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L?-cohomology and quasi-isometries on the ends of unbounded
geometry

STEFANO SPESSATO (*)

ABsTRACT — The paper explores the minimal and maximal L?-cohomology of oriented Rie-
mannian manifolds, focusing on both the reduced and the unreduced versions. The main
result is the proof of the invariance of the LZ-cohomology groups under uniform homotopy
equivalences that are quasi-isometric on the unbounded ends. A uniform map is a uniformly
continuous map such that the diameter of the preimage of a subset is bounded in terms of
the diameter of the subset itself. Moreover, a map f between two Riemannian manifolds
(X, g) and (Y, h) is quasi-isometric on the unbounded ends if X = M U Ex, where M is
the interior of a manifold of bounded geometry with boundary, Ex is an open subset of X
and the restriction of f to Ex is a quasi-isometry. Finally, some consequences are shown:
the main ones are the definition of a mapping cone for L?-cohomology and the invariance of
the L2-signature.
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Introduction

In this paper, a generalization of the author’s previous work in [14] is presented. In
that study, the author examined uniform maps f: (M, g) — (N, h) between Riemannian
manifolds of bounded geometry and introduced a bounded operator Ty: £%(N, h) —
£2(M, g) related to f between the spaces of square-integrable forms. A uniform
map is defined as a uniformly continuous map where, for every compact subset A4,
the diameter of its preimage is bounded in terms of the diameter of A. A manifold of

(*) Indirizzo dell’A.: Dipartimento di Ingegneria, Universita degli studi “Niccolo Cusano”,
Via don Carlo Gnocchi 3, 00166 Roma, Italy; stefano.spessato @unicusano.it


https://creativecommons.org/licenses/by/4.0/
mailto:stefano.spessato@unicusano.it

S. Spessato 2

bounded geometry is a Riemannian manifold whose curvature is uniformly bounded
and the injectivity radius is bounded from below. The operator 7 in [14] induces a
linear operator between the reduced and unreduced L?-cohomology groups, replacing
the pullback operator which is not well defined between the &£2-spaces. Consequently,
the invariance of reduced and the unreduced L2-cohomology groups under uniform
homotopy equivalences is proved.

The aim of this paper is to prove a similar result for the minimal and maximal
L?-cohomologies of possibly not complete Riemannian manifolds. This result will
hold for both the reduced and unreduced versions. In order to reach our goal we need
some additional assumptions on the homotopy equivalence. Let us briefly introduce
these assumptions.

Given a Riemannian manifold (X, g), it can be decomposed as X = M U Ey,
where Ey is an open subset of X and M is the interior of a manifold with boundary of
bounded geometry (this notion is introduced in Schick [12]). We will say that M is
an open subset of bounded geometry and Ex will be the unbounded ends of X. Such
a manifold (X = M U Ey, g), decomposed in this manner, is termed a manifold of
bounded geometry with unbounded ends.

In this paper we investigate uniform maps f: (X, g) — (¥, h) between oriented
manifolds which are quasi-isometric on unbounded ends, i.e. given two manifolds of
bounded geometry with unbounded ends (X = M U Eyx,g)and (Y = N U Ey, h),
then f(Ex) C Ey and f|g, is a quasi-isometry.

In particular, in Theorem 4.6, we prove that if f: (X, g) — (Y, h) is a uniform
homotopy equivalence which is quasi-isometric on the unbounded ends. Then

HY (X 8) = i, ¥ max (Y 1),
HY (X, g) = HY L (Y D),
2 mm(X g) = 2 mm(Y h),
Hf (X, 8) = HE (Y D,

where H;‘ mln\mdx(X g) and H, Inm\m‘m(Y h) are the minimal and maximal k-th group
of L?-cohomology and Hé‘ min\max (X,g)and H 2 min\max (Y, h) are their reduced ver-

sions. Finally, some consequences are shown.

The paper is structured as follows: Section 1 introduces the notions of uniform maps
quasi-isometric on the unbounded ends. Section 2 defines the minimal and maximal
L?-cohomology of a Riemannian manifold. In Section 3 we recall the definitions and
the key properties of three necessary components for proving Theorem 4.6. These
components are the following:
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The Radon—Nikodym—Lipschitz maps. These are maps between Riemannian mani-
folds such that their pullback induces a well-defined &£2-bounded operator.

The generalized Sasaki metrics on vector bundles. These are some Riemannian
metrics induced by a connection on the vector bundle, a bundle metric and a
Riemannian metric on the base space,

The Mathai—Quillen—Thom forms, which constitute a specific family of Thom form
on a vector bundle.

In Section 4 we introduce the new version of the operator 7 and in Theorem 4.6 the

main result is proved.

Finally, in Section 5 we explore three consequences of the existence of Ty :
we define a mapping cone for minimal and maximal L2-cohomology,

we demonstrate the invariance of the L2-signature for complete 4k-dimensional
manifolds under uniform homotopy equivalences that preserve orientation,

we prove a result similar to Lott [9, Proposition 5 (1)], accompanied by an illustrative
example.

Quasi-isometries on the unbounded ends and open subsets of bounded geometry

In this section we establish the geometric framework of the manuscript. In particular,

we introduce the concepts of open subset of bounded geometry of a Riemannian manifold

and of uniform homotopy quasi-isometric on the unbounded ends.

1.1 — Manifold of bounded geometry with some unbounded ends

The following definition is Schick [12, Definition 2.2].

DerInTION 1.1. Let (M, g) be an oriented Riemannian manifold with boundary

dM (possibly empty). Fix on M the Riemannian metric induced by M . Denote by /

the second fundamental form of dM, by R the curvature tensor of M and by V the

Levi-Civita connection on M . Then we say that (M, g) is a manifold with boundary
and of bounded geometry if the following hold:

(1) There exists a number . > 0 such that

K:8]\71x[0,rc)—>1\7[,

(x,1) — exp,(tvy)
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is a diffeomorphism with its image (v, is the unit inward normal vector). Given r
in [0, r.) we denote by N (r) the set K(dM x [0, r)).The set N (r) is the normal
collar of length r of dM.

(2) The injectivity radius inj, 7 of dM is positive.

(3) Thereisanr; > Osuch thatif r <r;, then, foreach p in M \ N (r), the exponential
map is a diffeomorphism on By, (r) C T,M.

(4) For every k € N there is a constant Cy so that [V R| < C; and |V!I| < C; for
eachi =0,...,k.

RemaARrk 1. The first point of Definition 1.1 provides some coordinates on N (r;).
Indeed, given a constant r; which is smaller than the injectivity radius of dM, it is
possible to define the chart

kx: By (0) x [0, 7] —> N (re),
(U, t) — expexpf‘c(v) ([U),

where x’ is a point in M and B, (0) is the euclidean ball of the same dimension as
M centered at 0 with radius r1. We call these coordinates collar coordinates. On the
other hand, given a point p in M \ N (s) we term normal coordinates or Gaussian
coordinates the coordinates induced by the exponential map of M on a ball of radius s
around p.

REmark 2. By [12, Theorem 2.5], we know that on a manifold with boundary of
bounded geometry, the metric components g;; of the metric g with respect to some
collar or Gaussian coordinates satisfy the following inequalities: for each « in N, there
is a number C,, such that

B ij
& < G,

9 gij
<Cy and |—F——F—
* ax{t .. x| T

axyt .. x| T
where o = )0 | o

DeriniTioN 1.2. Given a Riemannian manifold (X, g), an open subset of bounded
geometry of (X, g) is an open subset M C X such that its closure M in (X, g), endowed
with the Riemannian metric induced by g, is a manifold with boundary of bounded
geometry.

The normal collar of length r of M is the set Ny (r) := N (r) N M, where N (r) is
the normal collar of length r of the manifold with boundary of bounded geometry M.

DerinITION 1.3, A manifold of bounded geometry with some (possibly) unbounded
ends is an oriented Riemannian manifold (X, g) such that X = M U Ex and
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* M is an open subset of bounded geometry,

e Ex is an open subset of X,

e Ny(rx) C M N Ex for some constant ry > 0.

The open subset Ey is called the unbounded ends of X .

LemMmA 1.1. For each Riemannian manifold (X, g) there are two open subsets M
and Ex of X which make (X, g) a manifold of bounded geometry with unbounded
ends.

