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Abstract – The paper explores the minimal and maximal L2-cohomology of oriented Rie-
mannian manifolds, focusing on both the reduced and the unreduced versions. The main
result is the proof of the invariance of the L2-cohomology groups under uniform homotopy
equivalences that are quasi-isometric on the unbounded ends. A uniform map is a uniformly
continuous map such that the diameter of the preimage of a subset is bounded in terms of
the diameter of the subset itself. Moreover, a map f between two Riemannian manifolds
.X; g/ and .Y; h/ is quasi-isometric on the unbounded ends if X DM [EX , where M is
the interior of a manifold of bounded geometry with boundary, EX is an open subset of X
and the restriction of f to EX is a quasi-isometry. Finally, some consequences are shown:
the main ones are the definition of a mapping cone for L2-cohomology and the invariance of
the L2-signature.
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Introduction

In this paper, a generalization of the author’s previous work in [14] is presented. In
that study, the author examined uniform maps f W .M;g/! .N;h/ between Riemannian
manifolds of bounded geometry and introduced a bounded operator Tf WL2.N; h/!

L2.M; g/ related to f between the spaces of square-integrable forms. A uniform
map is defined as a uniformly continuous map where, for every compact subset A,
the diameter of its preimage is bounded in terms of the diameter of A. A manifold of
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bounded geometry is a Riemannian manifold whose curvature is uniformly bounded
and the injectivity radius is bounded from below. The operator Tf in [14] induces a
linear operator between the reduced and unreduced L2-cohomology groups, replacing
the pullback operator which is not well defined between the L2-spaces. Consequently,
the invariance of reduced and the unreduced L2-cohomology groups under uniform
homotopy equivalences is proved.

The aim of this paper is to prove a similar result for the minimal and maximal
L2-cohomologies of possibly not complete Riemannian manifolds. This result will
hold for both the reduced and unreduced versions. In order to reach our goal we need
some additional assumptions on the homotopy equivalence. Let us briefly introduce
these assumptions.

Given a Riemannian manifold .X; g/, it can be decomposed as X D M [ EX ,
where EX is an open subset of X andM is the interior of a manifold with boundary of
bounded geometry (this notion is introduced in Schick [12]). We will say that M is
an open subset of bounded geometry and EX will be the unbounded ends of X . Such
a manifold .X DM [EX ; g/, decomposed in this manner, is termed a manifold of
bounded geometry with unbounded ends.

In this paper we investigate uniform maps f W .X; g/! .Y; h/ between oriented
manifolds which are quasi-isometric on unbounded ends, i.e. given two manifolds of
bounded geometry with unbounded ends .X DM [EX ; g/ and .Y D N [EY ; h/,
then f .EX / � EY and fjEX is a quasi-isometry.

In particular, in Theorem 4.6, we prove that if f W .X; g/! .Y; h/ is a uniform
homotopy equivalence which is quasi-isometric on the unbounded ends. Then8̂̂̂̂

<̂
ˆ̂̂:
H k
2;max.X; g/ Š H

k
2;max.Y; h/;

xH k
2;max.X; g/ Š

xH k
2;max.Y; h/;

H k
2;min.X; g/ Š H

k
2;min.Y; h/;

xH k
2;min.X; g/ Š

xH k
2;min.Y; h/;

whereH k
2;minnmax.X; g/ andH k

2;minnmax.Y; h/ are the minimal and maximal k-th group
of L2-cohomology and xH k

2;minnmax.X; g/ and xH k
2;minnmax.Y; h/ are their reduced ver-

sions. Finally, some consequences are shown.
The paper is structured as follows: Section 1 introduces the notions of uniform maps

quasi-isometric on the unbounded ends. Section 2 defines the minimal and maximal
L2-cohomology of a Riemannian manifold. In Section 3 we recall the definitions and
the key properties of three necessary components for proving Theorem 4.6. These
components are the following:
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• The Radon–Nikodym–Lipschitz maps. These are maps between Riemannian mani-
folds such that their pullback induces a well-defined L2-bounded operator.

• The generalized Sasaki metrics on vector bundles. These are some Riemannian
metrics induced by a connection on the vector bundle, a bundle metric and a
Riemannian metric on the base space,

• The Mathai–Quillen–Thom forms, which constitute a specific family of Thom form
on a vector bundle.

In Section 4 we introduce the new version of the operator Tf and in Theorem 4.6 the
main result is proved.

Finally, in Section 5 we explore three consequences of the existence of Tf :

• we define a mapping cone for minimal and maximal L2-cohomology,

• we demonstrate the invariance of the L2-signature for complete 4k-dimensional
manifolds under uniform homotopy equivalences that preserve orientation,

• we prove a result similar to Lott [9, Proposition 5 (1)], accompanied by an illustrative
example.

1. Quasi-isometries on the unbounded ends and open subsets of bounded geometry

In this section we establish the geometric framework of the manuscript. In particular,
we introduce the concepts of open subset of bounded geometry of a Riemannian manifold
and of uniform homotopy quasi-isometric on the unbounded ends.

1.1 – Manifold of bounded geometry with some unbounded ends

The following definition is Schick [12, Definition 2.2].

Definition 1.1. Let . xM;g/ be an oriented Riemannian manifold with boundary
@ xM (possibly empty). Fix on @ xM the Riemannian metric induced by xM . Denote by l
the second fundamental form of @ xM , by R the curvature tensor of xM and by xr the
Levi-Civita connection on @ xM . Then we say that . xM;g/ is a manifold with boundary
and of bounded geometry if the following hold:

(1) There exists a number rc > 0 such that

KW @ xM � Œ0; rc/ �! xM;

.x; t/ �! expx.t�x/
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is a diffeomorphism with its image (�x is the unit inward normal vector). Given r
in Œ0; rc/ we denote by N .r/ the set K.@ xM � Œ0; r//.The set N .r/ is the normal
collar of length r of @ xM .

(2) The injectivity radius inj@ xM of @ xM is positive.

(3) There is an ri > 0 such that if r � ri , then, for each p in xM nN .r/, the exponential
map is a diffeomorphism on B0p .r/ � Tp xM .

(4) For every k 2 N there is a constant Ck so that jriRj � Ci and jxri l j � Ci for
each i D 0; : : : ; k.

Remark 1. The first point of Definition 1.1 provides some coordinates on N .rc/.
Indeed, given a constant r1 which is smaller than the injectivity radius of @ xM , it is
possible to define the chart

kx0 WBr1.0/ � Œ0; rc� �! N .rc/;

.v; t/ �! expexp0x.v/.t�/;

where x0 is a point in @ xM and Br1.0/ is the euclidean ball of the same dimension as
@ xM centered at 0 with radius r1. We call these coordinates collar coordinates. On the
other hand, given a point p in xM nN .s/ we term normal coordinates or Gaussian
coordinates the coordinates induced by the exponential map of xM on a ball of radius s
around p.

Remark 2. By [12, Theorem 2.5], we know that on a manifold with boundary of
bounded geometry, the metric components gij of the metric g with respect to some
collar or Gaussian coordinates satisfy the following inequalities: for each ˛ in N, there
is a number C˛ such thatˇ̌̌ @˛gij

@x
˛1
1 : : : @x

˛m
m

ˇ̌̌
� C˛ and

ˇ̌̌ @˛gij

@x
˛1
1 : : : @x

˛m
m

ˇ̌̌
� C˛;

where ˛ D
Pm
iD1 ˛i .

Definition 1.2. Given a Riemannian manifold .X; g/, an open subset of bounded
geometry of .X;g/ is an open subsetM �X such that its closure xM in .X;g/, endowed
with the Riemannian metric induced by g, is a manifold with boundary of bounded
geometry.

The normal collar of length r ofM is the set NX .r/´N .r/\M , where N .r/ is
the normal collar of length r of the manifold with boundary of bounded geometry xM .

Definition 1.3. A manifold of bounded geometry with some (possibly) unbounded
ends is an oriented Riemannian manifold .X; g/ such that X DM [EX and
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• M is an open subset of bounded geometry,

• EX is an open subset of X ,

• NX .rX / �M \EX for some constant rX > 0.

The open subset EX is called the unbounded ends of X .

Lemma 1.1. For each Riemannian manifold .X; g/ there are two open subsets M
and EX of X which make .X; g/ a manifold of bounded geometry with unbounded
ends.

Proof. Fix a point p on X and let M D Bı.p/, where ı is smaller than the
injectivity radius in p. Let EX be the complement of B ı

2
.p/ in X . It easily follows

that M and EX satisfy all the conditions in Definition 1.3.

Notice that the open subset of bounded geometry M of a manifold of bounded
geometry with unbounded ends X DM [EX is not necessarily compact.

Example 1.1. Let X D R2 � S1 and let g D dx2 C dy2 C x2 d�2, where d�2

is the euclidean Riemannian metric on S1 � R2 and dx2 C dy2 is the euclidean
metric on R2. Then, given two positive numbers a, b such that a < b, if we fix
M D .�b;b/�R�S1 andEX D Œ.�1;�a/[ .a;C1/��R�S1, it is easy to check
that .X; g/ D .M [EX ; g/ is a manifold of bounded geometry with two unbounded
ends.

Example 1.2. Each manifold of bounded geometry .X;g/ is a manifold of bounded
geometry with unbounded ends. In this case, M D X , @M D ; and so also N .r/ D

EX D ;.

Remark 3. Let .X D M [ EX ; g/ be a manifold of bounded geometry with
unbounded ends. Let p be a point in NX .rX /. Since NX .rX / � N .rX /, the normal
collar of @ xM , it is possible to identify p as a point .x0; t0/ of @M � .0; rX /. Indeed,

p D K.x0; t0/;

where K is the map in the first point of Definition 1.1.

Lemma 1.2. Let .X D M [ EX ; g/ be a manifold of bounded geometry with
unbounded ends. Let p D .x0; t0/ be a point in NX .rX /. Then the distance between
@M and p satisfies

dg.@M; p/ D t0:

Proof. Fix some normal coordinates .U; xi / centered at x0 in @M and let
.U � .0; rc/; x

i ; t / be the collar coordinates on ��1.U / � M . Notice that, thanks
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to [12, Proposition 2.8], we know the Gram matrix of g with respect to xi and t has
the form

g.x; t/ D

"
gij .x; t/ 0

0 1

#
:

It immediately follows that the curve � W .0; t0�! NX .rX /�M defined as �.t/D .0; t/
is length minimizing.

1.2 – Uniform maps quasi-isometric on the unbounded ends

In this subsection we introduce the maps under study in this manuscript. Fix two
Riemannian manifolds .X; g/ and .Y; h/.

Definition 1.4. A map f W .X; g/! .Y; h/ is uniformly continuous if for each
� > 0 there is a ı.�/ > 0 such that for each x1, x2 in X ,

dX .x1; x2/ � ı.�/ H) dY .f .x1/; f .x2// � �:

Moreover, f is uniformly (metrically) proper, if for each R � 0 there is a number
S.R/ > 0 such that for each subset A of .Y; dY /,

diam.A/ � R H) diam.f �1.A// � S.R/:

We say that a map f W .X; g/! .Y; h/ is a uniform map if it is uniformly continuous
and uniformly proper.

Definition 1.5. Two maps f0 and f1W .X;dX /! .Y;dY / are uniformly homotopic
if they are homotopic with a uniformly continuous homotopyH W .X � Œ0;1�;gC dt/!
.Y; h/. We will denote it by

f1 � f2:

Definition 1.6. A map f W .X; g/! .Y; h/ is a uniform homotopy equivalence if
f is uniformly continuous and there is map s such that

• s is a homotopy inverse of f ,

• s is uniformly continuous,

• f ı s is uniformly homotopic to idN and s ı f is uniformly homotopic to idM .

