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Abstract – We prove that a formulation of a conjecture of Lubin regarding two power series
commuting for the composition is equivalent to a criterion of checking that some extensions
generated by the nonarchimedean dynamical system arising from the power series are Galois.
As a consequence of this criterion, we obtain a proof of Lubin’s conjecture in a new case.
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1. Introduction

Let K be a finite extension of Qp , with ring of integers OK and maximal ideal mK .
Families of power series in T � OK ŒŒT �� that commute under composition have been
studied by Lubin [16] under the name of nonarchimedean dynamical systems, because
of their interpretation as analytic transformations of the p-adic open unit disk. This
study led Lubin to remark that “experimental evidence seems to suggest that for an
invertible series to commute with a noninvertible series, there must be a formal group
somehow in the background”.

Various results have been obtained to support Lubin’s observation; see for instance
the nonexhaustive list [3, 12–15,17–21].

This observation has led to several versions of what might be called Lubin’s con-
jecture, and these versions have all been proved under very strong assumptions on the
nonarchimedean dynamical system considered.
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In this note, we consider two power series P;U 2 T �OK ŒŒT �� such that P ı U D
U ıP , withP 0.0/ 2mK andU 0.0/ 2 O�K . Our so-called version of Lubin’s conjecture
is the following:

Conjecture 1.1. Let P;U 2 T �OK ŒŒT �� such that P ıU D U ı P , with P 0.0/ 2
mK and U 0.0/ 2 O�K not a root of unity, and such that P.T /¤ 0 mod mK . Then there
exists a finite extension E of K, a formal group S defined over OE , endomorphisms
of this formal group PS and US and a power series h.T / 2 T � OE ŒŒT �� such that
P ı h D h ı PS and U ı h D h ı US .

In the conjecture above, we say following Li’s terminology [14] that P and PS are
semiconjugate and that h is an isogeny from PS to P .

In several proven cases of this conjecture [3, 18, 21], the Lubin–Tate formal group
is actually defined over OK . However, this is not true in general.

The goal of this note is to prove the following theorem, which gives a new criterion
to prove Lubin’s conjecture in some cases:

Theorem 1.2. Let .P; U / be a couple of power series in T � OK ŒŒT �� such that
P ı U D U ı P , with P 0.0/ 2 mK and U 0.0/ 2 O�K , and we assume that P.T / ¤
0 mod mK and that U 0.0/ is not a root of unity. Then there exists a finite extension E
of K, a Lubin–Tate formal group S defined over OL, where E=L is a finite extension,
endomorphisms of this formal group PS and US over OE , and a power series h.T / 2
T �OE ŒŒT �� such that P ı h D h ı PS and U ı h D h ı US , if and only if the following
two conditions are satisfied:

(1) There exists V 2 T �OK ŒŒT ��, commuting with P , and an integer d � 1 such that
Q.T / D T p

d mod mK , where Q D V ı P .

(2) There exists a finite extension E of K and a sequence .˛n/n2N, where ˛0 ¤ 0 is a
root of Q and Q.˛nC1/ D ˛n, such that for all n � 1, the extension E.˛n/=E is
Galois.

The role of the fieldL in the theorem above may be confusing, but essentially comes
from the fact that Lubin–Tate formal groups are a special case of more general formal
groups, and that a formal group defined over OE arising from a Lubin–Tate formal
group over OL is usually no longer a Lubin–Tate formal group over OE .

The proof of this theorem relies mainly on the same tools and strategy used in
[17], which are the tools developed by Lubin [16] to study p-adic dynamical systems,
the “canonical Cohen ring for norms fields” of Cais and Davis [6] and tools of p-adic
Hodge theory following Berger’s strategy in [1].

As a corollary of our main theorem, we obtain the following result, which is a new
instance of Lubin’s conjecture:
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Theorem 1.3. Assume that P.T / 2 T �OK ŒŒT �� is such that P.T /D T p mod mK

and that there exists U 2 T �OK ŒŒT ��, commuting with P , such that U 0.0/ is not a root
of unity. Then there exists a finite extension E of K, a Lubin–Tate formal group S
defined over OL, where E=L is a finite extension, endomorphisms of this formal group
PS and US over OE , and a power series h.T / 2 T �OE ŒŒT �� such that P ı hD h ıPS
and U ı h D h ı US .

In order to prove our main theorem, we also need to prove that some extensions
are strictly APF, which is a technical condition on the ramification of the extension.
Cais and Davis [6] considered what they called “'-iterate” extensions, and later proved
with Lubin that those extensions are strictly APF [7]. Here we show that this result still
holds for more general extensions which generalize the '-iterate extensions of Cais
and Davis:

Theorem 1.4. LetK1=K be an extension generated by a sequence .un/ of elements
of xQp such that there exists a power seriesP.T / 2 T �OK ŒŒT ��withP.T /D T d , where
d is a power of the cardinal of kK , and an element �0 of mK such that u0 D �0 and
P.unC1/ D un.

Then K1=K is strictly APF.

