CA
1CA �Mb

D log� �M C .u1; : : : ; u2g/ �

0B@ !1M:::
!2gM

1CA
D log� 0 C.u1; : : : ; u2g/�

0B@ !
0
1
:::

!02g

1CA :
Thus we obtain that the monodromies of logarithms are related in the following way:0B@ u

0
1
:::

u02g

1CA D �|
�

0B@ u1:::
u2g

1CA ;
where ui and u0i describe the monodromies of log� , log� 0 , respectively. It follows
that B� D B� 0 ; this means that if Conjecture 3.1 holds for A0 ! B , then it holds for
A! B .

4. Monodromy of double elliptic logarithms

Now we will analyze double elliptic schemes over the same base, usually a curve.
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Such a scheme may be seen as a fiber product of elliptic schemes, or a pair of elliptic
curves defined over a function field of the (same) curve.

To settle things in precise terms, let us suppose we are given two non-isotrivial
elliptic schemes Ei ! B , for i D 1; 2, over the same base B , supposed to be an affine
(ramified) cover of S WD P1 � ¹0; 1;1º. By taking a cover of B if necessary, we may
assume that these elliptic schemes are pullbacks of the Legendre scheme (i.e. the elliptic
scheme L! S defined by the equation y2z D x.x � z/.x � �z/, � 2 S). Each of
these elliptic schemes has associated periods and monodromy action of �1.B/ on the
corresponding periods: this action yields subgroups G1, G2 of �2 � SL2.Z/, both of
finite index. In other words, we have the corresponding monodromy representations:

�E1 W�1.B/! G1 � �2 � SL2.Z/;
�E2 W�1.B/! G2 � �2 � SL2.Z/:

This setting is equivalent to considering the abelian scheme A WD E1 �B E2 ! B .
Hence, putting together what we said about E1, E2, we have a representation

� D .�E1 ; �E2/W�1.B/! G1 �G2 � �2 � �2 � SL2.Z/ � SL2.Z/;

where we identify SL2.Z/� SL2.Z/ as a subgroup of SL4.Z/. Observe that � is exactly
the monodromy representation associated with A, so we denote it by �A. Thus, we
have

�A.g/ D

 
�E1.g/ 0

0 �E2.g/

!
:

If E1! B , E2! B are isogenous elliptic schemes (we may assume the isogeny to
be defined over C.B/), then the periods of E1 are related to those of E2 through a matrix
in GL2.Q/. This reflects in the fact that there exists a constant matrix � 2 GL2.Q/
such that �E2 D ��1�E1�. Thus, in particular, the image of �A is a graph, and the
same holds for its Zariski closure in SL2.C/ � SL2.C/, so we may express this by
considering it to be “small”. The following theorem, which we only state, establishes a
converse assertion, namely whether a “small” image necessarily implies the existence
of an isogeny. A detailed proof of it is carried out by Lang in a different setting in [5]
with methods which take the Galois action directly into account; instead, an alternative
treatment based entirely on the Galois action as induced by the monodromy action is
given by Corvaja and Zannier [3].

Theorem 4.1 (Isogeny theorem). Let E1, E2 be elliptic schemes over B , as above,
and consider the monodromy representations as above. Then either the Zariski closure
of the image of � is the whole of SL2 � SL2, or E1, E2 are isogenous (over a cover of
B) and there exists � 2 GL2.Q/ such that �2.g/ D ��1�1.g/� for all g 2 �1.B/.
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Also, for a large enough prime number p, either the image of � in SL2.Zp/ �
SL2.Zp/ is dense in the whole group or we fall into the same conclusion.

Now let us consider two sections �1 and �2 of E1 ! B and E2 ! B , respectively.
This setting is equivalent to considering the abelian scheme A WD E1 �B E2 ! B

with a section � , whose components are �1, �2. Any loop 
 whose homotopy class
g is in �1.B; b0/ gives rise to a matrix �A.g/ 2 SL2.Z/ � SL2.Z/ which describes
the monodromy of periods and to a column vector wg 2 Z4 which describes the
monodromy of logarithm. Thus we have a representation of the fundamental group
�1.B/ in SL5.Z/, given by

�� W�1.B/! SL5.Z/;

g 7!

 
�A.g/ wg

0 1

!
;

where

�A.g/ D

 
�E1.g/ 0

0 �E2.g/

!
; wg D

0BBB@
u1;g

u2;g

v1;g

v2;g

1CCCA :
Observe that the logarithms log�1 , log�2 transform in the following way:

log�1
g
7�! log�1 Cu1;g!1;E1 C u2;g!2;E1 ;

log�2
g
7�! log�2 Cv1;g!1;E2 C v2;g!2;E2 ;

where !1;Ei , !2;Ei denote the periods of Ei ! B . Moreover, we have

wgh D wg C �A.g/ � wh D

0BBBBB@
 
u1;g

u2;g

!
C �E1.g/ �

 
u1;h
u2;h

!
 
v1;g

v2;g

!
C �E2.g/ �

 
v1;h
v2;h

!
1CCCCCA :

Finally, let us recall the following notation for the elliptic schemes Ei ! B , i D 1; 2:

��i W�1.B/! SL3.Z/;

g 7!