To define the class of maps we are interested in, we first need to introduce the notion
of quasi-isometry.
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Definition 1.7. Let .X; g/ and .Y; h/ be two Riemannian manifolds. Then a
quasi-isometry is a local diffeomorphism f W .X; g/! .Y; h/ such that f �h and g are
quasi-isometric metric, i.e. there is a constant K � 1 such that

K�1g � f �h � Kg:

Definition 1.8. Let .X DM [EX ; g/ and .Y DN [EY ; h/ be two manifolds of
bounded geometry with unbounded ends. A map f W .X;g/! .Y; h/ is quasi-isometric
on the unbounded ends if

• f .EX / � EY , f .M/ � N , f .@M/ � @N ,

• fjEX
WEX ! EY is a quasi-isometry.

A uniform homotopy equivalence isometric on the ends is a uniform homotopy equiv-
alence which is isometric on the unbounded ends. Finally, f is a uniform homotopy
equivalence quasi-isometric on the ends if fjEX is a quasi-isometry.

Remark 4. Fix a uniform homotopy equivalence isometric on the ends f W .X;g/!
.Y; h/. Let r0 ´ min¹rX ; rY º. Then f .NX .r0// � NY .r0/. Moreover, if we choose
some collar coordinates ¹xi ; tº on NX .r0/ and ¹yj ; sº on NY .r0/, then f has the form

f .xi ; t / D .F.xi ; t /; t/:

This is an immediate consequence of Lemma 1.2.

Our next step is to introduce a family of maps equivalent to the C k
b

-maps defined
for manifolds of bounded geometry by Eldering [5].

Definition 1.9. Let f W .X D M [ EX ; g/ ! .Y D N [ EY ; h/ be a quasi-
isometry on the ends. Then f is a C k

b;loc-map if there is an rf � rX and there are
two constants ıX and ıY such that, for each point p in M n NX .rf /, the functions
zFpWBıX .0p/ � TpX ! BıY .0f .p// � Tf .p/Y defined as

zFx ´ exp�1f .x/ ıf ı expx

have uniformly bounded C k-norms as maps between euclidean spaces.

Example 1.3. Let .X DM [ EX ; g/ be a manifold of bounded geometry with
unbounded ends. Fix r < rX and let ¹yi ; U º be some normal or collar coordinates on
M , which is an open subset of bounded geometry. Then for each i the functions ¹yiº
defined on U are C k

b;loc-maps for each k in N. This fact is a direct consequence of
[12, Proposition 3.3].
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Proposition 1.3. Let .X DM [EX ; g/ and .Y D N [EY ; h/ be two manifolds
of bounded geometry with unbounded ends. Fix a uniform map quasi-isometric on the
ends f W .X; g/! .Y; h/.

Then, for each � small enough, there is a map f�W .X; g/! .Y; h/ such that

(1) dY .f�.p/; f .p// � � and f� � f ,

(2) for each k in N, the map f is a C k
b;loc-map,

(3) lettingB�.EY / be an �-neighborhood ofEY , then f�W .X DM [EX ; g/! .Y D

N [ B�.EY /; h/ is a smooth uniform map quasi-isometric on the ends.

Proof. Points (1) and (2) can be proved following a strategy very similar to the
proof of [14, Proposition 1.3]. In this proposition, given two constants ı1 < ı2, a
cover of balls ¹Bı2.xi /º of a manifold of bounded geometry is fixed. This cover has
the property that ¹Bı1.xi /º is again a cover and for each x the ball Bı2.x/ intersects
at most R balls Bı2.xi /. Since f is a uniform map, there exists a sufficiently small
constant �2 such that we can ensure f .Bı2.xi // � B�.f .p//. Therefore f can be
modified recursively on each ball of the cover. We mean that, given F0´ f , in each
step, Fi is replaced by a function FiC1 which is defined as

FiC1.p/´

´
expf .xi / ıGi;�.�/ ı expxi if p 2 Bı2.xi /;
Fi .p/ otherwise;

where
Gi;�.�/WBı2.0/ � TxiM Š Rm �! B�2.0/ � Tf .xi /N � Rn

is a C k
b

-approximation of gi D exp�1
f .xi /

ıFi ı expxi (see Eldering [5, Lemma 2.34] for
a detailed definition of Gi;�.�/). This function Gi;�.�/ is C k

b
and its norm is bounded in

terms of � and k. Then, for each x, the map f� was defined as

f�.x/ D lim
i!C1

Fi .p/:

The idea is to replace the cover ¹Bı2.xi /ºwith a cover ofM nNX .rf / for some rf < rX .
We can find a suitable cover in [12, Proposition 3.2]: in this proposition the author
gives a cover of a manifold of bounded geometry with boundary. By removing subsets
which intersect the boundary, we obtain a constant r and a cover of balls ¹Br.xi /º of
M nNX .

rx
2
/. Importantly, ¹B r

2
.xi /º is also a cover and if p is a point ofM nNX .

rx
2
/,

then there are at most R balls such that Br.x/ \ Br.xi / ¤ ;.
If we define f� as in [14, Proposition 1.7], we obtain a map which satisfies points

(1) and (2). The proof is the same as given in [14, Proposition 1.7].
The remaining task is to prove point (3). To establish point (3), we need to demon-

strate that f� is a diffeomorphism onEX and that f �� .h/ is quasi-isometric to g on each
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point p of EX . Fix some normal coordinates ¹xiº around p and let ¹yj º be normal
coordinates around f .p/.

Notice that, if we denote the Jacobian matrices of f and f� in p by Jf .p/ and
Jf� .p/ respectively, then the .i; j /-component

j.Jf � Jf� /i;j .p/j < C � �;

where C is a constant which does not depend on p. This is because, in normal coordi-
nates, f� approximates f as a C 1-function ([5, Lemma 2.34], [14, Lemma 1.2 (3)]).
Since the norm of Jf is bounded from below by K�1, then if � is small enough, Jf� is
also invertible and so f� is a diffeomorphism in p. Moreover, if we denote the Gram
matrices in p of f �h and f �� by F �H.p/ and F �� H.p/, then for each .i; j / we have

j.F �H � F �� H/i;j j � D � �;

where D does not depend on p. Indeed, if p is in EX nM , then the Gram matrices
are equal; if p is in M then the bound D is a consequence of the boundedness of the
metric h in normal coordinates around f .p/ and of the C 1-approximation of f� to f .
Then it is an easy exercise to conclude that f �� .h/ is quasi-isometric to g in p.

Lemma 1.4. Let f WX ! .Y; h/ be a map between two manifolds. Let g1 and g2 be
two quasi-isometric Riemannian metrics on X . Then f W .X; g1/! .Y; h/ is a uniform
map if and only if f W .X; g2/! .Y; h/ is a uniform map.

Proof. Let 
 be a differentiable curve on X . Fix i D 1; 2 and denote by Li .
/
the length of 
 with respect to the metric gi . Since g1 and g2 are quasi-isometric, we
obtain that there is a constant K, which does not depend on 
 , such that

K�1 � L1.
/ � L2.
/ � K � L1.
/:

So this implies that for each couple of points a and b in X we obtain

K�1 � d1.a; b/ � d2.a; b/ � K � d1.a; b/;

where di is the distance induced by gi . The claim immediately follows.

Proposition 1.5. Let f W .X D M [ EX ; g/! .Y D N [ EY ; h/ be a smooth
uniform map which is quasi-isometric on the unbounded ends. Assume that f is a
C 3
b;loc-map. Then there is a metric Qg on X such that

(1) g and Qg are quasi-isometric,

(2) M � .X; Qg/ is an open subset of bounded geometry,
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(3) there are zEX � EX and zEY � EY such that f W .X D M [ zEX ; Qg/! .Y D

N [ zEY ; h/ is a uniform map which is isometric on the unbounded ends.

Proof. Let �WR! R be a smooth function such that � Š 1 on Œ1;C1/, � Š 0
on .�1; 0� and �.x/ 2 Œ0; 1� otherwise. Fix r0´ min¹rX ; rY º, where rX and rY are
two constants such that NX .rX / �M \EX and NY .rY / � N \EY . Let rf < rX be
the constant such that f is a C 3

b
-map on M nNX .rf /.

Denote by dg.@M; x/ the distance of a point x in X from @M with respect to the
Riemannian metric g. Then we can define

�.x/´

8̂<̂
:�

� 1

rx � rf
.dg.@M; x/ � rf /

�
if x 2M;

0 otherwise:

Notice that the function � is C k
b;loc for each k in N. This fact is a consequence of

Lemma 1.2 and [12, Proposition 3.3]. Then we define the metric Qg on x 2 X as

Qgx ´ �.x/gx C .1 � �.x//f
�hx :

Observe that Qg and g are quasi-isometric. Indeed, since there is a K such that

K�1 � g � f �h � K � g;

then
1

1CK
gx � Qg � .1CK/gx :

Our next step is to prove that . xM; Qg/ is a manifold with boundary of bounded geometry.
Let us verify the conditions in Definition 1.1:

• Conditions (1) and (2) are satisfied. Let NX .rf / be the rf -normal collar ofM with
respect to g and let NY .rf / be the r-normal collar ofN . Since f is a quasi-isometry
on the unbounded ends, there is a ı0 such that f �1.NY .ı0// � NX .r/. Notice that
�Š 0 on NX .r/. This implies that the ı0-neighborhood of @ xM (with respect to Qg) is
isometric to the ı0-neighborhood of @ xN . Then, since xN is a manifold with boundary
of bounded geometry, the first two conditions of Definition 1.1 are satisfied.

• Condition (3) is also satisfied. Given that the ı0-neighborhood of @M is isometric
to the ı0-neighborhood of @N , we now need to ensure that the injectivity radius on
M is bounded from below.

Let p be a point on M , let ¹eiº be an orthonormal basis of TpX and fix some
normal coordinates ¹.U;xi /º (with respect to g) referred to as p and ¹eiº. We obtain
the coordinates ¹xi ; �j º on TX , where ¹�j º are the components of @

@xi
.
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It is important to note that in these coordinates, the components of the Gram
matrix Qgij and its derivatives are uniformly bounded. This is because f and �
have uniformly bounded derivatives of each order with respect to the coordinates
¹xiº. Also, the components of the inverse of Qgij are uniformly bounded due to the
determinant of Qgij being bounded from below by the minimum of the union of the
spectra of g and f �h. Lastly, the derivative of the components of the inverse of Qgij
are uniformly bounded (see [12, Lemma 2.17]).

Notice that a Qg-geodesic has to satisfy the equations´
P�k D �z�kij�

i�j ;

Pxi D �i ;

where z�kij are the components of the Levi-Civita connection of Qg. Observe also
that z�kij and their derivatives are uniformly bounded. Assume that C is the bound
on jz�kij j and that L is the bound on the derivatives of z�kij . This means that if we
fix s D min¹ 1

C �injM
; 1
L
º on the ball1 Bs.0p/ � TpM , the exponential map exp0p

with respect to Qg is well defined. This is a direct consequence of Picard–Lindelöf
theorem.

We know that the Jacobian matrix Jexp0p .0p/ is the identity. Furthermore, it is
established that the derivatives of the entries of Jexp0p are uniformly bounded by a
constant P : this follows directly from [12, Lemma 3.4]. So this means that there is
a constant D such that for each vp in Bs.0p/

kJexp0p .vp/ � Jexp0p .0p/k D kJexp0p .vp/ � Idk � D � kvpk:

Then, if R D min¹ 1
2D
; sº on BR.0p/ the exponential map exp0p is invertible. Con-

sidering that g and Qg are quasi-isometric, it follows that BR.0p/ contains a ball of
radius R

KC1
with respect to the metric Qg. This implies that the injectivity radius of

Qg on M nNX .ı0/ is bounded from below by R
KC1

.