Organization of the note

The next section recalls the construction and properties of some rings of periods,
which are used in the rest of the paper. Then Section 3 is devoted to the proof of
Theorem 1.4, using the rings of periods of Section 2 in order to do so. In Section 4
we recall the main result of [16], which explains why “Lubin’s conjecture” seems
reasonable. In Section 5 we prove that our version of Lubin’s conjecture implies that
the two conditions of Theorem 1.2 are satisfied. Sections 6 and 7 show how to use
p-adic Hodge theory, using the same strategy as in [17], along with results from [16],
in order to prove that the infinite extension generated by such a Q-consistent sequence
is actually generated by the torsion points of a formal Lubin–Tate group. In Section 8
we show how to use the “canonical Cohen ring for norms fields” of Cais and Davis [6]
to prove that there is indeed an isogeny from an endomorphism of a formal Lubin–Tate
group to Q. Section 9 is devoted to the proof of Theorem 1.3.

2. Rings of periods

Let K be a finite extension of Qp, with uniformizer �K , and let K0 D Qunr
p \K

denote the maximal unramified extension of Qp insideK. Let q D ph be the cardinality



L. Poyeton 230

of kK , the residue field of K, and let e be the ramification index of K, so that eh D
ŒK W Qp�. Let vK denote the p-adic valuation on K normalized so that vK.K�/ D Z
and let vK still denote its extension to xQp . Let c > 0 be such that c � vK.p/=.p � 1/.
If F is a subfield of Cp , let acF be the set of elements of F such that vK.x/ � c.

We now recall definitions and properties of some rings of periods which will be
used afterwards. We refer mainly to [8, 11] for the properties stated here. The slight
generalization to the classical rings by tensoring by OK over OK0

can for example be
found in [2].

Let
O[

Cp
WD lim
 �
x 7!xp

OCp
=acCp

:

This is the tilt of OCp
and is a perfect ring of characteristic p, whose fraction field zE is

algebraically closed. It is endowed with a valuation vE induced by the one on K. We
let WK.�/ D OK ˝OK0

W.�/ denote the OK-Witt vectors, and let QAC D WK.zEC/ and
QA D WK.zE/.

Any element of QA (resp. QAC) can be uniquely written as
P
i�0 �

k
K Œxi � with the

xi 2 zE (resp. zEC). We let wk W QA! R[ ¹C1º be defined by wk.x/ D infi�k vE.xi /.
For r 2 RC, we let QA�;r denote the subset of QA of elements x such that wk.x/C
pr

e.p�1/
k is � 0 for all k and whose limit when k !C1 isC1. We let n.r/ be the

smallest integer n such that r � pnh�1.p � 1/.
We also let QA D

S
r>0
QA�;r .

Lemma 2.1. Let x 2 QA�;r C �kK QA. Then x
Œ Nx�

is a unit of QA�;r 0

C �kK
QA, with r 0 D

r C .p�1/e
p

vE. Nx/.

Proof. Since x 2 QA�;r C �kK QA, we can write x D
Pk�1
iD0 �

i
K Œxi �, where x0 D Nx,

and wi .x/C pr
e.p�1/

i � 0 for all i between 0 and k � 1.
Now we can write x

Œ Nx�
2 QA as

P
i�0 �

i
K Œyi �, where yi D xi

Nx
for i between 0 and

k � 1. In particular, y0 D 1. Now a direct computation leads to the fact that

wi

� x
Œ Nx�

�
C

pr 0

e.p � 1/
i � 0

for all i � k � 1, where r 0 D r C .p�1/e
p

vE. Nx/.
Using the fact that x

Œ Nx�
2 . QA�;r 0

C �kK
QA/ \ .1C �K QA/, we obtain that its inverse

also lies in QA�;r 0

C �kK
QA.

Let 'qW zEC ! zEC denote the map x 7! xq . This extends to a map zE! zE also
given by x 7! xq , and by functoriality of Witt vectors those maps extend into maps 'q
on QAC and QA.
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Recall that there is a surjective map � W QAC ! OCp
which is a morphism of rings.

Moreover, if x 2 QAC and Nx D .xn/ 2 zEC, then � ı '�nq .x/ D xn mod acCp
.

Also recall that, for n � n.r/, the maps � ı '�nq W QAC! OCp
extend into surjective

maps � ı '�nq W QA�;r ! OCp
.

3. Strictly APF extensions

Recall that a (slight generalization of what Cais and Davis [6] have called a) '-iterate
extension K1=K is an extension generated by a sequence .un/ of elements of xQp
such that there exists a power series P.T / 2 T �OK ŒŒT �� with P.T / D T d , where d
is a power of the cardinal of kK , and a uniformizer �0 of OK such that u0 D �0 and
P.unC1/ D un.

The main theorem of [7] gives a necessary and sufficient condition for an infinite
algebraic extensionL=K to be strictly APF, and in particular implies directly that those
'-iterate extensions are strictly APF.

In this section we will prove that this result remains true if we remove the assumption
in the definition above that �0 is a uniformizer of OK , and instead just assume that
�0 2 mK . We even allow �0 to be equal to 0, which is basically what we will consider
when looking at consistent sequences attached to a noninvertible stable power series.

IfL is a finite extension of Qp , we let vL denote thep-adic valuation onL normalized
such that vL.L�/ D Z, and we still denote by vL its extension to xQp. If L=M is a
finite extension, we also let EmbM .L; xQp/ denote the set of M -linear embeddings of
L into xQp .