 
�Ei .g/ wi;g

0 1

!
;
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where

w1;g WD

 
u1;g

u2;g

!
; w2;g WD

 
v1;g

v2;g

!
:

Before dealing with the main theorems, we prove a lemma which will be very useful in
what follows.

Lemma 4.2. LetH EG WD �1.B/ be a normal subgroup of �1.B/. IfH � ker�E1

(resp. H � ker �E2), then ��1.H/ (resp. ��2.H/) is isomorphic to either ¹0º or Z2.

Proof. We will give the proof only for the case H � ker �E1 , since the other case
is analogous. Since we are going to work only with the scheme E1 ! B , let us denote
the periods !1;E1 , !2;E1 simply by !1, !2 in this lemma.

First, sinceH � ker�E1 observe that ��1.H/ is a subgroup of Z2; so it is isomorphic
to either ¹0º or Z or Z2. We want to prove that the case Z is excluded. Suppose by
contradiction that ��1.H/ is infinite cyclic: this means that for every h 2 H , the
logarithm log�1 of �1 is transformed by h as

log�1
h
7�! log�1 C�.h/!�1 ;

for a fixed non-zero period !�1 and a homomorphism �WH ! Z. In particular, let us
choose h such that �.h/D 1. Recall that, for g 2 G D �1.B/, the logarithm log�1 will
be sent by g to a new determination of the form

log�1 C!g ;

where !g is a period. Recall that the monodromy group G1 D �E1.G/ is Zariski dense
in SL2.Z/: in fact, up to a finite base change, an arbitrary non-isotrivial elliptic scheme
can always be supposed to be obtained as a pullback of the Legendre elliptic scheme,
which has a Zariski-dense monodromy group (for more details see [3]). Therefore,
the group G1 D �E1.G/ acts irreducibly on the lattice of periods, since it is Zariski
dense in SL2.Z/. Then there exists g 2 G such that !�1 is not an eigenvector of �E1.g/.
SinceH E G, we have h0 D g�1hg 2H , where g, h are the ones just considered. Let
us calculate the action of the element h0 D g�1hg. Recalling the notation introduced
in Section 2.1, given h 2 �1.B/ and a period !, we denote by ch.!/ the analytic
continuation of ! along any loop whose homotopy class is h. Thus, we have

log�1
g
7��! log�1 C!g

h
7��! log�1 C!g C !�1

g�1

7��! log�1 Ccg�1.!�1/:

Since cg�1.!�1/ D �E1.g
�1/!�1 , we obtain �E1.g

�1/!�1 D �.h0/!�1 , but this is
a contradiction since !�1 is not an eigenvector of �E1.g/ (nor of �E1.g

�1/). This
concludes the proof.
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4.1 – Case 1: Product of isogenous elliptic schemes

In this section we will formulate a result on the monodromy of the logarithm
of a section � in the case in which E1, E2 are isogenous; we use the above notation
AD E1 �B E2. In this case the monodromy representations are conjugate (see Theorem
4.1), so we have

ker �A D ker �E1 D ker �E2 :

Moreover, in what follows we will make the following identifications: if g 2 ker �A

we identify ��i .g/ � wi;g 2 Z2 and �� .g/ � wg 2 Z4. Moreover, we define

H1 WD ��2.ker ��1/; H2 WD ��1.ker ��2/:

Now we are ready for the results of this section.

Lemma 4.3. The groups H1, H2 are isomorphic to either ¹0º or Z2.

Proof. This follows by Lemma 4.2, since ker��1 and ker��2 are normal subgroups
of �1.B/ and ker �E1 D ker �E2 .

Proposition 4.4. Suppose that at least one of �1 and �2 is non-torsion. The group
�� .ker �A/ is isomorphic to either Z2 or Z4.

Proof. We prove the theorem supposing that �1 is non-torsion.
Recall that by Theorem 2.3, we have ��1.ker �E1/ Š Z2. Since ker �A D ker �E1 ,

then we have 2 � rank �� .ker �A/ � 4. By the previous lemma, we only have two
possibilities for H1, i.e. H1 Š ¹0º or H1 Š Z2.

