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1. Introduction

In the well-established (but, nonetheless, still fast-growing) research field of analysis
on metric measure spaces, a significant role is played by the theory of Banach L0-
modules, which (in this context) was introduced by Gigli in his seminal work [9].
Therein, Banach L0-modules are used to supply an abstract notion of a “space of
measurable tensor fields”. In this regard, an enlightening example is the so-called
cotangent module, which we are going to describe. An effective Sobolev theory on
metric measure spaces is available [1,4,15], so one can consider the “formal differentials”
of Sobolev functions also in this nonsmooth framework. However, it is clear that in
order to obtain an arbitrary 1-form this is not sufficient, not even on differentiable
manifolds: one should also have the freedom to multiply differentials by functions,
to sum the outcomes, and to take their limits. This corresponds to the fact that on a
differentiable manifold M , the smooth 1-forms can be obtained as limits of C1.M/-
linear combinations of differentials of smooth functions. The line of thought described
above led to the following axiomatisation in [8]: a Banach L0-module is an algebraic
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module over the ring of L0-functions (i.e. of measurable functions, quotiented up to
a.e. equality) endowed with a pointwise norm that induces a complete distance; see
Definitions 2.2 and 2.3 for the details. As is evident from the literature on the topic, in
order to achieve a deeper understanding of the structure of metric measure spaces, it is
of pivotal importance to put the functional-analytic aspects of the tensor calculus via
BanachL0-modules on firm ground. As an example of this fact, we recall that the finite-
dimensionality (or, more generally, the reflexivity) of the cotangent module entails the
density of Lipschitz functions in the Sobolev space. It is also worth pointing out that the
interest in Banach L0-modules goes far beyond the analysis on metric measure spaces.
Indeed, the essentially equivalent concept of a randomly normed space was previously
introduced in [14], as a tool for studying ultrapowers of Lebesgue–Bochner spaces
over a rather general class of measure spaces. Later on, the slightly different notion of
a random normed module was investigated (see [13] and the references therein): the
motivation comes from the theory of probabilistic metric spaces, and it has applications
in finance optimisation problems, with connections to the study of conditional and
dynamic risk measures. Due to the above reasons, in this paper we shall consider
Banach L0-modules over an arbitrary � -finite measure space.

The aim of the present paper is to study the category BanModX of Banach L0.X/-
modules, where X D .X; †;m/ is a given � -finite measure space. The morphisms in
BanModX are those L0.X/-linear operators 'WM! N that satisfy j'.v/j � jvj for
every v 2M. Our main result (namely, Theorem 3.14) states that BanModX is both
a complete category (i.e. all limits exist) and a cocomplete category (i.e. all colimits
exist). This means, in particular, that BanModX admits all equalisers, products, inverse
limits, and pullbacks, as well as all coequalisers, coproducts, direct limits, and pushouts.
The existence of inverse and direct limits in BanModX was already known:

(1) Inverse limits in BanModX, whose existence was proved in [12], were necessary
to build the differential of a locally Sobolev map from a metric measure space to a
metric space.

(2) Direct limits in BanModX, whose existence was proved in the unpublished note
[23], were used in [21] to obtain a “representation theorem” for separable Banach
L0-modules. Since each separable Banach L0-module is the direct limit of a
sequence of finitely generated Banach L0-modules, a representation of an arbitrary
separable BanachL0-module as the space ofL0-sections of a separable measurable
Banach bundle could be deduced from the corresponding result for finitely generated
modules, which was previously obtained in [19].

It is worth mentioning that the theory of BanachL0-modules extends the one of Banach
spaces, as the latter correspond to Banach L0-modules over a measure space whose
measure is a Dirac delta. In fact, the strategy of our proof of the (co)completeness of
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BanModX is inspired by that of the category Ban of Banach spaces, for which we refer
to [3, 25, 26]. However, some other aspects of the Banach L0-module theory, such as
the inverse image functor (see Section 3.3), are characteristic of Banach L0-modules
and do not have a (nontrivial) counterpart in the Banach space setting.

We conclude by pointing out that the contents of this paper slightly overlap with
those of the unpublished note [23]. More specifically, Examples 3.4, 3.21, 3.22, 3.23,
and 4.3 are essentially taken from [23], but besides them the two papers are in fact
independent. Indeed, the (co)completeness of BanModX is proved without using the
existence of inverse/direct limits.

2. Preliminaries

Throughout the paper, we denote by PF .I / the family of all finite subsets of a
given set I ¤ ¿. To avoid pathological situations, all the measure spaces we consider
are assumed to be non-null. We denote by P D .P;†P ; ıp/ the probability space made
of a unique point p, where †P D ¹¿; P º is the only �-algebra on P and ıp is the
Dirac measure at p, i.e. ıp.¿/ D 0 and ıp.P / D 1. Given two � -finite measure spaces
XD .X;†X;mX/ and Y D .Y;†Y;mY/, we define their product X� Y as the � -finite
measure space .X � Y; †X ˝†Y;mX ˝mY/, where †X ˝†Y and mX ˝mY stand
for the product �-algebra and the product measure, respectively. We tacitly identify
X � P with X.

2.1 – Normed and Banach L0.X/-modules

In this section, we present the theory of Banach L0.X/-modules, which was first
introduced in [9] and then refined further in [8]. See also [11].

2.1.1. The space L0.X/. Let X D .X; †;m/ be a � -finite measure space. We denote
by L0ext.X/ the space of measurable functions from .X; †/ to the extended real line
Œ�1;C1�, quotiented up to m-a.e. equality. The space L0ext.X/ is a lattice if endowed
with the following partial order relation: given any f; g 2 L0ext.X/, we declare that
f � g if and only if f .x/ � g.x/ holds for m-a.e. x 2 X.

Remark 2.1. Recall that a lattice .A;�/ is said to be Dedekind complete (see
e.g. [6, 7]) if every nonempty subset of A having an upper bound admits a least
upper bound, or equivalently every nonempty subset of A having a lower bound
admits a greatest lower bound. It is well known that the lattice .L0ext.X/;�/ is order
bounded, is Dedekind complete, and satisfies the following property: given any (possibly
uncountable) nonempty subset ¹fiºi2I of L0ext.X/, there exist two (at most) countable
subsets C , C 0 of I such that

W
i2I fi D

W
i2C fi and

V
i2I fi D

V
i2C 0 fi .
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We define the Riesz space L0.X/ as

L0.X/ WD
®
f 2 L0ext.X/

ˇ̌
�1 < f .x/ < C1 for m-a.e. x 2 X

¯
:

Then L0.X/ is a commutative algebra with respect to the usual pointwise operations,
as well as a �-sublattice of L0ext.X/, i.e. a sublattice of L0ext.X/ that is closed under
countable suprema and infima. In particular, Remark 2.1 ensures that .L0.X/;�/ is
Dedekind complete and that each supremum (resp. infimum) inL0.X/ can be expressed
as a countable supremum (resp. infimum). Moreover, the space L0.X/ is a topological
algebra if endowed with the following complete distance:

dL0.X/.f; g/ WD
Z
jf � gj ^ 1 d zm for every f; g 2 L0.X/;

where zm is any finite measure on .X; †/ satisfying m� zm� m. While the distance
dL0.X/ depends on the specific choice of zm, its induced topology does not. Moreover,
a sequence .fn/n2N � L

0.X/ satisfies dL0.X/.fn; f /! 0 as n!1 for some limit
function f 2 L0.X/ if and only if we can extract a subsequence .ni /i2N such that
fni .x/! f .x/ as i !1 for m-a.e. x 2 X.

2.1.2. Definition and main properties of Banach L0.X/-modules. We begin with the
relevant definitions:

Definition 2.2 (Normed L0.X/-module). Let X be a � -finite measure space. Let
M be a module over L0.X/. Then we say that M is a seminormed L0.X/-module if
it is endowed with a pointwise seminorm, i.e. with a mapping j � jWM! L0.X/ that
satisfies the following properties:

jvj � 0 for every v 2M;

jv C wj � jvj C jwj for every v;w 2M;

jf � vj D jf j jvj for every f 2 L0.X/ and v 2M:

Moreover, we say that M is a normed L0.X/-module provided it holds that jvj D 0 if
and only if v D 0.

Any pointwise seminorm on M induces a pseudometric dM on M:

dM.v; w/ WD dL0.X/.jv � wj; 0/ for every v;w 2M:

It holds that M is a normed L0.X/-module if and only if dM is a distance.

Definition 2.3 (Banach L0.X/-module). Let X be a � -finite measure space. Let
M be a normed L0.X/-module. Then we say that M is a Banach L0.X/-module if the
pointwise norm j � j is complete, meaning that the induced distance dM is complete.
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The space L0.X/ itself is a Banach L0.X/-module. Moreover, if the measure
underlying X is a Dirac measure, then L0.X/Š R, and so the Banach L0.X/-modules
are exactly the Banach spaces.

Remark 2.4. A warning about the terminology: in this paper we distinguish
between normed L0.X/-modules and Banach L0.X/-modules, while in the original
papers [8, 9] only complete normed L0.X/-modules were considered (but they were
called just “normed L0-modules”).

Remark 2.5. Let us spend a few words on why this axiomatisation of Banach
L0.X/-modules is useful in analysis on metric measure spaces. Differently from e.g.
the theory of (Banach) modules over a Banach algebra (see [5]), we consider a point-
wise norm operator that takes values into the space of functions L0.X/C, and not its
“integrated version” taking values in RC. Heuristically, a Banach L0.X/-module M in
the sense of Definition 2.3 can be thought of as a measurable Banach bundle, i.e. a
collection of Banach spaces ¹Mxºx2X that “vary in a measurable way”. In fact, this is
really the case under suitable separability assumptions on M (see [21, Section 4.3]) and,
in a weaker form, this is still true for arbitrary BanachL0.X/-modules (see [21, Section
3.3]). The reason why it is convenient to keep track of the “fibrewise behaviour” of the
elements of M is that Banach L0.X/-modules are used to provide a generalised notion
of a measurable 1-form, which has to be defined pointwise on the given metric measure
space. The pointwise/fibrewise description of a BanachL0.X/-module turned out to be
useful in order to characterise the dual and/of the pullback of a Banach L0.X/-module,
which are tools of pivotal importance in vector calculus on metric measure spaces [10].

Given a Banach L0.X/-module M, a partition .En/n2N � † of X, and a sequence
.vn/n2N � M, the series

P
n2N

�En � vn converges unconditionally in M (by the
dominated convergence theorem).

Remark 2.6. Let X D .X; †;m/ be a �-finite measure space and M a Banach
L0.X/-module. Then it follows from the properties of dL0.X/ that for any partition
.En/n2N � † of X it holds that

MN
3 .vn/n2N 7!

X
n2N

�En � vn 2M is a continuous map;

where the source space is endowed with the product topology.