For the rest of this section, we let P.T / 2 T � OK ŒŒT �� with P.T / D T s , where
s is a power of the cardinal of kK , we let �0 be any element of mK and we define a
sequence .vn/n2N of elements of xQp as follows: we let v0 D �0, and for n � 0, we
let vnC1 be a root of P.T / � vn. We let Kn D K.vn/ the field generated by vn over
K, and we let K1 D

S
nKn. If v0 D 0, then we choose v1 to be¤ 0, so that the null

sequence is excluded from our considerations.

Proposition 3.1. There exists n0 � 0 and d � 1 such that, for all n � n0, we have
vKn

.vn/ D d and the extension KnC1=Kn is totally ramified of degree s.

Proof. The fact that the Weierstrass degree of P is greater than 1 along with the
Weierstrass preparation theorem shows that the sequence vp.vn/ is strictly decreasing. In
particular, there existsn0� 0 such that forn� 0, the Newton polygon ofP � vn has only
one slope, equal to 1

s
vp.vn/. This implies that for n� n0, we have vp.vnC1/D 1

s
vp.vn/,

and thus vKn
.vnC1/ D

1
s
vKn

.vn/.
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Recall that, ifM=L=Qp are finite extensions, then we have ŒM W L�vL � vM , with
equality if and only ifM=L is totally ramified. Let dn WD vKn

.vn/. Since s is the degree
of a nonzero polynomial with coefficients in Kn whose root is vnC1, we know that
ŒKnC1 W Kn� � s. This implies that svKn

� ŒKnC1 W Kn�vKn
� vKnC1

. For n � n0,
we have dn D s � vKn

.vnC1/ � ŒKnC1 W Kn�vKn
.vnC1/ � vKnC1

.vnC1/ D dnC1, so
that the sequence .dn/n2N is decreasing. Since this sequence takes its values in N, it
is stationary and therefore there exists n1 � n0 such that, for all n � n1, dnC1 D dn.
In particular, this implies that the inequalities above are all equalities and thus that
for n � 1, s D ŒKnC1 W Kn� and that KnC1=Kn is totally ramified, and we can take
d D dn1

.

Let us write d D pkm where m is prime to p.

Since P.T / D T s mod mK , the sequence .vn/ gives rise to an element Nv of zEC D
lim
 �x 7!xs

OCp
=�K . We let 's denote the s-power Frobenius map on zEC and QAC.

Proposition 3.2. There exists a unique v 2 QAC lifting Nv such that 's.v/ D v.
Moreover, we have � ı '�ns .v/ D vn.

Proof. One can use the same argument as in [6, Rem. 7.16] to produce an element
in QAC such that P.v/D 's.v/ and such that � ı '�ns .v/D vn (note that one also needs
to extend the results from [6, Rem. 7.16] to the case where the Frobenius is replaced
by a power of the Frobenius, which is straightforward).

Such an element automatically lifts Nv by definition of the theta map. For the unique-
ness, one checks that the mapx 7! '�1s .P.x// is a contracting map on the set of elements
of QAC which lift Nv, so that v D limm!C1 '

�m
s .P ım.Œ Nv�// and is thus unique.

Since zE is algebraically closed, there exists Nu 2 zE such that Num D Nv. Since such a
Nu necessarily has positive valuation, it actually belongs to zEC.

Since P.T / D T s mod �K , we can write P.T / D T s.1C �h.T //, with h.T / 2
1

T s�1
OK ŒŒT ��. Let Q.T / D T s.1 C �Kh.T

m//1=m 26OK ŒŒT ��Œ1=T �, which is well
defined because m is prime to p. Note that Q.T / is overconvergent, meaning that it
converges on some annulus bounded by the p-adic unit circle.

Proposition 3.3. There exists u 2 QA�, um D v.

Proof. We first construct u such that 's.u/ D Q.u/. Just as in the proof of Propo-
sition 3.2, the map x 7! '�1s .Q.x// is a contracting map on the set of elements of QA
lifting Nu, so that u D limm!C1 '

�m
s .Qım.Œ Nu�// and is unique.

Therefore, there exists u 2 QA such that 's.u/ DQ.u/. Since Nu 2 zEC, we can write
uD Œ Nu�C�Kz1 2 QACC�K QA. Let r be such that �K

Œ Nu�d
2 QA�;r and let f D .p�1/e

p
vE. Nx/.

Let us write Q.T / D T s.1C �K

T s g.T //
1=m, with g.T / 2 OK ŒŒT ��.
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Now assume that there exists some k � 1 and r 0 > 0 such that u 2 QA�;r 0

C �kK
QA.

We can thus write u D uk C �kKzk , where uk 2 QA�;r
0 and zk 2 QA. We have

Q.u/ D Q.uk�
k
Kzk/ D .uk�

k
Kzk/

s

�
1C

�K

.uk�
k
Kzk/

s
g.uk�

k
Kzk/

�1=m
:

Using the fact that u
Œ Nu�

is a unit in QA�;r 0Cf C �kK
QA, we obtain thatQ.u/ 2 QA�;r 00

C

�kC1K
QA, where r 00 D max.s � r 0; r 0 C f /.

Since '�1s .Q.u// D u, this implies that u 2 QA�;r 00=s C �kC1K
QA.