• Condition (4) is satisfied. In particular, the boundedness of the derivatives of the
second fundamental form of @M follows because xM is isometric to xN near @M .
On the other hand, the boundedness of the covariant derivatives of the Riemann
tensor of Qg follows from two factors. Firstly, the norms induced by g and Qg on each
fiber Fx of a tensor multi-product of TX and T �X are equivalent to some constants
which do not depend on x. Secondly, � and the components of f �h have uniformly
bounded derivatives in normal coordinates with respect to g.

(1) The radius is given with respect to g.
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Finally, we can conclude the proof by noting that f W .X; Qg/! .N; h/ is a uniform map
overM (Lemma 1.4) and it is an isometry on zEX ´ .X nM/[N .ı0/, where N .ı0/

is the ı0-neighborhood of @M in M with respect to Qg. So the last point holds true if
we define zEY ´ f . zEX /

2. Minimal and maximal domains

In this section we introduce the L2-cohomology groups of a Riemannian manifold,
we introduce a regularizing operator for L2-forms and we conclude by proving some
technical lemmas.

2.1 – The space of square-integrable differential forms

Let .X; g/ be an oriented Riemannian manifold and let �kc .X/ be the space of
complex differential forms with compact support. The Riemannian metric g induces
for every k 2 N a scalar product on �kc .X/,

h˛; ˇiL2.X;g/´

Z
X

˛ ^ ? Ň;

where ? is the Hodge star operator induced by g. This scalar product induces a norm
on�kc .X/. We denote this norm by j � jL2�k.X;g/, and L2�k.X; g/ will be the Hilbert
space given by the closure of ��c .X/ with respect to this norm. Finally, we also define
the Hilbert space L2.X; g/ as

L2.X; g/´
M
k2N

L2�k.X; g/:

The norm of L2.X; g/ is denoted by j � jL2.X;g/. Moreover, for a fixed Riemannian
manifold .Y; g/, a linear operator AW��c .X/ ! L2.Y; h/, which is bounded with
respect to j � jL2.Y;h/ and j � jL2.X;g/, is said to be an L2-bounded operator. Finally, an
element in L2.X; g/ is an L2-form.

Definition 2.1. Let .X; g/ be an oriented Riemannian manifold whose dimension
ism. The chirality operator is defined as the operator �X WL2.X; g/! L2.X; g/ such
that, for each ˛ in ��c .X/,

�X .˛/´ i
m
2 ? ˛

if m is even and
�X .˛/´ i

mC1
2 ? ˛

if m is odd.
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Remark 5. The chirality operator is an L2-bounded operator. In particular, with
respect to j � jL2.X;g/, it is an isometric involution. Moreover, �X is also self-adjoint.

Definition 2.2. Let .X; g/ and .Y; h/ be two Riemannian manifolds. Fix an
operator AW dom.A/ � L2.X/! L2.Y /, and let A�W dom.A�/ � L2.Y /! L2.X/

be its adjoint operator. Then we denote by A� the operator defined as

A�´ �X ı A
�
ı �Y :

2.2 – A regularizing operator

In this subsection we discuss C k-forms over a manifold X . These are sections of
class C k of the bundle ƒ�.X/. If k > 1, then the differential of a C k-form is defined
locally in the usual way and it is a C k�1-form.

Let .X; g/ be a Riemannian manifold and fix � > 0. Gol’dshtein and Troyanov [7]
studied the de Rham regularizing operator RX� . In their paper they proved that, given
k > 0 in N, then for each compactly supported C k-form !,

• RX� ! is in ��c .X/,

• lim�!0 jR
X
� ! � !jL2.X;g/ D 0,

• RX� d! D dR
X
� !.

This operator will be useful in proving the technical lemmas at the end of this section.
For this reason it is important to recall the definition of RX� .

The operator RX� is defined as follows: let n be the dimension of X and fix a
mollifier �WRn ! R. Then let hWB1.0/ � Rn ! Rn be a radial diffeomorphism such
that h.x/ D x if kxk � 1

3
and

h.x/ D
1

kxk
exp

� 1

1 � kxk2

�
� x if kxk �

2

3
:

Then define the submersion sWRn �Rn ! Rn as

s.x; v/´

´
h�1.h.x/C v/ if kxk � 1;
x otherwise:

Let U be a bounded convex domain of Rn which contains the ball B1.0/. Denote by
dt2 the euclidean Riemannian metric onU . Then, for each � > 0, the local regularizing
operator R�WL2.U; dt2/! L2.U; dt2/ is defined as

R�! ´

Z
Rn
s�! ^ ��.v/dv

1
^ � � � ^ dvn;
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where ��.v/´ �.v
�
/. To obtain a global regularizing operator we need to fix a constant

J and consider a countable atlas ¹.Vi ; �i /º of M such that for each i there are at most
K charts .Vj ; �j / such that Vi \ Vj ¤ ;. Assume that B1.0/ � �i .Vi / � Rn for each
i and that ¹��1i .B1.0//º is again a cover of M . Then we define for each k in N,

R�;k ´ R�;V0 ı � � � ıR�;Vk ;

where R�;Vi ´ ��i ı R� ı Œ�
�1
i �� on Vi and it is the identity outside Vi . Finally, the

operator RX� is defined as RX� ´ limk!C1R�;k .

2.3 – Reduced and unreduced cohomologies

Let .X;g/ be a Riemannian manifold. The exterior derivative operator d W��c .X/!
��c .X/ can be seen as an unbounded operator with respect to the L2-norm on .X; g/.
So we can define some different closures Nd W dom. Nd/ � L2.X; g/ ! L2.X; g/ of
.d;��c .X//. In this manuscript we will concentrate on the maximal and the minimal
closures of d .

Definition 2.3. The minimal domain of the exterior derivative on .X;g/ is defined
as the subset dom.dmin/ of L2.X; g/ given by the form ˛ such that there is a sequence
of ¹!kº ���c .X/ such that limk!C1 j!k � ˛jL2.X;g/ D 0 and the sequence of ¹d!kº
converges in L2.X; g/ with respect to the L2-norm.

Then we can define dmin.˛/´ limk!C1 d!k .

Definition 2.4. The maximal domain of the exterior derivative on .X;g/ is defined
as the subset dom.dmax/ of L2.X; g/ given by the k-forms ˛ such that there exists an
L2-form �˛ such that for each ˇ in ��c .X/,Z

X

˛ ^ dˇ D .�1/kC1
Z
X

�˛ ^ ˇ:

Then we can define dmax.˛/´ �˛ .

Remark 6. Notice that, given a Riemannian manifold .X; g/, then dmax D d
�
min.

A well-known result about the minimal and the maximal closures of d is the
following. Let . Nd; dom. Nd// be a closed extension of d on L2.X; g/. Then

.dom.dmin/; dmin/ � . Nd; dom. Nd// � .dom.dmax/; dmax/:

Moreover, Gaffney [6] proved that if .X; g/ is a complete Riemannian manifold, then
dom.dmin/ D dom.dmax/ and so there is just one closed extension of d .
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One of the most important properties of dmin and dmax is that

dminnmax.dom.dminnmax// � dom.dminnmax/

and, in particular, d2minnmax ´ dminnmax ı dminnmax D 0. So it is possible to define the
cohomology groups of L2-cohomology as follows:

Definition 2.5. The k-th group of minimal L2-cohomology is the group defined
as

H k
2;min.X; g/´

ker.dkmin/

im.dk�1min /
:

Moreover, the k-th group of reduced minimal L2-cohomology is given by

xH k
2;min.X; g/´

ker.dkmin/

im.dk�1min /
;

where dkmin is an operator defined on dom.dmin/ \L2�k.X; g/.

Definition 2.6. The k-th group of maximal L2-cohomology is the group defined
as

H k
2;max.X; g/´

ker.dkmax/

im.dk�1max /
:

Moreover, the k-th group of reduced maximal L2-cohomology is given by

xH k
2;max.X; g/´

ker.dkmax/

im.dk�1max /
;

where dkmax is the operator dkmax defined on dom.dmax/ \L2�k.X; g/.

In general, for each k 2 N, the groups H k
2;min.X; g/, xH

k
2;min.X; g/, H

k
2;max.X; g/

and xH k
2;max.X; g/ can be different.

On the other hand, we know that if .X; g/ is a complete Riemannian manifold then
dmin D dmax. In this case, we obtain

H k
2;min.X; g/ D H

k
2;max.X; g/ and xH k

2;min.X; g/ D
xH k
2;max.X; g/:

Remark 7. If two Riemannian manifolds .X; g/ and .Y; h/ are quasi-isometric
manifolds, then their L2-cohomology groups (resp. minimal or maximal, reduced or
unreduced) are isomorphic.

Finally, we conclude this section with the following lemmas.
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Lemma 2.1. Let .X; g/ be a Riemannian manifold and let ˛ 2 dom.dmax/. Then,
for each k � 1 and for each ˇ in C kc .ƒ�T �X/, we haveZ

X

˛ ^ dˇ D .�1/k
Z
X

dmax˛ ^ ˇ:

This is a classical result; see for example [4, Remark 1 of Section 8.2]. However,
here we give an explicit proof.

Proof of Lemma 2.1. Let us denote byRX� the de Rham regularizing operator. We
can assume, without loss of generality, that there is a j such that supp.ˇ/ is contained
in ��1j .B1.0// � Vj . Here, ¹.Vi ; �i /º is the atlas used to define RX� . Observe that
˛ ^RX1

n

ˇ converges pointwise to ˛ ^ ˇ.

Notice that on Vi , ˛ has the form ˛.x/ D ˛I .x/ dx
I such thatZ

Vi

gIJ .x/˛I .x/˛J .x/ dx
1
^ � � � ^ dxn

is bounded. Here, the capital letter I is an ordered multi-index, i.e. I D .i1; : : : ; ik/
where i1 < i2 < � � � < ik . Moreover, we also denote by N � I the ordered multi-
index such that .I; N � I / D .�.1/; : : : ; �.n//, where � is a permutation. So the
integral of ˛ ^ dˇ has the form

R
��1
i
.B1.0//

˛I � .dˇ/N�I dx
1 ^ � � � ^ dxn. Notice that

j˛I � .dˇ/N�I j �Cˇ � j˛I j. This means that if j˛I j is inL1.��1j .B1.0/// then we could
apply the dominated convergence theorem to the sequence ˛I � limk!C1.dR

X
1
k

ˇ/N�I .

Observe that j˛I j is in L2.��1j .B1.0///. Indeed,Z
��1
j
.B1.0//

j˛I j
2 dx1 ^ � � � ^ dxn �

1

mj

Z
��1
j
.B1.0//

mj j˛I j
2 dx1 ^ � � � ^ dxn

�
1

mj

Z
��1
j
.B1.0//

gIJ˛I˛J dx
1
^ � � � ^ dxn

� Cj ;

where mi is the infimum of the eigenvalues of g on the closure of Vi . So, since
��1j .B1.0// is compact, then j˛I j is also an L1 function. This means that, thanks to
the dominated convergence theorem,Z

Vi

˛ ^ dˇ D

Z
Vi

˛I � .dˇ/N�Idx
1
^ � � � ^ dxn

D

Z
Vi

˛I � lim
s!C1

.dRX1
s

ˇ/N�I dx
1
^ � � � ^ dxn
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D

Z
Vi

lim
s!C1

˛I � .dR
X
1
s

ˇ/N�I dx
1
^ � � � ^ dxn

D lim
s!C1

Z
Vi

˛ ^ dRX1
s

ˇ:

Observe that dRX1
s

ˇ is a compactly supported smooth form: this means thatZ
Vi

˛ ^ dˇ D lim
s!C1

.�1/k
Z
Vi

d˛ ^RX1
s

ˇ:

So, by applying the dominated convergence theorem again, we conclude.