2.1.3. Examples of Banach L0.X/-modules. There are many ways to obtain a Banach
L0.X/-module:

(1) Submodule. By a normed L0.X/-submodule of a normed L0.X/-module M we
mean anL0.X/-submodule N of M equipped with the restriction of the pointwise
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norm of M, which is easily seen to be a normed L0.X/-module. If in addition
M is a Banach L0.X/-module and N is closed in M, then N is also a Banach
L0.X/-module. In this case, we say that N is a Banach L0.X/-submodule of M.

(2) Closure. Let M be a Banach L0.X/-module and N a normed L0.X/-submodule
of M. Then the closure clM.N/ of N is a Banach L0.X/-submodule of M.

(3) Null space. Let M, N be BanachL0.X/-modules and 'WM!N anL0.X/-linear
and continuous map. Then the space '�1.¹0º/ WD ¹v 2M W '.v/D 0º is a Banach
L0.X/-submodule of M.

(4) Range. Let M, N be BanachL0.X/-modules and 'WM!N anL0.X/-linear and
continuous map. Then the space '.M/ WD ¹'.v/ W v 2Mº is a normed L0.X/-
submodule of N. We point out that, in general, the space '.M/ is not complete
(see Example 3.4).

(5) Metric identification. Let M be a seminormed L0.X/-module. The equivalence
relation �j�j on M is defined as follows: given any v; w 2 M, we declare that
v �j�j w if and only if jv �wj D 0. Then the quotient M=�j�j inherits a structure
of normed L0.X/-module.

(6) Completion. LetM be a normedL0.X/-module. Then there exists a unique couple
. xM; �/, where xM is a BanachL0.X/-module, while �WM! xM is anL0.X/-linear
map that preserves the pointwise norm and satisfies cl xM.�.M//D xM. Uniqueness
is up to a unique isomorphism: given any .N; Q�/ with the same properties, there
exists a unique L0.X/-linear bijection ˆW xM! N that preserves the pointwise
norm (i.e. an isomorphism of Banach L0.X/-modules) and satisfies ˆ ı � D Q�.

(7) Quotient. Let M be a Banach L0.X/-module and N a Banach L0.X/-submodule
of M. Then the quotient M=N is a Banach L0.X/-module if endowed with the
pointwise norm

jv CNj WD
^
w2N

jv C wj for every v 2M;

which we call the quotient pointwise norm. Whenever we refer to M=N as the
quotient BanachL0.X/-module, we always meanM=N endowed with the quotient
pointwise norm.

(8) Space of homomorphisms. Let M, N be Banach L0.X/-modules. Then we denote
by Hom.M;N/ the space ofL0.X/-linear maps 'WM! N for which there exists
g 2 L0.X/C such that j'.v/j � gjvj holds for every v 2M. If endowed with the
pointwise norm

j'j WD
^®

g 2 L0.X/C
ˇ̌
'.v/j � gjvj for every v 2M

¯
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and the usual pointwise operations, the space Hom.M;N/ is a Banach L0.X/-
module. Its elements are called the homomorphisms of Banach L0.X/-modules
from M to N.

(9) Dual. The dual of a BanachL0.X/-moduleM is given byM� WDHom.M;L0.X//.

(10) Hilbert modules. Let S ¤ ¿ be an arbitrary set. We define the space HX.S/ as

HX.S/ WD
®
v 2 L0.X/S

ˇ̌
jvj WD .

P
s2S jv.s/j

2/1=2 2 L0.X/
¯
:

In particular, given v 2HX.S/we have v.s/D 0 for all but countably many s 2 S .
Then .HX.S/; j � j/ is a BanachL0.X/-module with respect to the componentwise
operations. Also, HX.S/ is a Hilbert L0.X/-module, i.e. it verifies the pointwise
parallelogram rule:

jv C wj2 C jv � wj2 D 2jvj2 C 2jwj2 for every v;w 2 HX.S/:

The elements ¹esºs2S � HX.S/, defined as es.t/ WD 0 for every t 2 S n ¹sº and
es.s/ WD �X, form an orthonormal basis of HX.S/. Hence, given any S1; S2 ¤¿,
it holds that HX.S1/ and HX.S2/ are isomorphic as Banach L0.X/-modules if
and only if card.S1/ D card.S2/.

(11) L0-Lebesgue–Bochner space. Let M be a Banach L0.Y /-module, for some �-
finite measure space Y . Then we denote byL0.XIM/ the space of all measurable
maps vWX!M taking values in a separable subspace of M (that depends on
v), quotiented up to mX-a.e. equality. Then it holds that L0.XIM/ is a Banach
L0.X � Y /-module if equipped with the following operations:

.v C w/.x/ WD v.x/C w.x/ 2M for mX-a.e. x 2 X;
.f � v/.x/ WD f .x; �/ � v.x/ 2M for mX-a.e. x 2 X;
jvj.x; y/ WD jv.x/j.y/ for .mX ˝mY/-a.e. .x; y/ 2 X � Y;

for every v; w 2 L0.XIM/ and f 2 L0.X � Y /. In particular, for any Banach
spaceB we can regardL0.XIB/ as a BanachL0.X/-module. The space of simple
maps from X to M, i.e. of those elements of L0.XIM/ that can be written asPn
iD1

�Eivi for some .Ei /niD1 � †X and .vi /niD1 �M, is dense in L0.XIM/.

The above claims can be proved by adapting the arguments in [9, Section 1.2].

Remark 2.7. Let X be a �-finite measure space and B a Banach space. We
denote by B 0 the dual of B in the sense of Banach spaces. Then it holds that the map
�X;B WL

0.XIB 0/! L0.XIB/�, given by

�X;B.!/.v/ WD !.�/.v.�// 2 L
0.X/ for every ! 2 L0.XIB 0/ and v 2 L0.XIB/;
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is a morphism of Banach L0.X/-modules that preserves the pointwise norm. It also
holds that

�X;B is an isomorphism , B 0 has the Radon–Nikodým propertyI

see [16, Theorems 1.3.10 and 1.3.26], [9, Proposition 1.2.13], and [19, Appendix
B]. We point out that, even in the case where B 0 does not have the Radon–Nikodým
property, the space L0.XIB/� can be characterised in several ways; see e.g. [10] for
(generalisations of) these kinds of results.

2.2 – A reminder on category theory

In this section we recall some important notions and results in category theory,
mostly concerning limits and colimits. We refer to [2,17,20,22] for a thorough account
of these topics. Let us begin by fixing some useful terminology and notation.

Given a category C, we denote by ObC and HomC the classes of its objects and
morphisms, respectively. The domain and the codomain of a morphism 'WX ! Y are
denoted by dom.'/ WD X and cod.'/ WD Y , respectively. Given two objectsX , Y of C,
we denote by HomC.X;Y / the class of those morphisms ' in C such that dom.'/D X
and cod.'/ D Y . We say that C is small if the classes ObC and HomC are sets, while
we say that C is locally small if the class HomC.X; Y / is a set for every pair of objects
X , Y of C. The opposite (or dual) category Cop is obtained from C by “reversing the
morphisms” (see e.g. [17, p. 12] for the precise definition of Cop). A category D is said
to be a subcategory of C provided the following conditions hold:

(1) ObD is a subcollection of ObC.

(2) Given objectsX , Y of D, the class HomD.X;Y / is a subcollection of HomC.X;Y /.

(3) The composition in D is induced by the composition in C.

(4) The identity morphisms in D are identity morphisms in C.

We say that D is a full subcategory of C if HomD.X;Y / coincides with HomC.X;Y / for
every pair of objects X , Y of D. Given two locally small categories C, D, each functor
F WC! D induces a collection of maps FX;Y WHomC.X; Y /! HomD.F.X/; F.Y //

for every pair of objects X , Y of C. We say that F is full (resp. faithful) if FX;Y is
surjective (resp. injective) for every pair of objectsX , Y of C. We say that F is injective
on objects if F.X/ and F.Y / are different wheneverX and Y are different objects of C.
We say that C has zero morphisms if there is a collection of morphisms 0XY WX ! Y ,
indexed by the pairs X , Y of objects of C, that satisfies the following property: given
any three objects X , Y , Z of C and any two morphisms 'W Y ! Z and  WX ! Y
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in C, the diagram

X Y

Y Z

 
0XZ

0XY

'

0YZ

commutes. If C has zero morphisms, then the zero morphisms 0XY are uniquely
determined.

An object I of a category C is said to be an initial object if for any object X of
C there exists exactly one morphism iX W I ! X . Dually, an object T of C is said
to be a terminal object if for any object X of C there exists exactly one morphism
tX WX ! T . An object that is both initial and terminal is called a zero object of C.
Initial and terminal objects (thus, a fortiori, zero objects) are uniquely determined up
to a unique isomorphism: given any two initial objects I1 and I2 of C, there exists a
unique isomorphism I1 ! I2, and similarly for terminal objects. A pointed category
is a category C having a zero object, which we denote by 0C. Each pointed category C
has zero morphisms: for any two objects X , Y of C, the zero morphism 0XY is iY ı tX .

A morphism 'WX ! Y in a category C is said to be a monomorphism if it is left
cancellative, meaning that  1 D  2 wheneverZ is an object of C and  1;  2WZ! X

are two morphisms in C satisfying ' ı  1 D ' ı  2. Dually, a morphism 'WX ! Y

is said to be an epimorphism if it is right cancellative, meaning that  1 D  2 holds
whenever Z is an object of C and  1;  2WY ! Z are two morphisms in C satisfying
 1 ı ' D  2 ı '. We say that a category C is balanced if every morphism in C that is
both a monomorphism and an epimorphism is an isomorphism.

Some important examples of categories, which play a key role in this paper, are the
following:

(1) The category Set, whose objects are the sets and whose morphisms are the functions.

(2) The category Meas� of � -finite measure spaces. Given any two � -finite measure
spaces X D .X; †X;mX/ and Y D .Y; †Y;mY/, a morphism � WX ! Y is a
.†X; †Y/-measurable map � WX! Y that satisfies �#mX � mY. This notion of
morphism differs from those of other authors, who require e.g. � to be measure
preserving or to verify �#mX � CmY for some constant C > 0. Notice also that
the measure �#mX on Y need not be � -finite.

(3) The category Ban, whose objects are the Banach spaces and whose morphisms
are the linear 1-Lipschitz operators. We refer e.g. to [3, 25] for a study of the
category Ban.

(4) Let .I;�/ be a directed set, i.e. a nonempty partially ordered set where any pair of
elements admits an upper bound. Then .I;�/ can be regarded as a small category,
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where the objects are the elements of I , while the morphisms are as follows: given
any i; j 2 I , we declare that there is a (unique) morphism i ! j if and only
if i � j .