By successive approximations, we have u 2 QA�.
Finally, we compute 's.um/ D 's.u/

m D Q.u/m D P.um/ by construction of
Q, so that 's.um/ D P.um/. Since um lifts Num D Nv, we have um D v by unicity in
Proposition 3.2.

Recall that since u 2 QA�, there exists some r > 0 such that u 2 QA�;r and there exists
n.r/ � 0 such that, for all n � n.r/, the element un WD � ı '�1s .u/ is well defined and
belongs to OCp

. Actually, since um D v, we have that umn D vn, and in particular we
know that vK.un/! 0.

Lemma 3.4. There exists a constant c > 0, independent of n, such that for any
n � n.r/ and for any g 2 GKn

and any i � 1, we have

vK.g.unCi / � unCi / � c:

Proof. Let n � n.r/. We have umnCi D vnCi , so that

vK.g.unCi /
m
� umnCi / D vK.g.vnCi � vnCi //:

This means that

vK.g.vnCi / � vnCi / D vK.g.unCi / � unCi /C .m � 1/vK.unCi /

since m is prime to p.
Since m is fixed and vK.un/ ! 0, it suffices to prove that there exists c > 0

independent of n such that vK.g.vnCi / � vnCi / � c for all g 2 GKn
.

SinceP.T /D T s mod mK , and sinceP ıj .vnCi /D vn, we already know that for all
n� 0 and for all g 2 GKn

, we have vK.g.vnCi /� vnCi /� 1, so that vK.
g.vnCi /

vnCi
� 1/�

1 � vK.vnCi / � 1 � vK.vn/. The statement follows from the fact that vK.vn/! 0

when n!C1.
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Recall that d D pkm, where d is such that vKn
.vn/ D d for n� 0. Recall also

that s is a power of p, and let j � 0 be such that sj � pk > sj�1. Let f � 0 be such
that p�f sj D pk . In particular, we have

vKn
.u
pf

nCi / D p
f s�j vKn

.un/ D
1

mpk
vKn

.vn/ D
d

d
D 1:

We let E1 D
S
n�0 K.un/, and F D Qunr

p \ E1 be the maximal unramified
extension of Qp inside E1. Finally, we let F .m/ denote the unramified extension of F
generated by the elements Œx1=m�, x 2 kF .

For n � n0, let �n denote a uniformizer of OKn
. Since for all n � n0 the extensions

KnC1=Kn are totally ramified, the minimal polynomial of�nC1 overKn is an Eisenstein
polynomial, and we choose the �n so that NKnC1=Kn

.�nC1/ D �n for all n � n0.

Lemma 3.5. For any n � n.r/, we can write �n D Œh� � up
f

nCj .1C x/, with x 2
OKnCj

and h 2 kF .m/ .

Proof. Note that vKn
.�mn /D vKn

.v
pf

nCj / and that both elements belong to OKnCj
,

so that we can write
�mn

v
pf

nCj

D Œh0�C �nCj .� � � /;

with h0 2 kF . Taking the mth root, this implies that there exists h1 2 kF .m/ such that
�n

u
pf

nCj

D Œh1�.1C �nCj .� � � //;

where the coefficients belong to OKnCj
and h1 2 kF .m/ .

Theorem 3.6. The extension K1=K is strictly APF.

Proof. In order to prove the theorem, it suffices by [22, Prop. 1.2.3] to prove that
the extension F .m/ �K1=F .m/ �Kn0

is strictly APF.
To prove that F .m/ �K1=F .m/ �K is strictly APF, it suffices to prove that the vK

valuations of the nonconstant and nonleading coefficients of the Eisenstein polynomial
of �nC1 over F .m/ �Kn, for n � n0, are bounded below by a positive constant indepen-
dent of n, so that F .m/ �K1=F .m/ �Kn0

satisfies the criterion of the main theorem
(Thm. 1.1) of [7]. Let n � n0.

By Lemma 3.5 and by induction, we can write

�nC1 D u
pf

nCjC1.Œh0�C u
pf

nC1C2j .Œh1�C � � � //;

where the hi belong to kF .m/ .
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Let g 2 GF .m/�Kn
. We have

g.�nC1/ � �nC1 D g.u
pf

nCjC1/.Œh0�/ � u
pf

nCjC1.Œh0�/C � � � ;

where all the terms on the right-hand side have vK-valuation at least equal to c > 0 by
Lemma 3.4, so that vK.g.�nC1/ � �nC1/ � c > 0.

The conjugates of �nC1 overKn are the elements g.�nC1/, for g 2 GKn
, and satisfy

the conditions vK.g.�nC1/ � �nC1/ � c > 0, which ensures that the vK valuations
of the nonconstant and nonleading coefficients of the Eisenstein polynomial of �nC1
over F .m/ �Kn are bounded below by a positive constant independent of n, which is
what we wanted.

4. Nonarchimedean dynamical systems

LetK be a finite extension of Qp , with ring of integers OK , uniformizer � , maximal
ideal mK and residual field k of cardinal q D ph. We let K0 D K \ Qunr

p be the
maximal unramified extension of Qp inside K and we let OK0

denote its ring of
integers. We let Cp denote the p-adic completion of xQp. Let P;U 2 T � OK ŒŒT �� be
such that P ıU D U ıP , with P 0.0/ 2mK and U 0.0/ 2 O�K . In this note, we assume
that the situation is “interesting”, namely that P.T / ¤ 0 mod mK and that U 0.0/ is
not a root of unity.