Case 1:H1 Š ¹0º. The conditionH1 Š ¹0º means that for each g 2 ker �A if u1;g D
u2;g D 0, then v1;g D v2;g D 0, where the notation is the same as above. Let us prove
that rank �� .ker �A/ D 2 by proving that any three elements of the form wg ; wh; wk 2

�� .ker �A/ are linearly dependent on Z.
Since ��1.ker �E1/ Š Z2, given any three elements g; h; k 2 ker �A � ker �E1 ,

there always exists ng ; nh; nk 2 Z, not all zero, such that

ng

 
u1;g

u2;g

!
C nh

 
u1;h
u2;h

!
C nk

 
u1;k
u2;k

!
D

 
0

0

!
:

Thus we have

�� .k
nkhnhgng / D

0BBBBB@id4

0

0

ngv1;g C nhv1;h C nkv1;k
ngv2;g C nhv2;h C nkv2;k

0 1

1CCCCCA :
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For what we observed at the beginning of this proof, H1 Š ¹0º implies that

ng

 
v1;g

v2;g

!
C nh

 
v1;h
v2;h

!
C nk

 
v1;k
v2;k

!
D

 
0

0

!
:

Therefore, any three elements of Z4 of the form wg , wh, wk are linearly dependent on
Z, so �� .ker �A/ Š Z2.

Case 2: H1 Š Z2. Observe that this condition says that �2 is a non-torsion section
too.

Since H1 Š Z2, we can consider a Z-basis for it and the following corresponding
elements of �� .ker �A/:

w3 D

0BBB@
0

0

v1;k
v2;k

1CCCA ; w4 D

0BBB@
0

0

v1;l
v2;l

1CCCA ; where k; l 2 ker ��1 � ker �A:

Since ��1.ker �E1/ also has rank 2, let us choose a Z-basis
� u1;g
u2;g

�
,
� u1;h
u2;h

�
of it, where

g; h 2 ker �A, and consider the corresponding elements of �� .ker �A/:

z1 D

0BBB@
u1;g

u2;g

v1;g

v2;g

1CCCA ; z2 D

0BBB@
u1;h
u2;h
v1;h
v2;h

1CCCA :
With an appropriate linear combination of z1, z2, w3, w4 we obtain that

w1 D

0BBB@
u1;g

u2;g

0

0

1CCCA ; w2 D

0BBB@
u1;h
u2;h
0

0

1CCCA
are elements of �� .ker �A/. Moreover, w1, w2, w3, w4 are linearly independent over
Z. Thus �� .ker �A/ Š Z4.

4.1.1. Main theorem. Recall that we are considering an abelian scheme A WDE1 �B E2,
where we assume that E1 and E2 are isogenous, i.e. there exists an isogeny �WE1! E2.
This isogeny induces an isogeny �A WD .�; idE2/WE1 �B E2 ! E2 �B E2. Since our
theorem is invariant under isogeny, we can just study the case A WD E �B E , where
E ! B is an elliptic scheme.
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Theorem 4.5. Let �1; �2WB ! E be rational sections of an elliptic scheme and
suppose that at least one of the sections �1, �2 is non-torsion. Let us consider the abelian
scheme � WA WD E �B E ! B endowed with the (non-torsion) section � D .�1; �2/.
We have the following situation:

(1) If �1, �2 are linearly dependent over Z, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to Z2.

(2) If �1, �2 are linearly independent over Z, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to Z4.

Proof. Let us prove the two cases separately.

(1) We are supposing that �1, �2 are linearly dependent over Z. So there existn1;n2 2Z

such that
n1�1 C n2�2 D 0:

Now let us consider the corresponding elliptic logarithms log�1 , log�2 . On some
domain U � B on which they are well defined, the linear dependence relation
between the sections induces the relation

n1 log�1 Cn2 log�2 D !;

where !.b/ 2 ƒb is a period for each b 2 U . By Theorem 2.3 we know that
��1.ker �E/ Š Z2. So let us fix a loop ˛ in B whose homotopy class is g 2 ker �E

and also denote

w1;g D ��1.g/ D

 
u1;g

u2;g

!
; w2;g D ��2.g/ D

 
v1;g

v2;g

!
2 Z2:

Now we analytically continue the relation n1 log�1 Cn2 log�2 D ! along ˛, by
considering that ! remains unchanged since g 2 ker �E . So we obtain

n1 log�1 Cn1u1;g!1 C n1u2;g!2 C n2 log�2 Cn2v1;g!1 C n2v2;g!2 D !:

Therefore we have

.n1u1;g C n2v1;g/!1 C .n1u2;g C n2v2;g/!2 D 0;

which is the same as writing

n1

 
u1;g

u2;g

!
C n2

 
v1;g

v2;g

!
D

 
0

0

!
:
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By the arbitrariness of g we have n1w1;g C n2w2;g D 0 for all g 2 ker �A. In
other words, we have

w2;g D �
n1

n2
w1;g :

Then the map  
w1;g

w2;g

!
7! w1;g

is an isomorphism, so
�� .ker �A/ Š Z2

and the first part is proved.