Given two categories C, D and two functors F;GWD! C, a natural transformation
from F to G is a collection �? of morphisms �X W F.X/! G.X/, indexed by the
objects X of D, such that for any morphism 'WX ! Y in D the diagram

F.X/ G.X/

F.Y / G.Y /

F.'/

�X

G.'/

�Y

commutes. We denote by CD the functor category from D to C, whose objects are the
functors from D to C and whose morphisms are the natural transformations between
them. An isomorphism in CD is called a natural isomorphism. Given an index category
J, the diagonal functor�J;CWC!CJ is defined as follows: given any objectX of C, we
set�J;C.X/.i/ WDX for every object i of J and�J;C.X/.�/ WD idX for every morphism
� in J; given any morphism 'WX ! Y in C, we define the natural transformation
�J;C.'/? as �J;C.'/i WD ' for every object i of J.

The arrow category C! of a given category C is defined as follows. The objects of
C! are the morphisms in C, while a morphism ' !  in C! is given by a couple
.˛; ˇ/ of morphisms ˛W dom.'/! dom. / and ˇW cod.'/! cod. / in C for which
the following diagram commutes:

dom.'/ dom. /

cod.'/ cod. /:

'

˛

 

ˇ

More generally, given three categories C, C1, C2 and two functors F WC1! C and
GWC2 ! C, we define the comma category .F # G/ in the following way:

(1) The objects of .F # G/ are the triples .X; Y; '/, where X is an object of C1, Y is
an object of C2, and 'WF.X/! G.Y / is a morphism in C.

(2) A morphism .X1; Y1; '1/! .X2; Y2; '2/ in .F #G/ is given by a couple . 1; 2/,
where  1WX1 ! X2 is a morphism in C1 and  2WY1 ! Y2 is a morphism in C2
such that

F.X1/ F.X2/

G.Y1/ G.Y2/

'1

F. 1/

'2

G. 2/

is a commutative diagram.
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If C2 D 1 (i.e. C2 is the one-object one-morphism category) and X is a given object
of C, we just write .F # X/ instead of .F # �1;C.X//, and similarly for .X # G/ in
the case where C1 D 1. Observe also that the arrow category C! coincides with the
comma category .idC # idC/.

2.2.1. Limits and colimits. Let J be an index category. Then a diagram of type J in
a category C is a functor DW J! C. A cone to D is an object X of C together with
a collection '? of morphisms 'i WX ! D.i/, indexed by the objects i of J, such that
D.�/ ı 'i D 'j for every morphism �W i ! j in J. A limit of D is a cone .L; �?/ to
D that satisfies the following universal property: given any cone .X; '?/ to D, there
exists a unique morphism ˆWX ! L such that the diagram

X

L

D.i/ D.j /

'i

ˆ

'j

�i �j

D.�/

commutes for every morphism �W i ! j in J. If a limit ofD exists, then it is essentially
unique (i.e. unique up to a unique isomorphism), so that we are entitled to refer to it as
“the” limit of D. Alternatively, the cones of D can be identified with the objects of the
category .�J;C # D/, which is thus called the category of cones to D, and a limit of
D is a terminal object in .�J;C # D/.

Dually, by a cocone of D we mean an object X of C, together with a collection '?
of morphisms 'i WD.i/! X , indexed by the objects i of J, such that 'j ıD.�/ D 'i
for every morphism �W i ! j in J. A colimit ofD is a cocone .C; c?/ ofD that satisfies
the following universal property: given any cocone .X; '?/ of D, there exists a unique
morphism ˆWC ! X such that the diagram

D.i/ D.j /

C

X

'i

ci

D.�/

cj

'j

ˆ
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commutes for every morphism �W i ! j in J. Whenever it exists, a colimit of D is
essentially unique, thus we can unambiguously call it “the” colimit ofD. Alternatively,
the cocones ofD can be identified with the objects of the category .D # �J;C/, which
is thus called the category of cocones of D, and a colimit of D is an initial object in
.D # �J;C/.

The following are some of the most important examples of limits in a category C:

(1) Let X , Y be two objects of C and a; bWX ! Y two morphisms in C. Then the
equaliser of a; bWX ! Y is an object Eq.a; b/ of C together with a morphism
eq.a; b/WEq.a; b/! X with a ı eq.a; b/ D b ı eq.a; b/ verifying the following
universal property: if uWE ! X is a morphism in C satisfying a ı u D b ı u, then
there exists a unique morphism ˆWE ! Eq.a; b/ such that eq.a; b/ ıˆ D u. The
equaliser .Eq.a; b/; eq.a; b// coincides with the limit of the diagram of type J�
in C, where J� is the category made of two objects (corresponding to X and Y )
and (besides the identity morphisms) having only two parallel morphisms between
them (corresponding to a and b). Observe also that eq.a; b/ is a monomorphism.

(2) Suppose C has zero morphisms. Then the kernel of a morphism 'WX ! Y in C is

.Ker.'/; ker.'// WD .Eq.'; 0XY /; eq.'; 0XY //;

whenever the equaliser of '; 0XY WX ! Y exists.

(3) LetX? D ¹Xiºi2I be a set of objects of C. Then the product ofX? in C is an objectQC
X? D

QC
i2I Xi together with a family of morphisms ¹�i W

QC
X? ! Xiºi2I

verifying the following universal property: given an object Y of C and a family
of morphisms ¹'i WY ! Xiºi2I , there exists a unique morphism ˆWY !

QC
X?

such that �i ıˆ D 'i for every i 2 I . The product .
QC

X?; ¹�iºi2I / coincides
with the limit of the diagram of type JI in C, where JI is the discrete category
whose objects are the elements of I .

(4) Let .I;�/ be a directed set. By an inverse (or projective) system in C indexed by
the directed set .I;�/ we mean a family of objects ¹Xiºi2I , together with a family
¹Pij W i; j 2 I; i � j º of morphisms Pij WXj ! Xi such that Pi i D idXi for every
i 2 I and Pik D Pij ı Pjk for every i; j; k 2 I with i � j � k. Then the inverse
(or projective) limit of .¹Xiºi2I ; ¹Pij ºi�j / is an object lim

 �
X? of C, together with

a family ¹Piºi2I of morphisms Pi W lim
 �

X? ! Xi such that Pij ı Pj D Pi for every
i � j and verifying the following universal property: given an object Y of C
and morphisms Qi W Y ! Xi with Pij ı Qj D Qi for every i � j , there exists a
unique morphismˆWY ! lim

 �
X? such that Pi ıˆD Qi for every i 2 I . Moreover,

.lim
 �

X?; ¹Piºi2I / coincides with the limit of the diagram of type .I;�/op in C.
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(5) Let X , Y , Z be objects of C. Let 'X WX ! Z and 'Y W Y ! Z be two given
morphisms. Then the pullback of'X and'Y is an objectP DX �Z Y of C, together
with two morphisms pX W P ! X and pY W P ! Y with 'X ı pX D 'Y ı pY

verifying the following universal property: given an objectQ of C and morphisms
qX WQ ! X and qY WQ ! Y with 'X ı qX D 'Y ı qY , there exists a unique
morphism ˆWQ! P such that

Q

P Y

X Z

qX

ˆ

qY

pX

pY

'Y

'X

is a commutative diagram. The pullback .X �Z Y; pX ; pY / coincides with the
limit of the diagram of type Jy in C, where Jy is the category with three objects
(corresponding to X , Y , and Z) and whose morphisms (besides the identity ones)
are X ! Z and Y ! Z.

Dually, the following are some of the most important examples of colimits in a
category C:

(1) Let X , Y be two objects of C and a; bWX ! Y two morphisms in C. Then
the coequaliser of a; bWX ! Y is given by an object Coeq.a; b/ of C together
with a morphism coeq.a; b/WY ! Coeq.a; b/ with coeq.a; b/ ı a D coeq.a; b/ ı
b verifying the following universal property: if uW Y ! F is a morphism in C
satisfying u ı a D u ı b, then there exists a unique morphismˆWCoeq.a; b/! F

such that ˆ ı coeq.a; b/ D u. The coequaliser .Coeq.a; b/; coeq.a; b// coincides
with the colimit of the diagram of type J� in C. Observe also that coeq.a; b/ is
an epimorphism.

(2) Suppose C has zero morphisms. Then the cokernel of a morphism 'WX ! Y in
C is

.Coker.'/; coker.'// WD .Coeq.'; 0XY /; coeq.'; 0XY //;

whenever the coequaliser of '; 0XY WX ! Y exists.

(3) LetX?D¹Xiºi2I be a set of objects of C. Then the coproduct ofX? in C is an object`C
X? D

`C
i2I Xi , together with a family of morphisms ¹�i WXi !

`C
X?ºi2I

verifying the following universal property: given an object Y of C and a family
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of morphisms ¹'i WXi ! Y ºi2I , there exists a unique morphism ˆW
`C

X? ! Y

such that ˆ ı �i D 'i for every i 2 I . The coproduct .
`C

X?; ¹�iºi2I / coincides
with the colimit of the diagram of type JI in C.

(4) Let .I;�/ be a directed set. By a direct (or inductive) system in C indexed by the
directed set .I;�/ we mean a family of objects ¹Xiºi2I , together with a family
¹'ij W i; j 2 I; i � j º of morphisms 'ij WXi ! Xj such that 'i i D idXi for every
i 2 I and 'ik D 'jk ı 'ij for every i; j; k 2 I with i � j � k. Then the direct
(or inductive) limit of .¹Xiºi2I ; ¹'ij ºi�j / is an object lim

�!
X? of C, together with

a family ¹'iºi2I of morphisms 'i WXi ! lim
�!

X? such that 'j ı 'ij D 'i for every
i � j and verifying the following universal property: given an object Y of C
and morphisms  i WXi ! Y with  j ı 'ij D  i for every i � j , there exists a
unique morphismˆW lim

�!
X?! Y such thatˆ ı 'i D  i for every i 2 I . Moreover,

.lim
�!

X?; ¹'iºi2I / coincides with the colimit of the diagram of type .I;�/ in C.

(5) Let X , Y , Z be objects of C. Let 'X WZ ! X and 'Y WZ ! Y be two given
morphisms. Then the pushout of 'X and 'Y is an object P D X tZ Y of C,
together with two morphisms iX WX ! P and iY WY ! P with iX ı 'X D iY ı 'Y
verifying the following universal property: given an objectQ of C and morphisms
jX WX ! Q and jY W Y ! Q with jX ı 'X D jY ı 'Y , there exists a unique
morphism ˆWP ! Q such that the diagram

Z Y

X P

Q

'X

'Y

iY

jY

iX

jX

ˆ

commutes. The pushout .X tZ Y; iX ; iY / coincides with the colimit of the diagram
of type Jp in C, where by Jp we mean the category with three objects (corresponding
to X , Y , and Z) whose morphisms (besides the identity ones) are Z ! X and
Z ! Y .