Proposition 4.1. There exists a power series H.T / 2 T � kŒŒT �� and an integer
d � 1 such that H 0.0/ 2 k� and P.T / D H.T pd

/ mod mK .

Proof. This is [16, Thm. 6.3 and Cor. 6.2.1].

Near the end of his paper [16], Lubin remarked that “Experimental evidence seems
to suggest that for an invertible series to commute with a noninvertible series, there
must be a formal group somehow in the background.” This has led some authors to
prove some cases (see for instance [3, 13–15,18–21]) of this Lubin “conjecture”. The
various results obtained in this direction can be thought of as cases of the following
conjecture:

Conjecture 4.2. LetP;U 2 T �OK ŒŒT �� be such thatP ıU DU ıP , withP 0.0/2
mK and U 0.0/ 2 O�K not a root of unity, and such that P.T /¤ 0 mod mK . Then there
exists a finite extension E of K, a formal group S defined over OE , endomorphisms
of this formal group PS and US , and a power series h.T / 2 T � OE ŒŒT �� such that
P ı h D h ı PS and U ı h D h ı US .
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Remark 4.3. While in many instances of the cases where this conjecture is proven,
the formal group is actually defined over OK [3, 18, 21], one can produce instances
where the formal group is defined over the ring of integers of a finite unramified
extension of OK [4, §3]. The author does not know of a case where the extension E
that the formal group is defined over is ramified over K, so it might be possible that
the assumption that E is an unramified extension of K can be enforced.

5. Endomorphisms of a formal Lubin–Tate group

LetP;U 2 T �OK ŒŒT �� be such thatP ıU DU ıP , withP 0.0/ 2mK andU 0.0/ 2
O�K not a root of unity, and such that P.T / ¤ 0 mod mK . In this section we assume
that there exists a finite extension E of K, a Lubin–Tate formal group S defined over
OL with E=L finite, a power series h 2 T � OE ŒŒT �� and an endomorphism PS of S
such that h is an isogeny from PS to P .

Lemma 5.1. There exists V 2 T �OK ŒŒT ��, commuting withP , and an integer d � 1
such that Q.T / D T pd mod mK , where Q D V ı P . Moreover, there exists QS an
endomorphism of S such that h is an isogeny from QS to Q.

Proof. First note that for any VS invertible series commuting with PS , there
corresponds an invertible power series V commuting with P . Since S is a formal
Lubin–Tate group over OL, PS corresponds to multiplication by an element ˛ 2 mL.
Let Œ�L� denote multiplication by �L on S , a uniformizer of OL such that Œ�L�.T / D
T Card.kL/ mod mL (we can find such a uniformizer since S is a Lubin–Tate formal
group defined over OL). Since ˛ 2 mL, there exist c 2 O�L and an integer d � 1 such
that ˛ D c � �dL . In particular, we have wideg.Œ˛�/ D wideg.P / D wideg.Œ�dL �/ D
Card.kL/d .

We let V denote the power series commuting with P such that h ı Œc�1� D V ı h.
We then have that h ı Œc�1� ı Œ˛� D V ı P ı h, and that h ı Œc�1� ı Œ˛� D h ı Œ�dL �, so
that h is an isogeny from Œ�dL � to Q WD V ı P . Reducing modulo mL, we get

h.T /Card.kL/
d

D h.T Card.kL/
d

/ D h ıQ mod mL;

so that Q D T Card.kL/
d
D T wideg.P / mod mL.

Let .un/n2N be a sequence of elements of xQp such that u0 ¤ 0 is a root of QS ,
and QS .unC1/ D un. In Lubin’s terminology (see the definition on [16, p. 329]), the
sequence .vn/ is called a QS -consistent sequence. Let En D E.un/ and let E1 DS
nEn. Then for all n � 1, the extensions En=E are Galois.
Let Q be as in Lemma 5.1 and let vn WD h.un/.
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Lemma 5.2. The sequence .vn/n2N is Q-consistent, and the extensions E.vn/=E
are Galois for all n � 1.

Proof. We know thatEn=E are Galois abelian extensions. SinceE �E.vn/�En,
this implies that the extensionsE.vn/=E are Galois. The fact that the sequence .vn/n2N
is Q-consistent follows directly from the fact that h is an isogeny from QS to Q.

6. Embeddings into rings of periods

Let L WD Kn0
with n0 as in Proposition 3.1. Since P.T / D T pd mod mK , there

exists m � 1 such that P ım acts trivially on kL, so that the degree r of Q is a power
of the cardinal of kL. From now on we fix such an m. We let w0 D vn0

and .wn/ be a
sequence extracted from .vn/ such thatQ.wnC1/Dwn. For n� 1, we letLn DL.wn/.
Let L0 D Qunr

p \ L be the maximal unramified extension of Qp inside L, and let
QAC WD OL ˝OL0 W.zEC/.

