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A criterion for Lubin’s conjecture

LEo PoYETON (*)

ABsTRACT — We prove that a formulation of a conjecture of Lubin regarding two power series
commuting for the composition is equivalent to a criterion of checking that some extensions
generated by the nonarchimedean dynamical system arising from the power series are Galois.
As a consequence of this criterion, we obtain a proof of Lubin’s conjecture in a new case.
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1. Introduction

Let K be a finite extension of Q,,, with ring of integers O g and maximal ideal mg.
Families of power series in T - Ok [T] that commute under composition have been
studied by Lubin [16] under the name of nonarchimedean dynamical systems, because
of their interpretation as analytic transformations of the p-adic open unit disk. This
study led Lubin to remark that “experimental evidence seems to suggest that for an
invertible series to commute with a noninvertible series, there must be a formal group
somehow in the background”.

Various results have been obtained to support Lubin’s observation; see for instance
the nonexhaustive list [3, 12-15, 17-21].

This observation has led to several versions of what might be called Lubin’s con-
jecture, and these versions have all been proved under very strong assumptions on the
nonarchimedean dynamical system considered.

(*) Indirizzo dell’A.: Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351,
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In this note, we consider two power series P,U € T - Ok |[T] such that P o U =
U o P, with P’(0) € mg and U’(0) € Og. Our so-called version of Lubin’s conjecture
is the following:

CoNJecTURE 1.1. Let P,U € T - Og|T] suchthat P o U = U o P, with P'(0) €
mg and U'(0) € O not a root of unity, and such that P(T) # 0 mod wig. Then there
exists a finite extension E of K, a formal group S defined over O, endomorphisms
of this formal group Ps and Us and a power series h(T) € T - Og[T] such that
Poh=hoPsandU oh = ho Us.

In the conjecture above, we say following Li’s terminology [14] that P and Pg are
semiconjugate and that % is an isogeny from Pg to P.

In several proven cases of this conjecture [3, 18,21], the Lubin—Tate formal group
is actually defined over Ok . However, this is not true in general.

The goal of this note is to prove the following theorem, which gives a new criterion
to prove Lubin’s conjecture in some cases:

TueoreM 1.2. Let (P, U) be a couple of power series in T - Og[[T] such that
PoU =Uo P, with P'(0) € mg and U'(0) € O%, and we assume that P(T) #
0 mod mg and that U'(0) is not a root of unity. Then there exists a finite extension E
of K, a Lubin—Tate formal group S defined over Or, where E /L is a finite extension,
endomorphisms of this formal group Ps and Us over O, and a power series h(T) €
T -Of|T] suchthat Poh = ho Psand U o h = h o Ug, if and only if the following
two conditions are satisfied:

(1) There exists V € T - Ox[T], commuting with P, and an integer d > 1 such that
o(T) = 77" mod mg, where Q =V o P.

(2) There exists a finite extension E of K and a sequence (ot )nen, where g # 0 is a
root of Q and Q(ay+1) = Ay, such that for all n > 1, the extension E(oy)/E is
Galois.

The role of the field L in the theorem above may be confusing, but essentially comes
from the fact that Lubin—Tate formal groups are a special case of more general formal
groups, and that a formal group defined over Qg arising from a Lubin—Tate formal
group over (O, is usually no longer a Lubin-Tate formal group over Of.

The proof of this theorem relies mainly on the same tools and strategy used in
[17], which are the tools developed by Lubin [16] to study p-adic dynamical systems,
the “canonical Cohen ring for norms fields” of Cais and Davis [6] and tools of p-adic
Hodge theory following Berger’s strategy in [1].

As a corollary of our main theorem, we obtain the following result, which is a new
instance of Lubin’s conjecture:
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TueoreM 1.3. Assume that P(T) € T - Ok |[T] is such that P(T) = T? mod mg
and that there exists U € T - O [T], commuting with P, such that U’(0) is not a root
of unity. Then there exists a finite extension E of K, a Lubin—Tate formal group S
defined over O, where E /L is a finite extension, endomorphisms of this formal group
Pgs and Ug over O, and a power series h(T) € T - Og[T] such that P oh = h o Pg
and U oh = h o Usg.

In order to prove our main theorem, we also need to prove that some extensions
are strictly APF, which is a technical condition on the ramification of the extension.
Cais and Davis [6] considered what they called “p-iterate” extensions, and later proved
with Lubin that those extensions are strictly APF [7]. Here we show that this result still
holds for more general extensions which generalize the g-iterate extensions of Cais
and Davis:

THEOREM 1.4. Let Koo/ K be an extension generated by a sequence (Uy,) of elements
of (_)p such that there exists a power series P(T) € T - O [T] with P(T) = T?, where
d is a power of the cardinal of kg, and an element 7o of mg such that uy = mo and
P(un+1) = up.

Then K /K is strictly APF.