Remark 2.8. A warning about the terminology: differently from other authors,
we only consider (co)products that are indexed by sets (not by classes). These are
sometimes called small (co)products. Moreover, by a projective (resp. an inductive)
limit we mean the limit (resp. the colimit) of a diagram that is indexed by a directed
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set, while for some authors “projective limit” (resp. “inductive limit”) is a synonym of
(not necessarily directed) “limit” (resp. “colimit”).

Next we recall the notion of image and coimage of a morphism. Fix a category C
that admits all finite limits and colimits. Let 'WX ! Y be a morphism in C. Then,

(1) the image of ' is given by .Im.'/; im.'// WD .Eq.i1; i2/; eq.i1; i2//, where we
denote by .Y tX Y; i1; i2/ the pushout of ' and ';

(2) the coimage of' is given by .Coim.'/;coim.'// WD .Coeq.p1;p2/;coeq.p1;p2//,
where we denote by .Y �X Y; p1; p2/ the pullback of ' and '.

If in addition C has zero morphisms, we say that a monomorphism 'WX ! Y in C is
normal if there exist an object Z and a morphism �WY ! Z such that

.X; '/ Š .Ker.�/; ker.�//:

Dually, we say that an epimorphism WX ! Y in C is conormal if there exist an object
W and a morphism � WW ! X such that

.Y;  / Š .Coker.�/; coker.�//:

The category C is said to be normal if every monomorphism in C is normal, and
conormal if every epimorphism in C is conormal. A category that is either normal or
conormal is balanced; see e.g. [22, Proposition 14.3].

2.2.2. Completeness and cocompleteness. A category C is said to be complete if all
small limits in C (i.e. limits of diagrams whose index category is small) exist. Dually, C
is said to be cocomplete if all small colimits in C exist. A category that is both complete
and cocomplete is called a bicomplete category. An example of a bicomplete category
is Set. The product

QSet
i2I Xi of a given family of sets X? D ¹Xiºi2I is the Cartesian

product
Q
i2I Xi , while the coproduct

`Set
i2I Xi is the disjoint union

F
i2I Xi . Another

example of a bicomplete category is Ban; see e.g. [26].
The following result provides a criterion to detect (co)complete categories. Albeit

well known to the experts, we report its proof for the usefulness of the reader.

Theorem 2.9. A category in which all products and equalisers exist is complete. A
category in which all coproducts and coequalisers exist is cocomplete.

Proof. We prove only the first statement, as the second one follows by a dual argu-
ment. Let C be a category in which all products and equalisers exist. LetDW J! C be
a small diagram. Then the products .

QC
i2ObJ

D.i/; �?/ and .
QC
�2HomJ

D.cod.�//; �?/
exist in C. For brevity, let us set Y WD

QC
i2ObJ

D.i/ and Z WD
QC
�2HomJ

D.cod.�//.
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Observe that there exist two (uniquely determined) morphisms a; bWY ! Z such that

Y Z Y

D.cod.�//

a

�cod.�/
��

b

D.�/ı�dom.�/

is a commutative diagram for all � 2 HomJ. Define �i WD �i ı eq.a; b/WEq.a; b/!
D.i/ for every i 2 ObJ. Given a morphism �W i ! j in J, one has that

D.�/ ı �i D D.�/ ı �dom.�/ ı eq.a; b/ D �� ı b ı eq.a; b/ D �� ı a ı eq.a; b/
D �cod.�/ ı eq.a; b/ D �j :

This shows that .Eq.a; b/; �?/ is a cone toD. Moreover, if .X; '?/ is a cone toD, then
there exists a unique morphism uWX ! Y such that �i ı u D 'i for every i 2 ObJ. In
particular, the diagram

X Y Z Y X

D.cod.�// D.cod.�// D.dom.�//

u

'cod.�/

a

�cod.�/ ��

b

�dom.�/

u

'dom.�/

D.�/

commutes for every � 2 HomJ. Given that D.�/ ı 'dom.�/ D 'cod.�/, we deduce that
a ı uD b ı u, thus there exists a unique morphismˆWX! Eq.a;b/ such that eq.a;b/ ı
ˆ D u. Observe that

�i ıˆ D �i ı eq.a; b/ ıˆ D �i ı u D 'i for every i 2 ObJ:

Finally, we claim that ˆ is the unique morphism satisfying �i ı ˆ D 'i for every
i 2 ObJ. To prove it, fix any morphism ‰WX ! Eq.a; b/ such that �i ı‰ D 'i for
every i 2 ObJ. This means that �i ı eq.a; b/ ı‰ D 'i holds for every i 2 ObJ, which
forces eq.a; b/ ı‰ D u by the uniqueness of u, and thus ‰ D ˆ by the uniqueness of
ˆ. All in all, .Eq.a; b/; �?/ is the limit of D.

2.2.3. Limits and colimits as functors. If J is a small index category and all the
diagrams of type J in a category C have limits, then there exists a unique functor
LimJ;CWCJ ! C, called the limit functor from J to C, such that LimJ;C.D/ is (the
object underlying) the limit ofD for any diagramDWJ! C. Dually, if all the diagrams
of type J in C have colimits, then there exists a unique functor ColimJ;CWCJ ! C,
called the colimit functor from J to C, such that ColimJ;C.D/ is (the object underlying)
the colimit of D for any diagram DW J! C. In the special cases of inverse and direct
limits, we write lim

 �I
and lim
�!I

instead of Lim.I;�/op;C and Colim.I;�/;C, respectively.
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Remark 2.10. Let C be a category having zero morphisms and where all kernels
exist, and J a small index category. Let �?WD1 ! D2 be a morphism in CJ. Then the
kernel of �? in CJ exists:

(1) The diagram Ker.�?/W J! C is given by Ker.�?/.i/ D Ker.�i / for every i 2 ObJ,
and for any morphism �W i ! j in J we have that Ker.�?/.�/WKer.�i /! Ker.�j /
is the unique morphism ˆ satisfying ker.�j / ı ˆ D D1.�/ ı ker.�i /. Both the
existence and the uniqueness of ˆ are consequences of the commutativity of the
following diagram:

Ker.�i / D1.i/ D2.i/ ¹0º

Ker.�j / D1.j / D2.j / ¹0º:

ˆ

ker.�i /

D1.�/

�i

D2.�/

ker.�j / �j

(2) The morphism ker.�?/ coincides with the natural transformation

ker.�?/?WKer.�?/! D1;

which is defined as ker.�?/i WD ker.�i /WKer.�i /! D1.i/ for every i 2 ObJ.

The dual statement holds for the cokernel of �? (when all cokernels exist in C).

Given two categories C, D, and two functors F WC! D and GWD! C, we say
that F is the right adjoint to G, or that G is the left adjoint to F (for short G a F ), if
for any object X of C there exists a morphism "X WG.F.X//! X with the following
property: given an object Y of D and a morphism 'WG.Y /! X , there exists a unique
morphism  WY ! F.X/ such that

G.Y /

G.F.X// X

F. /
'

"X

commutes. Each right-adjoint functor F WC! D is continuous, i.e. it preserves limits:
if the limit .L; �?/ of a diagram DW J! C exists, then the limit .LF ; �F? / of the
diagram F ıDW J! D exists as well, and the unique morphism ˆWF.L/! LF such
that

F.L/ LF

F.D.i//

F.�i /

ˆ

�F
i
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is a commutative diagram for every i 2 ObJ is an isomorphism. In particular, each
right-adjoint functor is left exact, i.e. it commutes with finite limits. Dually, each
left-adjoint functor is cocontinuous, i.e. it preserves colimits: if the colimit .C; c?/ of
a diagram DW J! C exists, then also the colimit .CF ; cF? / of F ıDW J! D exists,
and the unique morphism ‰WCF ! F.C/ such that

F.D.i//

CF F.C/

cF
i

F.ci /

‰

is a commutative diagram for every i 2 ObJ is an isomorphism. In particular, each left-
adjoint functor is right exact, i.e. it commutes with finite colimits. If C is a complete (resp.
cocomplete) category, then for any small index category J it holds that �J;C a LimJ;C
(resp. ColimJ;C a �J;C), thus in particular LimJ;C is continuous (resp. ColimJ;C is
cocontinuous).

3. The category of Banach L0.X/-modules

Let X be a given � -finite measure space. Then we denote by BanModX the category
of BanachL0.X/-modules, where a morphism 'WM!N between two BanachL0.X/-
modules M and N is defined as an L0.X/-linear operator (i.e. a homomorphism of
L0.X/-modules) that satisfies

j'.v/j � jvj for every v 2M:

The morphisms in HomBanModX.M;N/ are exactly those ' 2 Hom.M;N/ satisfying
j'j � 1. Also, the isomorphisms in BanModX are exactly the isomorphisms of Banach
L0.X/-modules.

Remark 3.1. One could also consider the category BanMod0X, where the morph-
isms between two Banach L0.X/-modules M and N are given exactly by the elements
of Hom.M;N/. Observe that in this category a morphism 'WM!N is an isomorphism
if and only if it is bijective and there exist g1; g2 2 L0.X/ with g2 � g1 > 0 such that
g1jvj � j'.v/j � g2jvj for every v 2M. Our choice of working with BanModX is
due to the fact that BanMod0X is neither complete nor cocomplete; see Example 3.13.
However, by suitably adapting the results we are going to present, one can show that
BanMod0X is finitely bicomplete (i.e. it admits finite limits and colimits).
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3.1 – Basic properties of BanModX

Let X be a � -finite measure space. Then it can be readily checked that BanModX is
a pointed category, whose zero object 0BanModX is given by the trivial Banach L0.X/-
module consisting uniquely of the zero element. Moreover, BanModX is locally small:
given any two Banach L0.X/-modules M and N, we observed that the morphisms
M! N form a subset of Hom.M;N/, thus in particular

card.HomBanModX.M;N// � card.N/card.M/:

Proposition 3.2. Let X be a � -finite measure space. Then the category BanModX

is not small.

Proof. Given any cardinal �, we fix a set S� of cardinality �. Recall that if �1,
�2 are different cardinals, then HX.S�1/ is not isomorphic to HX.S�2/. Since the
collection of all cardinals is a proper class (i.e. it is not a set), we conclude that the
collection of all Hilbert L0.X/-modules is a proper class as well. This implies that the
category BanModX is not small, as we claimed.

Proposition 3.3. Let X be a � -finite measure space and 'WM! N a morphism
in BanModX. Then the following properties hold:

(1) ' is a monomorphism if and only if it is injective.

(2) ' is an epimorphism if and only if '.M/ is dense in N.