Since K1=L is strictly APF, there exists by [22, Lem. 4.2.2.1] a constant c D
c.K1=L/ > 0 such that for all F � F 0 finite subextensions of K1=L, and for all
x 2 OF 0 , we have

vL

�
NF 0=F .x/

xŒF
0WF �

� 1

�
� c:

We can always assume that c � vL.p/=.p � 1/ and we do so in what follows. By
[22, §2.1 and §4.2], there is a canonical GL-equivariant embedding �LWAL.K1/ ,! zEC,
where AL.K1/ is the ring of integers of XL.K1/, the field of norms of K1=L. We
can extend this embedding into a GL-equivariant embedding XL.K1/ ,! zE, and we
note EK its image.

It will also be convenient to have the following interpretation for zEC:

zEC D lim
 �
x!xp

OCp
D
®
.x.0/; x.1/; : : :/ 2 ON

Cp
W .x.nC1//p D x.n/

¯
:

To see that this definition coincides with the one given in Section 2, we refer to [5, Prop.
4.3.1].

Note that, even though EK depends on K1 rather than on L, it is still sensitive
to L:

Proposition 6.1. Let L0 be a finite extension of L contained in K1. Let Lt (resp.
L0t ) be the maximal tamely ramified extension ofK1=L (resp.K1=L0). Let EK0 denote
the image of XL0.K1/ in zE by the embedding given in [22, §4.2].

Then as a subfield of zE, EK0 is a purely inseparable extension of EK of degree
ŒL0t W Lt �. In particular, if L0 D Lt then EK0 D EK .
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Proof. See [6, Prop. 4.14].

The sequence .wn/ defines an element xw 2 zEC.

Proposition 6.2. There exists a uniquew 2 QAC lifting xw such thatQ.w/D 'r.w/.
Moreover, we have that � ı '�nr .w/ D wn.

Proof. This is the same as the proof for Proposition 3.2.

For all k � 0, we let

Rk WD
®
x 2 QAC; � ı '�nd .x/ 2 OLnCk

for all n � 1
¯
:

Proposition 6.3. For all k � 0, there exists zk 2 Rk such that Rk D OLŒŒzk��.

Proof. Note that for all k � 0, Rk is an OL-algebra, separated and complete for
the �L-adic topology, where �L is a uniformizer of OL. If x 2 Rk , then its image in
zEC belongs to limx 7!xr OLnCk

=acLnCk
.

Note that the natural map Rk=�LRk ! zEC is injective. To prove this, we need to
prove that �L QAC \ Rk D �LRk . Let x 2 Rk \ �L QAC and let y 2 QAC be such that
x D �Ly. Then since x 2Rk we have that � ı '�nr .x/ 2OLnCk

and thus � ı '�nr .y/ 2
1
�L

OLnCk
. But since � ı '�nr maps QAC into OCp

we get that � ı '�nr .y/ 2 LnCk \

OCp
D OLnCk

. Therefore the natural map Rk=�LRk ! zEC is injective.
We know by the theory of fields of norms that limx 7!xr OLn

=acLn
' kLŒŒ Nv�� for

some Nv 2 zEC, so that the valuation induced by vL on zEC is discrete on R=�LR. Let
Nu 2 R=�LR be an element of minimal valuation within®

x 2 R=�LR; vL.x/ > 0
¯
:

Since the valuation on R=�LR is discrete, and since this set is nonempty because
it contains the image of the element w given by Proposition 6.2, such an element Nu
exists, and we have R=�LR D kLŒŒ Nu��, so that R D OLŒŒu�� for u 2 R lifting Nu since R
is separated and complete for the �L-adic topology.

Proposition 6.4. There exists k0 � 0 such that, for all k � k0, we can take
zkC1 D '

�1
r .zk/ and we let z D zk0

.

Proof. The proof of Proposition 6.3 shows that the quotientRk=�LRk injects into

lim
 �
x 7!xr

OLnCk
=acLnCk

:
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By [22, Prop. 4.2.1],
lim
 �
x 7!xr

OLnCk
=acLnCk

is the image of ring of integers of the field of norms of L1=Lk inside zE by the
embedding �L, and we will denote

lim
 �
x 7!xr

OLnCk
=acLnCk

by Yk . We normalize the valuation of Yk so that vYk
.Yk/ D Z. By Proposition 6.1, we

get that for k � n0, we have YkC1 D '�1r .Yk/ and thus the valuation vYkC1
is equal to

rvYk
.

Now let v.k/ WD vYk
.zk/ for k � 0. We know by definition of the sets Rk that

'�1r .zk/ 2RkC1 for all k � 1 and thus vYkC1
.zkC1/� rvYk

.'�1r .zk// by construction
of the zk . This implies that the sequence .v.k//k�n0

is nonincreasing, and since it is
bounded below by 1, this implies that there exists some k0 � n0 such that, for all k � k0,
we have v.k/D v.k0/ > 0. Thus for all k � k0 we have vYkC1

.zkC1/D vYk
.zk/ and by

construction of the zk this implies that we can take zkC1 D '�1r .zk/ which concludes
the proof.

We now let k0 be as in Proposition 6.4. Note that in particular, for all k � k0, we
have Rk D '

k0�k
r .OE ŒŒw��/ D OE ŒŒ'

k0�k
r .w/��.

Lemma 6.5. The ring OLŒŒz�� is stable by 'r . Moreover, there exists a 2 mL such
that if z0 D z � a then there exists S.T / 2 T �OLŒŒT �� such that S.z0/ D 'r.z0/ and
S.T / � T r mod mL.