Proor. Fix a point p on X and let M = Bs(p), where § is smaller than the
injectivity radius in p. Let Ey be the complement of B 5 (p) in X. It easily follows
that M and Ey satisfy all the conditions in Definition 1.3. u

Notice that the open subset of bounded geometry M of a manifold of bounded
geometry with unbounded ends X = M U Ey is not necessarily compact.

ExampLE 1.1. Let X = R2 x S! and let g = dx? + dy? + x2 d6?, where d6?
is the euclidean Riemannian metric on S' C R? and dx? + dy? is the euclidean
metric on R2. Then, given two positive numbers a, b such that a < b, if we fix
M = (=b,b) xR x S'and Ex = [(—o0, —a) U (a,+00)] x R x S, itis easy to check
that (X, g) = (M U Ey, g) is a manifold of bounded geometry with two unbounded
ends.

ExampLE 1.2. Each manifold of bounded geometry (X, g) is a manifold of bounded
geometry with unbounded ends. In this case, M = X, dM = @ and so also N (r) =
Ex = 0.

RemARrk 3. Let (X = M U Ex, g) be a manifold of bounded geometry with
unbounded ends. Let p be a point in Ny (ry). Since Ny (rx) C N (ry), the normal
collar of dM, it is possible to identify p as a point (xg, fo) of IM x (0, rx). Indeed,

P = K(xo., 1),
where K is the map in the first point of Definition 1.1.

LEMMA 1.2. Let (X = M U Ex, g) be a manifold of bounded geometry with
unbounded ends. Let p = (x¢, to) be a point in Nx (rx). Then the distance between
OM and p satisfies

dg(0M, p) = t9.

Proor. Fix some normal coordinates (U, x’) centered at xo in M and let
(U x (0, ), x*, 1) be the collar coordinates on 71 (U) C M. Notice that, thanks
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to [12, Proposition 2.8], we know the Gram matrix of g with respect to x and ¢ has
the form

_ gi'(x’t) 0
g(x,t)—|: JO 1i|.

It immediately follows that the curve o': (0, ] — Nx (rx) C M definedaso(¢) = (0,1)
is length minimizing. u

1.2 — Uniform maps quasi-isometric on the unbounded ends

In this subsection we introduce the maps under study in this manuscript. Fix two
Riemannian manifolds (X, g) and (Y, k).

DeriniTION 1.4. A map f: (X, g) — (Y, h) is uniformly continuous if for each
€ > 0 there is a §(¢) > 0 such that for each xy, x5 in X,

dx (x1,x2) < () = dy(f(x1), f(x2)) <e.

Moreover, f is uniformly (metrically) proper, if for each R > 0 there is a number
S(R) > 0 such that for each subset A4 of (¥, dy),

diam(4) < R = diam(f~1(4)) < S(R).

We say thatamap f: (X, g) — (Y, h) is a uniform map if it is uniformly continuous
and uniformly proper.

DeriniTioN 1.5. Two maps fo and f1: (X, dx) — (Y, dy) are uniformly homotopic
if they are homotopic with a uniformly continuous homotopy H: (X x [0,1],g + dt) —
(Y, h). We will denote it by

fi~ fa
DeriNITION 1.6. A map f: (X, g) — (Y, h) is a uniform homotopy equivalence if
f is uniformly continuous and there is map s such that
¢ s is a homotopy inverse of f,
e s is uniformly continuous,

e f o is uniformly homotopic to idy and s o f is uniformly homotopic to idyy.

To define the class of maps we are interested in, we first need to introduce the notion
of quasi-isometry.
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DeriniTION 1.7. Let (X, g) and (Y, &) be two Riemannian manifolds. Then a
quasi-isometry is a local diffeomorphism f: (X, g) — (Y, h) such that f*h and g are
quasi-isometric metric, i.e. there is a constant K > 1 such that

K'g < f*h < Kg.

DeriniTioN 1.8. Let (X = M U Ex,g)and (Y = N U Ey, h) be two manifolds of
bounded geometry with unbounded ends. A map f: (X, g) — (Y, h) is quasi-isometric
on the unbounded ends if
* f(Ex) S Ey,f(M)CN, f(0M) C N,

s By’ Ex — Ey is a quasi-isometry.

A uniform homotopy equivalence isometric on the ends is a uniform homotopy equiv-
alence which is isometric on the unbounded ends. Finally, f is a uniform homotopy
equivalence quasi-isometric on the ends if f| Ey is a quasi-isometry.

Remark 4. Fix a uniform homotopy equivalence isometric on the ends f: (X, g) —
(Y, h). Let rg := min{ryx, ry }. Then f(Nx(ro)) € Ny (ro). Moreover, if we choose
some collar coordinates {x’,} on Ny (ro) and {y/, s} on Ny (ro), then f has the form

G0 = (F('0).0).
This is an immediate consequence of Lemma 1.2.

Our next step is to introduce a family of maps equivalent to the C lf -maps defined
for manifolds of bounded geometry by Eldering [5].

DerintTION 1.9. Let f: (X = M U Ex,g) > (Y = N U Ey, h) be a quasi-
isometry on the ends. Then f isa C lﬁloc—map if there is an ry < rx and there are
two constants 8y and dy such that, for each point p in M \ Nx(rr), the functions
Fp: B3y (0,) C TyX — Bs, (07(p)) C Tr(pY defined as

Fy = expj_r(lx) of oexp,
have uniformly bounded C k_norms as maps between euclidean spaces.

ExampLE 1.3. Let (X = M U Ey, g) be a manifold of bounded geometry with
unbounded ends. Fix r < ry and let {y’, U} be some normal or collar coordinates on
M , which is an open subset of bounded geometry. Then for each i the functions {y’}
defined on U are C lf 1oc-maps for each k in N. This fact is a direct consequence of
[12, Proposition 3.3].
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ProposiTioN 1.3. Let (X = M U Ex,g) and (Y = N U Ey, h) be two manifolds
of bounded geometry with unbounded ends. Fix a uniform map quasi-isometric on the
ends f:(X,g) — (Y,h).

Then, for each € small enough, there is amap f¢: (X, g) — (Y, h) such that

(1) dy(fe(p). f(p)) = €and fe ~ [,

(2) foreachk in N, the map f isa leloc

(3) letting B<(Ey) be an e-neighborhood of Ey, then fo:(X =M U Ex,g) — (Y =
N U B((Ey), h) is a smooth uniform map quasi-isometric on the ends.

-map,

Proor. Points (1) and (2) can be proved following a strategy very similar to the
proof of [14, Proposition 1.3]. In this proposition, given two constants §; < 45, a
cover of balls { Bs, (x;)} of a manifold of bounded geometry is fixed. This cover has
the property that { Bs, (x;)} is again a cover and for each x the ball Bs, (x) intersects
at most R balls Bs, (x;). Since f is a uniform map, there exists a sufficiently small
constant 0, such that we can ensure f(Bs,(x;)) S Be(f(p)). Therefore f can be
modified recursively on each ball of the cover. We mean that, given Fy := f, in each
step, F; is replaced by a function F;4+; which is defined as

eXPr(x;) ©Giv(e) 0 €XPy, if p € Bs,(x;),

F; =
w+1(P) { Fi(p) otherwise,

where
Give: 332(0) CTyM = R™ — Bs,(0) C TrpN C R”

isaC If -approximation of g; = exp;(lxi) oFj oexp,, (see Eldering [5, Lemma 2.34] for
a detailed definition of G; ,()). This function G; , () is C If and its norm is bounded in
terms of € and k. Then, for each x, the map f was defined as

fe) = lim_Fi(p).

The idea is to replace the cover { Bs, (x;)} with a cover of M \ Ny (ry) forsome ry <rx.
We can find a suitable cover in [12, Proposition 3.2]: in this proposition the author
gives a cover of a manifold of bounded geometry with boundary. By removing subsets
which intersect the boundary, we obtain a constant r and a cover of balls { B, (x;)} of
M \ Nx (% ). Importantly, { Bz (x;)} is also a cover and if p is a point of M \ Nx ("),
then there are at most R balls such that B,(x) N B, (x;) # @.

If we define f; as in [14, Proposition 1.7], we obtain a map which satisfies points
(1) and (2). The proof is the same as given in [14, Proposition 1.7].

The remaining task is to prove point (3). To establish point (3), we need to demon-
strate that f is a diffeomorphism on Ey and that f_*(h) is quasi-isometric to g on each
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point p of Ex. Fix some normal coordinates {x;} around p and let {y;} be normal
coordinates around f(p).