Proof. Suppose ' is a monomorphism. Denote by  1W '
�1.¹0º/ ! M and

 2W '
�1.¹0º/ ! M the inclusion map and the null map, respectively. Since both

' ı  1 and ' ı  2 coincide with the null map from '�1.¹0º/ to N, we deduce that
 1 D  2 and thus '�1.¹0º/ D ¹0º, whence the injectivity of ' follows by linearity.
Conversely, suppose ' is injective. Given any Banach L0.X/-module P and any two
morphisms  1;  2WP!M satisfying ' ı  1 D ' ı  2, we have that  1 D  2, other-
wise there would exist an element z 2 P such that  1.z/¤  2.z/ and thus accordingly
'. 1.z// ¤ '. 2.z// by the injectivity of '. This shows that ' is a monomorphism.

Suppose ' is an epimorphism. Define Q WD N=clN.'.M//. Let us denote by
 1WN ! Q the canonical projection map on the quotient and by  2WN ! Q the
null map. Observe that

 1.'.v// D '.v/C clN.'.M// D clN.'.M// for every v 2M;

thus  1 ı ' and  2 ı ' are the null map. Hence, we have  1 D  2, which implies
clN.'.M//DN. Conversely, suppose '.M/ is dense in N. Choose any BanachL0.X/-
module P and any two morphisms  1;  2WN! P with  1 ı ' D  2 ı '. This means
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that  1 D  2 on the dense subspace '.M/ of N, thus accordingly  1 D  2 on the
whole N. This shows that ' is an epimorphism.

Example 3.4. Let X be a given �-finite measure space. Recall that c0 stands for
the space of all sequences .an/n2N 2 RN such that an ! 0 as n!1, and that c0
is a separable Banach space if endowed with the componentwise operations and the
supremum norm k.an/n2Nkc0 WD supn2N janj. Thanks to the density of simple maps
in the Banach L0.X/-module L0.XI c0/, we have that there exists a unique morphism
'WL0.XI c0/! L0.XI c0/ in the category BanModX such that

'.�X.an/n2N/ D �X.an=n/n2N for every .an/n2N 2 c0:

Clearly, ' is injective and thus a monomorphism in BanModX. Moreover, the range
of ' contains all simple maps from X to c00, where c00 stands for the space consisting
of those sequences .an/n2N such that an D 0 holds for all but finitely many n 2 N.
Since c00 is dense in c0, it follows that '.L0.XI c0// is dense in L0.XI c0/ and thus
' is an epimorphism in BanModX. However, we have that �X.1=n/n2N 2 L

0.XI c0/

does not belong to '.L0.XI c0//, which means that ' is not surjective. In particular,
the morphism ' is not an isomorphism in BanModX.

Remark 3.5. Example 3.4 shows that, given a �-finite measure space X, the cat-
egory BanModX is not balanced, which implies that it is neither normal nor conormal.

3.2 – Limits and colimits in BanModX

In this section we prove that BanModX is bicomplete.

3.2.1. Kernels and cokernels in BanModX. We begin by proving that (co)kernels
exist in BanModX:

Theorem 3.6 (Kernels in BanModX). Let X be a �-finite measure space and
'WM! N a morphism between Banach L0.X/-modules M, N. Let us consider the
null space '�1.¹0º/, which is a Banach L0.X/-submodule of M. Then we have that
the kernel of ' exists and is given by

Ker.'/ Š '�1.¹0º/;

together with the inclusion map ker.'/W'�1.¹0º/!M. In particular, the equaliser of
any two morphisms '; WM! N exists and is given by

(3.1) .Eq.';  /; eq.';  // Š
�
Ker

�' �  
2

�
; ker

�' �  
2

��
:
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Proof. We know that '�1.¹0º/ is a Banach L0.X/-submodule of M and that
the inclusion map �W '�1.¹0º/!M is a morphism of Banach L0.X/-modules with
' ı � D 0. Now fix a Banach L0.X/-module E and a morphism uWE!M such that
' ı u D 0. Define ˆWE! '�1.¹0º/ as ˆ.w/ WD u.w/ for every w 2 E. Note that ˆ
is the unique map from E to '�1.¹0º/ with � ı ˆ D u. Since ˆ is a morphism, we
conclude that the kernel of ' is '�1.¹0º/ together with the inclusion map. This proves
the first part of the statement, whence (3.1) immediately follows.

Theorem 3.7 (Cokernels in BanModX). Let X be a �-finite measure space and
'WM! N a morphism between Banach L0.X/-modules M, N. Let us consider the
Banach L0.X/-submodule clN.'.M// of N and the quotient Banach L0.X/-module
N=clN.'.M//. Then we have that the cokernel of ' exists and is given by

Coker.'/ Š N=clN.'.M//;

together with the canonical projection map coker.'/WN!N=clN.'.M//. In particular,
the coequaliser of any two morphisms '; WM! N exists and is given by

(3.2) .Coeq.';  /; coeq.';  // Š
�
Coker

�' �  
2

�
; coker

�' �  
2

��
:

Proof. We know that the quotient Q WD N=clN.'.M// is a BanachL0.X/-module
and that the canonical projection � WN! Q is a morphism of Banach L0.X/-modules.
Notice that � ı ' D 0. Now fix a Banach L0.X/-module F and a morphism uWN! F

such that u ı ' D 0. Define the mappingˆWQ! F asˆ.Œw�/ WD u.w/ for everyw 2N,
where Œw� 2 Q stands for the equivalence class of w. Notice also that clN.'.M// �
u�1.¹0º/. This implies that if two elements v; Qv 2M satisfy v � Qv 2 clN.'.M//, then
u.v/ � u. Qv/ D u.v � Qv/ D 0. Hence, ˆ is well defined. Moreover, if w 2 N and
z 2 u�1.¹0º/, then ju.w/j D ju.w C z/j � jw C zj, which gives

jˆ.Œw�/j D ju.w/j �
^

z2u�1.¹0º/

jw C zj �
^

z2clN.'.M//

jw C zj D jŒw�j

for every Œw� 2 Q. Since ˆ is L0.X/-linear by construction, we deduce that it is
a morphism of Banach L0.X/-modules. Observe that ˆWQ! F is the unique map
satisfyingˆ ı� D u. Hence, the cokernel of ' is given byQ together with the canonical
projection map on the quotient. This proves the first part of the statement, whence (3.2)
immediately follows.

Remark 3.8. In Theorems 3.6 and 3.7 we cannot write Eq.';  / D Ker.' �  /
or Coeq.';  / D Coker.' �  /, since ' �  need not be a morphism in BanModX.
This is due to the fact that, in general, j.' �  /.v/j � 2jvj for every v 2M is the best
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inequality one can have. In particular, we have that BanModX is not enriched over the
category of Abelian groups.

3.2.2. Products and coproducts in BanModX. To construct (co)products in the cat-
egory of Banach L0.X/-modules, we need to introduce the notion of p̀-sum of a
family of Banach L0.X/-modules.

Definition 3.9 ( p̀-sum). Let X be a � -finite measure space and M? D ¹Miºi2I a
family of BanachL0.X/-modules. Fixp 2 Œ1;1�. Given any v? D .vi /i2I 2

QSet
i2I Mi ,

we define

jv?jp WD

8<:
_®

.
P
i2J jvi j

p/1=p
ˇ̌
J 2 PF .I /

¯
2 L0ext.X/ if p <1;_®

jvi j
ˇ̌
i 2 I

¯
2 L0ext.X/ if p D1:

Then we define the p̀-sum of M? as

p̀.M?/ WD
®
v? 2

QSet
i2I Mi

ˇ̌
jv?jp 2 L

0.X/
¯
:

In the case where I consists of finitely many elements, say M? D ¹M1; : : : ;Mnº, we
denote

M1 p̊ � � � p̊ Mn WD p̀.M?/:

Rather standard verifications show that p̀.M?/ has a Banach L0.X/-module struc-
ture:

Proposition 3.10. Let X be a � -finite measure space and M? D ¹Miºi2I a family
of Banach L0.X/-modules. Let p 2 Œ1;1� be fixed. Then . p̀.M?/; j � jp/ is a Banach
L0.X/-module with respect to the following operations:

v? C w? WD .vi C wi /i2I for every v?; w? 2 p̀.M?/;

f � v? WD .f � vi /i2I for every f 2 L0.X/ and v? 2 p̀.M?/:

Proof. First of all, we aim to prove that for any v?; w? 2 p̀.M?/ and f 2 L0.X/
it holds that

(3.3) jv? C w?jp � jv?jp C jw?jp; jf � v?jp D jf j jv?jp:

We discuss only the case p <1, as the case p D1 is easier. Fix any J 2 PF .I / and
notice that�X

i2J

jvi C wi j
p

�1=p
�

�X
i2J

jvi j
p

�1=p
C

�X
i2J

jwi j
p

�1=p
� jv?jp C jw?jp;�X

i2J

jf � vi j
p

�1=p
D jf j

�X
i2J

jvi j
p

�1=p
� jf j jv?jp:
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Thanks to the arbitrariness of J 2 PF .I /, we deduce that jv?Cw?jp � jv?jp C jw?jp
and jf � v?jp � jf j jv?jp , whence it follows that

jf j
ˇ̌
jv?jp � j�¹f¤0º � v?jp

ˇ̌
� jf j j�¹fD0º � v?jp � �¹fD0ºjf j jv?jp D 0:

Therefore, letting g WD �¹f¤0º 1f 2 L
0.X/, we can estimate

jf j jv?jp D jf j j�¹f¤0º � v?jp D jf j j.fg/ � v?jp � jf j jgj jf � v?jp � jf � v?jp:

All in all, (3.3) is proved. In particular, v? Cw? and f � v? belong to p̀.M?/ for every
v?; w? 2 p̀.M?/ and f 2 L0.X/. It can be readily checked that . p̀.M?/; j � jp/ is
a normed L0.X/-module. It remains to verify that d`p.M?/ is a complete distance.
Let .vn?/n2N � p̀.M?/ be any Cauchy sequence. Given any index i 2 I , we have
that jvni � v

m
i j � jv

n
? � v

m
? jp for every n;m 2 N, whence it follows that .vni /n2N �

Mi is a Cauchy sequence. Let vi 2 Mi denote its limit as n! 1. Moreover, we
have that j jvn?jp � jvm? jpj � jvn? � vm? jp for every n; m 2 N, thus .jvn?jp/n2N is a
Cauchy sequence in L0.X/, which converges to some limit function g 2 L0.X/. For
each J 2 PF .I / we have that .

P
i2J jv

n
i j
p/1=p � jvn?jp for every n 2 N, so that by

letting n ! 1 we deduce that .
P
i2J jvi j

p/1=p � g. Given that J 2 PF .I / was
arbitrary, we obtain that jv?jp � g, thus in particular v? 2 p̀.M?/. Finally, for any
" > 0 we can find Nn 2 N such that dL0.X/.jvn? � vm? j; 0/ � " for every n;m � Nn. Since
.jvn? � v

m
? j/m�Nn is a Cauchy sequence in L0.X/, it converges to some gn 2 L0.X/

as m!1. Notice that dL0.X/.gn; 0/ � ". For each J 2 PF .I / and n; m � Nn, we
have .

