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Note on the relation between enhanced ind-sheaves and
enhanced subanalytic sheaves

Youe1 Ito (*)

ABsTRACT — In this paper we shall explain a relation between Theorem 9.5.3 by D’Agnolo and
Kashiwara [Publ. Math. Inst. Hautes Etudes Sci. 123 (2016), 69—197] and Theorem 6.3 by
Kashiwara [Jpn. J. Math. 11 (2016) 113-149]. For this purpose, we shall prove that there
exists a fully faithful functor from the triangulated category of enhanced subanalytic sheaves
to that of enhanced ind-sheaves.

MaTtHEMATICS SUBJECT CLASSIFICATION 2020 — 32C38 (primary); 18F10, 32560 (secondary).
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1. Introduction

Kashiwara and Schapira [10] introduced the notion of ind-sheaves and subanalytic
sheaves to treat “sheaves” of functions with tempered growth conditions. Ind-sheaves
are defined as ind-objects of the category of sheaves of vector spaces with compact
support. Subanalytic sheaves are defined as sheaves on subanalytic sites. Moreover, the
authors proved that there exists a fully faithful functor from the category of subanalytic
sheaves to the category of ind-sheaves, and its essential image is equal to the category
of ind-objects of R-constructible sheaves with compact support.

After a groundbreaking development in the theory of irregular meromorphic connec-
tions by Kedlaya [14, 15] and Mochizuki [16, 17], D’Agnolo and Kashiwara introduced
the notion of enhanced ind-sheaves extending the notion of ind-sheaves and established
the Riemann—Hilbert correspondence for analytic irregular holonomic $-modules
in [1] as below (see [7] for the algebraic case). Let X be a complex manifold. Then
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there exists a fully faithful functor Soly which is called the enhanced solution functor
(see [1, Def. 9.1.1] and also Definition 3.31) from the full triangulated subcategory
D}, (Dyx) of the derived category of Dy -modules consisting of objects with holonomic
cohomologies to the triangulated category E%_ .(ICx) of R-constructible enhanced
ind-sheaves:

(1.1) Sol%: D (Dx)® < E .(ICx).

Moreover, Mochizuki characterized its essential image by the curve test [18, 19]. In
[4] (see also [5]), the author defined C-constructibility for enhanced ind-sheaves and
proved that they are nothing but objects of its essential image. Namely, we obtain
an equivalence of categories between the triangulated category Dﬁol({OX) and the
triangulated category E'j(’: _.(ICx) of C-constructible enhanced ind-sheaves:

Sol%: D, (Dx)® = E_.(ICx).

At the 16th Takagi Lectures,' Kashiwara explained a similar result to (1.1) by using
“enhanced subanalytic sheaves” instead of enhanced ind-sheaves as below. We denote by
D (C}‘QRW) the derived category of subanalytic sheaves on a bordered space X X Roo;
see Section 3.1 for the definition. Then there exists a fully faithful functor Sol}, (see

[8, §5.4] and Definition 3.34) from DD, (Dx) to Db((C}S‘}‘gRoo):

(1.2) Sol}: Dpy (Dx)® < D°(Cyop ).

In this paper we shall explain the relation between (1.1) and (1.2). For this purpose,
we shall prove that there exists a fully faithful functor from the triangulated category
of enhanced subanalytic sheaves to that of enhanced ind-sheaves. Although it may be
known by experts, it is not in the literature to our knowledge. The main results of this
paper are Theorems 3.15, 3.20, 3.38 and 3.39. One can summarize these results in the
following commutative diagram:

(€.
Solg**()[1]
JR%suh
DY (Dx )P — E% .(C¥™) C E°(C5®)

Soly

%
> Iglng 1}%3%}
Soly JE
X

E% .(ICx) C E% . (ICx) C E’(ICy).

() The 16th Takagi Lectures took place at Graduate School of Mathematical Sciences, The
University of Tokyo, on November 28 and 29, 2015.
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See Section 2.6 for the definition of EP (ICx), Section 3.1 for the definition of
D ((C)S}”;Roo), Section 3.3 for the definitions of EP(C5®), Rf‘(’wb, Section 3.4 for the def-
initions of Efy (C3®), I, JE, E .(ICx), Definition 3.19 for E§ _(C§"®), Definition

3.31 for Sol¥, Definition 3.34 for Sol}T(’Sub and Definition 3.36 for Sol}E(’S“b.

2. Preliminary notions and results

In this section we briefly recall some basic notions and results which will be used
in this paper.

2.1 — Subanalytic sheaves

We shall briefly recall the notion of subanalytic sheaves. References are made to
[10, §6] and [20].

Let k be a field and M a real analytic manifold. We denote by Op;}b the category
of subanalytic open subsets of M. Then we can endow Opﬁ\‘,}b with the following
Grothendieck topology: a subset S C Ob((Op4y)v) is a covering of U € Opjy if for

any compact subset K of M there exists a finite subset So C S of S such that

UnK:( U V)mK.

VeSo

We denote such a site by M*"* and call it the subanalytic site.

A subanalytic sheaf of k-modules on M is a sheaf of k-modules on the subanalytic
site M*'®. We shall write Mod(k;‘,’[b) instead of Mod (ks ). Note that it is abelian.
Note also that there exists the natural morphism pps: M — M of sites. Then we have
a natural left exact embedding pps«: Mod(Cps) — Mod((C]S\}b) of categories. It has an
exact left adjoint p3; that has in turn an exact fully faithful left adjoint functor pas1. We
denote by D ((C;}b) the derived category of Mod(Ci}b). Note that there exist the six
Grothendieck operations? ®, RThom®®, R fi, R fi1, f~!, f' for a real analytic map
f:M — N.Moreover, we set R¥om™ := p,! o RT hom®™®. Note also that these
functors have many properties similar to classical sheaves. We shall skip an explanation
of this.

2.2 — Ind-sheaves

Let us briefly recall the notion of ind-sheaves. References are made to [10] and [11].

(?) We shall use the symbol R f; instead of R f;.
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Let k be a field and M a good topological space (that is, a topological space which
is locally compact, Hausdorff, countable at infinity and has finite flabby dimension). We
denote by Mod® (kpy) the category of sheaves of k-vector spaces on M with compact
support. An ind-sheaf of k-vector spaces on M is an ind-object of Mod€ (kyy), that is,
an inductive limit

“1_16131)1” Fi= %1 Homyjode (k 5,) (- Fi)

of a small filtrant inductive system {¥; };c; in Mod® (kps). Let us denote by Ikps the
category of ind-sheaves of k-vector spaces on M. Note that it is abelian. Note also
that there exists a natural exact embedding tar: Mod(kpas) — Ikpas. It has an exact left
adjoint apz, that has in turn an exact fully faithful left adjoint functor B3s. We denote
by DP(Ik ) the derived category of Tkys. Note that there exist the six Grothendieck
operations ®, RThom, f~!, R fi, f' and R fj for a continuous map f: M — N.
Moreover, we set R# om := aps o RThom. Note also that these functors have many
properties similar to classical sheaves. We shall skip an explanation of this.

2.3 — Relation between ind-sheaves and subanalytic sheaves

Let us briefly recall the relation between ind-sheaves and subanalytic sheaves. The
results are summarized by the following commutative diagrams:

sub CI—M) b (7. sub CI—M) b
Mod(k§¥) T——— Iky DO (k) T DP(Iku)
M M
Ing U Inm U
u Ir.ckp, Am b
D (k).

References are made to [10, §86.3, 7.1] and [21, §A.2].

Let k be a field and M a real analytic manifold. We denote by Modg, . (kas) the
abelian category of R-constructible sheaves on M with compact support and denote
by Ir.ckas the category of ind-objects of Modyg, . (kas). Moreover, let us denote by
D?R_ - (Ikas) the full triangulated subcategory of DP(Tkjs) consisting of objects whose
cohomologies are contained in Ir_.kps. Then there exists a functor

Ju:Tkpr — Mod(kSyp), h_r?z N l.i_l‘II)lpM*T’i.
1€ 1€

Note also that the functor Jjy is left exact and admits a left adjoint Ip4: Mod(k;‘,’[b) —
Ik s which is fully faithful, exact and commutes with filtrant inductive limits.
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Tueorem 2.1 ([10, Thm. 6.3.5], see also [21, A.2.1]). There exists an equivalence
of abelian categories:

Ing
Mod(k3®) —~ 7 Ip.ckm.
Im

Furthermore, there exists an equivalence of triangulated categories:

Iy
D(k}P) =" Dip (k).
M

We shall denote by Ap7: Db (Ikpr) = DP(kSy) the inverse functor of Zys: DP(k3y)
= DI;R-C (Ikps).

Let us summarize the commutativity between the various functors and functors 7,
RJ.Let f: M — N be a morphism of real analytic manifolds. Then we have

RJyRIhom(Ip (), ) =~ RThom™ (-, RJx ().
and

opyoly > p_l,
M RJMOLM =~ OM %> Rec
Ipgopmr =~ By, IngoPars 22 UM IModg (kg )
Iyof~' = floly, Mo f™l = flody.
RJpmoBm = pmrs
Rf”OIMZINORf”, Rf”OAMZ)LNORf”,
\ , RfioRJy >~ RIyoR L,
Inyo f'~ floly, Am(®) = Apm () @Am ().

RJyo f'~ floRJy,
(8 = In (@l (), oS =S ORI

p;ll oRJy >~ ayy,

2.4 — Bordered spaces

We shall briefly recall the notion of bordered spaces. See [1, §3.2] and [3, §2.1] for
the details.

A bordered space is a pair My, = (M, M ) of a good topological space M and
an open subset M of M.A morphism f: (M, M ) — (N, N ) of bordered spaces is
a continuous map f: M — N such that the first projection M x N — M is proper
on the closure ff of the graph I'y of f in M x N.The category of good topological
spaces is embedded into that of bordered spaces by the identification M = (M, M).
Note that we have the morphism jas : Moo — M of bordered spaces given by the
embedding M — M. Fora locally closed subset Z C M of M, we set Zo, = (Z, Z),
where Z is the closure of Z in M and denote byiz. :Zew — Ms the morphism of
bordered spaces given by the natural embedding Z — M.
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2.5 — Ind-sheaves on bordered spaces

Let us briefly recall the notion of ind-sheaves on bordered spaces. The results are
summarized by the following (non-commutative) diagram:

Moo

(—D
DP(Ik 7. ) m Db(Ik ) —mco— D°(Ikpry,) = DP(IK 37) /DK 7, )

Moo ‘
ﬂMoo AMoo | Moo
J l]

D°(kpr) =~ D (ko) i= DOk ) /D (K gz 5)-
References are made to [1, §3].
Let k be a field and My, = (M, M) a bordered space. A quotient category
D°(Ik ) = D"(Ik ) /D°(Ik 7, ,)

is called the category of ind-sheaves on Mo, where DP(Ik I )y 1s identified with its
essential image in D°(Ik ji7) by the fully faithful functor Ri anarn- Here iz, o M \M
—> M is the closed embedding. An object of D°(Ik Moo) is called an ind-sheaf on M.

The quotient functor
Amoo: D°(Ik 57) — D (Ikpr,)

has a left adjoint 17, and a right adjoint rps__, both fully faithful, defined by

oo : D°(Ikpr,,) — D°(k 7). qF — t7ky ® F,
Moo D°(Ikpr) — D°(Ik ;). qF + RIhom(i;kps, F).

Note that there exists an embedding functor
Moo DP(kpr) = DP(kpry,).  F > jag otz innF (2 jag!

oo

L RmF),
which has an exact left adjoint
Moo DP(Ikpr,) = DP(kpr).  F = jpr' g Rimoot F (= jpr' oy Rjgoos F)
that has in turn an exact fully faithful left adjoint functor
Broo: D°(knr) = D°(Ukar.).  F > jago B ¥ (= jage BigRjmnF).

Note also that there exist the six Grothendieck operations ®, RThom, R fx, R fy1,
£, f'foramorphism f: My, — Ny of bordered spaces. Moreover, we set R# om :=
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apm,., © RThom. Note that these functors have many properties similar to classi-
cal sheaves. We shall skip an explanation of this. We just recall that the functor
J A_lio : DY (Ik )~ DP(Ikyy,.) is isomorphic to the quotient functor and the functor
Rjmoon: D (Tkps,,) — DP(Ik ) (resp. Rjaro D (Ikps,,) — DP(Ik 7)) is isomor-
phic to the functor lps. (resp. ray..).

It is clear that the quotient category

D°(kpr.,) = Db(kﬂ)/Db(kﬁ\M)

is equivalent to the derived category D®(ky) of the abelian category Mod(kps). We
sometimes write D®(kpy_ ) for D°(kys), when considered as a full subcategory of
DP (k).

2.6 — Enhanced ind-sheaves

We shall briefly recall the notion of enhanced ind-sheaves on bordered spaces:

L
L Mo
D°(IK a1, xRoo) ——oo—> EP(Ikpr, ) = DP(Ik s xR oo ) /7 ' DO (Tkpry,)
5

eMoo llsh Moo

Db(kMoo) ~ Db(kM) :<—°‘Moo— Db(IkMOO).

Moo

References are made to [2, 12]. We also refer to [1, 13] for the notion of enhanced
ind-sheaves on good topological spaces.