Lemma 2.2. Let .X; g/ and .Y; h/ be two Riemannian manifolds. Denote by dmin;X

and dmax;X the minimal and the maximal extensions of the exterior derivative operator
on X . Similarly, dmin;Y and dmax;Y are the minimal and the maximal extensions of
the exterior derivative operator on Y . Fix an L2-bounded operator AW��c .Y / !
C kc .ƒ

�.T �X// for some k > 1. Suppose that A�W��c .X/! C kc .ƒ
�.T �Y //. Finally,

assume that, for each smooth form !,

dA! ˙ Ad! D B!;

whereBW��c .X/!C kc .ƒ
�T �Y / is an L2-bounded operator. ThenA.dom.dmin;Y //�

dom.dmin;X / and A.dom.dmax;Y // � dom.dmax;X /.

Proof. Let ˛ be a k-form of dom.dmax;Y /: there is an L2-form d˛ such that, for
each ˇ in ��c .Y /, Z

Y

d˛ ^ ˇ D .�1/k
Z
Y

˛ ^ dˇ:

Let us concentrate on A˛. Let 
 be a form in ��c .X/. We obtainZ
X

A˛ ^ d
 D hA˛; �Xd
iL2.X;g/

D h˛;A��Xd
iL2.Y;h/

D h˛; �YA
��X�Xd
iL2.Y;h/

D h˛; �YA
�d
iL2.Y;h/

D .�1/kh˛; �YA
�d �
iL2.Y;h/

D .�1/kh˛; �Y .d
�Œ�A�� C B�/
iL2.Y;h/

D h˛; �Y .d Œ�A�
�
C B�/
iL2.Y;h/

D hdmax;X˛; �Y Œ�A�
�
iL2.X;g/ C hB˛; �Y 
iL2.X;g/

D h.�Admax;X C B/˛; 
iL2.X;g/:
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So this means that A.dom.dmax;Y // � dom.dmax;X / and dmax;XA D �Admax;Y C B .
Let ˇ be an element in dom.dmin;Y /. Then there is a sequence ¹ˇnº such that

ˇ D limn!C1 ˇn and dˇ D limn!C1 dˇn with respect to the L2-norm. Since A is
an L2-bounded operator, we obtain

Aˇ D lim
n!C1

Aˇn:

Fix n 2 N and let K.n/ be a number such that

jAˇ � AˇK.n/jL2.X;g/ �
1

2n

and
jAdˇ � AdˇK.n/jL2.X;g/ �

1

2n
:

Then let �.n/ be small enough that

jAˇK.n/ �R
X
�.n/AˇK.n/jL2.X;g/ �

1

2n

and
jAdˇK.n/ �R

X
�.n/AdˇK.n/jL2.X;g/ �

1

2n
:

So let ¹
nº be the sequence defined as RX
�.n/

AˇK.n/ for each n. This is a sequence of
compactly supported smooth forms which converges, with respect to the L2-norm, to
Aˇ. We just have to show that dRX

�.n/
AˇK.n/ converges to an element of L2.X; g/.

Observe that

dRX�.n/AˇK.n/ D R
X
�.n/dmax;XAˇK.n/

D RX�.n/.�Admax;X C B/ˇK.n/

D RX�.n/.�Ad C B/ˇK.n/:

This means that

jAdˇ �RX�.n/.�Ad C B/ˇK.n/jL2.X;g/

� jAdˇ � AdˇK.n/jL2.X;g/

C jAdˇK.n/ �R
X
�.n/.�Ad C B/ˇK.n/jL2.X;g/

�
1

2n
C

1

2n
D
1

n
:

So we just proved that A.dom.dmin;Y // � dom.dmin;X / and dmin;XA D �Admin;Y C

B:



L2-cohomology and quasi-isometries on the ends of unbounded geometry 19

3. R.–N.–Lipschitz maps and vector bundles

This section is devoted to recalling three necessary components for proving the
main result in Theorem 4.6. These notions are also studied in [14]. In particular, we
need

• some assumptions which allow a map between Riemannian manifolds to induce an
L2-bounded pullback,

• a specific Riemannian metric and a family of Thom forms on a vector bundle.

In next subsection, we address the first bullet.

3.1 – Radon–Nikodym–Lipschitz maps

Let .M; �/ and .N; �/ be two measured spaces and let f W .M; �/! .N; �/ be a
function such that the pushforward measure f?.�/ is absolutely continuous with respect
to �.

Definition 3.1. Let .N;�/ be � -finite. Then the fiber volume of f is the Radon–
Nikodym derivative

Volf;�;�´
@f?�

@�
:

WhenM and N are Riemannian manifolds .X; g/ and .Y; h/ and their measures � and
� are those induced by the metrics g and h, then we denote the fiber volume of a map
f W .X; g/! .Y; h/ by Volf .

Let .M; dM ; �M / and .N; dN ; �N / be two measured and metric spaces.

Definition 3.2. A map f W .M; dM ; �M /! .N; dN ; �N / is Radon–Nikodym–
Lipschitz or R.–N.–Lipschitz if

• f is Lipschitz,

• f has a well-defined and bounded fiber volume.

Remark 8. As shown in [14, Remark 12], there is an equivalent definition of
Radon–Nikodym–Lipschitz map. A map f W .M; dM ; �M /! .N; dN ; �N / is a R.–N.–
Lipschitz map if it is Lipschitz and there is a constant C such that, for each measurable
set A � N ,

�M .f
�1.A// � C�N .A/:

So this implies that a composition of R.–N.–Lipschitz maps is an R.–N.–Lipschitz map.

The following Proposition 3.1 about R.–N.–Lipschitz maps is proved in [14, Propo-
sition 2.4].
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Proposition 3.1. Let .M; g/ and .N; h/ be Riemannian manifolds and let
f W .M; g/ ! .N; h/ be an R.–N.–Lipschitz map. Then f �, which is the pullback
along f , is an L2-bounded operator.

In general, a Lipschitz map is not R.–N.–Lipschitz: for example, if .M; g/ and
.N; h/ are two Riemannian manifolds such that dim.M/ < dim.N / then there is no
Lipschitz embedding i W .M; g/! .N; h/ which is R.–N.–Lipschitz.

However, we are interested in the fiber volume of a submersion and, when f W .M;g/
! .N; h/ is a Lipschitz submersion between oriented Riemannian manifolds, we know
how to compute its fiber volume. In order to explain how to compute it, we recall the
notion of a quotient between two differential forms.

Definition 3.3. Let us consider a differentiable manifoldX . Given two differential
forms ˛ 2 �k.X/, ˇ 2 �n.X/, we define a quotient between ˛ and ˇ, denoted by ˛

ˇ
,

as a (possibly not continuous) section of ƒk�n.X/ such that for all p in M ,

˛.p/ D ˇ.p/ ^
˛

ˇ
.p/:

In general, given two smooth differential forms, we do not know whether there is
a quotient between them. Moreover, if a quotient between ˛ and ˇ exists, it may be
not unique. However, given a submersion between Riemannian manifolds � W .X; g/!
.Y; h/ and denoting by VolX and VolY the volume forms on .X; g/ and .Y; h/, then
it is possible to define a quotient between VolX and ��VolY and the pullback of this
quotient on a fiber of � is a smooth form which does not depend on the choice of the
quotient (see [14, p. 15]). So this means that if we denote the embedding of the fiber of
q in X by iqWFq ! X , then Z

Fq

i�q

� VolX
��VolY

�
is a well-defined real number for each q in N .

Proposition 3.2. Let .X; g/ and .Y; h/ be two oriented, Riemannian manifolds.
Denote by VolX (resp. VolY ) the volume form on .X; g/ (resp. .Y; h/). Let � W .X; g/!
.Y; h/ be a submersion. Then, if q is on im.�/,

Vol�.q/ D
Z
F

VolX
��VolY

.q/;

and Vol�.q/ D 0 otherwise.

Remark 9. If the submersionf WX!Y is a diffeomorphism between oriented man-
ifolds which preserves the orientations, then the integration along the fibers of f is the
pullback .f �1/�. This means that the fiber volume of f is given by j.f �1/� VolX

f �.VolY /
j.
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We also recall [14, Proposition 2.6]: this proposition allows us to compute the fiber
volume of the composition of two submersions.

Proposition 3.3. Let f W .X; g/! .Y; h/ and gW .Y; h/! .W; l/ be two submer-
sions between oriented Riemannian manifolds. Denote by VolX , VolY and VolW the
volume forms on X , Y and W induced by their Riemannian metrics. Then

Volgıf .q/ D
Z
g�1.q/

�Z
f �1g�1.q/

VolX
f �.VolY /

�
VolY
g�VolW

:

Finally, we conclude this subsection by showing the relation between R.–N.–
Lipschitz maps and the quasi-isometries.

Proposition 3.4. Let f W .X; g/! .Y; h/ be a quasi-isometry. Then f is an R.–
N.–Lipschitz map.

Proof. Notice that f and its inverse f �1 are Lipschitz maps: this directly follows
from the definition of quasi-isometry. So we just have to show that f has a bounded
fiber volume. This can be proved by showing that idW .X; g/! .X; f �h/ has bounded
fiber volume. Let x be a point ofX . Thanks to a simultaneous diagonalization argument,
we can find a basis ¹e1; : : : ; enº of TxX such that the Gram matrices of f �h and g
are both diagonals. Let K be the Lipschitz constant of f �1. Observe that g.ei ; ei / �
Kf �h.ei ; ei / for each i D 1; : : : ; n. So this means that

det.gjl.x// D
nY
iD1

g.ei ; ei / � K
n

nY
iD1

f �h.ei ; ei / D K
ndet.f �hjl.x//:

Notice that the fiber volume of id on a point y D f .x/ is given bys
det.gjl.x//

det.f �hjl.x//
� K

n
2 :

This concludes the proof.

3.2 – Generalized Sasaki metrics

In this subsection a Riemannian metric on a vector bundle is introduced. This metric
is a generalization of the metric defined by Sasaki in [11] for the tangent bundle of a
Riemannian manifold. The definition of this generalized Sasaki metric can be found in
Boucetta and Essoufi [3, p. 2].

Let .N; h/ be a Riemannian manifold and let �E WE ! N be a vector bundle. Fix
a bundle metric HE 2 �.E� ˝E�/ and a linear connection rE which preservesHE .
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Fix ¹s˛º, a local frame ofE. Given a system of local coordinates ¹xiº over U � N , we
obtain the system of coordinates ¹xi ;�˛º on��1E .U /, where the�˛ are the components
with respect to ¹s˛º. The map KWTE ! E is then defined as

K
�
bi

@

@xi

ˇ̌̌
.x0;�0/

C z˛
@

@�˛

ˇ̌̌
.x0;�0/

�
´ .z˛ C bi�j�˛ij .x0//s˛.x0/;

where the� lij are the Christoffel symbols ofrE . The Christoffel symbols of a connection
rE are some coefficients locally implicitly defined by the equality

r
E
@

@xj

s�.x/´ �


�j .x/s
 .x/:

Definition 3.4. The Sasaki metric on E is the Riemannian metric hE defined for
all A;B in T.p;vp/E as

hE .A;B/´ h.d�E;vp .A/; d�E;vp .B//CHE .K.A/;K.B//:

Remark 10. Fix the system of coordinates ¹xi ; �j º on E. The Gram matrix of
hE is 8̂̂<̂

:̂
hEij .x; �/ D hij .x/CH˛
 .x/�

˛
ˇi
.x/�



�j .x/�

ˇ��;

hEi� .x; �/ D H�˛.x/�
˛
ˇi
.x/�ˇ ;

hE�� .x; �/ D H�;� .x/;

where i; j D 1; : : : ; n and �; � D nC 1; : : : ; nCm. Consider a point x0D .x10 ; : : : ; x
n
0 /

in N . If all the Christoffel symbols of rE in x0 are zero, then, in local coordinates, the
matrix of hE at a point .x0; �/ is"

hi;j .x0/ 0

0 H�;� .x0/

#
:

Moreover, with respect to the coordinates .xi ; �� /, the inverse of the Gram matrix is
given by 8̂̂<̂

:̂
h
ij
E .x; �/ D h

ij .x/;

hi�E D ��
�
ˇj
.x/hij .x/�ˇ ;

h��E D H
�� .x/C hij .x/��

ˇi
.x/���j .x/�

ˇ��;

where H �� and hij .x/ are the components of the inverse matrices of hij and H�;� .