Proof. The set®
x 2 QAC; � ı '�nr .x/ 2 OLnCk0

for all n � 1
¯

is clearly stable by 'r and equal to OLŒŒz�� by Proposition 6.4, so that 'r.z/ 2OLŒŒz�� and
so there exists R 2 OLŒŒT �� such that R.z/ D 'r.z/. In particular, we have xR. Nz/ D Nzr

and so R.T / � T r mod mL.
Now let zR.T / D R.T C a/ with a 2 mL and let z0 D z � a. Then 'r.z0/ D

'r.z � a/DR.z/� aD zR.z
0/� a and we letS.T /D zR.T /� a so that'r.z0/DS.z0/.

For S.0/ to be 0, it suffices to find a 2 mL such that R.a/ D a. Such an a exists since
we have R.T / � T r mod mL so that the Newton polygon of R.T / � T starts with a
segment of length 1 and of slope �vp.R.0//.

Now, we have S.z0/D 'r.z0/ and so xS.xz0/D xz0r , so that S.T /� T r mod mL.
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Lemma 6.5 shows that we can pick z 2 ¹x 2 QAC; � ı '�nr .x/ 2 OLnCk0
for all n �

1º such that 'r.z/D S.z/with S.T / 2 T �OLŒŒT ��, and we will assume in what follows
that such a choice has been made.

Lemma 6.6. Assume that there existsm0 � 0 such that for allm�m0, the extension
Lm=Lm0

is Galois. Then the ring OLŒŒz�� is stable under the action of Gal.K1=Lm0
/,

and if g 2 Gal.K1=Lm0
/, there exists a power series Hg.T / 2 OLŒŒT �� such that

g.z/ D Hg.z/.

Proof. Let f0 D max.m0; k0/. Since for all m � m0, Lm=Lm0
is Galois, the set®

x 2 QAC; � ı '�nr .x/ 2 OLnCf0
for all n � 1

¯
is stable under the action of Gal.K1=Lm0

/, and by Proposition 6.4, this set is equal
to OLŒŒ'

k0�f0
r .z/��. In particular, if g 2 Gal.K1=Lm0

/, then g.'
k0�f0
r .z// also

belongs to this set and so there exists Hg.T / 2 OLŒŒT �� such that Hg.'k0�f0
r .z// D

g.'
k0�f0
r .z//, and thus Hg.z/ D g.z/.

7. p-adic Hodge theory

Let us assume that there exists m0 � 0 such that for all m � m0, the extension
Lm=Lm0

is Galois. Lemma 6.6 shows that in this case we are in the exact same spot as
the situation after [17, Lem. 5.15]. In particular, the exact same techniques apply.

We keep the notation from Section 6 and we let �WGal.K1=Lm0
/! O�L denote

the character g 7! H 0g.0/.

Proposition 7.1. The character �WGal.K1=Lm0
/! O�L is injective and crys-

talline with nonnegative weights.

Proof. This is the same as [17, Cor. 5.17 and Prop. 5.19].

For � a uniformizer of Lm0
, let .Lm0

/� be the extension of Lm0
attached to � by

local class field theory. This extension is generated by the torsion points of a Lubin–Tate
formal group defined over Lm0

and attached to �, and we write

�
Lm0

�
WGal..Lm0

/�=Lm0
/! O�Lm0

for the corresponding Lubin–Tate character. Since K1=Lm0
is abelian and totally

ramified, there exists � a uniformizer of OLm0
such that K1 � .Lm0

/�.

Proposition 7.2. There exists F � L and r � 1 such that � D NLm0
=F .�

Lm0

�
/r .
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Proof. Thm. 5.27 of [17] shows that there exists F � Lm0
and r � 1 such that

� D NLm0
=F .�

Lm0

�
/r . The fact that � takes its values in O�L shows that F is actually a

subfield of L.

Recall that relative Lubin–Tate groups are a generalization of the usual formal
Lubin–Tate groups given by de Shalit [10].

Theorem 7.3. There exists F � L and r � 1 such that � DNL=F .�L� /
r . Moreover,

there exists a relative Lubin–Tate group S , relative to the extension F unr \L of F , such
that if LS1 is the extension of L generated by the torsion points of S , then L1 � LS1
and LS1=L1 is a finite extension.

Proof. This is the same as [17, Thm. 5.28] using Proposition 7.2 instead of [17,
Thm. 5.27].

8. Isogenies

In the setting of Theorem 7.3, let ˛ be an element of F unr \ L such that LS1 is the
field cut out by h˛i of F ab by local class field theory, so that the relative Lubin–Tate
group S is attached to ˛. Up to replacing L by a finite extension, we can assume that
LS1 D L1 and we do so in what follows. We let u0 D 0 and let .un/n2N be a nontrivial
compatible sequence of roots of iterates of Œ˛�, the endomorphism of S corresponding
to multiplication by ˛, so that Œ˛�.unC1/D un with u1¤ 0. We let q denote the cardinal
of the residue field of F unr \ L so that wideg.Œ˛�/ D q. Let Nu D .u0; : : :/ 2 zEC. By
[9, §9.2], there exists u 2 QAC whose image in zEC is Nu and such that 'q.u/ D Œ˛�.u/,
g.w/ D Œ�˛.g/�.u/ for g 2 GL.