(2) Now let �1, �2 be linearly independent sections and let us suppose by contradiction
that �� .ker �A/ is not isomorphic to Z4. Let us introduce the following notation:

K WD �� .ker �A/ D

8̂̂̂<̂
ˆ̂:
0BBB@
u1;g

u2;g

v1;g

v2;g

1CCCA Wg 2 ker �A

9>>>=>>>; ;
K1 WD ��1.ker �A/ D

´ 
u1;g

u2;g

!
Wg 2 ker �A

µ
;

K2 WD ��2.ker �A/ D

´ 
v1;g

v2;g

!
Wg 2 ker �A

µ
:

By Proposition 4.4, we have thatK Š Z2. Moreover, by Theorem 2.3, since �1,
�2 are linearly independent hence in particular non-torsion, we also haveK1 Š Z2

and K2 Š Z2.

Claim 1. There exists a matrix M 2 GL2.Q/ such that

M �

 
u1;g

u2;g

!
D

 
v1;g

v2;g

!
for all g 2 ker �A.

Proof of Claim 1. Let us define the projections p1WK ! K1 and p2WK !
K2 as

p1

0BBB@
u1;g

u2;g

v1;g

v2;g

1CCCA D
 
u1;g

u2;g

!
; p2

0BBB@
u1;g

u2;g

v1;g

v2;g

1CCCA D
 
v1;g

v2;g

!
:
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Obviously, the projections p1 and p2 are surjective. Thus, in our hypothesis,
both the projections p1; p2 have to be injective. In conclusion, p1 and p2 are
isomorphisms. Therefore, we can define the isomorphism ' WD p2 ıp�11 WK1!K2

which maps  
u1;g

u2;g

!
7!

 
v1;g

v2;g

!
:

Since ' is an isomorphism between two full-rank subgroups of Z2, it induces
an automorphism of Q2.Then, there exists a matrix

M D

 
˛ ˇ


 ı

!
2 GL2.Q/;

such that 
v1;g

v2;g

!
DM �

 
u1;g

u2;g

!
D

 
˛u1;g C ˇu2;g


u1;g C ıu2;g

!
for all g 2 ker �A:

Claim 2. The matrix M is of the form

M D

 
˛ 0

0 ˛

!
;

where ˛ 2 Q.

Proof of Claim 2. Now let us choose an element h 2 ker �A and an element
g 2 �1.B/. Let us use the notation

��1.h/ D

 
u1;h
u2;h

!
; ��2.h/ D

 
v1;h
v2;h

!
;

and let us consider the periods

!h;�1 WD u1;h!1 C u2;h!2; !h;�2 WD v1;h!1 C v2;h!2:

Moreover, we will indicate with !g;�1 , !g;�2 the variations of log�1 , log�2 along
g, respectively.

Finally, let us consider the element h0 WD ghg�1 2 ker �A and use analogous
notation to above, i.e.

!h0;�1 WD u1;h0!1 C u2;h0!2; !h0;�2 WD v1;h0!1 C v2;h0!2:
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Recalling the notation introduced in Section 2.1, given h 2 �1.B/ and a period
!, we denote by ch.!/ the analytic continuation of ! along any loop whose
homotopy class is h. If we look at the action of h0 on the determination of log�1
we obtain

log�1
g�1

��! log�1 �cg�1.!g;�1/
h
��! log�1 �cg�1.!g;�1/C !h;�1
g
��! log�1 Ccg.!h;�1/:

In the same way, if we look at the action of h0 on the determination of log�2 we
obtain

log�2
h0

�! log�2 Ccg.!h;�2/:

Equivalently, the following equations hold:

!h0;�1 D cg.!h;�1/; !h0;�2 D cg.!h;�2/:

In terms of coordinates, this means

(4.1)

 
u1;h0

u2;h0

!
D �E.g/ �

 
u1;h
u2;h

!
;

 
v1;h0

v2;h0

!
D �E.g/ �

 
v1;h
v2;h

!
:

Moreover, since h; h0 2 ker �A, by Claim 1 we have that

(4.2) M �

 
u1;h
u2;h

!
D

 
v1;h
v2;h

!
; M �

 
u1;h0

u2;h0

!
D

 
v1;h0

v2;h0

!
:

Now we are ready to put it all together: by (4.1) and (4.2) we obtain

.M�E.g/ � �E.g/M/ �

 
u1;h
u2;h

!
D 0

for all g 2 �1.B/ and h 2 ker �A. Observe that the relation does not depend on
u1;g , u2;g . By the arbitrariness of h, we obtain

M�E.g/ � �E.g/M D 0

for every g 2 �1.B/. Since �E.�1.B// is Zariski dense in SL2.Z/, this last relation
has to be true for every matrix A 2 SL2.Z/ in place of �E.g/. In other words, we
have just proved that M commutes with SL2.Z/. Therefore, by the Schur lemma,
the matrix M is a scalar matrix, i.e. it has the form

M D

 
˛ 0

0 ˛

!
;

where ˛ 2 Q, say ˛ WD m
n

.
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Claims 1 and 2 mean that v1;h D ˛u1;h, v2;h D ˛u2;h for all h 2 ker �A. In
other words, the logarithm of �2 has the following variation under the action of
each h 2 ker �A:

log�2 7! log�2 C˛u1;h!1 C ˛u2;h!2:

Now let us consider the sections m � �1 and n�2. Observe that for each h 2 ker �A

we have

logm�1 D m log�1 7! m log�1 Cmu1;h!1 Cmu2;h!2;
logn�2 D n log�2 7! n log�2 Cmu1;h!1 Cmu2;h!2:

Therefore, we can define the section Q� WD m�1 � n�2 of E ! B . Observe that
for each h 2 ker �A D ker �E the action of h on logQ� is trivial. This means that
�Q� .ker �E/ is trivial. By Theorem 2.3, it follows that Q� is a torsion section, i.e. we
have

k Q� D 0;

and this means that �1 and �2 are linearly dependent over Z; this contradiction
concludes the proof.