Notice that, if we denote the Jacobian matrices of f and f in p by J¢(p) and
Jr.(p) respectively, then the (i, j)-component

[(Jr = Jr)ij(p)| < C -e,

where C is a constant which does not depend on p. This is because, in normal coordi-
nates, f. approximates f as a C !-function ([5, Lemma 2.34], [14, Lemma 1.2 (3)]).
Since the norm of J is bounded from below by K —1 then if ¢ is small enough, Jy_is
also invertible and so f¢ is a diffeomorphism in p. Moreover, if we denote the Gram
matrices in p of f*h and f* by F*H(p) and F H(p), then for each (i, j) we have

|(F*H—F:H)l',j| <D-e,

where D does not depend on p. Indeed, if p is in Ex \ M, then the Gram matrices
are equal; if p is in M then the bound D is a consequence of the boundedness of the
metric 4 in normal coordinates around f(p) and of the C '-approximation of f, to f.
Then it is an easy exercise to conclude that f*(h) is quasi-isometric to g in p. ]

Lemma 1.4. Let f: X — (Y, h) be a map between two manifolds. Let g1 and g, be
two quasi-isometric Riemannian metrics on X. Then f:(X, g1) — (Y, h) is a uniform
map if and only if f:(X, g2) = (Y, h) is a uniform map.

Proor. Let y be a differentiable curve on X. Fix i = 1, 2 and denote by L;(y)
the length of y with respect to the metric g;. Since g; and g, are quasi-isometric, we
obtain that there is a constant K, which does not depend on y, such that

K=" Li(y) < La(y) < K- Li(y).
So this implies that for each couple of points @ and b in X we obtain
K™'-di(a,b) < dy(a,b) < K -di(a,b),
where d; is the distance induced by g;. The claim immediately follows. |

ProrosriTion 1.5. Let f: (X = M U Ex,g) > (Y = N U Ey, h) be a smooth
uniform map which is quasi-isometric on the unbounded ends. Assume that f is a
C3

i 10c-1ap- Then there is a metric § on X such that

(1) g and g are quasi-isometric,

2) M C (X, @) is an open subset of bounded geometry,
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(3) there are Ex C Ex and Ey C Ey such that f:(X = M U Ex,g) — (Y =
N U Ey, h) is a uniform map which is isometric on the unbounded ends.

Proor. Let ¢: R — R be a smooth function such that ¢ = 1 on [1, +00), ¢ = 0
on (—o0, 0] and ¢(x) € [0, 1] otherwise. Fix ro := min{rx, ry }, where ry and ry are
two constants such that Ny (ry) C M N Ex and Ny(ry) C N N Ey.Letry <rx be
the constant such that f is a Cb3—map on M \ Nx(rr).

Denote by dg (0M, x) the distance of a point x in X from dM with respect to the
Riemannian metric g. Then we can define

1 .
1(x) = ¢(rx—rf(dg(aM’x)_rf)) ifxeM,

0 otherwise.

Notice that the function y is leloc for each k in N. This fact is a consequence of
Lemma 1.2 and [12, Proposition 3.3]. Then we define the metric g on x € X as

&x = x(x)gx + (1 = x(x)) f"hx.
Observe that g and g are quasi-isometric. Indeed, since there is a K such that
Kl g<f*h<K-g,

then

1
— 9. <8<(1+K)g,.
1+Kgx_g_(+ )gx

Our next step is to prove that (M , &) is a manifold with boundary of bounded geometry.
Let us verify the conditions in Definition 1.1:

* Conditions (1) and (2) are satisfied. Let Ny () be the r¢-normal collar of M with
respect to g and let Ny (r7) be the r-normal collar of N. Since f is a quasi-isometry
on the unbounded ends, there is a 8y such that £ ~!(Ny (89)) C Nx (). Notice that
¥ = 0 on Ny (r). This implies that the §o-neighborhood of dM (with respect to g) is
isometric to the §p-neighborhood of ON. Then, since N is a manifold with boundary
of bounded geometry, the first two conditions of Definition 1.1 are satisfied.

¢ Condition (3) is also satisfied. Given that the §p-neighborhood of dM is isometric
to the p-neighborhood of N, we now need to ensure that the injectivity radius on
M is bounded from below.
Let p be a point on M, let {e;} be an orthonormal basis of 7, X and fix some
normal coordinates {(U, x)} (with respect to g) referred to as p and {e; }. We obtain
the coordinates {x?, 1/} on TX, where {i/} are the components of %'
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It is important to note that in these coordinates, the components of the Gram
matrix g;; and its derivatives are uniformly bounded. This is because f and y
have uniformly bounded derivatives of each order with respect to the coordinates
{x'}. Also, the components of the inverse of g; ; are uniformly bounded due to the
determinant of g;; being bounded from below by the minimum of the union of the
spectra of g and f*h. Lastly, the derivative of the components of the inverse of g;;
are uniformly bounded (see [12, Lemma 2.17]).

Notice that a g-geodesic has to satisfy the equations

ik = —Tkuinl,
).Ci — /'Li

k

ij

where f‘l are the components of the Levi-Civita connection of g. Observe also

that f‘llj and their derivatives are uniformly bounded. Assume that C is the bound

on |f’l’; | and that L is the bound on the derivatives of f’l’; This means that if we
1

C-injp,°

with respect to g is well defined. This is a direct consequence of Picard—Lindelof

fix s = min{ %} on the ball' Bs(0,) C T, M, the exponential map exp),
theorem.

We know that the Jacobian matrix Jy (0p) is the identity. Furthermore, it is
established that the derivatives of the entries of J., are uniformly bounded by a

constant P: this follows directly from [12, Lemma 3.4]. So this means that there is
a constant D such that for each v, in B,(0,)

”Jexp;, (vp) - Jexp}, (017)“ = ”Jexp;; (vp) - Id” <D- ”vp”

Then, if R = min{%, s} on Bg(0,) the exponential map exp;, is invertible. Con-
sidering that g and g are quasi-isometric, it follows that Bg(0,) contains a ball of
radius KLH with respect to the metric g. This implies that the injectivity radius of
gon M \ Nx(8p) is bounded from below by KLH.

Condition (4) is satisfied. In particular, the boundedness of the derivatives of the
second fundamental form of dM follows because M is isometric to N near OM .
On the other hand, the boundedness of the covariant derivatives of the Riemann
tensor of g follows from two factors. Firstly, the norms induced by g and g on each
fiber F of a tensor multi-product of TX and T* X are equivalent to some constants
which do not depend on x. Secondly, y and the components of f*/ have uniformly
bounded derivatives in normal coordinates with respect to g.

() The radius is given with respect to g.
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Finally, we can conclude the proof by noting that f: (X, g) — (N, h) is a uniform map
over M (Lemma 1.4) and it is an isometry on Exy := (X \ M) U N (8), where N (o)
is the §p-neighborhood of dM in M with respect to g. So the last point holds true if
we define Ey := f(Ex) [

2. Minimal and maximal domains

In this section we introduce the L2-cohomology groups of a Riemannian manifold,
we introduce a regularizing operator for L2-forms and we conclude by proving some
technical lemmas.

2.1 — The space of square-integrable differential forms

Let (X, g) be an oriented Riemannian manifold and let Q’C‘ (X) be the space of
complex differential forms with compact support. The Riemannian metric g induces
for every k € N a scalar product on ¥ (X),

(. B g2x.0) = /X o A+

where « is the Hodge star operator induced by g. This scalar product induces a norm
on % (X). We denote this norm by | - | £20k (x,4)> and £2Qk (X, g) will be the Hilbert
space given by the closure of Q7 (X) with respect to this norm. Finally, we also define
the Hilbert space £2(X, g) as

(X, g) = P £2Q*(x. 9).
keN

The norm of £2(X, g) is denoted by | - | £2(x.g)- Moreover, for a fixed Riemannian
manifold (Y, g), a linear operator A: Q*(X) — £2(Y, h), which is bounded with
respect o |« [¢2(y,n) and | - [¢2(x g)» 18 said to be an &£2-bounded operator. Finally, an
element in £%(X, g) is an £2-form.

DEerinNiTION 2.1. Let (X, g) be an oriented Riemannian manifold whose dimension
is m. The chirality operator is defined as the operator tx: £2(X, g) — £2(X, g) such
that, for each o in Q7 (X)),

x (o) := i? xa

if m is even and
m—+1

() =i 2 %«

if m is odd.
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REMARK 5. The chirality operator is an &£2-bounded operator. In particular, with
respect to | - [¢2(x g)» it is an isometric involution. Moreover, tx is also self-adjoint.