P
i2J jv

n
i � v

m
i j
p/1=p � jvn? � v

m
? jp, thus by letting m!1 we deduce that

.
P
i2J jv

n
i � vi j

p/1=p � gn. This implies that jvn? � v?jp � gn, and accordingly that
d`p.M?/.v

n
?; v?/ � ", for every n � Nn. Therefore, vn? ! v? in p̀.M?/ as n!1, as

desired.

With the concept of p̀-sum at our disposal, we can describe products and coproducts
in BanModX:

Theorem 3.11 (Products in BanModX). Let X be a �-finite measure space.
Let M? D ¹Miºi2I be a set of Banach L0.X/-modules. Then the product of M?

in BanModX exists and is given by

BanModXY
i2I

Mi Š `1.M?/;

together with the morphisms �i W `1.M?/! Mi defined as �i .v?/ WD vi for every
v? 2 `1.M?/.
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Proof. First of all, observe that each mapping �i is a morphism in BanModX.
Now fix a Banach L0.X/-module N and a family ¹'i WN! Miºi2I of morphisms.
Let us define ˆWN! `1.M?/ as ˆ.w/ WD .'i .w//i2I for every w 2 N. Notice that
ˆ is the unique mapping from N to `1.M?/ satisfying �i ıˆ D 'i for every i 2 I .
Clearly, ˆ is a morphism of L0.X/-modules. Moreover, by passing to the supremum
over i 2 I , we deduce from j'i .w/j � jwj that jˆ.w/j1 � jwj holds for every w 2 N.
All in all, ˆ is a morphism of Banach L0.X/-modules. The proof is complete.

Theorem 3.12 (Coproducts in BanModX). Let X be a �-finite measure space.
Let M? D ¹Miºi2I be a set of Banach L0.X/-modules. Then the coproduct of M? in
BanModX exists and is given by

BanModXa
i2I

Mi Š `1.M?/;

together with the morphisms �i WMi ! `1.M?/ defined as �i .v/ WD .wj /j2I for every
v 2Mi , where we set wi WD v and wj WD 0Mj

for every j 2 I n ¹iº.

Proof. First of all, observe that each mapping �i is a morphism in BanModX (with
j�i .v/j1 D jvj for every v 2Mi ). Now fix a Banach L0.X/-module N and a family
¹'i WMi ! Nºi2I of morphisms. We claim that, given any element v? 2 `1.M?/, the
series

P
i2I 'i .vi / is unconditionally convergent in N to someˆ.v?/ 2 N. To prove it,

pick some partition .En/n2N � † of X that satisfies m.En/ <C1 and �En jv?j1 � n
for every n 2 N. For each J 2 PF .I / we haveX

i2J

Z
En

j'i .vi /j dm �
X
i2J

Z
En

jvi j dm

�

Z
En

jv?j1 dm � nm.En/:

It follows that
P
i2I k

�En j'i .vi /jkL1.X/ � nm.En/ < C1 for every n 2 N, thus in
particular the series

P
i2I

�En � 'i .vi / is unconditionally convergent in N. Recalling
Remark 2.6, we conclude that the series

P
i2I 'i .vi / converges unconditionally to

some element ˆ.v?/ 2 N, as we claimed.
One can readily check that the resulting mapping ˆW `1.M?/! N is a morphism

of Banach L0.X/-modules and that it satisfies ˆ ı �i D 'i for every i 2 I . It only
remains to show that ˆ is the unique mapping having these two properties. To this
aim, fix a morphism‰W `1.M?/! N such that‰ ı �i D 'i for every i 2 I . Given any
v? 2 `1.M?/, we have that the series

P
i2I �i .vi / converges unconditionally to v? in
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`1.M?/. Hence, the linearity and the continuity of ‰, ˆ yield

‰.v?/ D ‰

�X
i2I

�i .vi /

�
D

X
i2I

‰.�i .vi // D
X
i2I

'i .vi / D
X
i2I

ˆ.�i .vi //

D ˆ

�X
i2I

�i .vi /

�
D ˆ.v?/;

which proves the uniqueness of ˆ. Consequently, the statement is achieved.

Example 3.13. Let X be a � -finite measure space. We define M? D ¹Mnºn2N as
Mn WD L

0.X/ for every n 2 N. Then we claim that M? does not have a product in
BanMod0X, whence it follows that BanMod0X is not complete. In order to prove the
claim, we argue by contradiction: suppose the product .Q; ¹�nWQ!Mnºn2N/ of M?

in BanMod0X exists. In particular, for any n 2 N there exists gn 2 L0.X/C such that
j�n.v/j � gnjvj for every v 2 Q. Define the homomorphism pn 2 Hom.`1.M?/;Mn/

as pn.f?/ WD n.gn C 1
n
/fn for every f? 2 `1.M?/. Therefore, there exists a unique

ˆ 2 Hom.`1.M?/;Q/ such that pn D �n ıˆ for every n 2N. Take any g 2 L0.X/C

such that jˆ.f?/j � gjf?j1 holds for every f? 2 `1.M?/. It follows that

njfnj D
jpn.f?/j

gn C
1
n

D
j.�n ıˆ/.f?/j

gn C
1
n

� gjf?j1 for every f? 2 `1.M?/ and n 2 N:

Picking fn WD �X for every n 2 N, we obtain n � g for every n 2 N, which leads to
a contradiction. Hence, the claim is proved. Similarly, one can also show, by using
`1.M?/ instead of `1.M?/, that M? does not have a coproduct in BanMod0X, and
thus BanMod0X is not cocomplete.

3.2.3. The bicompleteness of BanModX. It is now immediate to obtain the main result
of this paper:

Theorem 3.14. Let X be a � -finite measure space. Then the category BanModX

is bicomplete.

Proof. It follows from Theorems 3.6, 3.7, 3.11, 3.12, and 2.9.

3.2.4. Description of other limits and colimits in BanModX. Theorem 3.14 ensures
that inverse/direct limits and pullbacks/pushouts always exist in BanModX. However,
we believe it is also useful to describe them explicitly. We shall only write the relevant
statements, omitting their proofs.

Proposition 3.15 (Pullbacks in BanModX). Let X be a � -finite measure space. Let
M,N, andQ be BanachL0.X/-modules. Let 'WM!Q and WN!Q be morphisms in
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BanModX. Then ¹.v;w/ 2M˚1 N j '.v/D  .w/º is a Banach L0.X/-submodule
of M˝1 N. Moreover, the pullback of ' and  in BanModX is given by

M �Q N Š
®
.v; w/ 2M˚1 N

ˇ̌
'.v/ D  .w/

¯
;

together with the morphisms

pM WD �MjM�QNWM �Q N!M;

pN WD �NjM�QNWM �Q N! N;

where .M˚1 N; �M; �N/ stands for the product of ¹M;Nº in BanModX.

Proposition 3.16 (Pushouts in BanModX). Let X be a �-finite measure space.
Let M, N, Q be Banach L0.X/-modules. Let 'WQ!M and  WQ! N be morphisms
in BanModX. Then

I WD
®
.v; w/ 2M˚1 N

ˇ̌
.'.z/;  .z// D .�v;w/ for some z 2 Q

¯
is a normed L0.X/-submodule of M ˚1 N. Moreover, the pushout of ' and  in
BanModX is given by

M tQ N Š .M˚1 N/=clM˚1N.I/;

together with the morphisms

iM WD � ı �MWM!M tQ N;

iN WD � ı �NWN!M tQ N;

where .M˚1 N; �M; �N/ stands for the coproduct of ¹M;Nº in the category BanModX,
while by� WM˚1 N!MtQ N we mean the canonical projection map on the quotient.

Furthermore, by combining Proposition 3.16 with Theorem 3.6 and, respectively,
Proposition 3.15 with Theorem 3.7, one obtains the following two results:

Corollary 3.17 (Images in BanModX). Let X be a �-finite measure space and
'WM! N a morphism in BanModX. Recall that clN.'.M// is a Banach L0.X/-
submodule of N and that the inclusion map �W clN.'.M// ,! N is a morphism in
BanModX. Then it holds that

.Im.'/; im.'// Š
�
clN.'.M//; �

�
:

Corollary 3.18 (Coimages in BanModX). Let X be a � -finite measure space and
'WM! N a morphism in BanModX. Consider the quotient Banach L0.X/-module
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M=Ker.'/ and recall that the canonical projection � WM!M=Ker.'/ is a morphism
in BanModX. Then it holds that

.Coim.'/; coim.'// Š .M=Ker.'/; �/:

Finally, we provide an explicit description of inverse and direct limits in BanModX.
Recall that inverse and direct limits always exist in the categoryR-Mod of modules over
a commutative ringR; see e.g. [18]. We shall denote by fXWBanModX! L0.X/-Mod
the forgetful functor.

Proposition 3.19 (Inverse limits in BanModX). Let .I;�/ be a directed set.
Let X be a �-finite measure space. Let .¹Miºi2I ; ¹Pij ºi�j / be an inverse system in
BanModX. We denote by .M; ¹zPiºi2I / the inverse limit of .¹fX.Mi /ºi2I ; ¹fX.Pij /ºi�j /
in L0.X/-Mod. Let us define the mapping j � jM WM ! L0ext.X/ as

jvjM WD
_
i2I

jzPi .v/j for every v 2M:

Then zM WD ¹v 2M W jvjM 2 L0.X/º is an L0.X/-submodule of M . Moreover, zM is
a Banach L0.X/-module if endowed with the restriction of j � jM , and the inverse limit
of .¹Miºi2I ; ¹Pij ºi�j / in BanModX is given by

lim
 �

M? Š zM;

together with the morphisms Pi WD zPi j zM W zM !Mi .

Proposition 3.20 (Direct limits in BanModX). Let .I;�/ be a directed set and X a
� -finite measure space. Let .¹Miºi2I ; ¹'ij ºi�j / be a direct system in BanModX. Let us
denote by .M; ¹ Q'iºi2I / the direct limit of .¹fX.Mi /ºi2I ; ¹fX.'ij /ºi�j / inL0.X/-Mod.
Then

jwj WD
^®
jvj

ˇ̌
i 2 I; v 2Mi ; Q'i .v/ D w

¯
for every w 2M

defines a pointwise seminorm j � jWM ! L0.X/, so that M is a seminormed L0.X/-
module, its quotient M=�j�j is a normed L0.X/-module, and M=�j�j is a Banach
L0.X/-module, where we denote by .M=�j�j; �/ the completion of M=�j�j. Moreover,
the direct limit of .¹Miºi2I ; ¹'ij ºi�j / in BanModX is given by

lim
�!