Example 3.1. Let .X; g/ be a Riemannian manifold and let E D TX . Choose as
hE the metric g itself and fix rE D rLC

g , the Levi-Civita connection of g. We denote
by gS the Sasaki metric induced by g and rLC

g .
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Example 3.2. Let f W .X; g/! .Y; h/ be a smooth map. Let � Wf �T Y ! X be
the pullback bundle of T Y . Then the Riemannian metric h can be seen as a bundle
metric on T Y and so we obtain a bundle metric f �h on f �T Y . Fix the connection
f �rLC

h
on f �T Y which is the pullback of the Levi-Civita connection on .Y; h/. Let

us denote by gS;f the Sasaki metric induced by f �rLC
h

, f �h and g.

Remark 11. Let .Y; h/ be a Riemannian manifold. Then .id�T Y; gS;id/ and
.T Y; gS / are isometric Riemannian manifolds, and the isometry is the map IDW
.id�T Y; gS;id/ ! .T Y; gS / which is the bundle map induced by the identity. For
this reason, we will identify .id�T Y; gS;id/ and .T Y; gS / both as bundles and as Rie-
mannian manifolds.

Definition 3.5. Let .X; g/ be a Riemannian manifold and fix a vector bundle
� WE ! X . Let HE and rE be a bundle metric and a connection on X . Then, given a
constant ı, we denote by Eı the following disk-bundle:

Eı D
®
ep 2 E

ˇ̌
hE .ep; ep/ < ı

¯
:

Let f W .X; g/! .Y; h/ be a smooth map between two Riemannian manifolds. When
E D f �T Y , rE D f �rLC

h
and HE is the pullback bundle metric of h, then instead

of Eı we use the notation f �T ıY .

Remark 12. Let f W .X; g/! .Y; h/ be a smooth map. Fix a bundle E on Y and
let rE be a connection and hE be a bundle metric on E. Then the induced bundle map

F W .f �T ıY; gS;f / �! .T ıY; gS /;

.p;wf .p// �! wf .p/

is a smooth Lipschitz map.

Remark 13. Notice that if � W .X; g/! .Y; h/ is a submersion, then .��/� D �?,
which is the integration along the fibers of � . This is a consequence of the projection
formula (see [2] or [13]).

Proposition 3.5. Let � WE ! X be a vector bundle on a Riemannian manifold
.X; g/. On E, fix a metric bundle HE and a connection rE which preserves HE . Let
hE be the generalized Sasaki metric on E induced by g, HE and rE . Assume that at
each point p of X there is a system of normal coordinates ¹xiº centered in p and a
frame ¹s˛º such that

• ¹s˛º is orthonormal in p,

• all the Christoffel symbols of rE with respect to ¹xiº and ¹s˛º vanish in p.
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Then � W .Eı ; hE /! .X; g/ is an R.–N.–Lipschitz map for each ı > 0. This means that
�� is an L2-bounded operator. Moreover, as a consequence of Remark 13, integration
along the fibers �? D .��/� is also an L2-bounded operator.

Proof. The submersion � WEı ! X is a Riemannian submersion so, in particular,
it is Lipschitz. Moreover, for fixed a point p on M , if VolX .p/ D e1 ^ � � � ^ en, then
VolE .q/ D ��.e1/.q/ ^ � � � ^ ��.en/.q/ ^ "1 ^ � � � ^ "n, where q is in the fiber of �
and "1 ^ � � � ^ "n is a volume form of the fiber of q. Then the fiber volume of � is
given byZ

F

VolE
��VolX

D

Z
Bı.0p/

��.e1/.q/ ^ � � � ^ �
�.en/.q/ ^ "1 ^ � � � ^ "n

��.e1/.q/ ^ � � � ^ ��.en/.q/

D

Z
Bı.0p/

"1 ^ � � � ^ "n D �eucl.Bı.0//:

Remark 14. The metrics of Examples 3.1 and 3.2 satisfy the assumptions of
Proposition 3.5.

3.3 – Mathai–Quillen–Thom forms

The last component that we need in order to prove the main result of this paper is
the Mathai–Quillen–Thom forms of a vector bundle. This is a family of Thom forms,
so we will start by introducing the notion of a Thom form.

Definition 3.6. Let � WE !M be a vector bundle. A smooth form ! in ��cv.E/
is a Thom form if it is closed and its integral along the fibers of � is equal to the constant
function 1.

Given a Thom form ! of f �T Y such that supp.!/ is contained in a ı0 < ı neigh-
borhood of the null section, let us denote by e! W��.f �.T ıY //! ��.f �.T ıY //,
the operator defined for every smooth form ˛ as

e!.˛/´ ˛ ^ !:

Denote by j � j.p;wf.p// the norm on ƒ�
.p;wf.p//

.f �T Y / induced by the Riemannian
metric gS;f . If there is a constant C such that

j!j.p;wf.p// < C;

then the operator e! is an L2-bounded operator (see [14, Proposition 4.4]). In this case,
e
�
! D r! where r!.ˇ/´ ! ^ ˇ.
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In this manuscript, we use the Thom forms introduced by Mathai and Quillen [10].
In their work, the authors defined a Thom form for a vector bundle � WE ! .M; g/

induced by the Riemannian metric g, a metric bundle hE and a connection rE . In
particular, for each ı > 0 they found a Thom form whose support is contained on
Eı . So we will consider, on the tangent bundle of a Riemannian manifold .Y; h/, the
Mathai–Quillen–Thom !Y form induced by h and rLC

h
. On the other hand, given a

map f WX ! Y , we fix on f �T Y the pullback F �!Y , where F Wf �.T Y /! T Y is
the bundle map induced by f .

As shown in [14, Section 4.2.], if h has the same bounds as a manifold of bounded
geometry and if f is a smooth Lipschitz map, then there is a constant C such that for
each .p; wf .p// in f �T Y the norm jF �!Y j.p;wf.p// � C . In this case, the operator
��c .T Y /! ��c .T Y / is an L2-bounded operator (see [14, Propositions 4.3 and 4.4]).

4. Stability of cohomologies

In this section, given a uniform map f W .X DM [EX ; g/! .Y D N [EY ; h/

which is isometric on the ends, we define an operator Tf WL2.Y; h/ ! L2.X; g/.
Moreover, we also prove that if f is a homotopy equivalence, then Tf induces the
required isomorphisms in L2-cohomology.

In this section we always assume that f is a smooth C k
b;loc-map for each k in N.

If f is not a C k
b;loc-map, then we replace it with an �-approximation f� provided by

Proposition 1.3. Moreover, we also assume that f is an isometry on the unbounded
ends: we know, thanks to Proposition 1.5, that the metric on the domain can be replaced
by another metric which is quasi-isometric to the first one and which makes f an
isometry on the ends.

4.1 – A submersion related to a uniform map

Fix f W .X D M [ EX ; g/! .Y D N [ EY ; h/, a smooth C k
b;loc-map which is

isometric on unbounded ends. Let r0 be a constant such that the restriction of f to
NX .r0/ is an isometry. Fix ı D 1

4
r0 and denote by � W f �T ıY ! X the fiber bundle

given by the vectors on f �T ıY whose norm is less than or equal to ı. Consider the
map

pf W dom.pf / � f �T ıY �! Y ;

.p; vf .p// �! expf .p/.vf .p//:

Notice that outside ��1.M/� f �T ıY the mappf could be not defined on all f �T ıY
since Y is not complete. However, it is defined on a neighborhood of the 0-section.
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Thanks to [14, Lemma 3.3] we know that, on its domain, pf is a smooth submersion,
such thatpf .0f .p//D f .p/. Letp be a point inX and fix a system of normal coordinates
¹xiº around p and let ¹yj º be a system of normal coordinates around f .p/ in Y . Let
¹xi ;�j º be the system of coordinates on f �T ıY , where�j are the coordinates referred
to the frame ¹ @

@yj
º. Since f is a C k

b;loc-map, thanks to [14, Lemma 3.3] we know that
pf has uniformly bounded derivatives with respect to ¹xi ; �j º. This implies that on

Af ´
®
.p;wf .p// 2 f

�T ıY such that f .p/ � N
and jwf .p/jh � d.f .p/; @N /

¯
;(4.1)

the map pf is Lipschitz. This can be proved as a consequence of Schick [12, Lemma
3.4].

Let  WR! R be the map defined as

 .t/´

8̂̂<̂
:̂
0 if t � 0;
1 if t � ı;
P. t

ı
/ if t 2 .0; ı/;

where P.s/´ �20s7 C 70s6 � 84s5 C 35s4. Thanks to Eldering [5, Lemma 2.34],
we can fix � < ı

3
and � � r0

8
and find a map  �WR! R such that

•  D  � on R n .ı � �; ı C �/,

• d. �.t/;  .t// � � for each t ,

•  is a smooth function on R n ¹0º,

•  � is a map of class C 3 on R.

Then we can define the map �WY ! R as

�.q/´

8̂̂<̂
:̂
0 if q 2 Y nN;
1 if q 2 N nNY .r0/;

 �.d.q; @N // if q 2 NY .r0/:

By some easy computations, it is possible to notice that � is a Lipschitz function in
C 3.Y / and it is smooth outside @N . Indeed, because of Remark 4, if we fix some collar
coordinates .y; t/ on NY .r0/, then � only depends on t .

Let Qpf Wf �T ıY ! Y be the map defined as

Qpf .vf .p//´ pf .�.f .p// � vf .p//:

Observe that Qpf is defined on all f �T ıY and it is a submersion. Indeed, on M , Qpf is
a submersion because � ¤ 0 and pf is a submersion; on X nM , Qpf is a submersion
since f is an isometry.
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Proposition 4.1. Let .X DM [EX ; g/ and .Y D N [EY ; h/ be two manifolds
with unbounded ends. Let f W .X; g/! .N; h/ be a uniform map isometric on the
unbounded ends. Assume that fjNX .r0/ is an isometry and fix ı D r0

4
. Denote by gS;f

the generalized Sasaki metric induced by g, f �h and f �rLC
h

on f �TN .
Then the map Qpf W .f �T ı ; gS;f /! .Y; h/ is an R.–N.–Lipschitz map.

Proof. Observe that Qpf is a Lipschitz map since

• pf is Lipschitz on the subset Af defined in equality (4.1),

• f is an isometry on the unbounded ends,

• � is Lipschitz.

It remains to prove the boundedness of the fiber volume. Observe that if q 2 Y nN ,
then p�1

f
.q/ is the fiber of f �T ıN over p0 D f �1.q/. Then, since f is an isometry

on the ends, the fiber volume of q in Y nN is equal to the volume of a ball of radius ı
in Rn.