Organization of the note

The next section recalls the construction and properties of some rings of periods,
which are used in the rest of the paper. Then Section 3 is devoted to the proof of
Theorem 1.4, using the rings of periods of Section 2 in order to do so. In Section 4
we recall the main result of [16], which explains why “Lubin’s conjecture” seems
reasonable. In Section 5 we prove that our version of Lubin’s conjecture implies that
the two conditions of Theorem 1.2 are satisfied. Sections 6 and 7 show how to use
p-adic Hodge theory, using the same strategy as in [17], along with results from [16],
in order to prove that the infinite extension generated by such a Q-consistent sequence
is actually generated by the torsion points of a formal Lubin-Tate group. In Section 8
we show how to use the “canonical Cohen ring for norms fields” of Cais and Davis [6]
to prove that there is indeed an isogeny from an endomorphism of a formal Lubin—Tate
group to Q. Section 9 is devoted to the proof of Theorem 1.3.

2. Rings of periods

Let K be a finite extension of Qp, with uniformizer 7k, and let Ko = Q)" N K
denote the maximal unramified extension of Q, inside K. Letg = p" be the cardinality
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of kg, the residue field of K, and let e be the ramification index of K, so that eh =
[K : Qp]. Let vg denote the p-adic valuation on K normalized so that vx (K*) = Z
and let v still denote its extension to (_)p. Let ¢ > O be such that c < vg(p)/(p —1).
If F' is a subfield of C,, let a% be the set of elements of F* such that vg (x) > c.

We now recall definitions and properties of some rings of periods which will be
used afterwards. We refer mainly to [8, 11] for the properties stated here. The slight
generalization to the classical rings by tensoring by Ok over U, can for example be
found in [2].

Let

O¢, = lim Oc,/ag,.
x—=>xP
This is the tilt of Oc, and is a perfect ring of characteristic p, whose fraction field Eis
algebraically closed. It is endowed with a valuation vg induced by the one on K. We
let Wi (-) = Ok ®0y, W() denote the O -Witt vectors, and let At = Wg(E") and
A = Wk (E).

Any element of A (resp. A™) can be uniquely written as > is0 nllg [x;] with the
X; € E (resp. E“L). We let wy: A —>RU {400} be defined by wi (x) = inf; <x ve(xX;).

For r € Ry, welet A" denote the subset of A of elements x such that wy (x) +
e(p 1)k is > 0 for all k¥ and whose limit when k — +o00 is +00. We let n(r) be the
smallest 1nteger n such that r < p™*=1(p —1).

We also let A = | J,_, A",

Lemma 2.1. Let x € AT + nI’gA Then is a unit of AT + nllgA with 1’
r 22D p(3).
k—1

PROOF. Since x e At 4 n,’%z& we can write x = ) ;_
and w; (x) + (p 1)1 > 0 for all i between 0 and k — 1.

nK [xi], where x¢ = X,

Now we can write m €A as Zizo JTK [yi], where y; = x;’ for i between 0 and
k — 1. In particular, yo = 1. Now a direct computation leads to the fact that

X pr’ .
PES T
NEY e(p-1)
foralli <k —1,wherer' =r + (p;l)ev (X).
Using the fact that [%] e (AN + 7 KA) N (1 4+ 7xA), we obtain that its inverse
also lies in AT"" + TL’I];A. ]

Let @4: Et — E* denote the map x — x9. This extends to a map E — E also
given by x — x?, and by functoriality of Witt vectors those maps extend into maps ¢,
on AT and A.
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Recall that there is a surjective map 6: At > Oc, which is a morphism of rings.
Moreover, if x € AT and X = (x,) € E*, then 6 o ¢7"(x) = x, mod ag, .

Also recall that, for n > n(r), the maps 6 o <pq_”:1i+ — Oc, extend into surjective
maps 6 o ¢, At Oc,.

3. Strictly APF extensions

Recall that a (slight generalization of what Cais and Davis [6] have called a) p-iterate
extension K,/ K is an extension generated by a sequence (u,) of elements of (_)p
such that there exists a power series P(T) € T - Ox[[T] with P(T) = T¢, where d
is a power of the cardinal of kg, and a uniformizer 7y of Ok such that ug = 7y and
P(up+1) = un.

The main theorem of [7] gives a necessary and sufficient condition for an infinite
algebraic extension L/ K to be strictly APF, and in particular implies directly that those
@-iterate extensions are strictly APF.

In this section we will prove that this result remains true if we remove the assumption
in the definition above that ¢ is a uniformizer of O, and instead just assume that
o € mg. We even allow g to be equal to 0, which is basically what we will consider
when looking at consistent sequences attached to a noninvertible stable power series.

If L is a finite extension of Q,, we let vz, denote the p-adic valuation on L normalized
such that vy (L>) = Z, and we still denote by vy, its extension to (_)p. IfL/Misa
finite extension, we also let Embys (L, (_21,) denote the set of M -linear embeddings of
L into (_)p.