Let k be a field and My, = (M, ]\7[) a bordered space. We set Roo == (R, R)
for R := R L {—00, +00}, and let # € R be the affine coordinate. We consider the
morphisms of bordered spaces

P1,D2,1

Moo x R2, Moo X Rog > Moo

given by the maps pi (¥, i1, 12) = (x,11), pa(X. 11, 12) == (X, 12), (X, 11, 15) = (x,
t1 + ) and 7 (x, t) := x. Then the convolution functors for ind-sheaves on My, X R,

+
() ® (): D°(Tkpro xR o) X DP(Tkpr xRoy) — DP(Karo xRy )
RIhom™ (-, -): D°(Tkps xr., ) x D°(Ikpsxr..) — D°(Ikas xR..)

are defined by

+
FL®F, = Run(py' ' Fi ® p;' Fa),
RIhom™t(Fy, F>) := Rp«RIhom(p; ' Fi, pu' Fy),
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where Fy, F, € DP(Ikps_xR.,)- Then the triangulated category of enhanced ind-
sheaves on a bordered space M, is defined by

E°(Ikprs) = DP(IkprooxRoo) /7~ ' DP(Tkpry, )

An object of E®(Ikpy,_ ) is called an enhanced ind-sheaf on M. The quotient functor
Qur..: D (Ikps xR, ) — EP(Ikps,, ) has fully faithful left and right adjoints

Ly E°(Ikpr,,) = D (ks xRy )

Qoo (F) = iMoo xRoo (Kir>0y © kir<0y) é F,

Ry E°(Ikps.) — DP(Ikpreoxroo)-

Quoo (F) = RIhom™ (tar.xkoo (K0} @ kr<0}), F)-

Here, {t > 0} stands for {(x,#) € M xR | t > 0} and {¢ < 0} is defined similarly.
For a mgrrphism f: Mo — N of bordered spaces, we have the six Grothendieck

operations ®, RThom™, E £~ E f,, E f', E fy for enhanced subanalytic sheaves on

bordered spaces. Note that these functors have many properties similar to classical

sheaves. We shall skip an explanation of this. Moreover, we have external hom functors
RIhom®, R#omP := oy o RThom® and functors

77 ® ():DP(Ikpry.) x E°(Ikpr) — E*(Tkar, ),
RIhom(z (), ): D°(Tkps, ) x EP(Tkps ) — E°(Ikps.,)
which are defined by
7 'F® K :=Qu,(n ' F®Ly, K),
RThom(z~'F, K) := Qu. RIhom(z ' F. Ry, K).

We set

Ko, = Qo @utoe (* 1im " 17,5k (2a) € (k).
a—+o00

Then we have a natural embedding functor
eMoo: DP(kpr,) > EP(Ikpy,,), F o>k ®n'F.

Let us define ")1];:/100 = em., (tmo,wm) € EP(Ikpr ), where wpr € DP(kpr ) (=
DP(kys)) is the dualizing complex; see [9, Def. 3.1.16] for the details. Then we have
the Verdier duality functor for enhanced ind-sheaves on bordered spaces,

Dy i E (ko )® — E° (k). K +— RIhom™ (K, oy ).
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Letip: Moo — Moo X R be a morphism of bordered spaces induced by x — (x, 0).
We set

Ishp., = ig o Ry :E°(Ikpr.,) — D°(Ikps,, ).

shar., = o, o Ishyr  EP(Tkps,) — D°(kay)
and call them the ind-sheafification functor and the sheafification functor, for enhanced
ind-sheaves on bordered spaces, respectively. Note that a pair (eps,, Ishps. ) is an

adjoint pair and there exist isomorphisms F —> Ishps_ep. F for F € DP(Ikys) and
F = shyem. iy, F for F € D°(kyy). See [3, §3] for details.

3. Main results

The main theorems of this paper are Theorems 3.15, 3.20, 3.38 and 3.39.

3.1 — Subanalytic sheaves on real analytic bordered spaces

The notion of subanalytic sheaves on bordered spaces was introduced by Kashi-
wara. Although it has already been explained in [8, §§3.4-3.7], in this subsection we
shall explain it again in detail.> The results are summarized by the following (non-
commutative) diagram:

BMoo
DP(ky) ~ DP(kp) +—amoao—— D°(Ikyps.)
o0 ( o0

PMoo! [P | ROMoo U
Moo
b(lesub \ — 2 . b
D (kMoo) = D . (Ikar,).
AMoo

A real analytic bordered space is a bordered space Mo, = (M, M ) such that M isa
real analytic manifold and M is an open subanalytic subset. A morphism f: (M, M )—
(N, N ) of real analytic bordered spaces is a morphism of bordered spaces such that the

(®) Kashiwara [8] introduced the notion of subanalytic sheaves on subanalytic bordered
spaces. In this paper, we shall only consider them on real analytic bordered spaces.
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graph I'y of f is a subanalytic subset of M x N.Note that a morphism f :M — N of
real analytic manifolds such that f (M) C N induces a morphism of bordered spaces
of real analytic bordered spaces from (M, M ) to (N, N ). The category of real analytic
manifolds is embedded into that of real analytic bordered spaces by the identification
M=(M,M).

Let Moo = (M, M ) be a real analytic bordered space. We denote by Gp;‘,}t;o the
category of open subsets of M which are subanalytic in M . Note that the category

Op;‘}'; can be endowed with the following Grothendieck topology:

a subset S C Ob((@pi‘,}';)y) is a covering of U € (9b((9pj“,’};o if for any

compact subset K of M there exists a finite subset 8" C S of S such that

This Grothendieck topology is the one induced from that of M.

Let us denote by M3 the site Opj'}t;o with the above Grothendieck topology and
denote by Mod(kj‘j‘;) the category of sheaves of k-vector spaces on the site M.
Note that the category Mod(kj“,‘lio) is abelian. Note also that there exists the natural
morphism pp: M — M, gb of sites. Then we have a natural left exact embedding

PMoor: Mod(kpr) — Mod(kjp)

of categories. It has an exact left adjoint p;,lloo : Mod(kj‘jlzo) — Mod(kys), which has in
turn an exact fully faithful left adjoint functor ppr_1: Mod(kas) — Mod(kj‘f;o). Note
that the restriction p}l‘{}'; « Of Prroo+ to Modr.¢ (kar,, ) is exact.

We denote by DP (kj‘,}t;o) the derived category of Mod(k;‘}'lo). For a morphism
f: Mo, — N of real analytic bordered spaces, we have the Grothendieck operations*
®, RThom™® R fi, R fir, f~1, f' for subanalytic sheaves on bordered spaces and set
RH om*® := p;[fm o RThom*®™®. Then these functors have many properties similar to
classical (subanalytic) sheaves.

ProrosiTion 3.1. Let f: Moo — Noo be a morphism of real analytic bordered
spacesand ¥, 51,5, € Db(kj“,}io), 9.,9,,6, ¢ Db(kﬁ\‘}go), K €D (ky), £ €D°(ky),
4 € DR (karo)-

(1) RppooeHom(pp, F ., K) =~ RThom™ (F, RpprooxK).
RHom™ (ppr,1 K. F) =~ RHom(K, pyt F):

(*) We shall use the symbol R f instead of R f;.
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(2)  RIhom™®Rfu¥%.%)~ RfRIhom™ (¥, '),
R f,RThom*®(f~1¢ F) ~ RThom**(§,Rf, F),
RIhom™® (%, ® F», F) ~ RIThom™®(F;, RThom®™®(F>, ¥));
3) iR P~ TR T %,
RA(F Q19 ~RMF QF,
f'RIhom™ (&, %) ~ RThom®™(f 18y, 1'86,);

(4) for a cartesian diagram

M, —T N

| |

Moo T) Noo,

we have g 'R fu¥ ~Rf1g"'F, g'RAEF ~RfIg"F;
5) [H(E ® PNt ®) =~ [ ® pucr [T L,
RThom™ (4. ) ® ppoot K = RThom™ (4, F ® ppr.1K):

(6) we have the commutativity of the various functors:

|® /7' RA ' ORfy

Rps. | X X o o X
p]§'c o o o o X
p_l o o o X o
o1 o o X X X

where “o” means that the functors commute, and “x” that they do not.

Since the proof of this proposition is similar to the case of classical sheaves, we
shall skip the proof.

From now on, we shall describe a relation between ind-sheaves on M, and sub-
analytic sheaves on M. Let us recall the diagram:

Ing

DP (k) € D (Ik )

RJ
1
\ U
A

M b
DIR-c (Ikaz).
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See Section 2.3 for the details. Recall also that jps : Moo — Misa morphism of real
analytic bordered spaces associated to the natural embedding jas: M < M. Then for
any ¥ € Mod(kbllb )and any § € Mod(k“‘b) we have

I RjMcr ¥ < F. ImoRimon ¥ = 7,
RjMoottiitn,9 = Pipknt ® G, Rijstoorjpgs,§ = RIhom™ (o7, kar . 6),

and hence functors j A_lio’ Rjm 11, Rjm, « induce equivalences of categories:

JiDP(yp ) S {F € D° () | pizem ® F = F)
~{F eD(K3)) | F = RIhom™ (o7, knr, F)}.

Let us consider the following functors:

Ino: D3P ) = D°(kp,). F > ql zRja 17,
RJp,: D (Ikpr,) — D(K3P ). F = jprt RI Ry« F,
where q: DP (Ik 7)) — DP(Ikyy ) is the quotient functor.
We denote by DIR (Ikpz,) the full triangulated subcategory of DP(Ik s, ) consist-

ing of objects such that R jps 1 F € D}’R_ Ik ;7). Then the next lemma follows from
[10, Lem. 7.1.3] and the definitions of functors s, RJps . We shall skip the proofs.

Lemma 3.2. Let f: My — Noo be a morphism of real analytic bordered spaces
associated with a morphism f M —> N of real analytic manifolds. The functors below
are well deﬁned

(1) tMoo: DY (kpr) = D (k).

(2) BMoo: Db(kM) — D (kpr,),

(3) () ® (): D (kp) x Dl (Ikpr,,) — Dl (Ikaso,),

(4) RThom(pr, (-).-): DY _ (kg )P x D (Tkps.o) — DB (Tkpr.,),
6 fh DIR (Tkny) = D (k).

(6) Rfi:Dhy (Ikpr,,) — Dip (k).

(1) f': Db (kn,,) — Db  (Ikpr,).

Let us describe the relation between ind-sheaves on M, and subanalytic sheaves
on M

ProrosiTioN 3.3. Let Moo = (M, M ) be a real analytic bordered space. Then we
have
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(1) a pair (Ip., . RIp,,) is an adjoint pair and there exists a canonical isomorphism
id = Ry, oIy

(2) there exists an equivalence of triangulated categories:

I
Db(kgub ) (RJ— DIR C(IkMoo)
Moo

Proor. (1) Let ¥ € Db(kj“,‘};) and G € D°(Ikpy__ ). Then we have

Hompo iy, ) (Moo ¥+ G) = Hompoqey, ) Ginge 1ig RiMeott 7, G)
= Hompys g )(F Ryl RIZRjp+G)

>~ Home(kﬁ )(J’{V,RJMOOG),

where in the first and third isomorphisms we used the fact that q = j A}io and the second
isomorphism follows from the pairs (j;lio, Rjmoox)s Uy RI ), (Rjpon, jA_lio)
being adjoint pairs. This implies that a pair (/p.,, RJ/p.,) is an adjoint pair.

Hence there exists a natural morphism id — RJs_ o Iz, of functors. Moreover,
for any ¥ € D°(Ikyy,_), we have isomorphisms in D®(Ikys,),

(RIMoo © Ino)(F) = jprt RI R jpoonjagt Lz Rjmoon ¥
~ jut Rz RIhom(u iz kar, Iz R jmoon )
~ jye RJzRIhom(Z 7 o5 kar . iz Rjmoon )
~ j;,ioRIhomS“b(pM]kM,RJMIMR]'MOO”{F)
~ oo RiMoor Sz, RiMoct

~ F,

where the first isomorphism follows from q = j A};, in the second and fifth iso-
morphisms we used the fact that R JMoox ] A_lio () = RThom(t 7 kpy, -), the third iso-
morphism follows from /,; o p >¢ = 137 [Modr () the fourth isomorphism follows
from the adjointness of (I RJ 57) and in the fifth we used the fact that id =
RJyo0ly

(2) First, let us prove that for any ¥ € DP (ksub )onehas Iy (F) € DIR c(Tkar,).
There exist isomorphisms in D°(Ik ;;),

RjMoot Moo (F) = Rjmon@l g Rjm o F = 7k @ 1 Rjm ¥
~ I (o km @ Rjp ),
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where the third isomorphism follows from [ ; o p 1171 =y |Modg ... (7) and the fact
that [ (- ® ) ~ I;() ® IM() Since IM(pM]kM QRjpy 1¥F) € DIR k7)), we
have R]Moo!!IMoo (F) e D Ik ). This implies I3, () € DIR kare,).

By (1), the functor Ips_, is fully faithful. Let us prove that the functor /ps_ is
essentially surjective. Let G € DIR (Ikaz.,). Then we have R jpr 1nG € DUR k).
By Theorem 2.1, there exists ¥ Db(k““b) such that Rjy,nG >~ I;; ¥ and hence
we have G ~ j Ml 1;; ¥ . Moreover, there exist isomorphisms in Db(I]k Maoo)s

It L RIMoc iagse F = Ja (k@ 15z F) = jagl Rjmoorings 1z F
~ ]M;IM

where in the first isomorphism we used
(RjMoott © jaro)O) = piz ke ® (), Iz 0 P%c = Uz IModg . (k )

and the fact that /5 (- ® -) >~ I;7(-) ® I;;(-) and in the second isomorphism we used
the fact that (Rjps 1 © jAjllo)(«) ~ tyky ® (-). Hence we have

G~ jat I ® > it TRyt i F = Intoo (agh. F)-

This implies that the functor /57, is essentially surjective.
Therefore, the proof is completed. |

We shall denote by
Ao Dl (Tkpre,) = D (ki
the inverse functor of Ip__: D® (]14&bub )y S DHR ckar,).