Remark 4.6. Let us consider the abelian scheme A WD E �B E ! B . It is well
known that a pair .P1; P2/ 2 Ab is contained in a proper group-subscheme of A! B

if and only if there exist n1; n2 2 Z such that n1P1 C n2P2 D 0 (see for example
[8, Lemma 1] or [6, Section 3.3, Lemma 2], remembering that the generic fiber of a
non-isotrivial elliptic scheme has no complex multiplication). In other words, saying
that the image of a section � D .�1; �2/ is not contained in a proper group-subscheme
is equivalent to saying that �1, �2 are linearly independent over Z. Thus, Theorem 4.5
proves Conjecture 3.1 for the case A D E �B E .

By Proposition 3.6, we deduce the theorem in the case of the product of two
isogenous elliptic schemes, which reads as follows:

Theorem 4.7. Let �1WB ! E1, �2WB ! E2 be rational sections of two elliptic
schemes such that at least one of them is non-torsion. Suppose that there exists an
isogeny �W E1 ! E2. Let us consider the abelian scheme � WA WD E1 �B E2 ! B

endowed with the (non-torsion) section � D .�1; �2/. We have the following situation:

(1) If � ı �1, �2 are linearly dependent over Z, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to Z2.

(2) If � ı �1, �2 are linearly independent over Z, the cover B� ! B� has infinite
degree and its Galois group is isomorphic to Z4.
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Example 4.8. Let us consider the following two algebraic sections of the Legendre
scheme:

�1.�/ D
�
2;
p
2.2 � �/

�
; �2.�/ D

�
�C 1;

p
�.�C 1/

�
:

The base B on which the two sections become well defined may be taken as the
(ramified) cover of P1 � ¹0; 1;1º defined by taking the square roots of 2 � � and of
�.�C 1/. This cover has degree 4 and is ramified above � D 2 and � D �1. Let us
define the elliptic scheme E ! B obtained extending the Legendre scheme by base
change to B and consider the abelian family A WD E �B E ! B (observe that the
abelian family A is obtained as the fiber square of the Legendre scheme, extended by
base change to B). The above two sections give a rational section � WB ! A, whose
components we continue to denote by �1, �2.

Note that none of the sections is identically torsion: in fact, it is known that every
torsion section can be defined over a base which is an unramified cover of P1 � ¹0;1;1º,
whereas to define �1 (resp. �2) we need the base B to be ramified (at least) above the
point 2 (resp. �1) of P1 � ¹0; 1;1º. Moreover, the fact that the minimal ramification
necessary to define �1, �2 is different for the two sections implies that they are linearly
independent over Z. To prove this assertion, let us look at the monodromy action on
a possible relation n1�1 C n2�2 D 0 and observe that for these sections a different
choice of the square root would merely change sign to the section. Thus, if we look at
the monodromy action induced by a “small loop” turning around 2 in P1 � ¹0; 1;1º

on the dependence relation, we change sign to �1 but leave unchanged �2 and so obtain
n1 D 0. Analogously, we obtain n2 D 0.

Theorem 4.7 yields that the relative monodromy group of the logarithm of � with
respect to periods is isomorphic to Z4. Moreover, we are able to construct an explicit
loop which leaves periods unchanged but not logarithms. In [7] we constructed such a
loop � for the logarithm of �1. This loop � is one of the loops we are looking for: in
fact it obviously also works for the logarithm of � with respect to the periods of the
abelian scheme, since the periods of A! B are determined by the periods of E ! B .

4.2 – Case 2: Product of non-isogenous elliptic schemes

In this last section, we now formulate a result on the monodromy of the logarithm
of a section � WB ! A D E1 �B E2, in the case in which E1, E2 are not isogenous.

In what follows we will make the following identifications: if g 2 ker�Ei we identify
��i .g/�wi;g 2Z2; if g 2 ker�A we identify �� .g/�wg 2Z4. Moreover, we denote
by !1;Ei , !2;Ei the periods of Ei ! B .
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Recall that unlike the case in which E1, E2 are isogenous schemes, in this case the
representations �E1 and �E2 are not conjugate. Rather, the image �A.�1.B// is Zariski
dense in SL2.Z/ � SL2.Z/ (see Theorem 4.1).