For the rest of this section, we let P(T) € T - Og[T] with P(T) = T*, where
s is a power of the cardinal of kg, we let 7y be any element of mg and we define a
sequence (v, )nen of elements of (_)p as follows: we let vg = mg, and for n > 0, we
let v, 41 be aroot of P(T) —v,. We let K,, = K(v,) the field generated by v,, over
K, and we let Koo = |J,, Kn. If v9 = 0, then we choose vy to be # 0, so that the null
sequence is excluded from our considerations.

ProrosiTion 3.1. There exists ng > 0 and d > 1 such that, for all n > ng, we have
vk, (vn) = d and the extension K1/ K, is totally ramified of degree s.

Proor. The fact that the Weierstrass degree of P is greater than 1 along with the
Weierstrass preparation theorem shows that the sequence v, (vy,) is strictly decreasing. In
particular, there exists n¢ > 0 such that for n > 0, the Newton polygon of P — v,, has only
one slope, equal to %vp (vn). This implies that forn > no, we have v, (Vp41) = %vp (vn),
and thus vk, (Vn+1) = %UK,, (vn).
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Recall that, if M/L/Q, are finite extensions, then we have [M : L]vy > vps, with
equality if and only if M/ L is totally ramified. Let d,, := vk, (v,). Since s is the degree
of a nonzero polynomial with coefficients in K,, whose root is v, 41, we know that
[Kn+1 : Kn] < s. This implies that svg, > [Ky+1 : Kn]vk, > vk, . For n > no,
we have dy = 5 - vk, (Un+1) = [Kn+1 : Knlvk, (Vnt1) = VK, (Unt+1) = dn1, SO
that the sequence (d, )nen is decreasing. Since this sequence takes its values in N, it
is stationary and therefore there exists n; > ng such that, for alln > ny, d,4+1 = dj.
In particular, this implies that the inequalities above are all equalities and thus that
forn > 1,s = [Ky+1 : K, and that K,,+1/ K}, is totally ramified, and we can take
d =dy,. ]

Let us write d = p¥m where m is prime to p.

Since P(T) = T* mod mg, the sequence (v,) gives rise to an element v of Et =

LiLnXHxS Oc,/mk. We let s denote the s-power Frobenius map on Et and AT.

PrOPOSITION 3.2. There exists a unique v € A™T lifting © such that ¢s(v) = v.
Moreover, we have 6 o ¢ "' (v) = vy.

Proor. One can use the same argument as in [6, Rem. 7.16] to produce an element
in A" such that P(v) = ¢,(v) and such that 6 o @, " (v) = v, (note that one also needs
to extend the results from [6, Rem. 7.16] to the case where the Frobenius is replaced
by a power of the Frobenius, which is straightforward).

Such an element automatically lifts v by definition of the theta map. For the unique-
ness, one checks that the map x — (ps_l (P (x)) is acontracting map on the set of elements
of A* which lift 7, so that v = limyy s 100 @; ™ (P°™([v])) and is thus unique. ]

Since E is algebraically closed, there exists u € E such that @™ = o. Since such a
u necessarily has positive valuation, it actually belongs to Et.

Since P(T) = T*® mod ng, we can write P(T) = T*(1 + wh(T)), with h(T') €
A Ok[T]. Let Q(T) = T5(1 + axh(T™)Y/™ € Og[T1[1/T], which is well
defined because m is prime to p. Note that Q(T) is overconvergent, meaning that it
converges on some annulus bounded by the p-adic unit circle.

PrOPOSITION 3.3. There exists u € AY, u™ = v.

Proor. We first construct u such that ¢s (1) = Q(u). Just as in the proof of Propo-
sition 3.2, the map x > ¢; 1 (Q(x)) is a contracting map on the set of elements of A
lifting u, so that v = lim,;,— 100 ¢ ™ (Q°™([1])) and is unique.

Therefore, there exists u € A such that @5 (1) = Q(u). Since 7 € E', we can write
u = [it] + gz, € AT + g A. Letr be such that % e AT andlet f = @UE()E).
Let us write Q(T) = T*(1 + ’;—ﬁg(T))l/”’, with g(T) € Ok|[T].
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Now assume that there exists some k > 1 and ' > 0 such thatu € AT 4 nlk(zi
We can thus write u = u; + nllgzk, where uy € AP and zr € A. We have

1/m
O() = QGuprzy) = (ukn,%Zk)S(l i g(ukn,’zzw) .

(ugmkzp)s

Using the fact that [Z?] is a unit in AY' 4/ 4 nlk(zi, we obtain that Q(u) € AT"" +
nI]?LlA, where v’ = max(s x ', 1’ + f).

Since ¢; 1 (Q(u)) = u, this implies that u € Abtr'ls 4 nIk(HA.