ProrosiTion 3.4. Let f: Moo — Noo be a morphism of real analytic bordered
spaces associated with a morphism f: M — N of real analytic manifolds. Then we
have the following:

(1) Ry RIhom(Ip (-),-) ~ RIThom*®(-, Rps..(-)).
(2) For any £ € DP(ky), any ¥, %1, 5> € Db(]kSub ) and any § € Db(kSub ), we
have
() opo M F =~ p;lloo’ff“,
(i) Inroopboat £ = Brtns £
(i) Ip, f16 ~ flIN_ 8,
iv) Rfwly F ~ In RMF,
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V) Inoo /16~ fUNE,
Vi) Iy (F1 ® F2) = Ty (F1) ® Ty, (72).
(3) Forany &£ € D°(kyy), any F € D°(Ikys, ) and any G € D°(Iky_), we have

(1) RIMootMo L = pMooxL,

(i) ppp RIpo F = o, F,

(iil) RIpoo BMocL = PMo1 L,

(iv) RfARJIy F ~ RJIN_ RS F,

™) Riy, f'G ~ f'RJN_G.

(4) Forany F,F, F, € D%’R{ (Ikar,), any G € D?]R»c (Ikn.,) and any £ EDE&-C (kary,),
we have

() IMoo PO wE = Mo L,
(i) Amo f7'G ~ f71ANG,
(iii) Rfurp, F ~ AN RfuF,
(V) Ao, (Fi ® Fa) ~ Ay (F1) @ App, (F2).

Proor. Since the proofs of the assertions in the proposition are similar, we only
prove (2)(i). Let ¥ € Db(ki‘,‘[‘;). Then we have

Moo Moo F 2 jag @ RiMoottfage Lz Rintoot F
~ jar' o gk ® Tz RjmonF)
~ jATIIaMLMkM ® j;,laMIMRjMOO”.‘F
~ ju' Pyg RiMoctt ¥
~ g, 7
where in the second isomorphism we used the fact that Rjas 1Jj A_lio >~k ® ()
and the fourth isomorphism follows from o ; o 17 =~ p};. ]

3.2 — Convolutions for subanalytic sheaves on real analytic bordered spaces

In this subsection, let us define convolution functors for subanalytic sheaves on real
analytic bordered spaces. Although it has already been explained in [8, §5.1], in this
subsection we shall explain it again in detail.’

(®) Kashiwara [8] introduced convolution functors for subanalytic sheaves on subanalytic
bordered spaces. In this paper, we shall only consider them on real analytic bordered spaces.
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Let Moo = (M, M ) be a real analytic bordered space. We set Ry, = (R, R)
for R := R U {—o00, 400}, and let € R be the affine coordinate. We consider the
morphisms of real analytic bordered spaces

5 P1,D2:M n
Mo xRy, —— Moo x Rog —> Moo

given by the maps p1(x,t1,12) = (x,11), p2(x,t1,12) = (x,t2), w(x,t1,82) == (x,t1 +
t;) and w(x,t) == x.
Then the convolution functors for subanalytic sheaves on My, X R,

+
() ® ():D° (k3P (r.,) X DY wr.) = D (K3P wr..)-
RIhom™*(. .): Db(k;;t;owa)Op x Db(k;;';oxRoo) - Db(k;;';oxRoo)

are defined by

+
F1 ® F2 == Run(py ' 71 ® p; ' #2).
RIhom™*®(F}, F3) := Rp1«RIhom*®(p; L 71, 1' 72),

for #1, %5 € Db(k;jzowa). Note that for any ¥, ¥, 52, 3 € Db(]kj&t;oxRoo) there

exist isomorphisms
T + lr0d lrod
F1Q 2 > F2
+ +
IR (F2® F3) ~ (F1

and
+ lrod [rod ~+,sub lrod
]k{tzo} ®F ~F ~RIhom™ (]k{t=0}, F),
where {t = 0} stands for {(x,7) e M xR | t = 0}. Henchr:, the category Db(k;‘}b )

xR
has the structure of a commutative tensor category with ® as the tensor productoiiunciz)r
and k;—oy as the unit object.
The convolution functors have several properties similar to the tensor product functor
and the internal hom functor. For a morphism of real analytic bordered spaces f: Moo —
Noo, letus denote by fr..: Moo X Rog = Moo X Roo the morphism f x idr, of real

analytic bordered spaces.

ProrosiTiON 3.5. Let f: Moo — Noo be a morphism of real analytic bordered
spaces, ¥, F1, 52, € Db(k;jiowa) and §,6,,5,, € Db(k%ZoXRoo)' There exist iso-
morphisms

+
RIhom™*(F; ® F», ) ~ RIhom™*"°(F;, RThom™*° (%5, F)),
+
Homl,b(]ksnudbmXROO)(f‘1 R F>, F) ~ Home(kﬁwxmw)(%,RIhom+’S“b(372, 7)),
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R fr o «RThom ™™ (fp! &, F) >~ RThom™ (&, R fr o« F).
—1 (g~ + lrog —1 + —1 ¢
TR, (F1® F2) >~ fr_ F1® fr P2,
RThom™*"* (R fp .1 7. §) ~ R fp . «RThom™**(F, fz _9),
+ +
RfR 1(F ® frl9) ~RfgnF ®9,
fr. RThom™*"° (g, ;) ~ RThom ™" (fg'! 41, f3_%2).

Proor. First, let us prove the second isomorphism. By using the adjointness, we
have

Hompge (%1 ® 7. F)
= Home(kwooxRoo)(RM!!(Pflﬁl ® Pz_lyz), )
~ Homppgege - (F1.R p1xRIhom™® (p; 1 %, ' %))
~ Home(mekw)(?l, RIhom™ (%, 7)).

Let us prove the first isomorphism. By using the second isomorphism, for any

7 b (7 sub : :
Fo € D°(k MooxRoo)’ we have an isomorphism

. +
Hompgeur - (Fo. RThom™**(F1 ® 52, F3))

~ Home(kZ‘?oox )(370, RIhom™*"°(%;, RThom™*"° (%>, 3‘73))).

Roo

Hence, we have
+
RIhom™*"° (%, ® F», F3) ~ RIhom™*"°(F;, RThom ™" (%5, F3)).

Let us denote by fr_: Moo X RZ, — Noo x RZ, the morphism f x idg>_ of real
analytic bordered spaces. Then there exist cartesian diagrams,

Moo xRZ, — X 4 Moo x Rog —F— My

fRoo O fRool O fJ,

where % = p1, p2, I, respectively. Hence, we have
1 = 1 b1
SR (F1 ® F2) =~ fr_ Run(py F1 ® p; F2)

~R r—1 —1 ¢ + —1 g
~Runfr (P71 F1Q p; F2)
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~ Fi—1 —1qg T Fi—1 —1gqg-

>~ Run(fropi F1® fr P2 ¥2)

~R -1 —137"'—1 -1

>~ Run(py fr o F1 ® py fr F2)
—1 ¢ + —1

~ fr P11 ® fr F2,

where in the second isomorphism we used Proposition 3.1(4) and in the third iso-
morphism we used Proposition 3.1(3). The remaining assertions can be proved in the
similar way. We shall skip the proofs. |

ProposiTION 3.6. Let 7,8, H € Db(k;‘,}t;o xRo,) and Fo € Db(k;‘,}t;o). Then there
exist isomorphisms

TR (F ) > (T R F)® Y,
RIhom™? (7! %o, RThom ™ (%, §)) ~ RThom™**(z1 %, ® ., 9)
~ RIhom™*"°(%, RThom*® (7' %y, §)),
R RIhom™ (F @ &, #) ~ Ror,RIThom™ (%, RThom™*" (g, ).

Proor. First let us remark that w o py = mwo pp = mwo .
By using Proposition 3.1(3), we have

+
7 Fo® (F ®9) ~ 7' Fo @ Run(py' F ® p3'9)
~ Run(u ' Fo @ (7' F ® p3'9))
~ Run(py'n ™ Fo ® (p7'F © p3'9))
~Run(py (x ' Fo @ F)® p;'9)
—1 = [rod +
> FRF)RE.

The second assertion can be proved in the similar way. We shall skip the proof.
Let us prove the last assertion. For any &, € DP (kj‘t}io), there exist isomorphisms

+
Homps gep (%o, Rr.RThom*™(F ® ¢, H))
+
~ Hompgear y (@160, RThom™™ (¥ ® §, H))
+
~ Home(kﬁ <R )(n_lgo [ (37 0%} g), e}()

+
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~ Home(kﬁmem)(ﬂ_lgo ®F, RIhOm"‘,sub(g’ ¥))
~ Homyy, ) (ﬁo, R« RIhom* (%, RThom™*"° (g, ]f))),

where in the third (resp. fourth) isomorphism we used the first assertion (resp. Proposi-
tion 3.5). Hence, we have an isomorphism

+
Rr.RThom™®(¥ ® ¢, #) ~ Rr RIhom*®(F,RIThom™ (g, #)). =

LemMma 3.7. Forany ¥ € Db(kj\‘}'loxRoo) and any § € Db(kil}zo), we have

e @ F ~ (& ® RmuF),
RIhom™ (7716, ) ~ 7'RThom ™" (&, R, %),
RIhom™¥ (%, 7'8) ~ 7'RIThom™*°(Rmy %, §).

Proor. Note that there exist cartesian diagrams (i = 1, 2):

Moo xR2, — X s Moy xRoo 24— My x R2,

e |

Moo XROO Moo Moo XRoo-

T

Then by using Proposition 3.1(3), (4), we have

g <§> F ~ R;Lu(pl_lﬂ_lﬁ ® p2_15‘7)
~Run(p' 778 @ py ' F)
~ 7 '8 @ Runp, ' F
~ 7' @ 'Ry F
~ 7 Y(F @ RunF).

The remaining assertions can be proved in the similar way. We shall skip the proofs. =

Since Rrnk <oy >~ Rmnky;>0y 2 0 and 7'k ~ kprxr, we have the following
corollary:

CoroLLARY 3.8. Forany ¥ € Db(]k;‘;;oxRoo) and any § € Db(kj}t;o), we have

+
POM oo xRoox (K03 ® Kir<0) ® 116 ~ 0

RThom™** (010 xRoox (Krz0y @ kir<oy). 7~ '8) 0,
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+
POMooxRooxlrrxr @ F =~ 7 'RunF (=~ n'Ry F[—1]),

RIhom™*"(pps  wr.skyxr, F) ~ 'R F (=~ 77 'R F[1)).
At the end of this subsection, we shall prove the following proposition:

ProrosiTioN 3.9. Let Moo = (M, M ) be a real analytic bordered space.

(1) Forany 1, %, € DP (ksub Ry, there exists an isomorphism in DO (Ikps xRo, )-

+ +
IMeoxRoo F1 @ IMooxRoo F2 =~ IMooxRoo (F1 @ F2).

(2) Forany ¥ € Db(kSllb «Reoo ) and any G € D°(Ikpr xR, ), there exists an isomor-
phism in Db(]kjl}b ><]ROO)

RJpr xr. . RThom™ (Iys xr., F . G) ~ RIhom™**°(F RJpy_ xr., G).

(3) The functor (-) ® (): El (kK pooxRoo) X B o (IKMooxRoo) = Dig o (KMo xR o)
is well defined.
sub )

(4) Forany Fy, F, € DHR  UkM xR, ), there exists an isomorphism in D°(k Moo xRoo

+ +
AMeooxRoo F1 ® AMooxRoo F2 2 AMooxRoo (F1 @ F2).

Proor. (1) Letus denote by S the closure of {(t1,%.13) € R3 | t; + 15 + t3 = 0}
in R3, and consider the morphisms p;, p», fi: S — R given by p1(t1, t2. 13) = 11,
Da(t1, 12, 13) = ta, ,u(tl,tz, t3) = t; + t, = —t3. We shall denote the corresponding
morphisms MxS—>MxR by the same symbols. Then there exists a commutative
diagram

Moo xR2, — % 4 Mxs

My xRy —— M xR,
IM oo >R oo

where u = p1, p2, jt, and k is the morphism associated to the embedding R? < S,
(t1,12) + (t1,t2, —t1 — t2). Note that for any Fy, F; € Db(IkMOOX]ROO) there exists an
isomorphism

- iy iy
Fi® Fa~ jyl p RAn(AT ' RjMaxRoott F1 ® P53 ' RijpxRoott F2).
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This assertion can be proved similarly to [1, Lem. 4.3.9]. Then we have an isomorphism
Inooxkos 1 © Itooxkos 2 = Jiz s REN (T R oo xRoctt Moo xR 51
® Py RjMooxRoo! Moo xR oo F2)-
Moreover, we have isomorphisms
DT R Moo xRoo !t Moo xRoo F1 2 BT RjMooxRoo! iz xR oo L7 xR IMooxRoo!t F1
~ o1 Cpagkmxr ® Lz, g RiMoo xR0t F1)
~ 1 U iiPi i KMxR ® L7, gRiMooxR oot F1)
~ 51 i (Piz s KMxR ® RjpooxRoott 1)
~ 15 Pt (P KMxR ® RijpooxRoott F1)
~ L5 P1 (R Moo xRoo!t e xR oo RUMoo xR ool F1)
~ 1 iz s (PT " RjMoo xR0t F1),
where in the second isomorphism we used the fact that
RjMooxRoo! 1o xRow = Lizx KM xR ® ()
and in the sixth isomorphism that
RjMooxRoolt b xRy = PitxsKMxR ® ().
See also the end of Section 2.3. In a similar way, we have an isomorphism
75 RjMeoxRoot IMooxRoo P2 = iz, o (55 'RjMoo xR oot F2).
Hence, there exist isomorphisms
Moo xR oo 1 & IM oo xR oo 2
~ e mo RN 7 s (PT R Moo xR0t F1 ® 3 'R xRoo!t F2)
~ Jare oo Lt @ RN (DT R jMooxRoo 1 F1 ® Pa ' RjMooxRoolt F2)
~ IM oo xR oo J b xR RN (PT R Moo xRt F1 ® P RjMoxRoot F2)
>~ InooxRoo Rtk ™ (Rkn p7' 71 ® Rk py ' 72)
~ IMooxRo RI(PT 1 ® py ' F2)

+
>~ IMooxRoo (F1 ® F2).
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(2) By using Proposition 3.3(1), 3.5 and assertion (1), for any ¥ € Db(k;‘,‘};oxRoo),

we have the isomorphism
Homp g (Fo, RJpr xR, RThom™ (Ipg, xr.. . G))
~ Homp g (%o, RIhom ™ (%, RJpy xr.,G)).
Hence we have

RJpr xR, RThom™ (Ipr, k., F . G) ~ RIhom ™" (¥, RJpy xRk, G).