Now we are ready for the results of this section. First of all, suppose that both �1
and �2 are non-torsion and let us take a look at the difference from the case where
the two schemes are isogenous. In both cases, we can use Theorem 2.3 for �1, �2 and
obtain that

��1.ker �E1/ Š ��2.ker �E2/ Š Z2:

The problem is that when the schemes are isogenous, we have

ker �E1 D ker �E2 D ker �A

(since the monodromy groups of periods are conjugate). Thus we deduce immediately
that �� .ker �A/ ¤ 0.

Instead, when the two schemes are not isogenous, the group ker �A D ker �E1 \

ker�E2 can be smaller than ker�E1 and ker�E2 . Therefore, this time Theorem 2.3 does
not allow us to conclude directly that �� .ker �A/ ¤ 0. However, the conclusion is still
true and we prove it (and a little more) in the next proposition.

Proposition 4.9. If �1, �2 are both non-torsion, then �� .ker �A/ ¤ 0. Moreover,
at least one of the two groups ��1.ker �A/ and ��2.ker �A/ is isomorphic to Z2.

Proof. First of all, observe that if ker�E1 � ker�E2 , then we have ker�AD ker�E1 .
Thus, the conclusion follows directly by Theorem 2.3 applied to E1 ! B: in fact, we
obtain

��1.ker �A/ D ��1.ker �E1/ Š Z2;

which in particular implies �� .ker �A/ ¤ 0.
Similarly, if ker �E2 � ker �E1 , by Theorem 2.3 applied to E2 ! B we obtain

��2.ker �A/ D ��2.ker �E2/ Š Z2; �� ker �A ¤ 0:

In particular, if we have ker �E1 D ker �E2 , we obtain

��1.ker �A/ Š Z2; ��2.ker �A/ Š Z2; �� ker �A ¤ 0:

Thus, for the rest of this proof we suppose we are not in one of the previous cases.
In other words, we suppose that the two sets ker �E1 n ker �E2 and ker �E2 n ker �E1

are not empty.
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Let us consider g1 2 ker�E1 and g2 2 ker�E2 . We want to prove that the commutator
g1g2g

�1
1 g�12 is an element of ker �A. To this end, by looking at the representation �� ,

we obtain the following two matrices:

�� .g1/ D

0BBBBB@
I2 0

u1;g1
u2;g1

0 �E2.g1/
v1;g1
v2;g1

0 0 1

1CCCCCA ; �� .g2/ D

0BBBBB@
�E1.g2/ 0

u1;g2
u2;g2

0 I2
v1;g2
v2;g2

0 0 1

1CCCCCA :
If we compute �� .g1g2g�11 g�12 / we obtain

(4.3) �� .g1g2g
�1
1 g�12 / D

0BBBBBB@
I2 0

 
u1;g1
u2;g1

!
� �E1.g2/

 
u1;g1
u2;g1

!
0 I2 �E2.g1/

 
v1;g2
v2;g2

!
�

 
v1;g2
v2;g2

!
0 0 1

1CCCCCCA :

In particular, this proves that g1g2g�11 g�12 2 ker�A for each g1 2 ker�E1 , g2 2 ker�E2 .
Observe that we have not proved that �� .ker �A/ ¤ 0 yet: in fact, a priori, the first
four components of the last column of the matrix in (4.3) could be zero for the chosen
g1, g2.

For fixed g2 2 ker�E2 n ker�E1 , by Theorem 2.3 applied to E1! B , we can choose
g1 2 ker �E1 in such a way that 

u1;g1
u2;g1

!
� �E1.g2/

 
u1;g1
u2;g1

!
¤ 0:

Similarly, for fixed g1 2 ker�E1 n ker�E2 , by Theorem 2.3 applied to E2! B , we can
choose g2 2 ker �E2 such that

�E2.g1/

 
v1;g2
v2;g2

!
�

 
v1;g2
v2;g2

!
¤ 0:

Since g1g2g�11 g�12 2 ker �A for each g1 2 ker �E1 , g2 2 ker �E2 , we conclude that

�� .ker �A/; ��1.ker �A/; ��2.ker �A/ ¤ 0:

In particular, by Lemma 4.2 we have

��1.ker �A/ Š Z2; ��2.ker �A/ Š Z2:
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Let us define

H1 WD ��2.ker ��1 \ ker �A/; H2 WD ��1.ker ��2 \ ker �A/:

Since ker ��1 \ ker �A is a normal subgroup of G which is contained in ker �E2 , by
Lemma 4.2 we have that H1 is isomorphic either to ¹0º or to Z2. The same is true
for H2.

Proposition 4.10. If both �1, �2 are non-torsion, then the group �� .ker �A/ is
isomorphic to either Z2 or Z4.

Proof. First of all, we are going to prove a quick claim.
Claim 3. �� .ker �A/ ¤ Z.

