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On finite groups in which all minimal subgroups are
BNA-subgroups
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Abstract – A subgroup H of a group G is said to be a BNA-subgroup of G if either Hx D H

or x 2 hH;Hxi for all x 2 G. The purpose of this paper is first to give the best bound for the
Fitting height of G if all minimal subgroups of G are BNA-subgroups of G, and next to give
an answer to the question of He, Li, and Wang [Rend. Semin. Mat. Univ. Padova 136 (2016),
51–60]. Finally, we use a few BNA-subgroups of prime order to determine the structure of
the finite groups. In fact, some new conditions for a finite group to be supersolvable have
been given.
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1. Introduction

There has been much interest in investigating the structure of finite groups under the
assumption that minimal subgroups of a finite group G have some kinds of properties
in G [1, 2, 4, 12]. For example, Ballester-Bolinches and Guo [2] studied the class of
finite groups for which every minimal subgroup is complemented. They prove that this
class is just the class of all finite supersolvable groups with elementary abelian Sylow
subgroups. Itô proved that if p is an odd prime and all minimal subgroups of order p
of G are contained in the center of the finite group G, then G is p-nilpotent [9]. Later,
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Buckley [4] proved that if G is a finite group of odd order and all minimal subgroups
of G are normal in G, then G is supersolvable. However, if p D 2 or G is a group
of even order, then the above corresponding results are all not true. Although many
interesting results in this line have been given, there are still many issues that people
are very interested in, such as the bound for the 2-length if every minimal subgroup of
a finite group is normal.

Now recall that a subgroup H of a group G is said to be abnormal if x 2 hH;Hxi

for all x 2 G. The interesting thing is that a group G is a unique subgroup that is both
normal and abnormal in G and that every maximal subgroup of G is either normal
or abnormal. Many authors have investigated the structure of finite groups by using
the assumption that subgroups of a finite group are either normal or abnormal (for
example, see [5, 6, 10]). Recently, He, Li, and Wang [7] introduced a concept about
subgroups – called BNA-subgroups. A subgroup H of a finite group G is called a
BNA-subgroup of G if either Hx D H or x 2 hH;Hxi for all x 2 G. It is clear that
both normal subgroups and abnormal subgroups are BNA-subgroups. Of course, there
exist BNA-subgroups which are neither normal subgroups nor abnormal subgroups. For
example, every cyclic subgroup of order 4 in S4, the symmetric group of degree 4, is a
BNA-subgroup, but it is neither normal nor abnormal, which means that it is meaningful
to investigate the structure of finite groups using BNA-subgroups. In fact, He, Li, and
Wang [7, 8] have studied the structure of finite groups with the assumption that all
cyclic subgroups of prime power order or all minimal subgroups are BNA-subgroups,
and many interesting results have been given. We should mention the following results:

Theorem 1.1 ([7, Theorem 3.3 (5)]). Suppose that all minimal subgroups of a
finite group G are BNA-subgroups of G. Then the Fitting height of G is bounded by 4.

The authors also asked the following question at the end of the paper:

Question 1.2 ([7, Question, p. 60]). Are there finite groups G such that every
minimal subgroup of G is a BNA-subgroup and l2.G/ � 2?

In the present paper we first prove that the Fitting height of G is bounded by 3 if all
minimal subgroups ofG are BNA-subgroups ofG. Also, we find a finite groupG such
that the Fitting height ofG is just 3 and all minimal subgroups ofG are BNA-subgroups
of G, which means that this bound 3 is best. Furthermore, this finite group G satisfies
l2.G/ D 2. So the above question has been answered. In the rest of the paper, we
continue to investigate the structure of finite groups by using the minimal subgroups.
However, we drop the assumption that every minimal subgroup is a BNA-subgroup of
G. We want to use a few BNA-subgroups of prime order to determine the structure of
the finite groups. In fact, some new conditions for a finite group to be supersolvable
have been given.
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2. Preliminary results

In this section we collect some lemmas and some known concepts which will be
used frequently in the sequel.