(3) Let Fyi, F» € Dy .(IkprooxRo,)- By Proposition 3.3(2), there exist %1, %> €
Db(k;}'io) such that Fy =~ Ip._xr., F1, Fa =~ Ip. xR, F2. Moreover, by using the
first assertion, we have

+ +
F1® Fr >~ I xRoo F1 @ IMooxRoo F1 = IMoo xR (F1 @ F2).

+
This implies that F; ® F, € D%’R_ Ik xR, ). The proof is completed.

(4) This assertion follows from Propositions 3.3(2) and assertion (1). ]

3.3 — Enhanced subanalytic sheaves

In this subsection, let us define enhanced subanalytic sheaves similarly to the
definition of enhanced ind-sheaves. The results are summarized by the following
(non-commutative) diagram. Functors ¢*** and Ish™® will be defined in Section 3.4

sub

‘Moo
D (K ) ——Qmeo— EP(KSR )i= DP(K} Lp )/7 DMK )
o0 o0 o0 o0 o0 (e o}

Ry

sub sub
Moo Ish Moo

Roproo!
D* (k) ~ D°(kpr) —Proo—, DP(K3P).
RoM o0+

Let Moo = (M, M ) be a real analytic bordered space and set Roo := (R, R) for
R := R LI {—00, +00}. Let us set

Eb(k;;l;o) = Db(kj;l};owa)/n—ll)b(k;;go)
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and we shall call an object of E° (k;ﬁ‘lboo) an enhanced subanalytic sheaf® on M. The
category 7~ 'DP (k;‘}boo) can be characterized as follows:

Lemma 3.10. For ¥ € Db(k;‘,}t;o xRy, ) the following five conditions are equivalent:
(i) F e n_lDb(k;}t;o ,
~ +

(i) F — kuyxr[l]® F,
(iii) RThom™**®(kpsxr[1], F) = F,

. +
(V) (kg0 ® kir<op) ® F =0,

(v) RThom™***(k >0y @ kr<oy, F) = 0.

Proor. By using a distinguished triangle

+1
ki>0y ® kir<oy — kyp=0y — kmxr[l] —

and the fact that k¢, —oy é F ~ F (resp. ¥ ~ RIhom™* (k;=0y, ¥)), we have that
condition (ii) (resp. (iii)) is equivalent to condition (iv) (resp. (v)).

Let us prove that the three conditions (i), (ii), (iii) are equivalent. Let us assume
that condition (ii) (resp. (iii)) is satisfied. Then we have

~ + ~
F S kyxr ® F[1]  (resp. RThom™* (kg [1], F) = F).

By Corollary 3.8, ¥ = 7~ 'Ry [1]F (resp. n " 'RmF < F). Hence, condition
(1) is satisfied.

Let us assume that condition (i) is satisfied. By using Proposition 3.4(2)(iii), we
have Iy xr., F € m~'D°(Ikpy, ), and hence by [1, Lem. 4.4.3] we have

—1 ~
7 Ry xR F — I xR F s

~ |

IMOOXROO}V —> JT'RJZ”IMooxROOf{V.
By using Proposition 3.4(3)(iv), (v) (resp. (2)(iv), (v)) and Proposition 3.3(2), we have
T 'R F =5 F  (tesp. F = 7'Ray 7).

By Corollary 3.8, this implies that condition (iii) (resp. (ii)) is satisfied.
Therefore, the proof is completed. ]

(6) In [8], it seems that an object of D® (k;‘j}’mew) is called an enhanced subanalytic sheaf.
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Let us prove that the quotient functor
Qbub Db (k;;t;o R) = EP (ksub
has fully faithful left and right adjoints. By Corollary 3.8, the two functors
LE,sub: Eb(ksub ) — Db(kzljll; R
Qi (F) > P xRoox (Kirz0} D kir<o}) ® 7,
RE ,sub, Eb(ksub ) = Db(k?‘l}l;oXRoo)’
Qi (F) > RIhom™ ™™ (pps_ xRoox (grz0y @ Kr<0y). F)
are well defined.
LemwMma 3.11. The functors Li’;;b, R];,}ib induce equivalences of categories
Ly B (K5 ) > {F €Dy (p.) | PMooxRoox (Kirz0) © Kir<o}) ¥
~ 5,
R EC(kGP ) S {F eD (K5, .p..) | F = RIhom ™ (opr xRoo (Kir>0)
k<o) F)}.

respectively.

Moreover, the quotient functor admits a left (resp. right) adjoint Lﬁjub (resp. Rﬁjub ).

Proor. By Corollary 3.8 and the fact that for any K € E° (]kj\‘}boo) there exists an
isomorphism

~

+
PM oo xRoor (Kir>0y ® Kir<oy) ® L K = LUK,

the functor
+ ~ g
Ly B0 () = {F € DY (GP kL) | Moo xRoos (K20} ® Kpy<o) @ F = 7

is well defined. Let K € E°(k} ). Then there exists ¥ € D°(kjy g ) such that
K ~ Qyp_¥ . Let us prove that

wb (PMooleoo*(k{»o} S k{t<0}) ® «77) wb (f)

Since there exists a distinguished triangle

+1
kii=0y @ kir<0y — kir=0) — kmxr[l] —
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+
it is enough to show that qub (OM oo xRooxkmxr[1] ® F) =~ 0. This assertion follows
from Corollary 3.8, so that we have

QIR LA K 2 Q3P (b xitoes (kpr0y ® ko)) ® F) = Qi (F) =

Hence we have qub o LE St ~ jd. Moreover, it is clear that for any

o~
91 € {F eD°(kyp wro,) | PMcoxRoox (Kirz0) @ kr<o) ® F = F},
we have LY, SUbQSub (61) ~ &,. Therefore, there exist equivalences of categories

~

+
L™ B0k ) S5 {F €DP (R ) | Pbtooxoos (Kir0y @ Kr<0) ® F 5 F ).
Using a similar method, we have an equivalence of category

Ry E°(kyp ) S {F €D (k5P L g..) | F > RIhom™ " (opr xk oo x (K0}
®k<oy). F)}.

Let us prove that the quotient functor admits a left (resp. right) adjoint L (resp

ﬁ,;ub) Let ¥ € D"(]kSub «Ro,) and K € Eb(k;‘,’};o). Since functors Lﬁlluob, Rﬁ,llib
induce fully faithful functors

Lﬁz:b: Eb (k;l/llt;o) s Db (k;&t;o Ro ) i RE sub, Eb (]ksub ) s Db (k;l}t;o XROO)
and Proposition 3.5, there exist isomorphisms

Homgy geun Qi 7. K)

~ HOme (k}ﬂ}’ . )( sustub lrod IEubouob K)

~ + E,sub

~ Home(kﬁooxRoo)(pMooX]ROO*(k{tZO} ® k{;go}) ®F, LMoo K)

= Home(ksub  xRoo) (3"7 RThom* (PMOOX]ROO*(k{tZO} @ k{tﬁO})a L%JiuobK)),

HomEb(ksub ) (K QSUb r\-')
N E,sub E,sub b
~ Home(k;\li}’ooXRoo) (RMS:O K, ll]uiuO Qil}oo JT)

~ HomDh(ksub RziuobK, RIhom™ (pMooXRoo*(k{tzo} &) k{tso})’ .77))

MQOX]ROQ)(

+ .
~ Hompogego ) (OMooxRoox (K120} ® kir<0)) ® R;K. 7).



Y. Ito 196

Let us prove that there exist isomorphisms in D® (]kj};;o XRoo):

RThom ™ (ppr xR oo x (K(rz0y @ kyr<0p). Liyp o K) ~ RyK,

+
PMooxRoox(Kir>0} @ Kir<o0}) ® RﬁisubK = LﬁiiuobK'

(o]

Since K € E°(kjp ), there exists Fo € D°(k} ) suchthat K ~ Q}pP Fo. More-
over, there exists Fy € D}’R_ (koo xR ) such that Fo >~ Aps xR, Fo by Proposition
3.3(2). Then we have isomorphisms
, +
RThom™t ™™ (par xRoox (Kirz0 ® Kir<0})s PMoo xRoox (Kirz0} ® Kir<oy) ® Fo)
~ RIhom™ " (opr, xR o (Kir20y @ ki<0)),
+
AM oo xR oo LMoo xRoo (Kir=01 @ K{r<0}) ® AMooxRoo Fo)
~ RIThom™** (oaro x®oo (kg2 0y @ k<o),
+
AM oo xR oo (1Moo xRoo (K(r>0y D Kir<0}) ® Fo))
~ Ry xRoo RIhom ™ (tp1. xR o (Kr>01 @ kir<o})s
+
LMoo xRoo (k{tzo} @ k{tso}) ® FO)
o~ RJMOOXROORIhom+(LMOOXRoo (k{,zg} (&%) k{tﬁO})’ F())
~ RIhom™**®(ppr. xR oo+ (K103 D Kir<0})s AMoo xRoo Fo)s

where in the first isomorphism we used Proposition 3.4(3)(i), in the second isomorphism
we used Proposition 3.9(4) and in the third and fifth isomorphisms we used Propositions
3.4(4)(1) and 3.9(2). In the fourth isomorphism we used the fact that for any G €
DP(Ik s xR.,) there exists an isomorphism in DP(Ik a7 xR, ):

+
RThom™ (tar xRoo (Kir0) D Kir<0}) Moo xRoo (Kirz0} ® Kir<0y) ® G)
~ RThom™ (ta1oo xR oo (K {10y @ kr<0}). G).

This assertion can be proved similarly to [1, Cor. 4.3.11]. Hence there exists an isomor-
phism in Db(k;‘,‘};wa):

RIh0m+’SUb(pMooXRoo*(k{ZZO} b k{t50}), Lﬁf;bK) ~ R;:l;;bK
Moreover, we have isomorphisms
& 5 frog
PMooxRoox (Kir=0y @ kir<0}) ® RIh0m+’SUb(PMOOxROO*(k{zEO} ® k{r<o0}). Fo)
= )LMOOXROOLMOOXROO (k{lzo} 2] k{tgo})

+
® RIThom™*** (par. xReox (Kirs0) ® Kr<0})s AMooxR oo Fo)
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2 AMooxRoo tMooxRoo (Kir>0y ® kir<0})
® AMooxRoo RThOM ™ (a1, xR oo (k1503 D kir<0}). Fo)
2 AMooxRoo (LMoo xRoo (K(e>0y @ kir<0})
é RIhom™ (tp10o xRoo (ke 203 @ kir<0}). Fo))
2 AMooxRoo (Moo xRoo (Kir=0y @ Kkir<o}) é Fo)
2 AMooxRoo Moo xRoo (Kir>0y @ kir<o0}) é AMooxRoo Fo.

where in the first isomorphism we used Proposition 3.4(3)(i), in the second iso-
morphisms we used Proposition 3.9(2) and in the third and fifth isomorphisms we
used Proposition 3.9(4). In the fourth isomorphism we used the fact that for any
G € D°(Ikps_ xR, ) there exists an isomorphism in D®(Ik s xR, ):

ootoe (E(r0) © K <0y) ® RTDOM (1o (fr0) @ Ko <03). G)
2 Moo xRoo (Kir> 0} ® kir<0}) ®G.
This assertion can be proved similarly to [1, Cor. 4.3.11]. Hence there exists an isomor-
phism in D° (k3 p )
PMaorBocn ((120) @ Kpr<0p) © REK ~ LEK.
Therefore, we have
Home(kﬁ )( ’subQSub ¥ ﬁ,}ibl() ~ Home(k;udwakoo)(?,R]i}ibK),
Hompsgege (RyK, Rﬁ;j‘jQ;‘;go F) = Hompugen Ly K. 7).
and hence there exist isomorphisms
HomEb(kbub )(Q“’b F,K) ~ Home(ksub . OO)(BC' ,Rﬁ,}:;bK),
Homgy (e (K. QP %) = Hompgean Ly K, ).

E,sub E,sub
).

Therefore, the quotient functor admits a left (resp. right) adjoint Ly;” = (resp. Ry;” 7). =

We sometimes denote QSub (resp. LE P E/’IS:Db ) by Q" (resp. L=, R%) for
short. Let us set
<O(k§ub ) — {K c Eb(kgub ) | LE::bK S DSO(kE&ZOXROO)}’
EZ0(k5P ) = {K e BP(S ) | Lﬁj“bK e D> (k5 r. )}

where (D=(k}p_ p_),DZ°(k}p_ & ))isthestandard t-structure on D* (ke ).
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ProposiTION 3.12. A pair (Efo(k;‘,‘[boo), Ezo(k;‘,}boo)) is a t-structure on EP (kj‘jl;o).