Recall that Cais and Davis have defined a “canonical ring” attached to L1=L,
denoted by AC

L1=L
, which is a subring of QAC and is defined via the tower of elementary

extensions attached to L1=L by ramification theory. The following lemma shows that
this canonical ring is related to the ring OLŒŒu�� for the extension L1=L:

Lemma 8.1. There exists k � 0 such that AC
L1=L

D '�kq .OLŒŒu��/.

Proof. See [17, Lem. 8.1]. Be mindful that there E and w play, respectively, the
roles of L and u here.

Recall that .wn/n2N is aQ-consistent sequence, whereQ commutes with P and is
such that Q.T / D T s mod mL, and that w 2 QAC is such that � ı '�nr .w/ D wn.

Proposition 8.2. There exists i � 0 such that 'ir.w/ 2 AC
L1=L

.
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Proof. The proof is exactly the same as in [17, Prop. 8.2].

Proposition 8.3. There exists d � 1 such that there is an isogeny from Œ˛d � to Q.

Proof. Lemma 8.1 and Proposition 8.2 show that there exist i � 0 and h.T / 2
OLŒŒT �� such that w D h.'�ir .u//. Let d be such that 'r D 'ıdq and let Qu D '�ir .u/,
so that w D h. Qu/. For g 2 GL, we have 'r.w/ D Q.w/ so that Q.w/ D 'r.w/ D
'r.h. Qu// D h.'r. Qu// and thus Q ı h. Qu/ D h ı Œ˛d �. Qu/, which means that Q ı h D
h ı Œ˛d �.

Theorem 8.4. Let .P; U / be a couple of power series in T � OK ŒŒT �� such that
P ı U D U ı P , with P 0.0/ 2 mK and U 0.0/ 2 O�K , and we assume that P.T / ¤
0 mod mK and that U 0.0/ is not a root of unity. Then there exists a finite extension E
of K, a Lubin–Tate formal group S defined over OL, where E=L is a finite extension,
endomorphisms of this formal group PS and US over OE , and a power series h.T / 2
T �OE ŒŒT �� such that P ı h D h ı PS and U ı h D h ı US if and only if the following
two conditions are satisfied:

(1) There exists V 2 T �OK ŒŒT ��, commuting with P , and an integer d � 1 such that
Q.T / D T p

d mod mK where Q D V ı P .

(2) There exists a finite extension E of K and a sequence .˛n/n2N where ˛0 ¤ 0 is a
root of Q and Q.˛nC1/ D ˛n such that for all n � 1, the extension E.˛n/=E is
Galois.

Proof. Lemmas 5.1 and 5.2 of Section 3 imply that if such a Lubin–Tate formal
group exists then the two conditions are satisfied.

If those two conditions are satisfied, then Proposition 8.3 shows that there exist a
finite extension E of K, a subfield F of E, a relative Lubin–Tate group S , relative to
the extension F unr \E of F , and an endomorphism QS of S such that there exists an
isogeny from QS to Q. Thus there exists an isogeny from an endomorphism PS of S
to P . In order to conclude, it suffices to notice that a relative Lubin–Tate formal group
S , relative to an extension F unr \E of F , is actually isomorphic over F unr \E to a
Lubin–Tate formal group S 0 defined over F .

9. A particular case of Lubin’s conjecture

We now apply the results from the previous sections to the particular case where
P.T / D T p mod mK . Let P; U 2 T � OK ŒŒT �� be such that P ı U D U ı P , with
P.T /D T p mod mK and U 0.0/ 2 O�K not a root of unity. We consider as in Section 4
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a P -consistent sequence .vn/ and we let Kn D K.vn/ for n � 0. We let n0 be as in
Proposition 3.1.

Proposition 9.1. There exists m0 � 0 such that for all m � m0, the extension
Km=Km0

is Galois.

Proof. By [16, Prop. 3.2], the roots of the iterates of P are exactly the fixed points
of the iterates of U . Up to replacing U by some power of U , we can assume that
U 0.0/D 1 mod mK and that there exists n � n0 such that U.vn/D vn but U.vnC1/¤
vnC1 (since U.T / � T admits only a finite number of roots in the unit disk).

SinceU.vn/D vn andU commutes with P , this implies thatU.vnC1/ is also a root
of P.T / � vn. The discussion on [16, p. 333] shows that the set ¹U ık.vnC1/ºk2N has
cardinality a power of p, and is not of cardinal 1 since U.vnC1/¤ vnC1 by assumption.
SinceP.T /� vn has exactly p roots, this implies that the set ¹U.vnC1/º has cardinality
p, and thus all the roots of P.T / � vn are contained in KnC1, so that KnC1=Kn is
Galois.

Let m > n. The extension Km=Kn is generated by all the roots of P ı.m�n/.T / �
vn D P

ı.m�n/.T / � U.vn/. Since U swaps all the roots of P.T / � vn, it is easy to
see that the U -orbit ¹U ık.vm/ºk�0 contains all the roots of P ı.m�n/.T / � vn, so that
Km=Kn is Galois. This proves the proposition.

We are now in the conditions of our Theorem 8.4, which yields the following:

Corollary 9.2. Lubin’s conjecture is true for .P; U /.
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