Lemma 2.1 ([7, Lemma 2.1]). Let G be a finite group, H � K � G, and N E G.
Suppose that H is a BNA-subgroup of G. Then

(1) H is a BNA-subgroup of K;

(2) HN is a BNA-subgroup of G;

(3) HN=N is a BNA-subgroup of G=N .

Lemma 2.2 ([7, Lemma 2.2 (2)]). LetH be a BNA-subgroup of a finite group G. If
H is subnormal in G, then H is normal in G.

Lemma 2.3 ([9, 9.1 Satz]). If G is a finite p-supersolvable group, then G0 is
p-nilpotent. If G is a finite supersolvable group, then G0 is nilpotent.

Let p be a prime and G a finite p-solvable group. Then the upper p0p-series

1 D P0 � N0 < P1 < N1 < P2 < � � � < Pl � Nl D G

could be inductively defined by the rule thatNk=Pk is the greatest normal p0-subgroup
of G=Pk , and PkC1=Nk the greatest normal p-subgroup of G=Nk . The number l ,
which is the least integer such that Nl D G, is called the p-length of G, denoted by
lp.G/.

Recall that the product of all the normal p-nilpotent subgroups of a finite group G
is clearly Op0p.G/: that is, the maximal normal p-nilpotent subgroup of G, which is
called the p-Fitting subgroup of G and denoted by Fp.G/.

Next we recall the concept of the p-Frattini subgroup. Set

S D
®
M is a maximal subgroup in G

ˇ̌
ŒG WM� is a power of p

¯
:

Then the p-Frattini subgroup of G, denoted by p̂.G/, is defined as

p̂.G/ D
\
M2S

M if S is nonempty

and p̂.G/ D G if S is empty.
It is clear that p̂.G/ is a characteristic subgroup of G and the Frattini subgroup

ˆ.G/ ofG is contained in p̂.G/. It is also clear thatOp0.G/ � p̂.G/ � Fp.G/ and
Op0.G/ is the Hall p0-subgroup of p̂.G/ if G is p-solvable. Furthermore, we may
prove the following:
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Lemma 2.4. Let p be a prime and let G be a finite p-solvable group. Then
p̂.G/=Op0.G/ D ˆ.G=Op0.G//.

Proof. It is clear that ˆ.G=Op0.G// � p̂.G/=Op0.G/. Conversely, let M be a
maximal subgroup ofG withOp0.G/ �M . If p̂.G/ —M , then the maximality ofM
implies that p̂.G/M D G. Thus ŒG WM� D Œ p̂.G/ W p̂.G/ \M�. Noticing that
Op0.G/�M andOp0.G/ is the Hall p0-subgroup of p̂.G/, we see ŒG WM� is a power
ofp and therefore p̂.G/�M , a contradiction. Hence p̂.G/�M for every maximal
subgroup of G with Op0.G/ � M , and therefore p̂.G/=Op0.G/ � ˆ.G=Op0.G//.
The lemma is proved.

3. The Fitting height and the 2-length

In this section we discuss the Fitting height and the 2-length of finite groups in
which every minimal subgroup is a BNA-subgroup.

Theorem 3.1. If all minimal subgroups of a finite group G are BNA-subgroups of
G, then the Fitting height of G is bounded by 3.

Proof. By [7, Theorem 3.3 (3)], G is p-supersolvable for every odd prime p
dividing jGj and therefore G0 is p-nilpotent by Lemma 2.3 for every odd prime p in
�.G/. Let Tp be the normal p-complement of G0. Then\

p¤2

Tp

is the Sylow 2-subgroup of G0, denoted by P . It is clear that the Hall 20-subgroup of
G0 is nilpotent. It follows that

P � F1.G/; G0 � F2.G/; G � F3.G/;

and so the Fitting height of G is bounded by 3.

The following example illustrates that 3 is the best bound for the Fitting height of
the kinds of finite groups above, and it also gives an answer to Question 1.2.