DeriniTION 2.2. Let (X, g) and (Y, #) be two Riemannian manifolds. Fix an
operator A:dom(A4) C £2(X) — £2(Y), and let A*:dom(A*) C £2(Y) — £3(X)
be its adjoint operator. Then we denote by AT the operator defined as

Al := 1y 0 A* o 1y.

2.2 — A regularizing operator

In this subsection we discuss C¥-forms over a manifold X . These are sections of
class C*¥ of the bundle A*(X). If k > 1, then the differential of a C*-form is defined
locally in the usual way and it is a C¥~!-form.

Let (X, g) be a Riemannian manifold and fix € > 0. Gol’dshtein and Troyanov [7]
studied the de Rham regularizing operator Rg( . In their paper they proved that, given
k > 0in N, then for each compactly supported C*-form w,

s RX¥wisin Q}(X),
b lim€_>0 |R§a) - CL)le(X,g) =0,
* R¥dw =dRXw.
This operator will be useful in proving the technical lemmas at the end of this section.
For this reason it is important to recall the definition of RX.
The operator RX is defined as follows: let n be the dimension of X and fix a

mollifier p: R” — R. Then let 4: B1(0) C R” — R” be a radial diffeomorphism such
that i(x) = x if ||x|| < % and

1 1 2
h(x) = —exp(—) -xif x| > <.
[l 1—x]? 3
Then define the submersion s: R” x R” — R” as

R~ (h(x) +v) i x|l < 1

X otherwise.

s(x,v) = {

Let U be a bounded convex domain of R” which contains the ball B;(0). Denote by
dt? the euclidean Riemannian metric on U. Then, for each € > 0, the local regularizing
operator R¢: £2(U, dt?) — £2(U, dt?) is defined as

Rw = / s*0 A pe(V)dvE Ao A dV",
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where pe(v) := p(%). To obtain a global regularizing operator we need to fix a constant
J and consider a countable atlas {(V;, ¢;)} of M such that for each i there are at most
K charts (V;, ¢;) such that V; N V; # @. Assume that B,(0) € ¢;(V;) C R” for each
i and that {¢; 1(B1(0))} is again a cover of M. Then we define for each k in N,

Ré,k = RG,V() ©--+0 RE,Vks

where R¢y, := ¢ o Re o [¢;']* on V; and it is the identity outside V;. Finally, the
operator R;X is defined as Rg( = limg 400 Re k-

2.3 — Reduced and unreduced cohomologies

Let (X, g) be a Riemannian manifold. The exterior derivative operator d: Q7 (X) —
Q*(X) can be seen as an unbounded operator with respect to the £2-norm on (X, g).
So we can define some different closures d: dom(d) C £2(X, g) — £2(X, g) of
(d,2%(X)). In this manuscript we will concentrate on the maximal and the minimal
closures of d.

DEerINITION 2.3. The minimal domain of the exterior derivative on (X, g) is defined
as the subset dom(d;,) of £2(X, g) given by the form & such that there is a sequence
of {wg } C Q7 (X) such thatlimg_, 4 o |wg — [ ¢2(x,4) = 0 and the sequence of {dwy }
converges in £2(X, g) with respect to the £2-norm.

Then we can define dpin(r) 1= limg_s 4 o0 dwy.

DeFINITION 2.4. The maximal domain of the exterior derivative on (X, g) is defined
as the subset dom(dnax) of £2(X, g) given by the k-forms « such that there exists an
&£2-form 1, such that for each 8 in Q*(X),

[Xomdﬁ - (—1>’°“/Xnaw.

Then we can define dpx () := nq.

¥

REMARK 6. Notice that, given a Riemannian manifold (X, g), then dpax = d, ;.

A well-known result about the minimal and the maximal closures of d is the
following. Let (d, dom(d)) be a closed extension of d on £2(X, g). Then

(dom(dmin)a dmin) - (6?, dom(c?)) - (dom(dmax)a dmax)-

Moreover, Gaftney [6] proved that if (X, g) is a complete Riemannian manifold, then
dom(dpin) = dom(dp,x) and so there is just one closed extension of d.
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One of the most important properties of dyi, and dp,x is that

dmin\max (dOIIl (dmin\max)) C dom (dmin\max)

and, in particular, d? = dmin\max © @min\max = 0. So it is possible to define the

min\max :
cohomology groups of L?-cohomology as follows:

DEFINITION 2.5. The k-th group of minimal L?-cohomology is the group defined

as

ker
Hkam(X g) = ((d—mm)

min )

Moreover, the k-th group of reduced minimal L?-cohomology is given by

_ ker(dX. )
Héc,min(X’ g) = &,

where d%. is an operator defined on dom(dp;y) N £2Q% (X, g).

min

DEFINITION 2.6. The k-th group of maximal L?-cohomology is the group defined
as

ker( mdX)
Hj (X ) 1= L0

max

Moreover, the k-th group of reduced maximal L?-cohomology is given by

ker(d ax)
1m(d

max )

Hf (X g) =

where d¥__ is the operator d¥__defined on dom(dma) N £2Q2% (X, g).

max max

In general, for each k € N, the groups Hé"min(X, g), P_Iéimin(X, g), Hé‘,max(X, g)
and H;‘ max (X, &) can be different.
On the other hand, we know that if (X, g) is a complete Riemannian manifold then

dmin = dmax. In this case, we obtain

2m1n(X g) 2max(X g) and Hkam(X’g) = 2max(X g)

Remark 7. If two Riemannian manifolds (X, g) and (Y, k) are quasi-isometric
manifolds, then their L2?-cohomology groups (resp. minimal or maximal, reduced or
unreduced) are isomorphic.

Finally, we conclude this section with the following lemmas.
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LemMA 2.1. Let (X, g) be a Riemannian manifold and let o« € dom(dyax). Then,
for each k > 1 and for each B in CK(A*T*X), we have

/Xa AdB = (=1)F /X dmax A B.

This is a classical result; see for example [4, Remark 1 of Section 8.2]. However,
here we give an explicit proof.

Proor orF LEmma 2.1. Letus denote by Rf the de Rham regularizing operator. We
can assume, without loss of generality, that there is a j such that supp(f) is contained
in qb_]._l(Bl(O)) C V;. Here, {(V;, ¢;)} is the atlas used to define RX. Observe that
oA R}f B converges pointwise to o A S.

Notice that on V;, o has the form a(x) = a7 (x) dx! such that

/ el (X)ar (X)ory (x) dxt A -+ A dx"

Vi
is bounded. Here, the capital letter / is an ordered multi-index, i.e. I = (iy,..., i)
where i} < ip < .-+ < i;. Moreover, we also denote by N — I the ordered multi-
index such that (I, N —I) = (o(1),...,0(n)), where o is a permutation. So the
integral of o A df has the form fd)i—l(Bl(O)) oy - (dB)N—1dx' A--- Adx". Notice that
| - (dB)w—1| < Cp - |z |. This means that if |y | is in L' (¢;' (B1(0))) then we could
apply the dominated convergence theorem to the sequence oy - limg s 4+ oo (dR }; BIn—r1.

Observe that |ay | is in L>(¢;' (B1(0))). Indeed,

1
/ laz|>dx' Ao AdX" < — mjlog | dx' Ao A dX"
¢; 1 (B1(0) mj Jg; ' (B1(0)
1
< — g araydxt Ao Adx"
mj Je;'(B1(0)
=G

where m; is the infimum of the eigenvalues of g on the closure of V;. So, since
¢j_1 (B1(0)) is compact, then || is also an L! function. This means that, thanks to
the dominated convergence theorem,

/a/\dﬂ=/ a7 - (dB)N—rdx' A+ Adx"

:/ o7 - lim (dR)lfﬂ)N_Idxl/\---/\dxn
V: s—4o0 s
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:/ lim «y - (dR ﬁ)N rdx' A A dx"
Vi

s—>—+o00

= lim [ aAdRYP.

s—>+00 Vi

Observe that d R}f B is a compactly supported smooth form: this means that

/aAdﬂ=S£r+rlw(—1)k/VdaARfﬂ.