Proor. Itis enough to show that for any K € EP (k;‘,’};) there exists a distinguished
triangle
+1
Ki—K—K; —,
with K; € Efo(k;jt;o), K; € EZl(k;‘;‘;).
Let k € E°(kpy.,). Then there exists a distinguished triangle

E,sub

+1
F1— Ly, K—>f2—>

in D° (kS ? xRo,) With F1 € D<0(]1<sbub <R 2 € D=1 (kP ) xR,)- By Corollary
3.8 and Lemma 3.11, we have an isomorphism 7 lngLﬁ,I:;bK ~0inD°(kypP g_.)
and hence we have an isomorphism

JT_IRJT”.(Fl[l] ~ JT_IRﬂgy?z

in D° (ki‘}b «Ros ). Since functors Ry and 77! are left t-exact with respect to stan-

dard t-structures, we have 7~ 'Ry %, € D=! (kS xR, )- Since functors Ry [1] and
1 are right t-exact with respect to standard t-structures, we have 7~ 'Ry F1[1] €
D=°(k}p g )- Therefore, we have

7! Ran51[1] ~ 7 'Ry Fr ~ 0
and hence there exist isomorphisms
LyoQ ™ (F) = F1. Lyt Q" () = 7,

in DP (]1<§Sub » xR.,) and a distinguished triangle
(lsubg;-1 — K —» ()sub$~2 +1

in E (k;‘,‘};o ).
The proof is completed. ]

We denote by
Jen: Eb (kbub ) — EO (ksub )
the n-th cohomology functor, where we set E®(k}p ) := E=°(kjp ) N E=%(k}p ).
By Proposition 3.6, the convolution functors can be lifted to the triangulated category
E° (k3 ). We denote them by the same symbols ®, RThom™**". Namely, we obtain
functors

() ® () Eb(ka ) % Eb(ksub ) — Eb(ka
RIhom™ (-, ): E (kjp )™ x E°(kjyp ) — E°(K3p.)
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which are defined by

sub (37) ® qub (ﬁ) _ qub (37 é g)
RIhom"‘ Sub(qub (f) qub (g)) Sub (RIhom+ sub(j, g))

for 7,9 € D° (k;‘j};o XROQ). Moreover, by Proposition 3.1(4), for a morphism f: My, —
N of real analytic bordered spaces, the following functors are well defined:

Ef* Eb(kﬂub Eb(kSUb ) qub [rod sub (Rf]Roo*f)
Ef 1. Eb(ksub ) — Eb(ksub , qub € > qub (f]Roog)
Eﬁv Eb(k%ub ) — Eb(ka )’ qub 2N qub (RfRoo”f)’
Ef Eb(ksub ) s Eb(ksub )’ qub € qub (f]Roog)
Let us define external hom functors
RIhomE sub( ) Eb(kSUb )Op % Eb(kSUb ) - Db(ksub )’
RJ(OI’HE sub( ) Eb(kSUb )op % Eb(kSUb ) — Db(kM),
RHomE sub( ) Eb(ksub )op % Eb(ksub ) — Db(k),
by

RThom™"™(Q3P_#1 Qj&b %5) := R RIhom™® (%1, %),
RJfomE sub (qub sub 372) — pMOO*RIhOInE (qub \?'1 i qub 372)
RHOII]E sub (qub rv sub f’z) — RF(M RHom (qub r~ qub J“z)),

for 1, %> € E°(k5y  «r..)- Note that for any Ky, K» € Eb(k;‘,’,';), we have

Homgs g (K1, K2) > FHORHom"*" (K, K>).

Moreover, for %, € DP (k;‘f;o) and ¥ € D° (k;‘,}';xRoo), the objects

—1 F 0 ® qub lrod qub (7.[—1370 ® rv)
RIhOInsub(JT 1‘?' qub y) — qub (RIhOl’nsub(ﬂ_IJ’(), qub ‘?'))
are well defined and hence the following functors are well defined:

—1() ® () Db(kwb ) % Eb(ksub ) — Eb(kwb
RIhomsub(Tr—l() ) Db(ksub )op % Eb(ksub ) — Eb(kmb

At the end of this subsection, let us prove that these functors have several properties
similar to classical sheaves.
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ProposITION 3.13. Let f: Moo — Noo be a morphism of real analytic bordered
spaces.

(1) () Forany Ky, K5, K3 € Eb(k;‘};), one has
+
RIhom™*"°(K; ® K>, K3) >~ RThom™*"*(K;, RThom™*"*(K,, K3)),
+
RIhom®™*"°(K; ® K>, K3) ~ RIThom™*"®(K;, RThom™*"*(K>, K3)),
+
RHom™*"*(K; ® K», K3) >~ RHom™>*"°(K;, RThom™*"°(K,, K3)),
+
RHom™"*(K; ® K, K3) ~ RHom™*""°(K;RThom™*"(K,, K3)),

+ ,
HomEh(kj‘L;lb )(K] &® K2, K3) x>~ HomEb(ksj“g}) )(Kl, RIhOmJ";Sub(KZ’ K3))
(ii) Forany K € Eb(k;‘,‘};o) and any L € Eb(kj{‘,':o), one has

E fRIhom™***(E 'L, K) ~ RThom™*"°(L E f, K),
R f,RThom™"(E f 7L, K) ~ RThom™" (L, E £, K),
R £, RHom>*°(E f 1L, K) ~ R¥om™"° (L, E £, K),
RHom™"°(E f~!'L, K) ~ RHom™*"°(L,E £, K),
HomEb(kﬁoo)(Ef_lL, K) ~ HomEb(kmo)(L, Ef.K).

(iii) For any K € Eb(ki‘}boo) and any L € Eb(kﬁ{‘,zo), one has

RIhom™**(EfiK, L) ~ E fuRThom**"*(K, Ef'L),
RIhom™"(E fi K, L) ~ R fuRThom™"(K,Ef'L),
RJComE*"(E £, K, L) ~ R fyRHom™" (K, Ef'L),

RHom™"(E f;, K, L) ~ RHom®*"*(K, Ef'L),

HomEb(th};o)(Eﬁ!K, L)~ HomEb(kﬁW)(K’ Ef'L)).

(2) Forany K, K1, K, € Eb(kj‘,}zo) andany L, Ly,L, € Eb(k%';o), one has
-1 iy R
Ef 7 (Ki®K) ~Ef K1 QEf 7 Ko,

+ +
EMKISIEf'L)~EMK®L,

E f'RIhom™**®(Ly, L) >~ RIThom™*(Ef~ L, Ef'L,).
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(3) For a cartesian diagram

My —— Noo

and any K € E° (]kj\‘}boo), one has

Eg 'EfnK ~Ef E¢" 'K, Eg¢'EfiK ~Ef/Eg"K.

4) () Forany ¥ € Db(]kgub ) and any K1, K, € Eb(]k“ub ), one has

RIhom™*°(z ' F @K, K»)
~ RIhom™*° (K, RThom*®(n "1 %, K>))
~ RThom*® (7! % RIhom™*** (K ,K>)),

RIhom®** (7 'F QK;, K»)
~ RIhom®*"*(K;, RThom*® (1%, K,))
~ RThom®™®(F, RThom™* (K, K>)),
RHom®° (7 ' F K1, K7)
~ RHom®** (K|, RThom*®(n "1 %, K;))
~ RHom™®(F, RThom®*"* (K, K>)),
RHom™*™* (' F QK K>)
~ RHom®*""*(K;, RThom*®(# ™1 ¥, K>))
~ RHom(¥ , RThom™" (K1, K3)),
~ Homp s (K1, RIhom*™® (71 %,K>))
o~ HomDh(kj‘u;oo)(}”, RIhom®*"°(K |, K>)),

201

(ii) Forany ¥ € Db(ki‘}‘;), any § € Db(kj{‘,';o), any K € Eb(kj‘}’;) and any L €

EP (ki\‘}zo), one has

Ef ' '$QL)~a ' fT'$F QEfL,
Efma 'FQEf ')~ 'RAMF L,
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Efi(x ' fT'F @ K)~ 7 'F QEAK,
Ef'RIThom™**(x~'¢, L) ~ RThom™**(x~' f1¢ Ef'L).

(iii) For any ¥ € D (k;}t;o) and any K, L € E° (kilfllt;o) one has

—1 ¢ + -1 ¢ +
7T FRQ(KQL)~(nT FRK)® L,
RIhom™® (7 1%, RIThom™*"(K, L)) ~ RThom™***(z7'¥% ® K, L)
~ RThom™***(K, RThom** (1%, L)),
+
RIhom®™" (K ® L, ) ~ RThom™*"*(K, RThom™*"°(L, ¥)).
Proor. (1)(i) The first (resp. second) assertion follows from Proposition 3.5 (resp.

Proposition 3.1(2)). The third (resp. fourth, fifth) assertion follows from the second
(resp. third, fourth) one.

(i) The first (resp. second) assertion follows from Proposition 3.5 (resp. Proposition
3.1(2)). The third (resp. fourth, fifth) assertion follows from the second (resp. third,
fourth) one.

(iii) The first (resp. second) assertion follows from Proposition 3.5 (resp. Proposition
3.1(2)). The third (resp. fourth, fifth) assertion follows from the second (resp. third,
fourth) one.

(2) The three assertions follow from Proposition 3.5.

(3) The two assertions follow from Proposition 3.1(4).
(4)(1) The first assertion of (i) follows from Proposition 3.6.
The second assertion of (i) follows from Proposition 3.1(2).

The third (resp. fourth, fifth) assertion of (i) follows from the second (resp. third, fourth)
one.

(i1) These assertions follow from Proposition 3.1(3), (4).

(iii) These assertions follow from Proposition 3.6. [ ]

3.4 — Relation between enhanced ind-sheaves and enhanced subanalytic sheaves

In this subsection we shall explain the relation between enhanced subanalytic sheaves
and enhanced ind-sheaves. The results are summarized by the following commutative
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diagram:
C Moo
D (k3p.) D*(Tkpr,, )
> RJ Moo
shiyp T e Ishafoo | | €Moo
C Titoo
E°(k3 ) E"(Ikpr,, )
I oo
Moo
Eg (57, Efp (k)
Iy
\ U
Moo

E%_C(IkMOO).

Theorems 3.15 and 3.20 are two of the main results of this subsection and this paper.
Let Moo = (M, M) be a real analytic bordered space. Let us consider a quotient
category

E%R—c (IkMoo) = D?]R—c (IkMoo XRoo)/n_lD})]R—c (IkMoo)

Note that this is a full triangulated subcategory of E°(Ik s, ) by using 77 ! D}’R_ ckar,)
= 77 1DP(Ikps ) N D'I’R_c (Ikpr..xRo) and [9, Prop. 1.6.10]. Note also that ]k%loo €
E'I’R_ - (Ikaz., ). Moreover, Proposition 3.14 below follows from Lemma 3.2 and Propo-
sition 3.9(3).

ProprosiTiON 3.14. Let f: My — Noo be a morphism of real analytic bordered
spaces associated with a morphism f : M—>N of real analytic manifolds. The functors
below are well defined:

(1) eMoo:D})]R»c(IkMoo) —> E?]R.c(lkMoo)’

@) () ® () Eby (k) x By (kpr) — B (Tkpr.,),
(3) Ef"LER (kyy) = ER (k).

4) E fiu: Eb (Ikp,) — Ep (k).

() Ef":EYy  (kny) — E% . (kar).
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By Proposition 3.4(2)(iii), (3)(v), the following functors are well defined:

Iy B3P ) — EP(Ikar,). Qi F > Quroe IMooxRoo F -

T tE(kpr) = EPKSR). Quoo F > Q4 RUpooxRoo F-

THEOREM 3.15. Let Mo, = (M, ]\7[) be a real analytic bordered space. Then we

have

(1) a pair (1 IIIE/IOO’ J IEIOO) is an adjoint pair and there exists a canonical isomorphism
id = Jy_oly

(2) there exists an equivalence of triangulated categories:

1,';3400
EP(3) = Ejg (k).
oo

Proor. (1) This assertion follows from Proposition 3.3 and Lemma 3.11.

(2) Since the functor Ip. xR, : D° (k;‘)]zoxRoo) — Dl (K pooxRoo) is well defined,
for any K € E°(kjyy_) we have

Iy K = Qutoo It xRoo Ly K € Bl (Tkipg,, ).

LetL € E?R_c (Ikaz..)- Then there exists G € D?R_c (Ikpro xRo, ) suchthat L >~ Qpr G
and hence

Iy Ry L > Qoo I xRo RIMoo xR0 G 2 Qa1 G = L,

where in the second isomorphism we used Proposition 3.3(2). Therefore, the proof is
completed. |

We shall denote by
Myt Elp (k) = E° ()

the inverse functor of / AF;IOO: E® (k;‘,‘lboo) = E}’R_ (Ikpz,, ). There exists a commutativity
between the various functors and functors 7E, JE, AE as below.

ProposITION 3.16. Let f: Moo — Noo be a morphism of real analytic bordered
spaces associated with a morphism f: M — N of real analytic manifolds.

(1) Forany K, K, K, € Eb(k;‘,’};) and any L € E°(Ikpy_ ), we have

: E + E + E
(1) IMoo(Kl ® Kz) ~ IMooKl ® IMooKz,
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(i) Jy; RIhom™ (I, K,L)~RIhom™"*(K, J5 L),
(iii) RJpo,RThom" (7}, K, L)~ RIhom™"(K,Jf; L).
(2) Forany K € Eb(k;}zo) and any L € Eb(kﬁ}zo), we have
(1) IAE,IOOEf_IL ~ Ef_ll};:,ooL,
(i1) Ef”IA]“fIOOK ~ I;:,OOEf”K,
(iii) 15y Ef'L~Ef'I§ L
(3) Forany K € E°(Ikpy_ ) and any L € E®(Iky_,), we have
@) Ef*JAEJOOK ~ JII\“:,OOEf*K
(i) Jy Ef'L~Ef'JL L.
(4) Forany K € EIR (kpr,) and any L € EIR cIkn,,), we have
i) AL, JEfT 1L':Ef s L
(ii) Efull, K ~ Ay EfiK,
(iii) AE (K1 ® K>) ~ )tE K ® l Ko

Proor. Letusdenote by fr..: Moo X Roo = Noo X Reo the morphism f X idgr,
of real analytic bordered spaces.