By successive approximations, we have u € At

Finally, we compute ¢s(u™) = ¢s(u)™ = Q(u)™ = P(u™) by construction of
0, so that ¢;(u™) = P(u™). Since u™ lifts u™ = v, we have u™ = v by unicity in
Proposition 3.2. ]

Recall that since u € AT, there exists some 7 > 0 such that u € AT and there exists
n(r) > 0 such that, for all n > n(r), the element u, := 6 o ;! (u) is well defined and
belongs to Oc,,. Actually, since u™ = v, we have that u”" = v, and in particular we
know that vk (u,) — 0.

LeMmMA 3.4. There exists a constant ¢ > 0, independent of n, such that for any
n > n(r) and for any g € §k, and anyi > 1, we have

VK (& (Unyi) —Unyi) = c.
Proor. Letn > n(r). We have u}', ; = vy, so that
VK (§(Un+i)" —up' ;) = VE(EWnti — Vn+i))-
This means that
VK (8 (Vn+i) — Vnti) = Vi (&(Un+i) — Uni) + (m — D)ok (Un+i)

since m is prime to p.

Since m is fixed and vk (u,) — O, it suffices to prove that there exists ¢ > 0
independent of n such that vg (g(vy+i) — Vp+i) = c forall g € k,,.

Since P(T) = T* mod mg, and since P°/ (v, 1;) = vy, we already know that for all
n > 0andforall g € 9k,,, we have v (g(Vn+i) — Un+i) = 1, so that UK(% —-1)>
1 —vg(vy4i) = 1 — vk (vy). The statement follows from the fact that vg (v,) — 0
when n — +o0. ]
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Recall that d = p¥m, where d is such that vk, (v,) = d for n > 0. Recall also
that s is a power of p, and let j > 0 be such that s/ > pk > s/=1. Let f > 0 be such
that p~/s/ = p*. In particular, we have
d

. 1
s ]vKn(“n) = m_ljkan(vn) = E = 1

vk, (uly) = p’
We let Eoo = UnZO K(uy), and F = Q;“r N Es be the maximal unramified
extension of Q, inside E. Finally, we let F’ (M) denote the unramified extension of F
generated by the elements [x'/"], x € k.
For n > ny, let r,, denote a uniformizer of O, . Since for all n > n the extensions
K, +1/ K, are totally ramified, the minimal polynomial of 7, over K}, is an Eisenstein
polynomial, and we choose the 7, so that Nk, /k, (Tn+1) = mp foralln > no.

r
LemMma 3.5. For any n > n(r), we can write wt,, = [h] -uﬁﬂ.(l + x), with x €

(9[{ and h € kF(m).

n+j

s
Proor. Note that vg, (7))') = vk, ( vfl’ +,) and that both elements belong to O, ;,
so that we can write

s
= o] + T ),

Un+j

with g € k. Taking the mth root, this implies that there exists /11 € k pony such that

TTn

= )1+ T ),
un+j
where the coefficients belong to Ok, ., and hy € kpam. m

TueorREM 3.6. The extension K/ K is strictly APF.

Proor. In order to prove the theorem, it suffices by [22, Prop. 1.2.3] to prove that
the extension F" - Koo/ F™ . K, is strictly APF.

To prove that F . K./ F™ . K is strictly APF, it suffices to prove that the vg
valuations of the nonconstant and nonleading coefficients of the Eisenstein polynomial
of 7,41 over F . K, for n > ng, are bounded below by a positive constant indepen-
dent of n, so that F™ . K, /F (m) K, satisfies the criterion of the main theorem
(Thm. 1.1) of [7]. Let n > ny.

By Lemma 3.5 and by induction, we can write

S s
Tnt1 = “5+./+1([h0] + “5+1+2;'([h1] +-4)),

where the /; belong to k m).
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Letg € ﬁp(m),Kn. We have

g(tns1) = s = gl ) ([hol) —uly 4 (Thol) + -+

where all the terms on the right-hand side have vg-valuation at least equal to ¢ > 0 by
Lemma 3.4, so that vg (g(7y+1) — Tut1) = ¢ > 0.

The conjugates of 7,41 over K, are the elements g (7, +1), for g € §k,,, and satisfy
the conditions vg (g(7y+1) — Tn+1) = ¢ > 0, which ensures that the vg valuations
of the nonconstant and nonleading coefficients of the Eisenstein polynomial of 7,41
over F . K, are bounded below by a positive constant independent of 7, which is
what we wanted. |

4. Nonarchimedean dynamical systems

Let K be a finite extension of Q,, with ring of integers Ok, uniformizer 7, maximal
ideal mg and residual field k of cardinal ¢ = ph. We let Ko = K N Q," be the
maximal unramified extension of Q, inside K and we let Ok, denote its ring of
integers. We let C, denote the p-adic completion of (_21,. Let P,U € T - Ok|[T] be
such that P o U = U o P, with P’(0) € mg and U’(0) € Og. In this note, we assume
that the situation is “interesting”, namely that P(7T") # 0 mod mg and that U’(0) is
not a root of unity.