M? ŠM=�j�j;

together with the morphisms 'i WD � ı � ı Q'i WMi !M=�j�j, where � WM !M=�j�j
is the canonical projection on the quotient.
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Next we provide an elementary example of a nontrivial inverse system of Banach
L0.X/-modules having a trivial inverse limit. This construction will be useful in
Example 3.22.

Example 3.21. Let X be a �-finite measure space and M ¤ ¹0º a given Banach
L0.X/-module. We define Mn WD M for every n 2 N. Given any n; m 2 N with
n � m, we define the morphism PnmWMm!Mn as Pnm WD n

m
idM. Then .¹Mnºn2N ;

¹Pnmºn�m/ is an inverse system and

(3.4) lim
 �

M? Š ¹0º:

Indeed, the inverse limit .M; ¹zPnºn2N/ of .¹fX.Mn/ºn2N ; ¹fX.Pnm/ºn�m/ in the cat-
egory L0.X/-Mod is given byM WD ¹.kv/k2N 2

QSet
k2N Mk W v 2Mº, together with

the morphisms zPnWM !Mn defined as

zPn..kv/k2N/ WD nv for every .kv/k2N 2M:

Using Proposition 3.19, we get j.kv/k2N j D
W
n2N jnvj D .C1/ � �¹jvj>0º, which

gives (3.4).

We know that the inverse limit functor preserves limits, whereas the direct limit
functor preserves colimits. On the contrary, the following two examples show that in
BanModX the inverse limit functor is not right exact and that the direct limit functor
is not left exact, respectively.

Example 3.22. Fix any � -finite measure space X and any Banach L0.X/-module
M¤ ¹0º. Given any n2N, we defineMnDNn WDM. Given any n;m2N with n�m,
we define PnmWMm !Mn and QnmWNm ! Nn as Pnm WD n

m
idM and Qnm WD idM,

respectively. Then both .¹Mnºn2N ; ¹Pnmºn�m/ and .¹Nnºn2N ; ¹Qnmºn�m/ are inverse
systems in BanModX and the collection �? of morphisms �nWMn ! Nn given by
�n WD

1
n
idM is a natural transformation, i.e. a morphism in .BanModX/

.I;�/op . Observe
that trivially lim

 �N
N? ŠM, while lim

 �N
M? Š ¹0º thanks to Example 3.21. Recalling

Remark 2.10 and using the surjectivity of each �n, we obtain that Coker.�?/.n/ D ¹0º
for all n 2 N. Hence, Coker.�?/ is the zero object of .BanModX/

.I;�/op and thus
lim
 �N

Coker.�?/ Š ¹0º. On the other hand, the cokernel of the morphism lim
 �N

�? is

Coker.lim
 �N

�?/ Š .lim
 �N

N?/=cl.lim
 �N

N?/..lim �N
�?/.lim
 �N

M?// Š lim
 �N

N? ŠM

¤ ¹0º;

thus the inverse limit functor lim
 �N

on .BanModX/
.I;�/op does not preserve cokernels.
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Example 3.23. Fix a � -finite measure space X. Let � WHX.N/! HX.N/ be the
following morphism: given any v 2 HX.N/, we set �.v/.1/ WD 0 and �.v/.i/ WD v.i/
for every i 2 N with i � 2. We define .vn/n2N � HX.N/ as v1.i/ WD 1

i
�X for every

i 2 N and vn WD en for every n � 2. Moreover, we denote by Mn the closure in
HX.N/ of its L0.X/-submodule generated by ¹v1; : : : ; vnº, while we define Nn WD

HX.N/. Finally, for any n � m we denote by 'nmWMn ,! Mm the inclusion, by
 nmWNn ! Nm the identity map, and by �nWMn ! Nn the map �n WD � jMn

. It
holds that .¹Mnºn2N ; ¹'nmºn�m/ and .¹Nnºn2N ; ¹ nmºn�m/ are direct systems in
BanModX, while �? is a morphism in .BanModX/

.N;�/ between them. Recalling
Remark 2.10, we deduce that Ker.�?/ is the zero object, so that lim

�!N
Ker.�?/ D

¹0º. On the other hand, since the L0.X/-submodule of HX.N/ generated by the
sequence .vn/n2N is dense in HX.N/, one can easily check that lim

�!N
M? Š HX.N/.

Clearly, lim
�!N

N? Š HX.N/ as well and lim
�!N

�? Š � . Since � is not injective, we
conclude that Ker.lim

�!N
�?/ ¤ ¹0º, thus showing that the direct limit functor lim

�!N
on

.BanModX/
.N;�/ does not preserve kernels.

3.3 – The inverse image functor

Here we introduce and study the “inverse image functor”.

3.3.1. The category BanMod. Let us now consider the category BanMod, which is
defined as follows:

(1) The objects of BanMod are given by the couples .X;M/, where X is a �-finite
measure space and M is a Banach L0.X/-module.

(2) A morphism in BanMod between two objects .X;M/ and .Y ;N/ is a couple .�;'/,
where � WX! Y is a morphism in Meas� and 'WN!M is a linear map such that

'.f � v/ D .f ı �/ � '.v/ for every f 2 L0.Y / and v 2 N;

j'.v/j � jvj ı � for every v 2 N:

(3) Given morphisms .�; '/W .X;M/ ! .Y ;N/ and .�;  /W .Y ;N/ ! .W ; Q/ in
BanMod, their composition is .�; / ı .�;'/ WD .� ı �;' ı /W .X;M/! .W ;Q/.

It holds that Meas� and Banop can be realised as full subcategories of BanMod, while
each BanModop

X can be realised as a (not necessarily full) subcategory of BanMod.
More precisely, we have the following:

(1) Define the functor IM WMeas�!BanMod as IM .X/ WD .X; ¹0º/ for every object X

of Meas� and IM .�/ WD .�; 0/W .X; ¹0º/! .Y ; ¹0º/ for every morphism � WX! Y

in Meas� . Then IM is a fully faithful functor that is injective on objects.
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(2) Let X be a � -finite measure space. Define the functor IXWBanModop
X ! BanMod

as IX.M/ WD .X;M/ for every object M of BanModX and IX.'/ WD .idX; '/ for
every morphism 'WM! N in BanModop

X . Then IX is faithful and injective on
objects.

(3) Recall that BanModP D Ban and notice that idP WP ! P is the unique element
of HomMeas� .P ;P /, thus IP is a full functor and Banop can be realised as a full
subcategory of BanMod.

We shall also consider the forgetful functor …M WBanMod!Meas� , defined as

…M ..X;M// WD X for every object .X;M/ of BanMod;
…M ..�; '// WD � for every morphism .�; '/W .X;M/! .Y ;N/ in BanMod:

3.3.2. Inverse image versus pullback. We are now in a position to introduce the inverse
image functor:

Theorem 3.24 (Inverse image functor). There exists a unique functor

InvImW .idMeas� # …M /! BanMod!;

which we call the inverse image functor, such that the following properties are satisfied:

(1) If .X; .Y ;M/; �/ is a given object of the comma category .idMeas� # …M /, then
there exist a Banach L0.X/-module ��M and a linear operator ��WM! ��M

such that
InvIm

�
.X; .Y ;M/; �/

�
D .�; ��/:

Moreover, the L0.X/-submodule of ��M generated by the range ��.M/ is dense
in ��M and it holds that j��vj D jvj ı � for every v 2M.

(2) If .�1; .�2; '//W .X1; .Y1;M1/; �1/! .X2; .Y2;M2/; �2/ is a morphism in the
category .idMeas� # …M /, then there exists an operator  W ��2M2 ! ��1M1 such
that

InvIm
�
.�1; .�2; '//

�
D ..�1;  /; .�2; '//:

The uniqueness of the functor InvIm is intended up to a unique natural isomorphism in
the functor category from .idMeas� # …M / to BanMod!.

The statement of Theorem 3.24 is a reformulation of various results about “pullback
modules” contained in [9, Section 1.6], or rather of their corresponding versions for
Banach L0-modules, which can be obtained by suitably adapting the same proof
arguments. Let us briefly comment on the terminology: in [9] the Banach module
��M is called the pullback module of M with respect to � , by analogy with the notion
of pullback that is commonly used in differential geometry. Since in this paper we
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are studying these topics from the perspective of category theory, we prefer to adopt
the term “inverse image”, in order to avoid confusion with the categorical notion of
pullback. Nevertheless, the two concepts are strongly related, as observed in [9, Remark
1.6.4]. Namely, we have the following theorem:

Theorem 3.25. Let � WX ! Y be a morphism in Meas� . Let M be a Banach
L0.Y /-module. Then it holds that the pullback of .idY ; 0/W .Y ;M/! .Y ; ¹0º/ and
.�; 0/W .X; ¹0º/! .Y ; ¹0º/ exists in BanMod:

.Y ;M/ �.Y ;¹0º/ .X; ¹0º/ Š .X; �
�M/;

together with .�; ��/W .X; ��M/! .Y ;M/ and .idX; 0/W .X; ��M/! .X; ¹0º/.

Given a morphism � WX! Y in Meas� , the inverse image functor induces a functor

InvIm� WBanModY ! BanModX

as follows: for any Banach L0.Y /-module M we define InvIm� .M/ WD ��M and
for any morphism 'WM! N in BanModY we define InvIm� .'/ WD �

�', where by
��'W ��M! ��N we mean the unique morphism in BanModX with

InvIm
�
.idX; .idY ; '//

�
D ..idX; �

�'/; .idY ; '//:

Example 3.26. Let X be a finite measure space. Let M be a given Banach L0.Y /-
module, for some � -finite measure space Y . We define�YWX�Y!Y as�Y.x;y/ WD y

for every .x; y/ 2 X � Y. Clearly, �Y is measurable and .�Y/#.mX ˝mY/ D �mY,
where we define � WD mX.X/ 2 .0;C1/, so that �YWX � Y ! Y is a morphism in
Meas� . We define cWM! L0.XIM/ as c.v/ WD �Xv for every v 2M. Then we claim
that

.L0.XIM/; c/ Š .��YM; �
�
Y/:

Its validity follows from the linearity of c, the fact that for any v 2M the identities

jc.v/j.x; y/ D jc.v/.x/j.y/ D jvj.y/ D jvj.�Y.x; y// D .jvj ı �Y/.x; y/

are verified for .mX ˝mY/-a.e. .x; y/, and the density of simple maps in L0.XIM/.

In the following result, we check (by a direct verification) that InvIm� preserves
direct limits:

Proposition 3.27. Let � WX! Y be a morphism in Meas� . Let us consider a
direct system .¹Miºi2I ; ¹'ij ºi�j / in BanModY , with direct limit .lim

�!
M?; ¹'iºi2I /.
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Then .¹��Miºi2I ; ¹�
�'ij ºi�j / is a direct system in BanModX, whose direct limit is

given by

(3.5) lim
�!