The assertions of (1), (2) and (3) follow from Propositions 3.4, 3.9. Let us skip
the details. Since the proofs of (4)(ii), (iii) are similar, we shall only prove (4)(i). Let
K e E%R kar), L € EI]R Ik, ). Using (2)(i) and Theorem 3.15(2), we have

M Ef 'L~y Ef 7Ny AN L~Ay Iy Ef~'A% L
~Ef'A5 L. n

Let us prove that the functors [ Eoo, J AEIOO preserve the R-constructibility. Let
us recall that an enhanced ind-sheaf K on My is R-constructible if for any
open subset U of M which is subanalytic and relitively compact in M there exists
F € DR (ku,xRo,) such that Bij)! K ~ ki ® QuUo,lUeoxRa F - We denote by
EE{{» - (Ikar,,) the category of R-constructible enhanced ind-sheaves. See [2, §3.3] for
the details.

We shall set

kpe = Qi (M paooxreoskiiza) € V(7).

a——+oo

LemMA 3.17. There exist an isomorphism 1y, kE Sub ]kE in E°(Ikps.,) and

an isomorphism Jy; Ky~ kE sub in EP (k) )
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Proor. By the definition of kﬁlm, we have

E —1 @ o
k o — QMooJMOOXROO( li)n [Mka{tZa})'
a—+o0
Slnce IMX]R °© ’OMX]R*
inductive limits, there exist isomorphisms in D?(Ik

> L7 g and the fact that a functor / commutes with the filtrant
MxR):

“ h_r>n ” LMX]I_Kk{lZa} = IMX]R( h_r>n PMX]?R*k{tZa})'
a—>+00 a—+00

Hence, we have

E ~ .—1 - _ . . ~ 7E E,sub
Koo = Qboo JatogxRoo i ( lim Pirxski=ar) > I, K, -
a——+0o0

The second assertion follows from the first assertion and Theorem 3.15(1). ]

Prorosition 3.18. The triangulated category E'ﬁ%_ (kpr.,) is a full triangulated
subcategory of E?R_ (Ikar).

Proor. Let K € Eg_ (Ikp). Since a pair (Iy;_, Jy; ) is an adjoint pair, we
have a morphism / IEIOO J IFIOOK — K in E°(Ikyys.,). Since K is R-constructible, for
any open subset U of M which is subanalytic and relatively compact in M there
exists FU € Df_(kyy,xRo,) such that Eig! K ~ ki ® QuttsxkeoF Y. By
Proposition 3.4(4)(i), Theorem 3.15(2), Proposition 3.16(1)(i) and Lemma 3.17, we
have

+ +
kE, ® Qua tWooxRoo ¥V 2 15 (k1™ ® Qi pUaexRoox FU) € Bl (k).

This implies that for any open subset U of M which is subanalytic and relatively
compact in M ,Ei [_/:O K e E'I’R_ .(Iky,,). Hence, by Proposition 3.16(2)(i), (3)(ii) there
exist isomorphisms

g I Bvse > I 5 (Klus) ~ Klug,

for any open subset U of M which is subanalytic and relatively compact in M. This
implies that Iy; Jy; K —> K and hence K € Efy  (Ikar,,). ]

DEeriniTION 3.19. Let Mo = (M, M ) be a real analytic bordered space. We say
that an enhanced subanalytic sheaf K is R-constructible if for any open subset U of M
which is subanalytic and relatively compact in M there exists ¥ € Dlﬂ@- (KUgoxRoo)
such that

+
.—1 ~ T.Essub sub Preg
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Let us denote by Eg& ¢ (kj\‘}boo) the category of R-constructible enhanced subanalytic
sheaves.

THEOREM 3.20. Let My, be a real analytic bordered space. Then the functors I o
J IEIOO induce an equivalence of categories

1};3400
Bp o (57,) ——=— Ej (ku).
Moo

Proor. Itis enough to show that the following functors are well defined:
Iyg B (&3P ) — B (k). JapEg (Ikar,) — ER (K3

Since the proofs of them are similar, we shall only prove that / IEIOQ is well defined.
Let K € E%» ¢ (k;}t;o) and U be an open subset of M which is subanalytic and

relativeiy compact in M . Then there exists U € D%_ o (KUsoxRo ) such that Ei 5; K~
ki @ Q4P pMooxRooxF U By Propositions 3.4(4)(i), 3.16(1)(), (2)(i) and Lemma
3.17, there exist isomorphisms

o+
Eij! Iy K~ Ifj_Eig! K ~If (ki @ Qi pMooxRoox F V)
+
~ ]klg}oo ® QMooLMooXRoo‘T/U
Therefore, we have Iy; K € Ey  (Ikp,,). n

Let us summarize the results of Proposition 3.18 and Theorems 3.15, 3.20 in the
following commutative diagram:

C 11];:400
EP (k5 ) E"(Ikp.)
oo JE
Moo
IE
U Lo U
Moo
E} (570 Efg  (kas.)
Iieo
N U
2E,

Eb . (Ikar,)-
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At the end of this subsection, let us consider an embedding functor from DP (k;}boo)
to EP (k;‘,}zo) and a Verdier duality functor for enhanced subanalytic sheaves.
Let us define a functor

ey D) — BNk ). F o' F @k

By Proposition 3.21 below, we have the following commutative diagrams:

sub

DO(kyp ) — = E°(kjp) Dl (ku) — = By (k)
Db(IkMoo) T Eb(IkMoo), Db(]kil}b ) —b> Eb(k?j{b )
oo 0o ej[l,lloo 0o

ProrosiTion 3.21. Forany ¥ € Db(k;‘}t;o) and any F € D?RC (Ikas.,), we have
111\5,100613‘;20$ ~ eMooIMoof/‘:, eISlBI];oAMooF :AE/IOOeMooF'
Moreover, the functor e;};: Db(k;‘,}t;o) — EP (k;‘}'lo) is fully faithful.

Proor. Let ¥ € Db(k;‘,}';). By Proposition 3.4(2)(iii), (vi) and Lemma 3.17, there
exist isomorphisms in E°(Tkpy_):

E sub ¢ ~ JE E,sub -1 ~ T.E -1 T

Let F € D?R_ - (Ikaz., ). By Proposition 3.4(4)(ii), (iv) and Lemma 3.17, there exist
isomorphisms in E° (k;‘j};o ):

ey Mmoo F 2 Kip® @ m ' Ao F o Ay Ky @ m7 ' Anoo F = Ay em,, F.

Let 1, %, € Db(k;‘}’;). By Proposition 3.3, the functor Ip,: D*(kyp ) —
DP(Ikyy,,) is fully faithful and hence there exists an isomorphism

Home(kﬁm)(ﬁﬁ, 372) ~ Home(IkMoo)(IMoo?’I’ IMoof’z)

Since the functor eps__: D°(Ikyps. ) — E°(Ikys, ) is fully faithful, we have an isomor-
phism

Home(I]kMoo)(IMoo 371 s IMoo .772) x>~ HomEb(IkMoo)(eMoo IMoo 371 y €Moo IMoo .772).
Moreover, by the first assertion, we have

Homgs ik ) (€Moo IMoo F1. Moo IM oo F2)

~ E sub E sub -
~ HomEb(IkMoo)(IMooeMoofFl, IMooeMoo‘ﬁZ)'
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By Theorem 3.15, the functor / 11\”:400 :EP (]k;‘}b ) — E°(Ik ) is fully faithful, and hence
HomEb(lkMoo)(IIEI e;}b Tl , IAEl e;}b \772) HOmEb(k%}; )(e;}'io 3‘71 , sub f’z)
Therefore, we have

Home(kj‘ulb )(?1, Fr) ~ HomEb(kﬁ )(ei}t;O?],ej}zo F3).
This implies that the functor e’ :D°(kyp ) — E°(kjp ) is fully faithful. n

The functor ¢**® commutes with several functors as below.

ProrosiTioN 3.22. Let f: Moo — Noo be a morphism of real analytic bordered
spaces. Forany ¥, %1, ¥ € Db(k;‘,‘};o) and any § € DP (k;{‘,‘;), we have

+
qub (J* ® J‘Z) ~ esub ®e;&b 3(72’
Efuesub ~ e%’b Rfu?
Ef 1 sub Nejst;l;)f lg’
! sub ~ ,Sub !
Efen. & ~ey ['5.

kE,sub

T .
ProoF. By Proposition 3.13(4)(iii) and the fact that kiy;"" @ ki, ~ , we

have
ey (F1® F2) ~ kﬁjw @ N (F1® F)

(kﬁlsub ® ]kE sub) ® (” 1371 Qm~ 372)

~ (ki @ w7 F7) ® Ky @ w7 %)

~ ey F ® e Fa.
The second and third assertions follow from Proposition 3.13(4)(ii) and the fact
that Ef_lkE’sub ~ kE,sub

Let us prove the 1ast assertion. By Propositions 3.3, 3.16(3)(ii) and 3.21, we have
isomorphisms in E® (k;‘,’};).

Ef'eN’ § ~Ef'eN" AnooINe 8 ~ e My Inoo f'6 ~esp f'9. m

We set
shyp, =iy o Ry E (kP ) — DP(k3p, )

and call it the subanalytic sheafification functor for enhanced subanalytic sheaves on

real analytic bordered spaces.
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Prorosition 3.23. The subanalytic sheafification functor sh}',}':)o has the following

properties:
;‘ulh
(1) A pair (e}, shi‘,’,boo): D (kP ) ———=E"(k5y ) is an adjoint pair.
o0 o0 Shj‘L»)oo oo
(2) Forany ¥ € D (kj\‘,‘};o), one has ¥ = sh;‘,’};o ei}t’m F . Namely, the following dia-
gram is commutative:

sub

DP(kjp ) —— E°(kyp)

sub
x Jsh Moo

DO (k).

(3) Forany K € E®(Ikpy_), one has RJpy Ishp K ~ shj‘}t;o JJEIOO K. Namely, the
Jollowing diagram is commutative:

JE
E(Ikpr,,) ——— E°(k}y)

Ishprog l lshj""}’oo

b b (1. sub
DA (Ikpg) —zo— D' (637,

(4) Let f: Moo — Noo be a morphism of real analytic bordered spaces. For any
K € E*(kjyp ) and any L € E*(ky" ), one has
Rf.shy? K ~shiy’ EfiK. f'shy° L ~shy Ef'L.

Namely, the following diagrams are commutative:

sul Efx sul sul Ef! su
BV ) — 2 EP(k ) B ) ——— M)
shjﬁ}’oo l lshw’w sh“){‘,bOo l lsh;“,}’oo
DM, — DY) DURRE) ——— D).

Proor. (3) Let K € EP(Ikyy_). Then there exists F € D°(Ikps. xRr.,) such that
K =~ Q. (F). Then we have

RJuy  Ishy K
~ RJp.igRy K
~ i(!,RJMooxROORIhOIn+ (LMooXRoo (k{tzo} (&) k{,so}), F)
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= i(!)RJMooXRooRIhom+ (IMooXRoopMoo XRoo*(k{fEO} ® k{tfo})’ F)
~ i(!,thom+’SUb(pMooxRoo* (k{tz()} &) k{tso}), RJMooXRoo F)
~ shyp Ty K.
where in the second (resp. fourth, fifth) isomorphism we used Proposition 3.4(3)(v)
(resp. (4)(i), Proposition 3.9(2)).
(1) Let ¥ € Db(k;‘,‘lzo) and X € Eb(kj‘}t;o). Then we have
HomEb(kj‘u}m)(eR}zo F,K)~ HOmEb(I]kMOO) (Iﬁmeﬁzo ¥, IAEIoo K)
~ Hompgs () (€Moo It F . Ing,  K)
=~ Hompys o (F . R mooIshare, 17, K)
~ Homp e (%, shy Jaz. Iag K)
~ Home(ksﬁ )(527, shj‘}t;o K),
where in the first and last isomorphisms (resp. second isomorphism) we used The-

orem 3.15 (resp. Proposition 3.21), in the third isomorphism we used the fact that

(em, - Ishps. ) is an adjoint pair and Proposition 3.3(1), and the fourth isomorphism

follows from assertion (3). This implies that a pair (ej}';o, sh;‘,’};o) is an adjoint pair.

2) Let ¥ € Db(kj\‘}'io). By assertion (1), there exists a canonical morphism ¥ —

shiy es¥ ¥ . Moreover, we have
oo oo
sub _sub g sub E E sub g~ T o~ T
ShMooeMoof = ShMooJMOOIMooeMoof — R‘]MooIShMooeMooIMoo‘f ~ ¥ ,

where in the first isomorphism we used Theorem 3.15(1), in the second isomorphism
we used assertion (3) and Proposition 3.21, and in the last isomorphism we used the
fact that Ishys_ o epr., >~ id and Proposition 3.3(1).

(4) Let K € E°(k}p ). Forany ¥ € D(ky" ), we have

Homp g (7, R feshyp K) Home(kﬁoo)(e;&'; 7. K)
~ Homypys sy )(Ef_le%:o?, K)
~ Homps e (5, shy? E £ K).
where in the first and last isomorphisms we used the fact that a pair (f !, R fi) is an
adjoint pair, assertion (1) and Proposition 3.13(1)(ii), and in the second isomorphism

we used Proposition 3.22. This implies that there exists an isomorphism R £, shi‘}}; K~
shiy’ EfK.
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Let L € E"(]l«bub ). Then there exists § € Db(kSle xRo,) Such that L >~ Qn ¥
We shall denote by fRoo Moo X Roo = Noo X R the morphism f x idg_, of real
analytic bordered spaces. Then we have isomorphisms in D (]ki‘}';o):

f Shsub L ~ f'l(; EsubL ~ i OflR EsubL
= lOfRooRIhom—'_,SUb(pMooXRoo*(k{tzo} @ kir<0y), 9).