So, by applying the dominated convergence theorem again, we conclude. ]

LemmMma 2.2. Let (X, g) and (Y, h) be two Riemannian manifolds. Denote by din, x
and dmay, x the minimal and the maximal extensions of the exterior derivative operator
on X. Similarly, dwiny and dmax,y are the minimal and the maximal extensions of
the exterior derivative operator on Y. Fix an £2-bounded operator A: QX(Y) —
Cck (A*(T*X)) for some k > 1. Suppose that AT: Q¥ (X) — Cck (A*(T*Y)). Finally,
assume that, for each smooth form w,

dAw + Adw = Bow,

where B:Q%(X) — Cck (A*T*Y) isan £2-bounded operator. Then A(dom(dpin.y)) C
dom(drnin,X) and A(dom(dmax,Y)) - dom(dmax,X)'

Proor. Let «a be a k-form of dom(dpay,y): there is an $£2-form da such that, for

each B in Q¥ (Y),
/ da AP = (—1)k/ a AdB.
Y Y

Let us concentrate on Aa. Let y be a form in Q7 (X'). We obtain

/ Aa Andy = (Aa, TXdV);eZ(X,g)
X

= (o, A" txdy) g2(v.n)

= (. ty ATtxtxdy) g2 v

= (o, ty Ady) g2y

(D . oy ATdTy) g2 v 1)

(D", v @T[F A" + BNY) p20)
= (

= (d,

= (

. v @d[FA" + BYy) 20
max, X &, TY[:FA] )/>$2(X 2) + (BO[ TYV)QCZ(X g)
(FAdmax,x + B), V) 22(x,)-
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So this means that A(dom(dmax,y)) € dom(dmax,x) and dmax, x A = FAdmax,y + B.

Let B be an element in dom(dpin,y). Then there is a sequence {f,} such that
B = lim,— 4o By and dB = lim,, s+ o d B, With respect to the £2-norm. Since A is
an £2-bounded operator, we obtain

AB = lim AB,.

n—+o0o
Fix n € N and let K(n) be a number such that

|AB — ABkm)l22(x.g) = Zln
and 1

|AdB — AdBrm)l22(x,e) = o
Then let €(n) be small enough that

1
| 4Bk — Ry APK w22 0x.9) = n
and

L

2n
So let {y,} be the sequence defined as R;X(n)A,B K(n) for each n. This is a sequence of

|Ad By — RY,1) Ad Bkl £2(x.g) <

compactly supported smooth forms which converges, with respect to the £2-norm, to
AB. We just have to show that de( n)Aﬁ K(n) converges to an element of £2(X, g).
Observe that

AR}, ABK(m) = R, dmax.x ABK(n)
- Re(n)(:FAdmax,X + B):BK(n)

= RGX(n)(:FAd + B)ﬂK(n).

This means that

|AdB — R, (FAd + B)Bkn) £2(x.¢)
< [AdB — AdBrw|z2(x.¢)

+ |AdBk () — RE,(FAd + B)Brm)| 22(x.¢)
SR
~2n 2n n
So we just proved that A(dom(dpin,y)) € dom(dmin,x) and dmin x A = FAdmin,y +
B. [
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3. R.—N.-Lipschitz maps and vector bundles

This section is devoted to recalling three necessary components for proving the
main result in Theorem 4.6. These notions are also studied in [14]. In particular, we
need

e some assumptions which allow a map between Riemannian manifolds to induce an
&£2-bounded pullback,

* aspecific Riemannian metric and a family of Thom forms on a vector bundle.

In next subsection, we address the first bullet.

3.1 = Radon—Nikodym—Lipschitz maps

Let (M, v) and (N, i) be two measured spaces and let f: (M,v) — (N, ) be a
function such that the pushforward measure f (v) is absolutely continuous with respect

to (.

DeriniTioN 3.1. Let (N, 1) be o-finite. Then the fiber volume of f is the Radon—
Nikodym derivative
af,v
K
When M and N are Riemannian manifolds (X, g) and (Y, /) and their measures v and
u are those induced by the metrics g and %, then we denote the fiber volume of a map
f1(X,g) = (Y,h) by Voly.

VOlﬂv’M =

Let (M, dpg, jtar) and (N, dy, ) be two measured and metric spaces.
DEeFiNITION 3.2. A map f: (M, dpy, upm) — (N, dn, un) is Radon—Nikodym—
Lipschitz or R.—N.—Lipschitz if
e f is Lipschitz,

¢ f has a well-defined and bounded fiber volume.

ReEmMARK 8. As shown in [14, Remark 12], there is an equivalent definition of
Radon-Nikodym-Lipschitz map. A map f: (M, dp,vy) — (N,dn, uy) isa R—N.—
Lipschitz map if it is Lipschitz and there is a constant C such that, for each measurable
set A C N,

m (f 71 (A) < Cun(4).

So this implies that a composition of R.—N.-Lipschitz maps is an R.—N.—Lipschitz map.

The following Proposition 3.1 about R.—N.-Lipschitz maps is proved in [ 14, Propo-
sition 2.4].
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ProrositioNn 3.1. Let (M, g) and (N, h) be Riemannian manifolds and let
f: (M, g) — (N, h) be an R—N.—Lipschitz map. Then f*, which is the pullback
along f, is an £2-bounded operator.

In general, a Lipschitz map is not R.—-N.-Lipschitz: for example, if (M, g) and
(N, h) are two Riemannian manifolds such that dim(M) < dim(/N) then there is no
Lipschitz embedding i: (M, g) — (N, h) which is R.—N.-Lipschitz.

However, we are interested in the fiber volume of a submersion and, when f: (M, g)
— (N, h) is a Lipschitz submersion between oriented Riemannian manifolds, we know
how to compute its fiber volume. In order to explain how to compute it, we recall the
notion of a quotient between two differential forms.

DeriniTION 3.3. Let us consider a differentiable manifold X . Given two differential
forms o € QF(X), B € Q"(X), we define a quotient between o and B, denoted by %
as a (possibly not continuous) section of A¥~”(X) such that for all p in M,

a(p) = B(p) A %(m.

In general, given two smooth differential forms, we do not know whether there is
a quotient between them. Moreover, if a quotient between « and f exists, it may be
not unique. However, given a submersion between Riemannian manifolds r: (X, g) —
(Y, h) and denoting by Voly and Voly the volume forms on (X, g) and (Y, &), then
it is possible to define a quotient between Volx and 7 *Voly and the pullback of this
quotient on a fiber of 7 is a smooth form which does not depend on the choice of the
quotient (see [14, p. 15]). So this means that if we denote the embedding of the fiber of

gin X byi,: F; — X, then
/ i*( Volx )
Fy a 7T*V01y

is a well-defined real number for each g in N.

Prorosition 3.2. Let (X, g) and (Y, h) be two oriented, Riemannian manifolds.
Denote by Voly (resp. Voly ) the volume form on (X, g) (resp. (Y, h)). Let w: (X, g) —
(Y, h) be a submersion. Then, if q is on im(7),

VOlX
Vol = ,
o) = [ (@)

and Vol (q) = 0 otherwise.

ReMARK 9. Ifthe submersion f: X — Y isadiffeomorphism between oriented man-
ifolds which preserves the orientations, then the integration along the fibers of f is the

pullback ( £ ~1)*. This means that the fiber volume of f is given by |(f~1)* f*\gg(ly) l.
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We also recall [14, Proposition 2.6]: this proposition allows us to compute the fiber
volume of the composition of two submersions.

ProposiTion 3.3. Let f:(X,g) = (Y, h) and g: (Y, h) — (W, 1) be two submer-
sions between oriented Riemannian manifolds. Denote by Volx, Voly and Voly the
volume forms on X, Y and W induced by their Riemannian metrics. Then

VOIX VO]Y
Volgor(q) = " " .
g=1() \Jr—1g—1() f*(Voly) ) g*Volw

Finally, we conclude this subsection by showing the relation between R.—N.—

Lipschitz maps and the quasi-isometries.

ProrositioN 3.4. Let f:(X,g) — (Y, h) be a quasi-isometry. Then f is an R.—
N.—Lipschitz map.