Example 3.2. Let H D hc; d j c9 D d4 D 1; cd D c�1i D hci Ì hd i. Then it
is clear that N D hc3ihd2i is normal in H with d2 2 Z.H/ and hc3i E H , and that
H=N ' S3. Also, let Q8 be a quaternion group of order 8. Since H=N can be seen
as a subgroup of S4 and the automorphism group Aut.Q8/ of Q8 is isomorphic to S4,
the symmetric group of degree 4, there exists an action from H to Q8 such that

CH .Q8/ D Ker.H on Q8/ D N:
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Now let G be the semidirect product ŒQ8�H of Q8 and H by using the above action.
Then P D Q8hd i 2 Syl2.G/ and R D hci 2 Syl3.G/. Furthermore, we may verify
that every minimal subgroup of P and R is normal in G and therefore every minimal
subgroup of G is normal. In this case, it is clear that

F1.G/ D Q8hc
3
ihd2i; F2.G/ D Q8hcihd

2
i; F3.G/ D G:

It is also clear that

O20.G/ D hc3i; O202.G/ D Q8hc
3
ihd2i;

O20220.G/ D Q8hcihd
2
i; O202202.G/ D G:

Thus the Fitting height of G is 3 and the 2-length of G is 2.

Remark 3.3. By the above discussion, we see that 3 is the best bound for the Fitting
height of finite groups in which very minimal subgroup is normal.

4. New sufficient conditions for p-supersolvability

In this section we use a few BNA-subgroups of prime order to determine the structure
of the finite groups. In fact, some new conditions for a finite group to be supersolvable
are given.

Lemma 4.1. Let p be a prime and G a finite p-solvable group. If H=K is a
cyclic group for every p-chief factor H=K of G between Op0.G/ and Fp.G/, then
G=CG.Fp.G/=Op0.G// is supersolvable.

Proof. Let xG D G=Op0.G/. Then Op. xG/ D Fp.G/=Op0.G/. By the hypotheses,
we may assume that

N1 D N0 < N1 < � � � < Nt D Fp.G/=Op0.G/

is a part of the xG-chief series contained in Fp.G/=Op0.G/ with Ni=Ni�1 cyclic of
order p. It is clear that t � 1. If t D 1, then it follows from jN1j D p that xG=C xG.N1/
is cyclic and therefore xG=C xG.N1/ is supersolvable. Now assume t > 1. By induction
on t , xG=C xG.Nt�1/ is supersolvable. Since Nt=N1 is normal in xG=N1, we may use
induction again for xG=N1 and we have that xG=C xG.Nt=N1/ is supersolvable.

Set C D C xG.Nt�1/ \ C xG.Nt=N1/. Then xG=C is supersolvable. Since Nt=Nt�1
is cyclic, there exists n1 2 Nt such thatNt D hNt�1; n1i. Then, for any x 2 C , ux D u
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for any u 2 Nt�1, and there exists k.x/ 2 N1 such that nx1 D n1k.x/. Thus, noticing
that C xG.Nt�1/ � C xG.N1/, we see

n1k.xy/ D n
xy
1 D .n1k.x//

y
D n

y
1k.x/ D n1k.y/k.x/

if y 2 C . The commutativity of N1 implies that k.xy/ D k.x/k.y/. This means that

�W x� D k.x/

is a homomorphism fromC toN1 and the kernel of� is justC xG.Nt /. HenceC=C xG.Nt /
is cyclic, so xG=C xG.Nt / is supersolvable and therefore G=CG.Fp.G/=Op0.G// is
supersolvable.

Lemma 4.2. Let p be an odd prime and let G be a finite p-solvable group. If every
minimal subgroup of order p in Fp.G/=Op0.G/ is a BNA-subgroup ofG=Op0.G/, then
every p-chief factor of G between Op0.G/ and Fp.G/ is cyclic.