Proof of Claim 3. Let us suppose rank �� .ker �A/ < 2. Observe that

rank ��1.ker �A/ � rank �� .ker �A/;

rank ��2.ker �A/ � rank �� .ker �A/:

Thus, by Lemma 4.2, this implies that

��1.ker �A/ Š ¹0º and ��2.ker �A/ Š ¹0º;

which is in contradiction with Proposition 4.9.

Final proof. Since both the sections are non-torsion, by Proposition 4.9 and by
Claim 3, we have that

2 � rank �� .ker �A/ � 4:

Moreover, by Proposition 4.9 we also have ��1.kerA/ŠZ2 or ��2.kerA/ŠZ2. Without
loss of generality, let us suppose

��1.kerA/ Š Z2

for the rest of this proof: if we have the other case we just need to considerH2 in place
of H1 in the following lines for the proof to work.

Let us consider the group H1. By Lemma 4.2, we only have two possibilities for
H1, i.e. H1 Š ¹0º or H1 Š Z2.

Case 1:H1 Š ¹0º. The conditionH1 Š ¹0º means that for each g 2 ker �A if u1;g D
u2;g D 0, then v1;g D v2;g D 0, where the notation is the same as above. Let us prove
that rank �� .ker �A/ D 2 by proving that any three elements of the form wg ; wh; wk 2

�� .ker �A/ are linearly dependent on Z.
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Since ��1.ker �E1/ Š Z2, given any three elements g; h; k 2 ker �A � ker �E1 ,
there always exists ng ; nh; nk 2 Z, not all zero, such that

ng

 
u1;g

u2;g

!
C nh

 
u1;h
u2;h

!
C nk

 
u1;k
u2;k

!
D

 
0

0

!
:

Thus we have

�� .k
nkhnhgng / D

0BBBBB@I4

0

0

ngv1;g C nhv1;h C nkv1;k
ngv2;g C nhv2;h C nkv2;k

0 1

1CCCCCA :
The condition H1 Š ¹0º implies that

ng

 
v1;g

v2;g

!
C nh

 
v1;h
v2;h

!
C nk

 
v1;k
v2;k

!
D

 
0

0

!
:

Therefore, any three elements of Z4 of the form wg , wh, wk are linearly dependent on
Z, so �� .ker �A/ Š Z2.

Case 2: H1 Š Z2. Since H1 Š Z2 we can consider a Z-basis for it and the following
corresponding elements of �� .ker �A/:

w3 D

0BBB@
0

0

v1;k
v2;k

1CCCA ; w4 D

0BBB@
0

0

v1;l
v2;l

1CCCA ; where k; l 2 ker ��1 \ ker �A � ker �A:

Recall that ��1.ker �A/ Š Z2 by hypothesis. Therefore, let us choose a Z-basis of it,
say

� u1;g
u2;g

�
,
� u1;h
u2;h

�
where g; h 2 ker �A, and consider the corresponding elements of

�� .ker �A/:

z1 D

0BBB@
u1;g

u2;g

v1;g

v2;g

1CCCA ; z2 D

0BBB@
u1;h
u2;h
v1;h
v2;h

1CCCA :
With an appropriate linear combination of z1, z2, w3, w4 we obtain that

w1 D

0BBB@
u1;g

u2;g

0

0

1CCCA ; w2 D

0BBB@
u1;h
u2;h
0

0

1CCCA
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are elements of �� .ker �A/. Moreover, w1, w2, w3, w4 are linearly independent over
Z. Thus �� .ker �A/ Š Z4.

4.2.1. Main theorem. Now recall that we are considering an abelian scheme A WD

E1 �B E2, where E1 and E2 are not isogenous.

Theorem 4.11. Let �i WB! Ei ; i D 1; 2, be rational sections of two non-isogenous
elliptic schemes and suppose they are not both torsion sections. Let us consider the
abelian scheme � WA WD E1 �B E2 ! B endowed with the (non-torsion) section � D
.�1; �2/. We have the following situation:

(1) If one of �1 and �2 is a torsion section, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to ¹0º or to Z2.

(2) If neither �1 nor �2 is a torsion section, the cover B� ! B� has infinite degree
and its Galois group is isomorphic to Z4.

Proof. Let us prove the two cases separately.

(1) Suppose that one of �1 and �2 is a torsion section, say for example �1. We suppose
that �� .ker �A/ ¤ 0 and prove that �� .ker �A/ Š Z2. Since �1 is torsion, we have
��1.ker�E1/D 0 (see Remark 2.2); in particular, this implies that ��1.ker�A/D 0.
The two conditions

�� .ker �A/ ¤ 0 and ��1.ker �A/ D 0

imply that

�� .ker �A/ Š ��2.ker �A/ and ��2.ker �A/ ¤ 0:

By Lemma 4.2, we have
��2.ker �A/ Š Z2:

Thus, it follows that �� .ker �A/ Š Z2 and the first part is proved.