Proor. Notice that f and its inverse f ! are Lipschitz maps: this directly follows
from the definition of quasi-isometry. So we just have to show that f has a bounded
fiber volume. This can be proved by showing that id: (X, g) — (X, f*h) has bounded
fiber volume. Let x be a point of X . Thanks to a simultaneous diagonalization argument,
we can find a basis {eq, ..., e,} of Ty X such that the Gram matrices of f*h and g
are both diagonals. Let K be the Lipschitz constant of f~!. Observe that g(e;, e;) <
Kf*h(e;,e;) foreachi = 1,...,n. So this means that

det(gji(x) = [ elei,e) < K" [] f*h(ei, er) = K"det(f*hji(x)).

i=1 i=1

Notice that the fiber volume of id on a point y = f(x) is given by

det(gi () _
det(f* () =

This concludes the proof. |

3.2 — Generalized Sasaki metrics

In this subsection a Riemannian metric on a vector bundle is introduced. This metric
is a generalization of the metric defined by Sasaki in [11] for the tangent bundle of a
Riemannian manifold. The definition of this generalized Sasaki metric can be found in
Boucetta and Essoufi [3, p. 2].

Let (V, h) be a Riemannian manifold and let 7g: E — N be a vector bundle. Fix
abundle metric Hg € T'(E* ® E*) and a linear connection Vg which preserves HE.
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Fix {s¢}, alocal frame of E. Given a system of local coordinates {x’} over U C N, we

obtain the system of coordinates {x’, 1} on JTEI (U), where the u“ are the components
with respect to {sy }. The map K: TE — E is then defined as

K(b" aii

where the Ff ; are the Christoffel symbols of Vg . The Christoffel symbols of a connection

o

+z
(x0,10) ouY

(xo0 Mo)> = (Za + biuiirlqj (x0))sa(x0),

Vg are some coeflicients locally implicitly defined by the equality

vf%_ 5p(x) 1= TV (x)sy (x).

DEerINITION 3.4. The Sasaki metric on E is the Riemannian metric #£ defined for
all 4, Bin T(p,)E as

h®(A, B) := h(dnE,,(A),d7E,(B)) + HE(K(4), K(B)).

RemMARK 10. Fix the system of coordinates {x, 1/} on E. The Gram matrix of

hE is

hE (%, 1) = hyy (x) + Hay (2) T, ()T ()P,

WE (x, 1) = Hoa(x)T% (x) .

hfr(x’ ,lL) = Ha,t(x)v
wherei,j =1,...,nando,t =n+1,...,n 4+ m. Consider a point xo = (xé, R
in N. If all the Christoffel symbols of Vg in x¢ are zero, then, in local coordinates, the
matrix of 2Z at a point (xg, 1) is

hi,j(xo) 0
0 HO',‘L'(XO) ‘

Moreover, with respect to the coordinates (x*, 1), the inverse of the Gram matrix is
given by

W (o) = 1Y (),

Mg = ~Tg, () ()u?,

hg = HOP(x) + hY ()Tg, ()T () .

where H°T and h"/ (x) are the components of the inverse matrices of /;; and Hy ;.

ExampLE 3.1. Let (X, g) be a Riemannian manifold and let £ = TX. Choose as
hg the metric g itself and fix Vg = Vi;c, the Levi-Civita connection of g. We denote
by gs the Sasaki metric induced by g and V€.
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ExampLE 3.2. Let f:(X,g) — (Y, h) be a smooth map. Let 7: f*TY — X be
the pullback bundle of 7Y . Then the Riemannian metric & can be seen as a bundle
metric on 7Y and so we obtain a bundle metric f*h on f*TY . Fix the connection
f *V}];C on f*TY which is the pullback of the Levi-Civita connection on (Y, /). Let
us denote by gs, s the Sasaki metric induced by f*VEC, f*h and g.

Remark 11. Let (Y, ) be a Riemannian manifold. Then (id*TY, gs,q) and
(TY, gs) are isometric Riemannian manifolds, and the isometry is the map ID:
(id*TY, gs.ia) = (TY, gs) which is the bundle map induced by the identity. For
this reason, we will identify (id*TY, gs.iq) and (T'Y, gs) both as bundles and as Rie-
mannian manifolds.

DerintTION 3.5. Let (X, g) be a Riemannian manifold and fix a vector bundle
w:E — X.Let Hg and Vg be a bundle metric and a connection on X . Then, given a
constant 8, we denote by E 5 the following disk-bundle:

E® = {ep € E | hE (ep.,ep) < 8.

Let f:(X, g) — (Y, h) be a smooth map between two Riemannian manifolds. When
E=f*TY Vg =f *V,];C and Hg is the pullback bundle metric of %, then instead
of E® we use the notation f*T%Y .

Remark 12. Let f: (X, g) — (Y, h) be a smooth map. Fix a bundle £ on Y and
let VE be a connection and h% be a bundle metric on E. Then the induced bundle map

F:(f*T%Y.gs.;) — (T?Y. gs).
(P, wrp)) —> Wr(p)

is a smooth Lipschitz map.

RemARK 13. Notice that if 7: (X, g) — (Y, h) is a submersion, then (7*)T = 7.,
which is the integration along the fibers of 7. This is a consequence of the projection
formula (see [2] or [13]).

ProrosiTiON 3.5. Let m: E — X be a vector bundle on a Riemannian manifold
(X, g). On E, fix a metric bundle Hg and a connection Vg which preserves Hg. Let
hE be the generalized Sasaki metric on E induced by g, Hg and Vg. Assume that at
each point p of X there is a system of normal coordinates {x'} centered in p and a
frame {sq} such that

o {sq} is orthonormal in p,

* all the Christoffel symbols of Vg with respect to {x'} and {sq} vanish in p.
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Then 7: (E% ,h®) — (X, g) is an R—N.—Lipschitz map for each § > 0. This means that
¥ is an £2-bounded operator. Moreover, as a consequence of Remark 13, integration
along the fibers m, = (n*)" is also an £2-bounded operator.

Proor. The submersion 7: E¥ — X is a Riemannian submersion so, in particular,
it is Lipschitz. Moreover, for fixed a point p on M, if Voly (p) = e; A --- A ey, then
Volg(q) = n*(e1)(q) A--- A7*(en)(g) A €1 A -+ A &, Where ¢ is in the fiber of 7
and €1 A -+ A gy is a volume form of the fiber of ¢g. Then the fiber volume of = is
given by

/ VOIE :/ Tr*(el)(q)/\“'/\ﬂ*(en)(q)/\sl ARRRRAY
F m*Voly Bs(0,) 7*(e1)(q) A--- At*(en)(q)

= / EL N NEy = //Leucl(Bﬁ(O))' m
B5(0p)

ReEmARrk 14. The metrics of Examples 3.1 and 3.2 satisfy the assumptions of
Proposition 3.5.

3.3 — Mathai—Quillen—Thom forms

The last component that we need in order to prove the main result of this paper is
the Mathai—Quillen—Thom forms of a vector bundle. This is a family of Thom forms,
so we will start by introducing the notion of a Thom form.

DEeFINITION 3.6. Let w: E — M be a vector bundle. A smooth form w in Q7 (E)
is a Thom form if it is closed and its integral along the fibers of 7 is equal to the constant
function 1.

Given a Thom form w of f*TY such that supp(w) is contained in a o < & neigh-
borhood of the null section, let us denote by e,: Q*(f*(T?Y)) — Q*(f*(T?Y)),
the operator defined for every smooth form « as

ep(@) = a ANw.

Denote by | - |(p,uw,,) the norm on A>(kp,w_/‘(p))( f*TY) induced by the Riemannian

metric gg, r. If there is a constant C such that

&l (pw(p) < C-

then the operator e,, is an £2-bounded operator (see [14, Proposition 4.4]). In this case,
eZ, = ryp Where ry,(B) := o A B.
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In this manuscript, we use the Thom forms introduced by Mathai and Quillen [10].
In their work, the authors defined a Thom form for a vector bundle 7: E — (M, g)
induced by the Riemannian metric g, a metric bundle 4 g and a connection Vg. In
particular, for each § > 0 they found a Thom form whose support is contained on
E?. So we will consider, on the tangent bundle of a Riemannian manifold (Y, ), the
Mathai—Quillen-Thom wy form induced by 4 and V,%C. On the other hand, given a
map f: X — Y, wefixon f*TY the pullback F*wy, where F: f*(TY) — TY is
the bundle map induced by f.

As shown in [14, Section 4.2.], if & has the same bounds as a manifold of bounded
geometry and if f is a smooth Lipschitz map, then there is a constant C such that for
each (p, wy(p)) in f*TY the norm |F*wy|(pw,,,) < C.In this case, the operator
QX(TY) — QX(TY) is an £2-bounded operator (see [14, Propositions 4.3 and 4.4]).