Moreover, by Proposition 3.5, we have

flshy? L ~i§ fg_ RThom™ ™ (ppr koo (kez0y @ Kir<op). §)
~ i)RThom ™ (fa! oy xRoox(kirz0y @ kir<op). fR.,9)
~ igRThom™ ™ (ppr_ xR oor (kirz0y ® Kpi<o)). S )
~ ORE 5ustub fRoo
~shyy Ef'L. "
Let us set
oy = e (OMooron) € EP(KGE),

where wyr € DP(kps,,) (= D°(Cypy)) is the dualizing complex; see [9, Def. 3.1.16(i)]
for the details. Note that since wps >~ j Aflla) 57> We have oy € D}l’%» (km, ). We shall
define a functor

D" EP(kjp )™ — E°(k3p ). K > RThom™ (K, wp;").

LemMA 3.24. There exist an isomorphism 1}, wf,lzb o~ a)M in E°(Iks.) and

' ; E,sub
an isomorphism Jy; oy~ )" in EP (k3P ).

Proor. Since wys is R-constructible, there exists an isomorphism tpr. wp =~
Mo, PM o +OM 10 Db (Ikaz., ). Hence, we have

Oty = Moo (Moo OM) = Moo (IMog PMocrOM) = Ty €37 (OMoor )
~ IE Cl)E ,sub
~ Mo *
where in the third isomorphism we used Proposition 3.21.
The second assertion follows from the first assertion and Theorem 3.15(1). [ ]

ProposiTION 3.25. Let f: My — Noo be a morphism of real analytic bordered
spaces.
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b (1. sub b (7. sub
(1) Forany K € E°(kjyy ) and any L € E*(k%y’ ), one has
InEssub 7 E,sub -1
Ef DNoo L —DMooEf L,
E,sub - . TyEssub
Ef*DMiuo K ~ DNZZ E fuK,
E pnE E ~ TyE-sub
I Dy I K = DMoo K.

(2) Forany K € EY (]kgub ), we have D7 SubK cEp  (kyp )and Di’[il;bDi}i‘;bK ~ K.
In particular, there exists an equlvalence of categories.‘

D ER (K )P 5> ER (ki

Proor. (1) First, let us prove that E f'wy*"" ~

the fact that f wN == wpr, we have

a)MWb By Proposition 3.22 and

Ef oyt = Ef ey (onwson) = i (oMo /1 ON) = €47 (0Mocrr)

E,sub
~ C()MOO .

The proofs of assertions in (1) are similar, so we shall only prove the first assertion.
Let K € Eb(k;‘,‘[io) and L € Eb(k;‘}zo). By Proposition 3.13(2), we have
Ef'Dg*L ~ Ef'RThom™ (L, 0jg"") > RThom™*"*(Ef "' L. E f'w ™"
~ Dy Ef7'L.

(2) Let K € Ey_ (kjp ). By Theorem 3.20 we have Iy, K € Ep (Ikp,). Since
Diy,,: Eg o (karo)® — Eg . (kar,,)

(see [2, Prop. 3.3.3(ii)]), we have Dﬁlm 111\5/100 K € E} . (Ik,). Hence, by Theorem 3.20,
wehave Jy, Dy, Iy K eEp (kP ). Byassertion (1), wehave Jy; Dy, Iy K
~ D" K, and hence D" K € B (K3 ).

Moreover, since [ I\Eloo J AE/IOO DE,IOO 1 J\Eloo K ~ Dﬁloo 1 IEIOO K we have

DD K ~ Ty Dy Iy Ji Dy Iy K ~ K.
where the second isomorphism follows from [2, Prop. 3.3.3(ii)] and Theorem 3.15(1).

Several operations preserve the R-constructibility as below. Let us recall that a
morphism f: (M, M ) — (N N ) of real analytic bordered spaces is called semi-proper
if the second projection M x N — N is proper on the closure I‘f of the graph I'y of
fin M x N.
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ProposITION 3.26. Let f: Moo — Noo be a morphism of real analytic bordered
spaces associated with a morphism f : M — N of real analytic manifolds. The functors
below are well defined:

(1) e © pMoos: Dy (Kary,) — Ep  (Tkpr,,),
(2) Efi: E%_C(k;‘,}';) — E'ﬁ_c(kﬁ{‘,zo), if f is semi-proper,
3) EfHER (k) — By (K5F)),
@) EficEy (k3P ) — Ex (K\), if f is semi-proper,
(5) Ef“EY (kS“" ) = ER (K3P).
Proor. (1) Let ¥ € D% c(kMoo) and U be an open subset of M which is subana-

lytic and relatively compact in M. Weset FU = = K=o} ® 771 F|y. By Propositions
3.1(6) and 3.22, we have

Eig! (e pMoorF) = €32 puao(Flv) 2 k" @ 17" pup«(F |0).

kE sub kE ,sub

Since ® PUoo xR K(r=0}, there exist isomorphisms

o ® PUoox]Roo*k{z=0}) ® PUOOXROO*TF_I-?|U

kgt @ 77! pyes (F |v) =~ (g
~ kE b ® PUsoxRoox (Kir=0y ® 77 F )
= ]kE QUb ® onoXRoo (‘fl )’

where in the first isomorphism we used Proposition 3.13(4)(iii). Since # is &R-construct-
ible, we have ¥V ¢ D'IJR_ - (ku,,). This implies that esub » PMo+F is R-constructible.

(2) Let K € Ej . (kj“j};). By Theorem 3.15 and Proposition 3.16(3)(i), we have iso-
morphisms

Ef.K ~Efidy Iy K~y Efdy K

Since K is R-constructible, we have Iy; K € Ey  (Ikp,,) by Theorem 3.20, and
hence, by [2, Prop. 3.3.3(iv)], we have E f, [ 1115/100 K e Eb r.c Ik~ ). This implies that
EfiK ~ A§_Efily; K is R-constructible by Theorem 3.20.

(3) Since this assertion can be proved in the similar way as (2), we shall skip the proof.

(4) Let K € Ey (kjp ). Then we have

EfiK ~E ﬁ,Diijﬁ;j’obK ~ D]f\;zzbE f*DﬁjoibK
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by Proposition 3.25. This implies that E f1y K is R-constructible by assertion (2) and
Proposition 3.25(2).

(5) Since this assertion can be proved similarly to (4), we shall skip the proof. ]
Moreover, convolution functors preserve the R-constructibility as below.

ProrposiTioN 3.27. We have the following:
(1) The functors
+ . sub sub sub
() ® ():Ex  (k5f )xE NSy )—>E NSy
RIhom™*°(..): Ep_ (kjp )P x Ep_ (k3P ) — E (kwb )

are well defined.

(2) Forany K, L € E%_C (k;‘,’[zo) one has
+
(i) Dy (K ® L) ~ RThom™ """ (K, D" L),
. + .
(i) Dy RThom****(K. L) ~ K @ Dy L,
(iii) R7Thom**"*(K, L) ~ RThom™** (D" L. D" K),
(iv) RThom™"*(K, L)  RThom®"**(D};"" L. D} K),
sul ~ ,Su E,sub E,sub
(v) RHomP***(K, L) ~ RHomE b(DMOO L, Dy K).

Proor. (1) LetK, L € Eb (ksub ) and U be an open subset of M which is suban-
alytic and relatlvely compact in M . Then there exist 7, § € DE@ - (KUoo xR ) such that

Eig! K ~ kg™ ® QW PUsoxRoox ¥ Eigl L > ki ® Q° PUoxRoox 9 Hence
,we have

1 + .1 + .—1
Eiy (K ® L) ~Eiy K QEiy_ L
(k ,sub ® qub onoXRoo*ﬁ) ® (k ,sub ® QgUu:OIOUOOXROO*g)
~ kE,sub

Q> (PUoxR oo F ® PUoo xRogsG)

where in the first 1son3rorphlsm we used Proposition 3.13(2) and in the last isomor-
phism we used ]kUzb ® ]kU’zb o~ lkU’zzb. Since #, 9 € D% _(ky,xRo ), there exists

+
an iSomorphism Py xR s F ® PUsxRooxF = PUsoxRoox (11(p7 ' F ® p519)) and
+
;L”(pl_1$ ® pz_lﬁ) S D%_C (ky., xRy, )- Therefore, K ® L is R-constructible.
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Moreover, by using assertions (2)(i), (iii), there exist isomorphisms
+
RThom™"*(K, L) ~ RThom™**(D** L. D" K) ~ D (DL @ K),

and hence by Proposition 3.25(2) and the first assertion of (1), R7 h0m+’5“b(K ,L)is
R-constructible.

(2) Since the proofs of the assertions in (2) are similar, we shall only prove (i). By
Proposition 3.13(1)(i), we have

. + . + . . .
D}*(K @ L) ~ RThom™"*(K ® L.wy;"") ~ RThom™"* (K, D};°L). m

3.5 — Irregular Riemann—Hilbert correspondence and enhanced subanalytic sheaves

In this subsection we shall explain the relation between [1, Thm. 9.5.3] and [8,
Thm. 6.3]. Theorems 3.38 and 3.39 are two of the main results of this subsection and
this paper.

3.5.1. Main results of [1] and [8]. The aim of this subsection is to introduce the main
results of [1,8]. The results are summarized by the following commutative diagram:

D*(Cta..)

E,sub

D} (Dx)°P T E%_C(I(CX) I—~E> E%_C(C}“b) - EP(C3®).
X X

Sol ™ ()[1]

Let X be a complex manifold and denote by X the underlying real analytic manifold
of X. We denote by Ox and Dy the sheaves of holomorphic functions and holomorphic
differential operators on X, respectively. Let DP(Dy) be the bounded derived category
of left Dy-modules. Moreover, we denote by D2, (Dx), D2, (Dx) and DY (Dx)

the full triangulated subcategories of DP(Dy) consisting of objects with coherent,
holonomic and regular holonomic cohomologies, respectively. For a morphism f: X —

Y of complex manifolds, denote by §>, Df.,Df* Dx: D};’oh(i)x)"l’ = Dgoh(!l)x) the
standard operations for D-modules.

Let M be a real analytic manifold of dimension n. We denote by €7 the sheaf of
complex functions of class €>° on M and by Dby, the sheaf of Schwartz distributions

onM.

DEerintTION 3.28 ([10, Def. 7.2.3]). Let U be an open subset of M.
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(1) One can say that f € €57 (U) has polynomial growth at p € M if for a local
coordinate system (x1, ..., X,) around p, there exist a sufficiently small compact
neighborhood K of p and a positive integer N such that

sup dist(x, K\U)V|f(x)| < +o0.
xeKNU

A function f € €7 (U) is said to be tempered at p € M if all its derivatives have
polynomial growth at p, and is said to be tempered if tempered at any point of M.
Let us denote by €,/ (U) the subset of €57 (U) consisting of functions which are
tempered.

(2) We set Db}y, (U) :=Im(I'(M; Dbps) — I'(U; Dbyy)).
Note that subanalytic presheaves U — €p7 (U)andU Db, (U) are subanalytic
sheaves; see [10, §7.2] and also [20, §3.3].

We shall write D°(C5®), E°(C3®), E} (C3®) instead of D°(Cy), E*(Cy),
Eb . ((ng'ﬂg ), respectively.

DEerintTION 3.29 ([10, §7.3], [1, §5.2] and also [20, §3.3]). Let us denote by X ¢
the complex conjugate manifold of X. An object O} € D (C )S(“b) is defined by
Ok = RIhom’? 5 (oxc10xe, €g0") ~ RIhom’Y, oo (pxe1Oxe, Db, )

and is called the subanalytic sheaf of tempered holomorphic functions on X.
Moreover, the tempered solution functor is defined by

Soly: D°(Dx)® — D°(ICx), M — RIhomg, o, (BxM, IxO%).

Note that an ind-sheaf /x O} is nothing but the ind-sheaf of tempered holomorphic
functions on X which is denoted by (95( in [10, §7.3]. Note also that there exist
isomorphisms ,()X1(9t ~ ax Ix O% ~ Ox and hence we have ay Soly (M) =~ Soly (M)
for any M € D2, (Dx).

DeriniTiON 3.30 ([1, Def. 8.1.1] and [13, Def. 7.2.1]). Let l;M: M x Ro —
M x P!R be the natural morphism of real analytic bordered spaces, where PR is
the real projective line. An object éDb;ux]R{Oo € D*(ICprxRr,,) is defined by

Dby r. = ki Irxpi DY pig = IMxRookiy DYy pig.
and f()bTM e D*(ICy, xRo) 18 defined by the complex, concentrated in —1 and 0,

0
Dby ——> Dby

Moreover, we set Dbk, = Qu (be ) € E°(ICyy) and call it the enhanced ind-
sheaf of tempered distributions.
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Note that we have ! (J)bTM) = 0 for any i # —1 and hence there exists an isomor-
phism Dbl ~ Ker(d; — 1)[1] in D?(IC xR, ).