Let q be a point in N such that Bı.q/ \NY .ı/ D ;. Observe that for each p0 in
X , since � � 1,

d.f .p0/; Qpf .wf .p0/// � ı � f
��.p0/ � ı:

This means that
Qp�1f .q/ � ��1f �1.Bı.q//:

Notice that, since Bı.q/ \NY .r0/ D ;, we obtain that f �� on f �1.Bı.q// is equal
to 1.

This means that Qpf , on the fiber of q, is equal to the submersion pf defined in [14].
So the fiber volume of q can be computed as in [14, Corollary 4.2] and it is bounded
by a constant which only depends on the curvatures of M and N .

Finally, we have to calculate the fiber volume of a point q in N such that Bı.q/ \
NY .ı/ ¤ ;. Since ı D r0

4
we obtain that Bı.q/ \N � NY .r0/.

Since Qpf D f ı� outsideM and sincefjEX is an isometry, then Qp�1
f
.q/ is contained

in ��1.NX .r0//. Recall that, since M is an open subset of bounded geometry, we can
identify each point p in ��1.NX .r0// as a couple .x; t/ in @M � .0; r0/. Let us define
the map

Qtf W�
�1.NX .r0// �!M �N;

wf .x;t/ �! .x; t; Qpf .wf .x;t///:

Observe that Qpf D prN ı Qtf where prN WM �N ! N is the projection on the second
component.
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Thanks to Proposition 3.3, we obtain

Vol Qpf .q/ D
Z
X

VolQtf .p; q/ d�X :

Let us focus on VolQtf . Fix some normal coordinates ¹V; yiº around q and some collar
coordinates ¹U;xj ; tº around p0 D .x0; t0/D f �1.q/. Assume that f .U / � V . Then
on ��1.U / � f �T ıY we have the fibered coordinates ¹xi ; t; �j º, where ¹�j º are the
coordinates relative to the frame ¹ @

@yi
º. Observe that

Qtf .x0; t0; �
j / D .x0; t0;  �.t0/ � �

j /:

Moreover, since the Christoffel symbols of the pullback connection f �rLC
h

vanish in
.x0; t0/, the volume form of f �T ıY in .x0; t0; �j / is given by

Volf �T ıY .x0; t0; �
j / D det.gij .x0; t0// dxI ^ dt ^ d�J :

Observe that det.gij .x0; t0// is uniformly bounded since M is an open subset of
bounded geometry. Let us study the volume form on M �N : this is given by

VolM�N .x; t; y/ D det.gij .x; t// � det.hrs.y// dxI ^ dt ^ dyJ :

Observe that Qtf is a diffeomorphism with its image. This means that its fiber volume is
null outside the image of Qtf . Moreover, on im.Qtf /, the fiber volume is given by

ŒQt�1f ��
� Volf �T ıY
Qt�
f
.VolM�N /

�
:

Notice that, in .x0; t0; q/, we have

Volf �T ıY
Qt�
f
.VolM�N /

.x0; t0; �
j / D

�
det
�
hrs. �.t0/ � y/

���1 1

 �.t0/n
:

This means that, for each .x; t; q/ in im.Qtf /,

(4.2) VolQtf .x; t; q/ � C �
1

 �.t/n
:

Let us decompose M as the union of NX .
3
10
ı/ and M0 ´ M n NX .

3
10
ı/. We are

choosing 3
10
ı because on NX .

3
10
ı/ the inequality �.x; t/ D  �.t/ � 1

2
holds. This

inequality will be useful later.
However, we can see the fiber volume of Qpf as the integral

Vol Qpf .q/ D
Z

NX .
3
10 ı/

VolQtf .p; q/ d�M C
Z
M0

VolQtf .p; q/ d�M :
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Notice that, thanks to inequality (4.2), on M0 the fiber volume of Qtf is uniformly
bounded by a constantC since �.t/ is bounded from below by �.x; 3

10
ı/D  �.

3
10
ı/.

Moreover, since f is uniformly proper, then also � ı f and Qpf are uniformly proper
and so this means that there is a number C (which does not depend on q) such that

diam
�
�. Qp�1f .q//

�
� C:

Since M is an open subset of bounded geometry, we obtain a constant K such that

�M
�
�. Qp�1f .q// \M0

�
� �M

�
�. Qp�1f .q//

�
� K:

Finally, observe that im.Qtf / \ ŒM � ¹qº� D �. Qp�1f .q// � ¹qº and we obtainZ
M0

VolQtf .p; q/ d�M �
Z
�. Qp�1

f
.q//

VolQtf .p; q/ d�M � K � C :

We only have to prove the boundedness of the integral over NX .
3
10
ı/:

Recall that if .x; t; q/ is not in im.Qtf /, then the fiber volume of VolQtf .x; t; q/ D 0:
Observe that im.Qtf / is given by the elements .x; t; q/ of M �N such that there is a
tangent vectorwf .x;t/ on f .x; t/whose norm is less than or equal to ı � �.t/ and which
satisfies

Qpf .wf .x;t// D expf .x;t/.wf .x;t// D q D f .x0; t0/:

This means that, if .x; t; q/ is in im.Qtf /, then

dM ..x0; t0/; .x; t// D dN .f .x0; t0/; f .x; t// D dN .q; f .x; t//

� kwf .x;t/k � ı �  �.t/:(4.3)

Observe that for each .x; t/ in NX .r0/

jt � t0j D dM ..x0; t0/; .x0; t // � dM ..x0; t0/; .x; t//I

indeed, if .x1; t / is a point such that dM ..x0; t0/; .x1; t // < jt � t0j then d..x1; t /; @M/

< t which is a contradiction with Lemma 1.2.
Moreover, on NX .

3
10
ı/, we also have that �.t/ � 1

2
t for each .x; t/. Then, because

of the inequality (4.3), if .x; t; q/ is in im.Qtf / \NX .
3
10
ı/ �N , then

(4.4) jt � t0j � ı �  �.t/ �
ı

2
t H)

2

2C ı
t0 � t �

2

2 � ı
t0;

and so, since  � is a monotone polynomial of degree 7, we obtain

dM ..x0; t0/; .x; t// � ı �  �.t/ � ı �  �

� 2

2 � ı
t0

�
� ı �

27

.2 � ı/7
�  �.t0/:
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This means that �. Qp�1
f
.q// is contained in a ball on M of radius ı � 27

.2�ı/7
�  �.t0/,

where t0 D d.q; @N /, and so

�M
�
�. Qp�1f .q//

�
� J1 �  �.t0/

n:

Moreover, if .x; t; q/ is an element of im.Qtf /\NX .
3
10
ı/ �N , thanks to formula (4.4)

we obtain

1

 �.t/n
�

1

 �.
2
2Cı

t0/n
D
.2C ı/7n

27n
�

1

 �.t0/n
� J2 �

1

 �.t0/n
:

So we conclude by observing thatZ
NX .

3
10 ı/

VolQtf .x0; t0; q/ d�M � J1 � �.t0/
n
� J2 �

1

�.t0/n
� B:

4.2 – The pullback operator

Fix a uniform map f W .X DM [EX ; g/! .Y D N [EY ; h/ which is isometric
on the unbounded ends. Let ! be the Mathai–Quillen–Thom form of f �T Y with
support contained in f �T ıY defined in Section 3.3. Then we define the pullback
operator as

Tf .˛/´

Z
Bı
Qp�f ˛ ^ !:

Proposition 4.2. Denote by dmin;Y and dmax;Y (resp. dmin;X and dmax;X ) be the
minimal and maximal extension of the exterior derivative operator d on Y (resp. on
X ). The operator Tf satisfies the following properties:

(1) Tf is L2-bounded,

(2) Tf .dom.dmin;Y // � dom.dmin;X / and Tf .dom.dmax;Y // � dom.dmax;X /,

(3) Tf dmax;Y D dmax;XTf .

Proof. Let �N and �Y nN be the characteristic functions relative to M and to
X nM . If ˛ is a smooth L2-form, then �N˛ and �Y nN˛ are L2-forms and

j˛j2
L2.Y;h/

D j�N˛j
2
L2.Y;h/

C j�Y nN˛j
2
L2.Y;h/

:

Observe that
Tf .�Y nN˛/ D �XnMf

�˛

and so, since f on X nM is an isometry, we obtain

jTf .�Y nN˛/j
2
L2.X;g/

D j�Y nN˛j
2
L2.Y;h/

:
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Let us focus on �N˛. Notice that

Tf .�N˛/ D prX? ı e! ı Qp
�
f .�N˛/;

where e!.ˇ/ D ˇ ^ ! and prX? is the integration along the fiber of f �.T ıY /.
We already know that Qp�

f
is an R.–N.–Lipschitz map and so this means that Qp�

f
is

an L2-bounded operator. In particular, Qp�
f
˛ is a smooth form on f �T ıYjM and it is

null on f �T ıYjXnM . Moreover, thanks to Proposition 3.5, we also know that prX? is
L2-bounded. On the other hand, since the norm j!j.p;wf.p// could be not uniformly
bounded, the operator e! can be not L2-bounded. However, observe that on ��1.M/

the norm j!j.p;wf.p// actually is uniformly bounded sinceM andN are open subsets of
bounded geometry. So, if we restrict e! WL2. xM/!L2. xM/, we obtain an L2-bounded
operator. Moreover, we also have that Qp�

f
.�N˛/ has support contained in ��1. xM/ and

so this means that

jTf .�N˛/j
2
L2.X;g/

� C � j�N˛j
2
L2.Y;h/

:

Observe that Tf .�N˛/ D 0 on X nM and Tf .�Y nN˛/ D 0 on M . Then we obtain

jTf ˛j
2
L2.X;g/

D jTf �N˛j
2
L2.X;g/

C jTf �Y nN˛j
2
L2.X;g/

� K � j�N˛j
2
L2.Y;h/

C j�Y nN˛j
2
L2.Y;h/

� max.K; 1/.j�N˛j2L2.Y;h/ C j�Y nN˛j
2
L2.Y;h/

/

D max.K; 1/j˛j2
L2.Y;h/

:

So we have proved (1).
In order to prove points (2) and (3) we apply Lemma 2.2.
Notice that, since Qpf is a map of class C 3, the pullback along Qpf Wf �T ıN ! N

of a smooth form lies in C 2.ƒ�.f �T ıN//, which is the space of differential forms of
class C 2 over f �T ıN . Observe that on this space the exterior derivative of a form ˛ is
defined exactly as it is defined for smooth forms (see [8, p. 549]) and all the properties
of d are the same. In particular, Qp�

f
and the exterior derivative operator commute.

The operator e! also commutes with the exterior differential and it preserves
C 2.ƒ�.f �T ıN//. Finally, if the support of ˇ is vertically compact, the integration
along the fibers �? of f �T ıN also satisfies �?dˇ D d�?ˇ (the proof is the same
as the classical one: see for example [2, Proposition 6.14.1]) and, moreover, if ˇ is a
C k-form, the same holds for �?ˇ.

So we obtain that if ˛ is a smooth form on Y , then Tf ˛ is a C 2-form on X and
Tf d˛ D dTf ˛. Moreover, since Qpf is uniformly proper, if ˛ is an element of ��c .N /,
then Tf ˛ is compactly supported. Finally, observe that Tf ˛ is smooth on X n @M .
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Observe that T �
f
D Qpf ? ı r! ı �

�, where Qpf ? is the integration along the fibers
of Qpf and r!.ˇ/ D ! ^ ˇ. Since Qpf is a C 3-map, then for each q in N and for
each p in f �T ıN there are a couple of C 3-charts .U; x1; : : : :; xn; y1; : : : ; yn/ and
.V; y1; : : : ; yn/ such that Qpf .x1; : : : :; xn; y1; : : : ; yn/ D .y1; : : : ; yn/. This implies,
by a partition of unity argument, that the integral along the fibers of Qpf of a smooth
form is aC 3-form. So dT �

f

 is a compactly supportedC 3-form. Then we can conclude

by applying Lemma 2.2.