ProrosiTiON 4.1. There exists a power series H(T) € T - k[T] and an integer
d > 1 such that H'(0) € k* and P(T) = H(T?") mod k.

Proor. This is [16, Thm. 6.3 and Cor. 6.2.1]. [

Near the end of his paper [16], Lubin remarked that “Experimental evidence seems
to suggest that for an invertible series to commute with a noninvertible series, there
must be a formal group somehow in the background.” This has led some authors to
prove some cases (see for instance [3, 13—15, 18-21]) of this Lubin “conjecture”. The
various results obtained in this direction can be thought of as cases of the following
conjecture:

ConNsecTurRe4.2. Let P,U €T - Og|T] be suchthat P oU = U o P, with P'(0) €
mg and U'(0) € O not a root of unity, and such that P(T) # 0 mod w. Then there
exists a finite extension E of K, a formal group S defined over O, endomorphisms
of this formal group Ps and Ug, and a power series h(T) € T - Og|[T] such that
Poh=hoPsandU oh = ho Us.
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ReEmMaRrk 4.3. While in many instances of the cases where this conjecture is proven,
the formal group is actually defined over Ok [3, 18,21], one can produce instances
where the formal group is defined over the ring of integers of a finite unramified
extension of Ok [4, §3]. The author does not know of a case where the extension E
that the formal group is defined over is ramified over K, so it might be possible that
the assumption that E is an unramified extension of K can be enforced.

5. Endomorphisms of a formal Lubin-Tate group

Let P,U € T - Og[[T] besuchthat P o U = U o P, with P’(0) € mg and U’(0) €
Ok not a root of unity, and such that P(7) # 0 mod mg. In this section we assume
that there exists a finite extension E of K, a Lubin-Tate formal group S defined over
O with E/L finite, a power series # € T - Og[T] and an endomorphism Pg of S
such that % is an isogeny from Pg to P.

LeMMA 5.1. Thereexists V € T - Og[[T], commuting with P, and an integer d > 1
such that Q(T) = 77! mod mg, where Q = V o P. Moreover, there exists Qs an
endomorphism of S such that h is an isogeny from Qg to Q.

Proor. First note that for any Vg invertible series commuting with Pg, there
corresponds an invertible power series V' commuting with P. Since S is a formal
Lubin—Tate group over O, Pg corresponds to multiplication by an element & € iy .
Let [z ] denote multiplication by 7z, on S, a uniformizer of O, such that [7.](T) =
7CadkL) mod my, (we can find such a uniformizer since S is a Lubin—Tate formal
group defined over @O ). Since a € m, there exist ¢ € @ and an integer d > 1 such
that o = ¢ - nil. In particular, we have wideg([o]) = wideg(P) = wideg([ng]) =
Card(kz)?.

We let V denote the power series commuting with P such that Ao [c™1] = V o h.
We then have that h o [c '] o [@] = V o P o h,and that h o [c™'] o [a] = h o [rf], s0
that % is an isogeny from [”ZI] to Q := V o P.Reducing modulo my, we get

h(T)Card(kL)d — h(TCard(kL)d) —ho Q mod my,
so that Q = TCadkr)? — pwidee(P) mod . n

Let (u,)nen be a sequence of elements of (_)p such that uy # 0 is aroot of Qg,
and Qs (uy+1) = Up. In Lubin’s terminology (see the definition on [16, p. 329]), the
sequence (vy,) is called a Q g-consistent sequence. Let E, = E(u,) and let Eoo =
\U,, Ex. Then for all n > 1, the extensions E,/E are Galois.

Let Q be as in Lemma 5.1 and let v, := h(uy).
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LemMa 5.2. The sequence (Vy)nen is Q-consistent, and the extensions E(vy,)/ E
are Galois for alln > 1.

Proor. Weknow that E,,/ E are Galois abelian extensions. Since £ C E(v,) C Ej,,
this implies that the extensions E (vy,)/ E are Galois. The fact that the sequence (vy)neN
is Q-consistent follows directly from the fact that / is an isogeny from Qs to Q. =

6. Embeddings into rings of periods

Let L := K, with n as in Proposition 3.1. Since P(T) = 77 mod mg, there
exists m > 1 such that P°™ acts trivially on ky, so that the degree r of Q is a power
of the cardinal of k7 . From now on we fix such an m. We let wg = v, and (w,) be a
sequence extracted from (v,,) such that Q (w,41) = w,. Forn > 1, welet L,, = L(wy,).
Let L' = Q;“‘ N L be the maximal unramified extension of Q, inside L, and let
At =01 ®0,, W(ET).

Since K /L is strictly APF, there exists by [22, Lem. 4.2.2.1] a constant ¢ =
¢(Ks/L) > 0 such that for all F C F’ finite subextensions of Ko,/L, and for all

x € Ofp/, we have
Np//F(x)
v, (W —1 > c.