DeriniTION 3.31 ([1, Def. 8.2.1] and [ 13, Def. 7.2.3]). Leti: X x Rgo —> X x P1C
be the natural morphism of bordered spaces and t € C C PC the affine coordinate
such that t = t|g, where ¢ is a coordinate of R and P!C is the complex projective
line. An object O% € E°(ICy) is defined by

Oy = QxRThom 15 o . (TxéPxeOxe, Dby,)

= QX;!RIhomp—lﬂplcﬂ)Plc(p_lﬂ]?g(é”pl(c? IXXPI(C@;(XPI(C)[Q’L

where & éllP’ is the meromorphic connection associatedtod + dt, p: X x P1C — P!C
is the projection and wyc: X¢ X Ry — X€ is the morphisms of bordered spaces
associated with the projection X¢ x R — X¢.
It is called the enhanced ind-sheaf of tempered holomorphic functions on X.
Moreover, the enhanced solution functor is defined by

Soly:D*(Dx)® — E*(ICx), M > RIhom,—14, 5, (' Bx M, O%),

where 7: X X Ry, — X is the morphism of bordered spaces associated with the first
projection X x R — X.

Note that (9}1:; is isomorphic to the enhanced ind-sheaf induced by the Dolbeault
complex with coefficients in chb)T(]R [—1],

3 5B
Dby, [-1] = Qe Boye DY [-1] = -+ — QP ®pgy. Dby, [1],

where Q;c is the sheaf of p-differential forms with coefficients in Oyc and dy is the
complex dimension of X.

Note that Ishy O% =~ Ix O% and hence there exists an isomorphism Ishy SolE( (M) ~
Soll (M) for any M € DD, (Dx).

Let us recall the main results of [1].

Tueorem 3.32 ([1, Thm. 9.5.37 and 9.6.1]). The enhanced solution functor induces
an embedding functor

Solg:Dp  (Dx)® < E& . (ICx).

(7) Although [1, Thm. 9.5.3] was stated using the enhanced de Rham functor, we can obtain
a similar statement using the enhanced solution functor.
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Moreover, for any M € D} (Dx) there exists an isomorphism in D®(Dx),
M = RH% Sol (M),
where RH% (K) := RHomE(K, OF).
Let us recall the main results of [8].

DerintTION 3.33 ([8, §5.2]). Let IEM: M xR — M x PIR be the natural mor-
phism of real analytic bordered spaces. An object o‘Dbe“b e D (Cz;beoo) is defined
by the complex, concentrated in —1 and 0,

k' Dbt —— k'

MxPIR — MxPLIR"

Note that we have J! (O‘Dbe“b) = 0 for any i # —1 and hence there exists an
isomorphism ;Db;j“b ~ Ker(d; — 1)[1] in D? ((C;jbeoo). Remark that the notion Db'
in [8, §5.2] is equal to Db"**®[—1] in our notion.

DeriNtTION 3.34 ([8, §§5.3, 5.4]). An object (9T’S”b € Db((C?gRoo) is defined by

the Dolbeault complex with coefficients in Db} Sub[ 1],

a

Tsub T,sub d d T,sub
[ 1] —> QXL ®0ye i)b 1] — - — QX{ ®0yc ‘DbX]R [—1].

Moreover, we set

Soly™: D°(Dy)™® — D*(Cyoe ). M > RIhom®™, (" oxi M, O™™).

Lox1Ox

Note also that there exists an isomorphism in D (k;}”;’(Roo)'

(9T sub ~ RIhomsub pX(,|i) . (T[X( XCV(QXC tDbT Sub[ 1])

TueorREM 3.35 ([8, Thms. 6.2 and 6.3%]). There exists an embedding functor
Soly™*: Dp,, (Dx)*P < DP(C3op ).
Moreover, for any M € Dbol(i)x) there exists an isomorphism in D°(Dx):

M =5 RI om0 (Sol (M), O3 ™).

(®) Although [8, Thm. 6.3] was stated using the enhanced de Rham functor, we can obtain a
similar statement using the enhanced solution functor.



Y. Ito 220

3.5.2. Relation between [1, Thm. 9.5.3] and [8, Thm. 6.3]. Let us explain the relation
between [1, Thm. 9.5.3] and [8, Thm. 6.3]. The results are summarized by the following
commutative diagram:

D"(Cyla,.)
Soly™*()[1]
\]R{E\) sub

D> (Dx)® ———— Eb (C5®) C EP(Cy)

E sub

oly JE
oF I || A% I | | A%
OlX IE

X

Eb .(ICx) C Eb .(ICx) - E’(ICy).

DEriNITION 3.36. Let us define O™ := Qy*(0 ’g“b[l]) € E°(C") and set
Soliy™: DP(Dyx )P — E*(CE®), M > RIhom}®, o, (7~ Loxi M, O3™™).
By the definition, it is clear that

E, Gub sub sub -1 T,sub
(9 RIhOIIl PX 1 Dye (TEXC ch!OXC,i)bXR ),

and for any M € D°(Dyx) one has
Solg*™* (M) =~ Q¥ (Soly™™ (M))[1].
LemMma 3.37. We have the following:
(1) There exists an isomorphism Dbl ~ Iy, XxReo fObIT‘be in D°(IC pr xR, )-
(2) There exists an isomorphism 0§’SUb ~ JEOL in EP(C).
(3) For any M € D°(Dx), there exists an isomorphism in EP(C ;}‘b):
Soly™™* (M) = JESol (M).

(4) For any M € DP(Dy), there exists an isomorphism in DP(C ;}‘iR

Soly™ (M)[1] ~ RESol&™ (M).
Proor. (1) Since the functor Iy xR, is exact, we have isomorphisms

Dby, ~ Ker(d; — 1: Dbl g — Dbl p )

~ Ker(d; — 1: IMXRoolgMj)b;MxPl]R - IMXRooIg]!\/I‘Db;\/[x]P’I]R)
~ IMXROO Ker(at —1: kM‘:ObM PR - kl!\li)b;\lxIP’l]R)

T,sub,
~ IMXRoo o@bM 5

see Definition 3.30 for the details of i)b},, and Definition 3.33 for the details of chbT sub,
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(2) We have isomorphisms

Jx0% ~ QxRJyxro RIhOM, 14 o (3l PxeOxe., Dby.)
~ QxRUxxroRIhOM, 15 o . (mxd Ixe pxe1Oxe, Dby )
~ QxRUxxroRINOM, 15 . 5 . (IxexRo Ty pxe1Oxe. Dby.)
~ QXRIhomgllb

LoyerDy C(T[XC,OX‘«'(OXC RJXRXRooi)bX]R)

~ QXRIhom“‘b (mxé pxe1Oxe, Dby™™)

¢pxc1Dxe
E,sub
~ 0y,

where in the second isomorphism we used Sxc >~ Ixc o pxcy, in the third isomorphism
we used JT;CI olye >~ IycxRry, © yr;}, in the fourth isomorphism we used Proposition
3.4(1) and in the fifth isomorphism we used assertion (1) and Proposition 3.3(1).

(3) Let M € DP(Dy). By the fact that By ~ Ix o px: and assertion (2), there exist
isomorphisms

JESolL (M) ~ RThom™ (rLoxiM, JEOE) ~ Soli™ (M).

7~ lpx 1 Dx
(4) First let us prove that
+,sub T,sub T,sub
RIhOm ’ (pXXRoo*(k{tzo} @ k{tﬁo})7 i)bX]R ) >~ ci)bXR .
By assertion (1) and Proposition 3.16(1)(ii),
RThom™*® (px g oo (K120} @ kfr<0y). Dby ™)
~ RThom™ ™ (ox xR oo+ (Kir20) ® Kir<0))s RIxxRo0 Dby )

~ RJxxRoo RThom™ (Ix xR px xR oo+ (Kir=0y D kir<0}), i)b;T(R)
~ RJXwaRIh0m+(lXxROO (kir>0y ® kyr<oy). i)b;r(R).

Moreover, by using the fact that RThom™ (txxr ., (kir>0y @ kir<oy), chb}T(R) ~ (fOb)T(R
(see e.g. [1, Prop. 8.1.3]), we have

RJx xR RThom™ (i oo (K120 @ K(1<0)). Dby, ) ~ Rx xR, Dby, = Dby,

Hence, we proved RThom ™™ (ox g .« (kr=03 © kir<0}), i)bX suby ~ .fObT SUb.
Next we shall prove that

RIhom ™ (pxxr, s (k{r=0) ® k{r=oy, Ox ™)) =~ O3 ™",
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By the fact that (9T Wb~ RT homSub

-1 ) i T,sub .
XC pxc1Dye (NXC ,OXLg(Qxc , ‘j)bXR [ 1]), we have

RThom ™™ (pxxr .« (k=01 ® kir<o}, GJT(’Sub))
~ RIhom™***(px xR+ (Kir=0y D k<o),

RIhom™, o (it pxerOxe, DbE™))[-1]
~ RIhOIl’lsub PXU*DX‘ (7TXC XC!(QXCv ;
RIhom ™ (o xRoo x (Kir=0y D kir<0}). @bx’];ub)) [—1]
~ ub -1 ) ) T,sub
RIhomS 1 pyerDye (rye pxe1Oxe, JDbXR )[—1]
~ (9;’Sub.

By the definition, it is clear that
RY ™ Soll ™ (M)
~ RIh0m+’S”b(pXX1ROO*(k{tZo} ® kir<oy),
RIhom;’blp Dy (r ox 1M, OTQUb))[l]
~ RIhomS“EIPX!:O (m™ LoxiM,
RIhom™ ™ (pxxr .« (k=0 ® kir<o)), Oy SUb))[l]
~ RIhom™®, o (™" pxsM, O[]

~ Soly ™" (M)[1]. n
TueoreM 3.38. The functor Solf;‘(’Sub induces an embedding functor
Soly™®: Dhy (Dx)® < ER (CE®).
Moreover, for any M € Dﬁol(i)x) there exists an isomorphism in D°(Dy),
M 5 RH ™ Soly ™ (M),
where RHy""(K) = RHom™* (K, 0%™).

Proor. First, let us prove that Solyy™" (M) € E% . (Cy®) for any M € D} (Dyx).
Let M € DD, (Dx). By Theorem 3.32, we have Sol}”:( (M) € Eb .(ICx) and hence by
Theorem 3.20 we have JESolg (M) € Eb_(C5®). This 1mplles that Solyy*"" (M) €
E% . (C3) by Lemma 3.37(3). Hence, a functor

Soly™®: Dpy (Dx)™® — ER_(Cx®

is well defined.
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For any M, N € D} (Dx), there exist isomorphisms
Hompy (p,)(M. N) = Homgy ¢, (Soly (V). Soly (M)
~ Homgy _(cyt) (JxSoly (N), J¢Solg (M))
~ Homgy (g (SOl ™ (W), Soly* ™ (M),
where in the first (resp. second, third) isomorphism we used Theorem 3.32 (resp.
Theorem 3.20, Lemma 3.37(3)). This implies that the functor SOI%S“b: D} (Dx)® —

E5 . (C5®) is fully faithful.
Let M € Dﬁol(JDX). By using the adjointness, there exist isomorphisms
Homps () (M, RHy**Soly**" (M)
= Homp(py) (M. RHom™** (Soly™" (M), Oy ™))
~ Homps(p,) (M. px' R R Thom™ (Soly™ (M), 03 *)
~ Hompy(py) (7" px1M, RThom™ (Soly ™" (M), O3 *"))
~ Homgy (cyvy (Soly**(M). RI hom?®, | o (@™ pxiM, 0x™)

~ HOmElI)R_C((C;Bb) (S()l?(’sub(eM)’ Soli,sub(M))
>~ HOIHDh(@X)(M, e/%)

Hence, there exists a canonical morphism
E,sub E,sub
M — RHy " Soly " (M)

which is given by the identity map id 4 of M. Let us prove that it is an isomorphism.
By Lemma 3.37(2), we have isomorphisms

RH S0l ™" (M) ~ RICom™*(Soly™ (M), O ™)
~ RHom™**° (Solyy™* (M), JEOR),
and by Proposition 3.16(1)(iii) we have
RH om= (S0l (M), JEOE) ~ p 'R IThom®s*® (Sol ™" (M), JEOL)
~ p'"RJxRIhom®(IFSoly* " (M), OF).
By Proposition 3.4(3)(ii) and Lemma 3.37(3), there exists an isomorphism in D*(Cy),
p~'RIxRIhom® (IS0l (M), OF) ~ axRIhom®(1£Soly ™ (M), OF)

~ RHomE(IFSoly™ (M), OF)
~ RH om® (1 JSolk (M), O%).



Y. Ito 224

Since M € D} (Dx), Sol¥ (M) is R-constructible by the first assertion and hence there
exists an isomorphism I J;SOIE( (M) =~ Sol% (M) by Theorem 3.20. By Theorem
3.32 we have

RH om®(Solf (M), O%) ~ RHE Sol% (M) ~ M.
Therefore, there exists an isomorphism M —> RH%SUbSoli’S“b(M). ]
THEOREM 3.39. We have the following:
(1) For any M € DD ,(Dx), there exists an isomorphism in E°(ICx):
Solf (M) =~ IESoly**(M).
Namely, there exists a commutative diagram:

E.sub
Soly

D}y (Dx)? —————— Ep (C¥")

IE |2
E X
Soly

E% .(ICx).

(2) For any M € D°(Dy), there exists an isomorphism in D° ((C;}‘QROO :

Soly ™ (M)[1] =~ RE™ JESol% (M).
Moreover, there exists a commutative diagram:

Soly*™*()[1]

DEol ( o(L_)X )op (—> Db ((C sub )

X XRoso
RE‘SUboJE
k J\ X X
b
Ep .(ICx).

Proor. (1) Let M € D} (Dx). Since Sol (M) is R-constructible, there exists
an isomorphism 7ESoly ™™ (M) ~ I} JESolE (M) ~ Sol% (M) by Theorem 3.20 and
Lemma 3.37(3).

(2) This follows from Lemma 3.37(3), (4). [

ReEMark 3.40. One can consider C-constructibility for enhanced subanalytic
sheaves similar to [4, Def. 3.19]. See [6] for the details.
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