4. Stability of cohomologies

In this section, given a uniformmap f:(X = M UEx,g) - (Y = NUEy,h)
which is isometric on the ends, we define an operator 7Ty: 2(Y, h) — £%(X, 9).
Moreover, we also prove that if f is a homotopy equivalence, then Ty induces the
required isomorphisms in L2-cohomology.

In this section we always assume that f is a smooth le, 1o.-map for each k in N.
If f isnota le, loc-Map, then we replace it with an e-approximation f provided by
Proposition 1.3. Moreover, we also assume that f is an isometry on the unbounded
ends: we know, thanks to Proposition 1.5, that the metric on the domain can be replaced
by another metric which is quasi-isometric to the first one and which makes f an
isometry on the ends.

4.1 — A submersion related to a uniform map

Fix f:(X =M U Ex,g) > (Y = N U Ey, h), a smooth Cl]f,loc—map which is
isometric on unbounded ends. Let 7y be a constant such that the restriction of f to
Nx (o) is an isometry. Fix § = %ro and denote by 7: f*T%Y — X the fiber bundle
given by the vectors on f*T®Y whose norm is less than or equal to §. Consider the
map

pridom(ps) C iy — v,
(P, Vf(p)) — €XPy(p) (V7 (p))-

Notice that outside 71 (M) C f*T%Y the map p '+ could be not defined on all f™* Ty
since Y is not complete. However, it is defined on a neighborhood of the 0-section.
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Thanks to [14, Lemma 3.3] we know that, on its domain, py is a smooth submersion,
suchthat pr(Or(p)) = f(p).Let pbeapointin X and fix a system of normal coordinates
{x"} around p and let {y/} be a system of normal coordinates around f(p)in Y. Let
{x’, 1/} be the system of coordinates on f* T3Y ,where u/ are the coordinates referred
to the frame {#}. Since fisaC ,ﬁ loc-Map, thanks to [14, Lemma 3.3] we know that

py has uniformly bounded derivatives with respect to {x, u’}. This implies that on

Ar = {(p. wrp)) € F*T%Y suchthat f(p) C N
(4.1) and |wy(p)ln < d(f(p),dN)},
the map py is Lipschitz. This can be proved as a consequence of Schick [12, Lemma
3.4].
Let ¥: R — R be the map defined as
0 ift <0,
Y(@) =41 ift >4,

P(fs') ift € (0,6),
where P(s) := —20s7 + 70s® — 845> + 355*. Thanks to Eldering [5, Lemma 2.34],
we can fix € < % and v < % and find a map ¥: R — R such that
e Y=vYeonR\(@E—v,§+v),
e d(Ye(t), ¥ (2)) < eforeacht,
e i is a smooth function on R \ {0},
* V. isamap of class C3 on R.

Then we can define the map ¢: Y — R as

0 ifgeY\N,
P(q) =11 ifg € N\ Ny (ro),
Ve(d(q,0N)) ifgq € Ny(ro).
By some easy computations, it is possible to notice that ¢ is a Lipschitz function in
C3(Y) and it is smooth outside N . Indeed, because of Remark 4, if we fix some collar

coordinates (y, ¢) on Ny (rp), then ¢ only depends on ¢.
Let py: f*T%Y — Y be the map defined as

Prrp) == pr(@(f(p)) - vrp))-

Observe that py is defined on all f *T8Y and it is a submersion. Indeed, on M, Dr is
a submersion because ¢ # 0 and py is a submersion; on X \ M, py is a submersion
since f is an isometry.
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ProrosiTioN 4.1. Let (X = M U Ex, g) and (Y = N U Ey, h) be two manifolds
with unbounded ends. Let f:(X, g) — (N, h) be a uniform map isometric on the
unbounded ends. Assume that f|yy (ry) is an isometry and fix § = %0. Denote by g5 ¢
the generalized Sasaki metric induced by g, f*h and f *V,I;C on f*TN.

Then the map py: (f*T?, gs,r) — (Y, h) is an R—N.—Lipschitz map.

Proor. Observe that py is a Lipschitz map since
* pr is Lipschitz on the subset Ay defined in equality (4.1),
e f is an isometry on the unbounded ends,
e ¢ is Lipschitz.
It remains to prove the boundedness of the fiber volume. Observe thatifg € Y \ N,
then p;l (q) is the fiber of f*T3N over po = f~!(g). Then, since f is an isometry
on the ends, the fiber volume of ¢ in ¥ \ N is equal to the volume of a ball of radius §
in R”.

Let ¢ be a point in N such that Bs(g) N Ny (8) = @. Observe that for each pg in
X, since ¢ <1,

d(f(po). Br(Wr(py))) <8+ f*P(po) < 8.

This means that
b7l (@) c 7 TN (Bs(g)).

Notice that, since Bs(g) N Ny (ro) = @, we obtain that f*¢ on f~1(Bs(g)) is equal
to 1.

This means that pr, on the fiber of ¢, is equal to the submersion ps defined in [14].
So the fiber volume of ¢ can be computed as in [14, Corollary 4.2] and it is bounded
by a constant which only depends on the curvatures of M and N.

Finally, we have to calculate the fiber volume of a point ¢ in N such that Bg(g) N
Ny (8) # @. Since § = =2 we obtain that Bs(q) N N C Ny (o).

Since pr = f o m outside M andsince f|g, isanisometry, then ﬁ;l (g) is contained
in 771 (Nx (r9)). Recall that, since M is an open subset of bounded geometry, we can
identify each point p in 7! (Nx (o)) as a couple (x, ) in M x (0, rg). Let us define
the map

i Y (Nx(ro)) — M x N,
Wre,) — (X, 1, pr(Wrie,r)))-

Observe that py = pry o fr where pry: M x N — N is the projection on the second
component.
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Thanks to Proposition 3.3, we obtain
Voly, @) = [ Vol (p.4) dux.

Let us focus on Volz . Fix some normal coordinates {V, y?} around ¢ and some collar
coordinates {U, x/, ¢} around py = (xo.%9) = f ~'(g). Assume that f(U) € V. Then
on 7~ (U) C f*T?Y we have the fibered coordinates {x’, ¢, 1/}, where {11/ } are the
coordinates relative to the frame {%} Observe that

ir (xo.to, W) = (xo0, 0, Ye(to) - 7).

Moreover, since the Christoffel symbols of the pullback connection f *V}%C vanish in
(xx0, fo), the volume form of f*T3Y in (xg, o, u”) is given by

Vol s« sy (xo, fo, w') = det(gi; (xo.0)) dx" Adt ndp” .

Observe that det(g;; (xo, #o)) is uniformly bounded since M is an open subset of
bounded geometry. Let us study the volume form on M x N: this is given by

Volyrxw (x.1,y) = det(gi; (x,1)) - det(h,s(v)) dx? A dt A dy”’.

Observe that ff is a diffeomorphism with its image. This means that its fiber volume is
null outside the image of ff Moreover, on im(ff), the fiber volume is given by

[f_l]*<~VOlf*T8Y )
4 17 (Volyxn)
Notice that, in (xg, fo, q¢), we have

VOlf*TSY

f*(Vol—MN)(xo’tO’ 1) = [det(hys(Ye(to) - J’))]_l
f X

1
we (lo)” .

This means that, for each (x, ¢, ¢) in im(7y),

1
4.2) Vol; (x,t,q) < C - .
v Ve ()"
Let us decompose M as the union of NX(%S) and My := M \ NX(%(S). We are
choosing %5 because on NX(%S) the inequality ¢(x,) = Ye(t) < % holds. This
inequality will be useful later.
However, we can see the fiber volume of ps as the integral

Voly, @) = [ Vol (peydpan + [ ol (p.g) dian.
0

x (756)
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Notice that, thanks to inequality (4.2), on My the fiber volume of ff is uniformly

bounded by a constant Cy;, since ¢ (¢) is bounded from below by ¢ (x, 1—308) = VY (1—308).

Moreover, since f is uniformly proper, then also 7 o f and ps are uniformly proper
and so this means that there is a number C (which does not depend on ¢) such that

diam(7(57" (¢))) = C.
Since M is an open subset of bounded geometry, we obtain a constant K such that
~ 1 ~ 1
v (7 (571 (9)) N Mo) < pm (2(57' (@) < K.