We can always assume that ¢ < vp(p)/(p — 1) and we do so in what follows. By
[22, §2.1 and §4.2], there is a canonical &7 -equivariant embedding t7.: Ay (Kso) < E+,
where Ar (Ko) is the ring of integers of X (K), the field of norms of Koo/L. We
can extend this embedding into a ¥y -equivariant embedding X7 (Ks) < E, and we
note Ex its image.

It will also be convenient to have the following interpretation for E*:

ET = lim Oc, = (@ xD ) e 0f) - (xD)? = x0

x—>xP

To see that this definition coincides with the one given in Section 2, we refer to [5, Prop.
4.3.1].

Note that, even though Ex depends on K, rather than on L, it is still sensitive
to L:

ProrosITION 6.1. Let L' be a finite extension of L contained in Koo. Let Ly (resp.
L',) be the maximal tamely ramified extension of Koo/ L (resp. Koo/ L'). Let Ex denote
the image of X1/ (Ko) in E by the embedding given in [22, §4.2].

Then as a subfield of E, Ex' is a purely inseparable extension of Ex of degree
[L} : L¢]. In particular, if L' = L, then Egr = Eg.
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Proor. See [6, Prop. 4.14]. ]

The sequence (wy,) defines an element w € E*t.

PROPOSITION 6.2. There exists a unique w € A% lifting © such that Q (w) = ¢r (w).
Moreover, we have that 6 o ¢ " (W) = wy.

Proor. This is the same as the proof for Proposition 3.2. ]

For all £ > 0, we let

Ry = {xeAJF,QO(p;”(x)e@L forallnzl}.

n+k

Prorosition 6.3. For all k > 0, there exists zj € Ry such that Ry = O [z¢]l

Proor. Note that for all k > 0, Ry is an (f -algebra, separated and complete for
the 77 -adic topology, where rry is a uniformizer of @y, If x € Ry, then its image in
E™ belongs to limy - OL, 1« /azn+k. B

Note that the natural map Ry /7 Ry — E™ is injective. To prove this, we need to
prove that 77, AT N Ry, = mp Ry. Let x € Ry N w AT and let y € A™ be such that
x = mr1y. Thensince x € Ry we have thatt) o ¢, (x) € Or,,, and thus 6 o ¢ "' (y) €
%OLH,C. But since 6 o ¢;” maps A% into Oc, we get that 6 o ¢ " (y) € Ly4x N
Oc, = OL, 4

We know by the theory of fields of norms that limy,xr Or, /a7 =~ ki [v] for

Therefore the natural map Ry /7y Ry — ETis injective.

some v € ifr, so that the valuation induced by vz, on E* is discrete on R /7L R. Let
i € R/mr R be an element of minimal valuation within

{x € R/mLR, vp(x) > 0}.

Since the valuation on R /7y R is discrete, and since this set is nonempty because
it contains the image of the element w given by Proposition 6.2, such an element u
exists, and we have R /mp R = kp [[u]], so that R = O [u] for u € R lifting u since R
is separated and complete for the 7 -adic topology. |

ProrositioN 6.4. There exists kg > 0 such that, for all k > kg, we can take
Zk+1 = @, H(zk) and we let z = Zko-

Proor. The proof of Proposition 6.3 shows that the quotient Ry /7, Ry injects into

. c
Lln 0L"+k/aLn+k :
x—>x"
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By [22, Prop. 4.2.1],
1<i_I_n (DL"'HC/azn—i—k
x—=>x"
is the image of ring of integers of the field of norms of L, /Ly inside E by the
embedding ¢7 , and we will denote

Liil (9Ln+k/a2n+k
x—>x"

by Y. We normalize the valuation of Yy so that vy, (Yx) = Z. By Proposition 6.1, we
get that for k > ng, we have Yy 11 = ¢, 1 (Y) and thus the valuation VY, 4, 1s equal to
rvy; .

Now let v(k) = vy, (Zx) for k > 0. We know by definition of the sets Ry that
@7 ' (zk) € Ry forall k > 1 and thus vy, . | (Zx51) < rvy, (¢; ' (Zx)) by construction
of the zj. This implies that the sequence (v(k))k>n, is nonincreasing, and since it is
bounded below by 1, this implies that there exists some k¢ > n¢ such that, for all k > ky,
we have v(k) = v(ko) > 0. Thus for all k > ko we have vy, | (Zx+1) = vy, (Zx) and by
construction of the zx this implies that we can take zx 11 = ¢, ' (zx) which concludes
the proof. [

We now let k¢ be as in Proposition 6.4. Note that in particular, for all k > kg, we
have Ry = ¢° (O [w]) = O e/~ ).

Lemma 6.5. The ring O [[z] is stable by ¢,. Moreover, there exists a € wy, such
that if z/ = z — a then there exists S(T) € T - Op[T] such that S(z') = ¢,(z’) and
S(T)=T" mod my.