Proof. Let A=Op.G/ be a minimal subgroup of order p in Fp.G/=Op0.G/. It is
clear that A=Op0.G/ is subnormal in G=Op0.G/. Then, by Lemma 2.2 , A=Op0.G/ is
normal inG=Op0.G/ and thereforeG=CG.A=Op0.G// is cyclic with exponent dividing
p � 1. Now let T be the subgroup of G generated by Op0.G/, G0, and all elements
of the form gp�1 in G. Thus T � CG.A=Op0.G//. It follows from [9, 5.12 Satz]
that for every p0-element x in T , xOp0.G/ acts trivially on Fp.G/=Op0.G/. Hence,
G=CG.H=K/ is abelian with exponent dividing p � 1 for every p-chief factor H=K
of G between Op0.G/ and Fp.G/, and therefore, by [3, Lemma 1.3], H=K is cyclic
for every p-chief factor H=K of G between Op0.G/ and Fp.G/.

Theorem 4.3. Let p be an odd prime and G a finite p-solvable group. If every
minimal subgroup of order p in Fp.G/=Op0.G/ is a BNA-subgroup ofG=Op0.G/, then
G is p-supersolvable.

Proof. Since G is p-solvable, CG.Fp.G/=Op0.G// � Fp.G/ by [11, Theorem
9.3.1]. Then Lemmas 4.2 and 4.1 imply that G=CG.Fp.G/=Op0.G// is supersolv-
able and so G=Fp.G/ is supersolvable. Clearly .G=Op0.G//=.Fp.G/=Op0.G// Š

G=Fp.G/ and Fp.G/=Op0.G/ is a p-group. By the hypothesis, every minimal sub-
group of Fp.G/=Op0.G/ is a BNA-subgroup of G=Op0.G/, and so every minimal
subgroup of Fp.G/=Op0.G/ is normal in G=Op0.G/ by Lemma 2.2. It follows from
[13, Corollary 3] that G=Op0.G/ is supersolvable. Therefore G is p-supersolvable.

Corollary 4.4. Let p be an odd prime and G a finite p-solvable group. If
every minimal subgroup of order p in Fp.G/ is a BNA-subgroup of G, then G is
p-supersolvable.
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By using the arguments used in the proofs of Lemmas 4.1 and 4.2, we may prove
the following results.

Lemma 4.5. Let p be a prime and let G be a finite p-solvable group. If H=K
is cyclic for every p-chief factor H=K of G between p̂.G/ and Fp.G/, then
G=CG.Fp.G/= p̂.G// is supersolvable.

Lemma 4.6. Let p be an odd prime and let G be a finite p-solvable group. If every
minimal subgroup of order p in Fp.G/= p̂.G/ is a BNA-subgroup of G= p̂.G/, then
every p-chief factor of G between p̂.G/ and Fp.G/ is cyclic.

Theorem 4.7. Let p be an odd prime and let G be a finite p-solvable group. If
every minimal subgroup of order p in Fp.G/= p̂.G/ is a BNA-subgroup ofG= p̂.G/,
then G is p-supersolvable.

Proof. It is clear thatOp0.G= p̂.G//D1 andOp.G= p̂.G//DFp.G/= p̂.G/D

Fp.G= p̂.G//. Since G is p-solvable, we have that CG=ˆp.G/.Fp.G= p̂.G/// �

Fp.G= p̂.G// D Fp.G/= p̂.G/ by [11, Theorem 9.3.1]. Clearly,

CG=ˆp.G/.Fp.G= p̂.G/// D CG=ˆp.G/.Fp.G/= p̂.G//

D CG.Fp.G/= p̂.G//= p̂.G/:

It follows from Lemmas 4.5 and 4.6 that G=CG.Fp.G/= p̂.G// is supersolvable
and soG=Fp.G/ is supersolvable. Clearly, .G= p̂.G//=.Fp.G/= p̂.G//ŠG=Fp.G/

and Fp.G/= p̂.G/ is a p-group. By the hypothesis, every minimal subgroup
of Fp.G/= p̂.G/ is a BNA-subgroup of G= p̂.G/, and so every minimal subgroup
of Fp.G/= p̂.G/ is normal in G= p̂.G/ by Lemma 2.2. It follows from [13, Corol-
lary 3] that G= p̂.G/ is supersolvable. Since .G=Op0.G//=. p̂.G/=Op0.G// D

.G=Op0.G//=ˆ.G=Op0.G//, G=Op0.G/ is supersolvable. Therefore G is p-super-
solvable.
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