(2) Now let �1, �2 both be non-torsion sections and let us suppose by contradiction
that �� .ker �A/ is not isomorphic to Z4. By Proposition 4.10, we can only have
the case

�� .ker �A/ Š Z2:

With the same calculations detailed in the case of the product of isogenous curves,
we obtain that there exists a matrix M 2 GL2.Q/ such that

(4.4) M �

 
u1;g

u2;g

!
D

 
v1;g

v2;g

!
for all g 2 ker �A.
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Claim 4. The matrix M is the zero matrix, i.e. M D 0.

Proof of Claim 4. Now let us choose an element h 2 ker �A and an element
g 2 �1.B/. Let us use the notation

��1.h/ D

 
u1;h
u2;h

!
; ��2.h/ D

 
v1;h
v2;h

!
;

and let us consider the periods

!h;�1 WD u1;h!1;E1 C u2;h!2;E1 ; !h;�2 WD v1;h!1;E2 C v2;h!2;E2 :

Moreover, we will indicate with !g;�1 , !g;�2 the variation of log�1 , log�2 along g,
respectively.

Finally, let us consider the element h0 WD ghg�1 2 ker �A and use analogous
notation to above, i.e.

!h0;�1 WD u1;h0!1;E1 C u2;h0!2;E1 ; !h0;�2 WD v1;h0!1;E2 C v2;h0!2;E2 :

If we look at the action of h0 on the determination of log�1 we obtain

log�1
g�1

��! log�1 ��E1.g
�1/.!g;�1/

h
��! log�1 ��E1.g

�1/.!g;�1/C !h;�1
g
��! log�1 C�E1.g/.!h;�1/:

In the same way, if we look at the action of h0 on the determination of log�2 we
obtain

log�2
h0

�! log�2 C�E2.g/.!h;�2/:

Equivalently, the following equations hold:

!h0;�1 D �E1.g/.!h;�1/; !h0;�2 D �E2.g/.!h;�2/:

In terms of coordinates, this means

(4.5)

 
u1;h0

u2;h0

!
D �E1.g/ �

 
u1;h
u2;h

!
;

 
v1;h0

v2;h0

!
D �E2.g/ �

 
v1;h
v2;h

!
:

Moreover, since h; h0 2 ker �A, by (4.4) we have

(4.6) M �

 
u1;h
u2;h

!
D

 
v1;h
v2;h

!
; M �

 
u1;h0

u2;h0

!
D

 
v1;h0

v2;h0

!
:
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Now we are ready to put it all together: by (4.5) and (4.6) we obtain

(4.7) .M�E1.g/ � �E2.g/M/ �

 
u1;h
u2;h

!
D 0

for all g 2 �1.B/ and h 2 ker �A. Observe that the relation does not depend on
u1;g , u2;g . By the arbitrariness of h, equation (4.7) reads

M�E1.g/ D �E2.g/M

for every g 2 �1.B/. Since the two representations �E1 , �E2 are not equivalent, by
the Schur lemma we deduce that M D 0.

Since M 2 GL2.Q/, this is a contradiction, concluding the proof.

Remark 4.12. Observe that if E1, E2 are complex elliptic curves which are not
isogenous, then every proper connected algebraic subgroup of E1 �E2 is of one of the
shapes 0 �E2 or E1 � 0. In other words, if A D E1 �B E2 ! B is a product of two
non-isogenous elliptic schemes, then saying that the image of a section � D .�1; �2/
is not contained in a proper group-subscheme is equivalent to saying that neither �1
nor �2 is a torsion section. Thus, Theorem 4.11 proves Conjecture 3.1 in the case of a
fibered product of non-isogenous elliptic schemes.

Example 4.13. Let us consider the lineB inS2 (whereS DP1 � ¹0;1;1º) defined
by x C y D 2, which is isomorphic under the first projection to P1 � ¹0; 1; 2;1º. Let
us consider the scheme over B whose fiber over the point .�; �/ 2 B is the product
L� �L� of the corresponding Legendre curves; denote it by A! B . This is a product
of two non-isogenous elliptic schemes, since the curve L� is not isogenous generically
to L2��: in fact, if two elliptic schemes are isogenous then their j -invariants must
have the same poles in B; but in this case, the schemes corresponding to L�, L� have
a different set of bad reduction. We may consider the section � WB ! A given by

P1 � ¹0; 1; 2;1º 3 � 7!
�
.2;
p
2 � �/; .2;

p
2�/

�
;

whose components are non-torsion sections. Theorem 4.11 yields that the relative
monodromy group of the logarithm of � with respect to periods is isomorphic to Z4.

Can we say something about an explicit loop which leaves periods unchanged but
not logarithms? We have such a loop �1 (resp. �2) for the logarithm of �1 (resp. �2).
Unlike Example 4.8, this time the loops �1, �2 do not work for the logarithm of � ,
since the periods of the two factors of A! B are not the same. Anyway, we can obtain
such a loop as explained in the proof of Proposition 4.9, i.e. taking the commutator of
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suitable loops which work for log�1 and log�2 (these last can be found by looking at
the construction in [7]).
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