Proor. The set
{x cAT, 0 o M(x) € (9Ln+k0 foralln > 1}

is clearly stable by ¢, and equal to O [z] by Proposition 6.4, so that ¢, (z) € O [z] and
so there exists R € O [T] such that R(z) = ¢,(z). In particular, we have R(Z) = Z”
and so R(T) = T" mod my..

Now let R(T) = R(T + a) with a € my, and let z/ = z — a. Then ¢,(z/) =
¢r(z—a)=R(z) —a = R(z') —aandwelet S(T) = R(T) —a sothat g, (z') = S(z').
For S(0) to be 0, it suffices to find @ € my such that R(a) = a. Such an a exists since
we have R(T) = T" mod my, so that the Newton polygon of R(T') — T starts with a
segment of length 1 and of slope —v, (R(0)).

Now, we have S(z') = ¢,(z’) and so S(z) = 2/, so that S(T) = T” mod my. =
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Lemma 6.5 shows that we can pick z € {x € AT, f o 0, "(x) e (9Ln+k0 forall n >
1} such that ¢, (z) = S(z) with S(T') € T - O [T], and we will assume in what follows
that such a choice has been made.

LeEMMA 6.6. Assume that there exists mqy > 0 such that for allm > my, the extension

L/ L, is Galois. Then the ring O [z] is stable under the action of Gal(Koo/ Lmy),
and if g € Gal(Koo/Lm,), there exists a power series Hg(T) € Or[T] such that

g(z) = Hg(2).
Proor. Let fo = max(my, ko). Since for all m > mg, Ly, /L, is Galois, the set

{xeA’L, fop "(x)e Oy forallnzl}

n+ fo

is stable under the action of Gal(Koo/Lm,), and by Proposition 6.4, this set is equal
to O [[cpf‘)_f" (z)]. In particular, if g € Gal(Koo/Lm,), then g(gof‘)_fo (z)) also
belongs to this set and so there exists Hg (7)) € Or[T] such that Hg ((pfo_fo (2)) =
g((pfo_fo (2)), and thus Hg(z) = g(2). [

7. p-adic Hodge theory

Let us assume that there exists my > 0 such that for all m > m, the extension
L/ L, is Galois. Lemma 6.6 shows that in this case we are in the exact same spot as
the situation after [17, Lem. 5.15]. In particular, the exact same techniques apply.

We keep the notation from Section 6 and we let k: Gal(Koo/ L) — Of denote
the character g > H,(0).

ProposiTioN 7.1. The character k: Gal(Koo/Lmy) — OF is injective and crys-
talline with nonnegative weights.

Proor. This is the same as [17, Cor. 5.17 and Prop. 5.19]. ]

For A a uniformizer of Ly, let (L,,,), be the extension of L,,, attached to A by
local class field theory. This extension is generated by the torsion points of a Lubin—Tate
formal group defined over L, and attached to A, and we write

L
X o Gal((Lm()))»/Lmo) - Ozm()

for the corresponding Lubin—Tate character. Since Koo/ Ly, is abelian and totally
ramified, there exists A a uniformizer of O, such that Keo C (Lmg)a-

Ly
ProposiTioN 7.2. There exists F C L and r > 1 such that k = Ng,,, /F (x; °)".
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Proor. Thm. 5.27 of [17] shows that there exists ' C L,,, and r > 1 such that
K= NLm0 JF( Xfm())r . The fact that « takes its values in @ shows that F is actually a

subfield of L. m

Recall that relative Lubin—Tate groups are a generalization of the usual formal
Lubin—-Tate groups given by de Shalit [10].

THEOREM 7.3. There exists F C L andr > 1 such that k = NL/F()(ﬁ‘)’. Moreover,
there exists a relative Lubin—Tate group S, relative to the extension F*™™ N L of F, such
that if LS is the extension of L generated by the torsion points of S, then Lo, C Lgo
and LS 5/ Lo is a finite extension.

Proor. This is the same as [17, Thm. 5.28] using Proposition 7.2 instead of [17,
Thm. 5.27]. u

8. Isogenies

In the setting of Theorem 7.3, let o be an element of F"™ N L such that L*go is the
field cut out by {a) of F by local class field theory, so that the relative Lubin—Tate
group S is attached to «. Up to replacing L by a finite extension, we can assume that
Lfo = Lo and we do so in what follows. We let ug = 0 and let (1, ),eN be a nontrivial
compatible sequence of roots of iterates of [«], the endomorphism of S corresponding
to multiplication by «, so that [a](uy+1) = u, withu; # 0. We let g denote the cardinal
of the residue field of F"™ N L so that wideg([«t]) = ¢q. Let i = (up,...) € Et. By
[9, §9.2], there exists u € AT whose i image in E* is & and such that g (u) = [a](n),

g(w) = [xa(g)](u) for g € gy

Recall that Cais and Davis have defined a “canonical ring” attached to L /L,
denoted by AT Leo/L’
extensions attached to Lo/ L by ramification theory. The following lemma shows that
this canonical ring is related to the ring @y, [u] for the extension Loo/L:

which is a subring of A* and is defined via the tower of elementary

Lemma 8.1. There exists k > 0 such that Af L= (pq_k (Orul).