��M? Š �
� lim
�!

M?;

together with the family ¹��'iºi2I of morphisms ��'i W ��Mi ! �� lim
�!

M?.

Proof. Clearly, we have .��'j / ı .��'ij / D ��'i for all i; j 2 I with i � j .
Fix any .N; ¹ iºi2I /, where N is a Banach L0.X/-module and  i W ��Mi ! N are
morphisms satisfying  j ı .��'ij / D  i for every i � j . We claim that there exists a
unique morphism ˆW �� lim

�!
M? ! N such that

(3.6) ˆ
�
��.'i .v//

�
D  i .�

�v/ for every i 2 I and v 2Mi ;

whence the statement follows. Given that
S
i2I 'i .Mi / is a dense L0.Y /-submodule

of lim
�!

M? by Proposition 3.20, the L0.X/-submodule of �� lim
�!

M? generated byS
i2I ¹�

�.'i .v// W v 2Miº is dense in �� lim
�!

M?, which forces the uniqueness of the
morphismˆ. We now pass to the verification of (the well-posedness and of) the existence
of ˆ. We denote by .M; ¹ Q'iºi2I / the direct limit of .¹fY .Mi /ºi2I ; ¹fY .'ij /ºi�j / in
L0.Y /-Mod. Note that the map z‰WM ! N, which we define as z‰. Q'i .v// WD  i .��v/
for every i 2 I and v 2Mi , is well posed and linear. Indeed, if z 2M can be written as
z D Q'i .v/ D Q'j .w/, then (recalling how direct limits in L0.Y /-Mod are constructed)
we have 'ik.v/ D 'jk.w/ for some k 2 I with i; j � k, so that the commutativity of
the diagram

Mi Mk Mj

��Mi ��Mk ��Mj

N

��

'ik

��

'jk

��

 i

��'ik

 k

��'jk

 j

implies that  i .��v/ D  j .��w/, thus showing that z‰.z/ is well posed. The linearity
of z‰ follows by construction. Moreover, we can estimate j z‰.z/j � jvj ı � for every
z 2M , i 2 I , and v 2Mi with Q'i .v/ D z, whence it follows that j z‰.z/j � jzj ı � for
every z 2M . It is then easy to check that there is a unique linear map ‰WM=�j�j! N

satisfying ‰..� ı �/.z// D z‰.z/ for every z 2 M , where � WM ! M=�j�j is the
projection and .M=�j�j; �/ is the completion ofM=�j�j. Notice also that j‰.z/j � jzj ı �
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for every z 2 M=�j�j. Recalling from Proposition 3.20 that lim
�!

M? Š M=�j�j, we
conclude that there exists a unique morphismˆW �� lim

�!
M?!N for which the diagram

lim
�!

M? N

�� lim
�!

M?

��

‰

ˆ

commutes, which is equivalent to requiring the validity of (3.6). This proves the
statement.

It also holds that if � WX! Y is a morphism in Meas� and .¹Miºi2I ; ¹Pij ºi�j / is
an inverse system in BanModY , then .¹��Miºi2I ; ¹�

�Pij ºi�j / is an inverse system in
BanModX. Nevertheless, it can happen that lim

 �
��M? © �

� lim
 �

M?. In other words,
the functor InvIm� does not necessarily preserve inverse limits, as is shown in Example
4.3 below.

4. The hom-functors in BanModX

Let X be a given � -finite measure space. Let M, N be BanachL0.X/-modules. The
functors

Hom.M;�/WBanModX ! BanModX; Hom.�;N/WBanModop
X ! BanModX;

which we call the hom-functors in BanModX, are defined in the following way:

(1) Given an object Q of BanModX, we define Hom.M;�/.Q/ WD Hom.M;Q/. Given
a morphism 'WQ! R in BanModX, we define

Hom.M;�/.'/WHom.M;Q/! Hom.M;R/

as Hom.M;�/.'/.T / WD ' ı T for every T 2 Hom.M;Q/.

(2) Given an object Q of BanModX, we define Hom.�;N/.Q/ WD Hom.Q;N/. Given
a morphism 'WR! Q in BanModX, we define

Hom.�;N/.'op/WHom.Q;N/! Hom.R;N/

as Hom.�;N/.'op/.T / WD T ı ' for every T 2 Hom.Q;N/.

In the following result, we obtain the expected continuity properties of the two hom-
functors. We prove the statement directly, rather than by applying a general principle,
which would amount to showing that hom-functors are left/right adjoints to a suitable
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notion of tensor product. For a study of tensor products of Banach L0-modules, we
refer to [24].

Proposition 4.1 (Continuity properties of the hom-functors). Let X be a � -finite
measure space. Let M, N be given Banach L0.X/-modules. Then the following prop-
erties are verified:

(1) Let DW J! BanModX be a small diagram and denote by .L; �?/ its limit. Then
the limit of the diagram zD WD Hom.M;�/ ıDW J! BanModX is given by

.Hom.M;L/;Hom.M;�/.�?//:

(2) Let DW J! BanModX be a small diagram and denote by .C; c?/ its colimit. We
define the diagram zDW Jop ! BanModX as zD.i/ WD Hom.D.i/;N/ for every
i 2 ObJ, while we set zD.�op/ WD Hom.�;N/.D.�/op/ for every � 2 HomJ. Then
the limit of zD is given by

.Hom.C;N/;Hom.�;N/.cop
? //:

Proof. We focus only on the first item, since the second one can by proved via
similar arguments. For brevity, we denote ˆi WD Hom.M;�/.�i / for every i 2 ObJ.
Given a morphism �W i ! j in J and any T 2 Hom.M;L/, we have

. zD.�/ ıˆi /.T / D D.�/ ı �i ı T D �j ı T D ĵ .T /;

which shows that .Hom.M;L/;ˆ?/ is a cone to zD. Now fix an arbitrary cone .Q; ‰?/
to zD. Given any z 2 Q, we define fz WD �¹jzj>0º 1jzj 2 L

0.X/. Observe that for any
i 2 ObJ the homomorphism T zi WD fz �‰i .z/WM! D.i/ satisfies jT zi j � 1, thus in
particular it is a morphism in BanModX. Moreover, for any morphism �W i ! j in J
and for any v 2M we can compute

.D.�/ ı T zi /.v/ D .D.�/ ı‰i .z//.fz � v/ D .
zD.�/ ı‰i /.z/.fz � v/

D ‰j .z/.fz � v/ D T
z
j .v/;

which shows that .M; T z? / is a cone to D. Hence, there exists a unique morphism
ẑ .z/WM! L such that �i ı ẑ .z/ D T zi for every i 2 ObJ. Letting

ˆ.z/ WD jzj � ẑ .z/ 2 Hom.M;L/ for every z 2 Q;

we deduce that ˆWQ! Hom.M;L/ is the unique morphism in BanModX verifying
the identity ˆi ıˆ D ‰i for every i 2 ObJ. This proves that .Hom.M;L/;ˆ?/ is the
limit of zD.
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The next result immediately follows from Proposition 4.1 (plugging in ND L0.X/):

Corollary 4.2. Let X be a � -finite measure space and let M be a Banach L0.X/-
module. Fix a small diagram DW J! BanModX, whose colimit we denote by .C; c?/.
Define zDW Jop ! BanModX as zD.i/ WD D.i/� for every i 2 ObJ and

zD.�op/ WD Hom.�; L0.X//.D.�/op/ for every � 2 HomJ:

Then the limit of the diagram zD is given by .C�;Hom.�; L0.X//.cop
? //.

In particular, if .¹Miºi2I ; ¹'ij ºi�j / is a direct system in BanModX and we define

'Lim
ij WD Hom.�; L0.X//.'op

ij /WM
�
j !M�i for every i; j 2 I with i � j ;

then .¹M�i ºi2I ; ¹'
Lim
ij ºi�j / is an inverse system in BanModX whose inverse limit is

given by

(4.1) lim
 �

M�? Š .lim�!M?/
�;

together with the morphisms 'Lim
i WD Hom.�;L0.X//.'op

i /W .lim�!M?/
�!M�i , where

.lim
�!

M?; ¹'iºi2I / stands for the direct limit of .¹Miºi2I ; ¹'ij ºi�j / in BanModX.
We conclude the paper with an example. We denote by `1 the space of all those

sequences .an/n2N 2 RN satisfying
P
n2N janj < C1, which is a Banach space if

endowed with the componentwise operations and the norm k.an/n2Nk`1 WD
P
n2N janj.

Its dual Banach space is the space `1 of all bounded sequences in R, endowed with
the supremum norm k.bn/n2Nk`1 WD supn2N jbnj. It is well known that the space `1

does not have the Radon–Nikodým property, thus in particular

(4.2) L0.XI `1/� © L0.XI `1/ for every finite measure space X;

as follows from the discussion in Remark 2.7.

Example 4.3. Let X D .X; †;m/ be any given finite measure space. We denote
by � WX! ¹pº the constant map, so that � WX! P is a morphism in Meas� . We know
from Example 3.26 that

(4.3) ��B Š L0.XIB/ for every Banach space B:

We define the elements .en/n2N � `
1 as en WD .ınk/k2N for every n 2N. Then one can

readily check that .¹Bnºn2N ; ¹�nmºn�m/ is a direct system in Ban, where Bn stands for
the subspace of `1 generated by ¹e1; : : : ; enº and �nmWBn ,! Bm denotes the inclusion
map, and that lim

�!N
B? Š `

1. Each space Bn is finite-dimensional, thus its dual B 0n
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is finite-dimensional as well, and in particular it has the Radon–Nikodým property.
Therefore, we deduce (recalling Remark 2.7) that

(4.4) L0.XIBn/
�
Š L0.XIB 0n/ for every n 2 N:

Observe that .¹B 0nºn2N ; ¹�
Lim
nmºn�m/ and .¹��B 0nºn2N ; ¹�

��Lim
nmºn�m/ are inverse sys-

tems in Ban and in BanModX, respectively. Nonetheless, it holds that �� lim
 �

B 0? ©

lim
 �

��B 0?, since

�� lim
 �

B 0?
(4.1)
Š ��.lim

�!
B?/
0
Š ��.`1/0 Š ��`1

(4.3)
Š L0.XI `1/

(4.2)
© L0.XI `1/�

(4.3)
Š .��`1/� Š .�� lim

�!
B?/
�

(3.5)
Š .lim
�!

��B?/
�

(4.1)
Š lim
 �
.��B?/

�

(4.3)
Š lim
 �

L0.XIB?/
�

(4.4)
Š lim
 �

L0.XIB 0?/
(4.3)
Š lim
 �

��B 0?;

which shows that the functor InvIm� does not preserve inverse limits.

Acknowledgements – I wish to thank the referee for the many useful comments
and suggestions.
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