4.3 – The isomorphisms induced by the pullback

Let .X D M [ EX ; g/ and .Y D N [ EY ; h/ be two manifolds of bounded
geometry with unbounded ends and let f W .X; g/! .Y; h/ be a uniform homotopy
equivalence isometric on the ends. In this section we introduce a couple of operators
yWL2.Y; h/! L2.Y; h/ and zWL2.X; g/! L2.X; g/ such that y.dom.dmax;Y // �

dom.dmax;Y /, y.dom.dmin;Y // � dom.dmin;Y / and z.dom.dmax;X // � dom.dmax;X /,
z.dom.dmin;X // � dom.dmin;X / and

(4.5) 1˙ T
�

f
Tf D dy C yd and 1˙ Tf T

�

f
D dz C zd

on the maximal domain of the exterior derivative operator. In this formula (4.5), there
is aC if f reverses the orientations and a � otherwise.

In order to define these operators, we need a metric on the bundle f �.T Y / ˚
f �.T Y / over X . We fix the generalized Sasaki metric gS induced by g, h ˚ h
and rLC

h
˚ r

LC
h

. In general, even if f1 D f2 D f , we will denote the bundle
f �.T Y /˚ f �.T Y / by f �1 .T Y /˚ f

�
2 .T Y /. Moreover, given i D 1; 2, we denote by

pri W f �1 .T Y / ˚ f �2 .T Y / ! f �.T Y / the projection on the i-th component, i.e.
pri .wf1.p/ ˚ wf2.p// ´ wfi .p/ and so we obtain the maps Qpf;i ´ Qpf ı pri and
�i ´ � ı pri .

Finally, we denote by

B ´
®
wf1.p/ ˚ wf2.p/ 2 f

�
1 .T Y /˚ f

�
2 .T Y / s.t. jwf1.p/jh � ı; jwf2.p/jh � ı

¯
:

Lemma 4.3. Assume that .X D M [ EX ; g/ and .Y D N [ EY ; h/ are two
Riemannian manifolds and let f W .X; g/! .Y; h/ be a smooth uniform map isometric
on the unbounded ends ofX . Then there are two L2-bounded operators y0WL2.Y;h/!

L2.Y; h/ and z0WL2.X; g/! L2.X; g/ such that they preserve the minimal and the
maximal domains of the exterior derivative operators

Qp�f;2 � Qp
�
f;1 D dy0 C y0d and ��2 � �

�
1 D dz0 C z0d:
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Proof. Let
R 1
0;L
W��.B � Œ0; 1�/!��.B/ be the operator defined in [14, Lemma

4.13]. It is defined as follows: if ˛ is a 0-form with respect to Œ0; 1�, thenZ 1

0;L

˛´

Z 1

0;L

g.x; t/p�! D 0;

and, if ˛ is a 1-form with respect to Œ0; 1�,Z 1

0;L

˛´

�Z 1

0

f .x; t/ dt

�
!:

This is an L2-bounded operator and it sends compactly supported C 1-forms to
C 1c .ƒ

�.T �B//: Moreover, if ˛ is a C 1-form on B � Œ0; 1�, then

j �1 ˛ � j
�
0 ˛ D d

Z 1

0;L

˛ C

Z 1

0;L

d˛;

where ji WB ! B � Œ0; 1� is defined as ji .x/´ .x; i/:

Let �1 and �0 be two R.–N.–Lipschitz maps which are uniformly homotopic with a
uniformly proper, R.–N.–Lipschitz homotopyH W .B � Œ0; 1�;gS C dt/! .Y;h/. Then,
as a consequence of Lemma 2.2, the operator

R 1
0;L
ıH is an L2-bounded operator which

preserves the minimal and the maximal domains of the exterior derivative operator
and, on the maximal domain,

��1 � �
�
0 D d

�Z 1

0;L

ıH

�
C

�Z 1

0;L

ıH

�
d:

So, in order to conclude the proof, it is sufficient to find a couple of uniformly proper,
R.–N.–Lipschitz homotopies.

Let AW .B � Œ0; 1�; gS C dt/! .f �T ıY; gf / be defined as

A.wf .p/ ˚ vf .p/; s/´ s � wf .p/ C .1 � s/vf .p/:

It is an easy exercise to prove thatA is a uniformly proper R.–N.–Lipschitz map: a proof
of this fact can also be found in the work of the author [15]. Then we can conclude by
observing that Qpf ı A is a homotopy between Qpf1 and Qpf2 and � ı A is a homotopy
between �1 and �2.

The proof of the following lemma is very similar to that given in [15]; however, for
the sake of completeness, it is proved here.

Lemma 4.4. Let .Y D N [EY ; g/ be a manifold of bounded geometry with some
possibly unbounded ends. Fix QpidWT

ıY ! Y and let ! be a Thom form of the bundle
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� WT Y ! Y , where �.vp/ D p, such that supp.!/ � T ıY . Then for all q in N ,Z
Fq

! D 1;

where Fq is the fiber of Qpid.

Proof. For all q in N the fiber Fq is an oriented compact submanifold with
boundary. The same also holds forBıq , which is the fiber of the projection� WT ıN !N

defined as �.vq/´ q.
Define H WT ıN � Œ0; 1�! N as

H.vp; s/ D Qpid.s � vp/:

Since H is a proper submersion, the fiber along H given by FH;q is a submanifold of
T ıN � Œ0; 1�. Its boundary, in particular, is

@FH;q D B
ı
q � ¹0º t Fq � ¹1º [ A;

where A is contained in

SıN ´
®
vp 2 TN

ˇ̌
jvpj D ı

¯
:

If ! is a Thom form of TN whose support is contained in T ıN , then

(4.6) 0 D

Z
FHq

d! D d

Z
FHq

! C

Z
@FHq

!:

Observe that ! is a k-form and dim.FHq / D k C 1. Then the first integral on the
right-hand side of equality (4.6) is 0. Moreover, we obtain that ! is null on A, and soZ

A

! D 0:

Then, by equality (4.6),

0 D �

Z
Bı
! ˙

Z
Fq

!;

and we conclude.

Lemma 4.5. Let .X D M [ EX ; g/ and .Y D N [ EY ; h/ be two manifolds of
bounded geometry with unbounded ends and let f W .X; g/ ! .Y; h/ be a uniform
homotopy equivalence isometric on the unbounded ends. Then there are a couple
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of operators yWL2.Y; h/! L2.Y; h/ and zWL2.X; g/! L2.X; g/ such that they
preserve the minimal and maximal domains of the exterior derivative operators and

1˙ T
�

f
Tf D dy C yd and 1˙ Tf T

�

f
D dz C zd

on the maximal domain of the exterior derivative operator. In this formula, there is a
C if f reverses the orientations and � otherwise.

Proof. First we focus on z. We have the diagram

B

zPf;2

��

zPf;1
// f �2 .T

ıY /

Qpf

��

f �1 .T
ıY /

Qpf
// Y ;

where zPf;1 and zPf;2 are the bundle maps induced by Qpf . Moreover, we also have

B

…2

��

…1 // f �2 .T
ıY /

�

��

f �1 .T
ıY /

� // X;

where …1 and …2 are the bundle maps induced by the projection of the bundle
� Wf �T ıY ! X .

Denote !i ´ …�i !, where ! is the Mathai–Quillen–Thom form of f �T ıY .
Fix ˛ and ˇ in �kc .X/ for some k in N. Then

hTf T
�

f
˛IˇiL2.X;g/ D hT

�

f
˛I �T

�

f
�ˇiL2.Y;h/

D

Z
N

�Z
F2

!2 ^ �
�
2˛

�
^

�Z
F1

!1 ^ �
�
1 ? ˇ

�
D deg.f /

Z
f �
1
TN

�Z
F2

!2 ^ �
�
2˛

�
^ !1 ^ �

�
1 ? ˇ

D deg.f /.�1/j.nCj /
Z
f �
1
TN

!1 ^ �
�
1 ? ˇ ^

�Z
F2

!2 ^ �
�
2˛

�
D deg.f /.�1/j.nCj /

Z
B

!1 ^ �
�
1 ? ˇ ^ !2 ^ �

�
2˛

D deg.f /
Z

B

��2˛ ^ �
�
1 ? ˇ ^ !1 ^ !2:
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Then, as a consequence of ��2 D �
�
1 C dz0 C z0d , we obtain

hTf T
�

f
˛IˇiL2.X;g/ D deg.f /

Z
B

��1˛ ^ �
�
1 ? ˇ ^ !1 ^ !2

C deg.f /
Z

B

.dz0 C z0d/˛ ^ �
�
1 ? ˇ ^ !1 ^ !2

D hdeg.f / � 1˛IˇiL2.X;g/ C hŒd.�z/C .�z/d �˛IˇiL2.X;g/;

where z´ � deg.f / � �? ı e! ı…2? ı e…�
2
! ı z0:

Observe that z is a composition of L2-bounded operator and z.��c .X// �

C 2c .ƒ
�.T �X//. Moreover,

z� D � deg.f /z�0 ı r…�2! ı…
�
2 ı r! ı �

�

is an L2-bounded operators and �z�.��c .Y // � C 2c .ƒ�.T �Y //. So by Lemma 2.2,
we know that z preserves the minimal and the maximal domains of d and

1˙ Tf T
�

f
D dz C zd ;

where we have a � if f preserves the orientations and aC otherwise.
Let us focus on the operator y. Given ˛ and ˇ in ��c .Y /, we obtain

hT
�

f
Tf ˛; ˇiL2.Y;h/ D hTf ˛; �Tf �ˇiL2.X;g/

D

Z
M

�Z
Bı
2

Qp�f;2˛ ^ !2

�
^

�Z
Bı
1

Qp�f;1 ? ˇ ^ !1

�
D

Z
f �.T ıY /1

.

Z
Bı
2

Qp�f;2˛ ^ !2/ ^ Qp
�
f;1 ? ˇ ^ !1

D .�1/.nCj /j
Z
f �.T ıY /1

Qp�f;1 ? ˇ ^ !1 ^

�Z
Bı
2

Qp�f;2˛ ^ !2

�
D .�1/.nCj /j

Z
B

Qp�f;1 ? ˇ ^ !1 ^ Qp
�
f;2˛ ^ !2

D .�1/.nCj /j .�1/.nCj /j
Z

B

Qp�f;2˛ ^ Qp
�
f;1 ? ˇ ^ !1 ^ !2

D

Z
B

Qp�f;2˛ ^ Qp
�
f;1 ? ˇ ^ !1 ^ !2:

Then, thanks to Lemma 4.3, we obtain

hT
�

f
Tf ˛; ˇiL2.Y;h/ D

Z
B

Qp�f;1.˛ ^ ?ˇ/ ^ !1 ^ !2

C

Z
B

.dy0 C y0d/˛ ^ Qp
�
f;1 ? ˇ ^ !1 ^ !2
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D deg.f /
Z
TN

Qpid
�.˛ ^ ?ˇ/ ^ !

C h.dy C yd/˛; ˇiL2.Y;h/

D hdeg.f / � 1.˛/IˇiL2.Y;h/ C h.dy C yd/˛; ˇiL2.Y;h/;

wherey´pf;? ı e! ı…1;? ı e…�
1
! ı y0. Notice thaty is a composition of L2-bounded

operators and y.��c .Y // � C 2c .ƒ�.T �Y //. Moreover,

y� D y
�
0 ı r…�1!