Proor. See [17, Lem. 8.1]. Be mindful that there £ and w play, respectively, the
roles of L and u here. ]

Recall that (wy,),en is a Q-consistent sequence, where Q commutes with P and is
such that Q(T) = T* mod my, and that w € A* is such that 6 o ¢ (w) = wy,.

PROPOSITION 8.2. There exists i > 0 such that ¢'.(w) € AZOO/L.
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Proor. The proof is exactly the same as in [17, Prop. 8.2]. u
PrOPOSITION 8.3. There exists d > 1 such that there is an isogeny from [a?] to Q.

Proor. Lemma 8.1 and Proposition 8.2 show that there exist i > 0 and h(T') €
OL[T] such that w = h(¢,; " (u)). Let d be such that ¢, = <p;d and let it = ¢, (u),
so that w = h(u). For g € §;, we have ¢, (w) = Q(w) so that Q(w) = ¢, (w) =
@ (h(i1)) = h(g,(i1)) and thus Q o h(ii) = h o [«?](ii), which means that Q o h =
ho [a?]. ]

TueoreM 8.4. Let (P, U) be a couple of power series in T - Og[[T] such that
PoU =Uo P, with P'(0) € mg and U'(0) € O%, and we assume that P(T) #
0 mod mg and that U'(0) is not a root of unity. Then there exists a finite extension E
of K, a Lubin—Tate formal group S defined over Or, where E /L is a finite extension,
endomorphisms of this formal group Ps and Us over O, and a power series h(T) €
T -Ofg(T] suchthat P oh = ho Py and U o h = h o Ug if and only if the following
two conditions are satisfied:

(1) There exists V € T - Ox[T], commuting with P, and an integer d > 1 such that
O(T) = T?" mod mg where Q =V o P.

(2) There exists a finite extension E of K and a sequence (0ty)nen where ag # 0 is a
root of Q and Q(apy41) = ay such that for all n > 1, the extension E(ay,)/ E is
Galois.

Proor. Lemmas 5.1 and 5.2 of Section 3 imply that if such a Lubin—Tate formal
group exists then the two conditions are satisfied.

If those two conditions are satisfied, then Proposition 8.3 shows that there exist a
finite extension E of K, a subfield F of E, a relative Lubin—Tate group S, relative to
the extension F'""" N E of F, and an endomorphism Qg of S such that there exists an
isogeny from Qs to Q. Thus there exists an isogeny from an endomorphism Pg of S
to P. In order to conclude, it suffices to notice that a relative Lubin—Tate formal group
S, relative to an extension F'"™ N E of F, is actually isomorphic over F'™ N E to a
Lubin-Tate formal group S’ defined over F'. ]

9. A particular case of Lubin’s conjecture

We now apply the results from the previous sections to the particular case where
P(T) =T? mod mg. Let P,U € T - Og[T] be such that P oU = U o P, with
P(T) =T? mod mg and U’(0) € O not aroot of unity. We consider as in Section 4
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a P-consistent sequence (v,) and we let K, = K(v,) for n > 0. We let ng be as in
Proposition 3.1.

ProrosiTiOoN 9.1. There exists mg > 0 such that for all m > my, the extension
Km/Km, is Galois.

Proor. By [16, Prop. 3.2], the roots of the iterates of P are exactly the fixed points
of the iterates of U. Up to replacing U by some power of U, we can assume that
U’(0) = 1 mod mg and that there exists n > ng such that U(v,) = v, but U(vy+1) #
Un+1 (since U(T) — T admits only a finite number of roots in the unit disk).

Since U(vy,) = v, and U commutes with P, this implies that U (v, +1) is also a root
of P(T) — vy. The discussion on [16, p.333] shows that the set {U % (v,41)}xen has
cardinality a power of p, and is not of cardinal 1 since U(vy+1) 7# vy+1 by assumption.
Since P(T) — v, has exactly p roots, this implies that the set {U (v, +1)} has cardinality
P, and thus all the roots of P(T) — v, are contained in K41, so that K, 1/K} is
Galois.

Let m > n. The extension K,/ K, is generated by all the roots of P°"~)(T) —
vy = PP (T — U(v,). Since U swaps all the roots of P(T) — vy, it is easy to
see that the U -orbit {U °% (Vm) }k>0 contains all the roots of P (T) — v, so that
K,/ K, is Galois. This proves the proposition. ]

We are now in the conditions of our Theorem 8.4, which yields the following:

CoroOLLARY 9.2. Lubin’s conjecture is true for (P, U).
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