ı…�1 ı r! ı p
�
f ;

and so y�.��c .X// � C 2c .ƒ�.T �X//. So, as a consequence of Lemma 2.2, we obtain
that y preserves the maximal and the minimal domains of d and

1˙ T
�

f
Tf D dy C yd:

Theorem 4.6. Let f W .X D M [ EX ; g/ ! .Y D N [ EY ; h/ be a uniform
homotopy equivalence quasi-isometric on the unbounded ends. Then, for each k in N,
the operators Tf and T �

f
induce the following isomorphisms:

H k
2;max.X; g/ Š H

k
2;max.Y; h/;

xH k
2;max.X; g/ Š

xH k
2;max.Y; h/;

H k
2;min.X; g/ Š H

k
2;min.Y; h/;

xH k
2;min.X; g/ Š

xH k
2;min.Y; h/:

Proof. The proof immediately follows by Lemma 4.5.

5. Consequences

5.1 – A mapping cone for the L2-cohomology

In this subsection, given a Riemannian manifold .X;g/, we will denote��
mnM

.X;g/

´ dom.dminnmax;X / and dX;mnM ´ dminnmax;X .
Letf W .X DM [EX ;g/! .Y DN [EY ;h/ be a uniform map quasi-isometric on

the unbounded ends. It is not required thatf is a uniform homotopy equivalence. Thanks
to Proposition 4.2, we know that there is an L2-bounded operator Tf WL2.N; h/!

L2.M; g/ such that Tf .��mnM.M; g// � �
�
mnM

.N; h/. In this subsection we will
define the L2-mapping cone of a map f and we will see some properties of this cone.
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Definition 5.1. Let f W .X D M [ EX ; g/! .Y D N [ EY ; h/ be a uniform
map quasi-isometric on the unbounded ends between two Riemannian manifold and
let us denote by .��

2;minnmax.f /; df;minnmax/ the cochain complexes

0 �! �02;mnM.f /
df;mnM;0

������! �12;mnM.f /
df;mnM;1

������! �32;mnM.f /
df;mnM;2

������! � � � ;

where��
2;mnM

.f /´��
mnM

.Y;h/˚���1
mnM

.X;g/ anddf;mnM.˛;ˇ/´.�dmnM;Y ˛I

Tf ˛ � dmnM;Xˇ/:

Remark 15. Notice that, since Tf and the exterior derivative operator commute,
then d2

f;minnmax D 0.

Definition 5.2. The k-th group of the L2-mapping cone of f is the cohomology
group of the L2-mapping cone, i.e.

H k
2;mnM.f /´

ker.df;mnM;k/

im.df;mnM;k/
:

The reduced k-th group of the L2-mapping cone of f is the group defined as

xH k
2;mnM.f /´

ker.df;mnM;k/

im.df;mnM;k/
:

Exactly as the mapping cone in the de Rham case, we have a short exact sequence

0! ���12;mnM.X; g/
A
�! ��2;mnM.f /

B
�! ��2;mnM.Y; h/! 0;

whereA.!/´ .0;!/ and B.˛;!/´ ˛. This sequence induces a long exact sequence
on cohomology, and so

0! H 0
2;mnM.f /! H 0

2;mnM.X; g/
ı
�! H 0

2;mnM.Y; h/! H 1
2;mnM.f /! � � � ;

where ı is the connecting homomorphism.
Following the proof given in Bott and Tu [2, p. 78], we obtain that ıŒ!�´ ŒTf !�.

So we obtain the following proposition.

Proposition 5.1. Let f W .X DM [EX ; g/! .Y D N [EY ; h/ be a uniform
map quasi-isometric on the unbounded ends of M and N . Then the following two
statements are equivalent:

(1) the morphism induced by Tf on L2-cohomology is an isomorphism,

(2) all the cohomology groups of ��
2;mnM

.f / are null.



L2-cohomology and quasi-isometries on the ends of unbounded geometry 39

Proof. This is a classical proof which holds for each cochain morphism Tf WA!B

between cochain complexes on an additive category.

Remark 16. The author used a bounded geometry version of Proposition 5.1
in [15] in order to prove the invariance of the Roe index of the signature operator
of a manifold of bounded geometry under uniform homotopy equivalences which
preserve the orientations. As a consequence of Proposition 5.1, it could be compelling
to generalize this result to a broader context, for example in the case of complete
Riemannian manifolds with uniform homotopy equivalence which are quasi-isometric
on the unbounded ends.

In the reduced case we also obtain a long sequence

0! xH 0
2;mnM.f /

B�

��! xH 0
2;mnM.M; g/

Tf
��! xH 0

2;mnM.N; h/
A�

��! xH 1
2;mnM.f /! � � � ;

but it is not exact this time. Indeed it is exact only on xH k
2;mnM

.f / and on xH k
2;mnM

.M;g/,
while on xH k

2;mnM
.N; h/ it is just weakly exact, which means that ker.Tf / D im.B�/.

5.2 – Uniform homotopy invariance of signature

Let .X; g/ be a complete Riemannian manifold. Recall that in this case there is
exactly one closure for the operator d . This means that the maximal and minimal
L2-cohomology groups coincide, both the reduced and the unreduced ones. In the next
pages we will denote the unique closed extension of the exterior derivative operator
by d .

In this subsection we introduce the L2-signature �M of a manifold .X; g/ with
dim.X/ D 4k such that xH 2k

2 .X; g/ is finite-dimensional. This L2-signature is the
signature of a pairing defined on xH 2k

2 .X; g/. Consider the operator d C d�. This
operator switches the eigenspaces of the chiral operator � , so it is possible to define the
L2-signature operator .d C d�/C as the restriction of d C d� to theC1-eigenspace
of � .

We obtain that .d C d�/C is a Fredholm operator and its index equals the L2-
signature. The definitions and the proofs of all these facts can be found in the work of
Bei [1].

Proposition 5.2. Let f W .X DM [EX ; g/! .Y D N [EY ; h/ be a uniform
homotopy equivalence quasi-isometric on the unbounded ends. Assume that .X; g/ and
.Y; h/ are complete Riemannian manifolds:

(1) The operator Tf is well behaved with respect to the pairings on M and N , i.e.
hTf Œ˛�; Tf Œˇ�iL2.X;g/ D deg.f / � hŒ˛�; Œˇ�iL2.Y;h/.
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(2) �M D deg.f / � �N . This implies that the index of the L2-signature operator is
invariant under uniform homotopy equivalences quasi-isometric on the unbounded
ends which preserve the orientations.

Proof. In order to prove the first point, we need to introduce the pairing h�I �iL2.X;g/.
This is defined in [1] as

h�; �iL2.X;g/W xH
i
2.X; g/ �

xH i
2.X; g/ �! R;

.Œ��; Œ!�/ �!

Z
X

� ^ !:

Let id be the identity map on Y and let QpidWT
ıY ! Y be the submersion related to id.

Because of Lemma 4.5, we know that this is an R.–N.–Lipschitz map and so Tid is an
L2-bounded operator. Let us denote K ´

R 1
0L
ı Qp�

h
, where QphWT ıY � Œ0; 1�! Y is

defined as Qph.wp; s/´ Qpid.s �wp/. By applying the same proof as [14, Lemma 4.11],
we obtain that Qph is an R.–N.–Lipschitz map and soK is an L2-bounded operator such
that

Tid � Id D dK CKd

for each smooth form ˛. Then, as a consequence of Lemma 4.5, we obtain that Tid and
K both preserve the domain of d .

Observe that the operator Tf D f � ı Tid: this directly follows by the definition of
Tf and by

R
F 0
0
F �˛ D f �

R
F0
˛. Here, F � is the bundle map induced by f , and F0

and F 00 are the fibers of T Y and of f �T Y . Observe that Tid˛ is a smooth form on
Y n @N and so f �Tid˛ is smooth on X n @M .

Then we can easily conclude as follows:

hŒTf ˛�; ŒTf ˇ�iL2.X;g/ D

Z
X

Tf ˛ ^ Tf ˇ

D

Z
X

f �.Tid˛/ ^ f
�.Tidˇ/ D

Z
X

f �.Tid˛ ^ Tidˇ/

D deg.f / �
Z
Y

Tid˛ ^ Tidˇ

D deg.f /
Z
Y

.˛ C d�/ ^ .ˇ C d�/

D deg.f /
Z
Y

˛ ^ ˇ C deg.f /
Z
N

d.˛ ^ �/

C deg.f /
Z
Y

d.� ^ ˇ/C deg.f /
Z
Y

d.� ^ d�/

D deg.f /
Z
Y

˛ ^ ˇ C 0 D deg.f /hŒ˛�; Œˇ�iL2.Y;h/:
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We have proved point (1). The proof of point (2) is a direct consequence of point (1)
and [1, Theorem 4.2].

5.3 – Compact manifolds with unbounded ends

Notice that Theorem 4.6 is coherent with Lott in [9, Proposition 5]. In Lott’s work,
it is proved that if two complete Riemannian manifolds .X; g/ and .Y; h/ are isometric
outside a compact set, then, for each k in N,

dim. xH k
2 .X; g// D C1” dim. xH k

2 .Y; h// D C1:

Then, as a consequence of Theorem 4.6, we can say something more if we add some
assumptions on f on the compact subsets. On the other hand, we are not assuming the
completeness of .X; g/ and .Y; h/ and we also relax the assumptions on f on the ends.

Corollary 5.3. Let .X; g/ and .Y; h/ be two (possibly not complete) oriented Rie-
mannian manifolds. LetK be a compact subset ofM . We denoteK 0´ f .K/. Assume
the existence of a homotopy equivalence f W .X; g/! .Y; h/ such that fjXnK W .X n
K; g/! .Y n K 0; h/ is a quasi-isometry. Then both the minimal and maximal L2-
cohomology groups are isomorphic. The same also happens for the reduced L2-
cohomology groups.

Proof. Thanks to Proposition 1.5 we can assume that fjK is an isometry. Fix a
number r > 0 and denote by Br.K/ (resp. Br.K 0/) the subset of the points whose
distance from K (resp. K 0) is less than r . Let ı be a number small enough such that
Bı.K/ and Bı.K 0/ are two tubular neighborhoods of K and K 0. Then Bı.K/ and
Bı.K

0/ are two open subsets of bounded geometry and f is a uniform homotopy
equivalence isometric on the unbounded ends. Then we conclude by applying Theorem
4.6.

Example 5.1. Let X be the three punctured sphere S2 n ¹p1; p2; p3º and let Y
be a punctured torus S1 � S1 n ¹qº. It is a well-known fact X and Y are homotopy
equivalent even if they are not homeomorphic.

In particular, there exists a homotopy equivalence f WX ! Y such that, given some
neighborhoods Upi and U.q/ of pi and of q respectively and given � in .0; 2�/,8̂̂<̂

:̂
f .Up1/ D U.q/;

f .Up2/ D .0; �/ � S
1;

f .Up3/ D S
1 � .0; �/:
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Denote K D X n Œ
F
iD1;2;3 Upi � and K 0 D Y n ŒU.q/ [ .0; �/ � S1 [ S1 � .0; �/�.

We can also assume that fjUpi is a local diffeomorphism and that f .K/ � K 0.
Let g and h be two Riemannian metrics on X and Y such that, for each i D 1; 2; 3,

we have that f �h and g are quasi-isometric on Upi . For example, we can fix f �h D g
since f is a local diffeomorphism on Upi .

Observe that, since Y is not compact, the L2-cohomology groups do depend on
the choice of the metric h around q.

Thanks to Corollary 5.3, we know that the maximal and minimal cohomology groups
of .X; g/ and .Y; h/ are isomorphic, in both their reduced and unreduced versions.
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