Finally, observe that im(f7) N [M x {q}] = 7( ﬁ;l(q)) x {¢} and we obtain
/ Volz, (p.q) dum = / Voly, (p.q) dpupy = K - Cy.
My (57 @)

We only have to prove the boundedness of the integral over NX(1—308).

Recall that if (x, 7, ¢) is not in im(7y ), then the fiber volume of Volz, (x,t,q) =0.
Observe that im(7y) is given by the elements (x,7,¢q) of M x N such that there is a
tangent vector wr(x ;) on f(x, 1) whose norm is less than or equal to § - ¢ (¢) and which
satisfies

Pr(Wexr) = exXprx,n)(Wrxn) = ¢ = f(xo,10)-

This means that, if (x,7,¢) is in im(7y), then

dM((XO,to), (X,t)) = dN(f(x01t0)’ f(x’t)) = dN(‘I, f(xvt))
4.3) < lwranll = 8- Ye(@).

Observe that for each (x, t) in Nx (ro)
|t —to] = dm((x0,10), (x0,1)) < dp((x0,10), (x,1));

indeed, if (x1, ¢) is a point such that dps ((x¢, t0), (x1,1)) < |t — to| then d((x1,t),0M)
< t which is a contradiction with Lemma 1.2.

Moreover, on Ny (1—305), we also have that /. (¢) < 1t for each (x, ). Then, because
of the inequality (4.3), if (x, 7, ¢) is in im(y) N JVX(%S) x N, then

o <t =<

t ’
2456 =2-5"°

4.4) [t —to] <6-Ye(t) < gt -

and so, since V¥, is a monotone polynomial of degree 7, we obtain

2 27
dm ((x0,10), (x,1)) <8 -e(t) <6 - We(mto) <é- m - Ye(to).
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This means that 7 ( 15}71 (g)) is contained in a ball on M of radius § - # - Ye(to),
where 9 = d(q,dN), and so

e (7 (571 (@) < J1 - Ve(to)™.

Moreover, if (x,7,¢) is an element of im(7¢) N Ny (%5) X N, thanks to formula (4.4)
we obtain

1 1 Q+8™m 1 1
S > = = . S J2 - _
Ve(?)" Ve(35500)" 27n Ve(to)" Ve(to)"
So we conclude by observing that
1
Volz, (xg,t0,q) dupyr < Jq '¢(Zo)n -Jy - < B. ]
/JVX(EOS) i ¢ (to)"

4.2 — The pullback operator

Fix a uniformmap f: (X = M U Ex,g) —> (Y = N U Ey, h) which is isometric
on the unbounded ends. Let @ be the Mathai—Quillen-Thom form of f*TY with
support contained in f *T3Y defined in Section 3.3. Then we define the pullback
operator as

Ty(a) = /35 pranw.

ProposITION 4.2. Denote by duyiny and dmax,y (resp. dmin,x and dmax,x ) be the
minimal and maximal extension of the exterior derivative operator d on Y (resp. on
X). The operator Ty satisfies the following properties:

(1) Tris £2-bounded,
2) Tf (dom(dmin,Y)) C dom(dmin,X) and Tf (dom(dmax,Y)) C dom(dmax,X)y
) demax,Y = dmax,X Tf
Proor. Let yny and yy\n be the characteristic functions relative to M and to
X \ M.If  is a smooth £2-form, then y yo and yy\yo are £>-forms and
|a|§32(y,h) = |XNO[|?52(Y’}!) + |XY\Na|c2<£2(Y’h)-
Observe that
Tr(xyv\we) = xx\m f e

and so, since f on X \ M is an isometry, we obtain

T (r\w) 3oy o) = NNy -
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Let us focus on yyo. Notice that
Tr(xn) = pry, © ew © pr(xna),

where e, (8) = B A w and pry, is the integration along the fiber of f*(T%Y).

We already know that 15}“ is an R.-N.—Lipschitz map and so this means that ﬁ}* is
an £2-bounded operator. In particular, ﬁ}ka is a smooth form on f*T? Y|y anditis
null on f*79 Y|x\m . Moreover, thanks to Proposition 3.5, we also know that pry, is
£2-bounded. On the other hand, since the norm |w|( pw () could be not uniformly
bounded, the operator e,, can be not £2-bounded. However, observe that on 7~ (M)
the norm |w|( p.wy(p) actually is uniformly bounded since M and N are open subsets of
bounded geometry. So, if we restrict e,,: £2(M) — £2(M), we obtain an £2-bounded
operator. Moreover, we also have that ﬁ; (x~ @) has support contained in 7~ (M) and
so this means that

|Tf(XNa)|é2(X,g) =C- |XNa|?$2(Y,h)‘
Observe that T (yya) = 0on X \ M and Tr(xy\ny«) = 0 on M. Then we obtain

|Tfa|?g2(x’g) = |TfXNa|?g2(X,g) + |TfXY\Na|§52(X,g)
<K- |XNa|?$2(Y,h) + |XY\Na|é2(Y,h)
= max(K, 1)(|XN‘XI§@2(Y’h) + |XY\NO‘|?52(YJ,))

= max(K, 1)|01|3252(Y,h)'

So we have proved (1).

In order to prove points (2) and (3) we apply Lemma 2.2.

Notice that, since ps is a map of class C3, the pullback along pr: f* TSN - N
of a smooth form lies in C2(A*(f*T%N)), which is the space of differential forms of
class C2 over f*T%N. Observe that on this space the exterior derivative of a form « is
defined exactly as it is defined for smooth forms (see [8, p. 549]) and all the properties
of d are the same. In particular, ﬁ; and the exterior derivative operator commute.

The operator e, also commutes with the exterior differential and it preserves
C2(A*(f*TP®N)). Finally, if the support of f is vertically compact, the integration
along the fibers 77, of f*T%N also satisfies 7,df = dm,p (the proof is the same
as the classical one: see for example [2, Proposition 6.14.1]) and, moreover, if § is a
C k—form, the same holds for 7, B.

So we obtain that if « is a smooth form on Y, then Tra isa C 2_form on X and
Trda = dTro. Moreover, since py is uniformly proper, if « is an element of Q7(N),
then Tra is compactly supported. Finally, observe that 7o is smooth on X \ 0M.
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Observe that T; = Pf« OTy o ¥, Where py, is the integration along the fibers
of ps and r,(B) = w A B. Since py is a C3-map, then for each ¢ in N and for
each p in f*T%N there are a couple of C3-charts (U, x!,....,x", y',..., y") and
(V,y', ..., y™) such that pr(xt,.....x" y',....y") = (y!,..., y"). This implies,
by a partition of unity argument, that the integral along the fibers of pr of a smooth
form is a C 3-form. So d T; y is a compactly supported C 3-form. Then we can conclude
by applying Lemma 2.2. ]

4.3 — The isomorphisms induced by the pullback

Let (X =M U Ex,g) and (Y = N U Ey, h) be two manifolds of bounded
geometry with unbounded ends and let f: (X, g) — (Y, k) be a uniform homotopy
equivalence isometric on the ends. In this section we introduce a couple of operators
y: £2(Y, h) — £2(Y,h) and z: £2(X, g) — £2(X, g) such that y(dom(dpax,y)) €
dom(dmax,Y)’ y(dom(dmin,Y)) - dom(dmin,Y) and Z(dom(dmax,X)) - dom(dmax,X),
2(dom (diin,x)) € dom(dmin,x) and

4.5) V£ T/ Ty =dy+yd and 1&£T/T] =dz+zd

on the maximal domain of the exterior derivative operator. In this formula (4.5), there
is a + if f reverses the orientations and a — otherwise.

In order to define these operators, we need a metric on the bundle f*(TY) &
f*(TY) over X. We fix the generalized Sasaki metric gg induced by g, h & h
and V;© @ V. In general, even if f; = f, = f, we will denote the bundle
SXTY)® f*(TY)by f*(TY) @ f,*(TY). Moreover, given i = 1,2, we denote by
pr;: [F(TY)® f,5(TY) — f*(TY) the projection on the i-th component, i.e.
pr; (Wr (p) © Wry(p)) = Wy, (p) and so we obtain the maps py; ‘= py o pr; and
T = 7 o pr;.

Finally, we denote by

B = {wy,(p) ®Wh(p) € T (TY)® £ (TY) st |wry(pyln < 8. [wrypyln < 8}

LemMmA 4.3. Assume that (X = M U Ex, g) and (Y = N U Ey, h) are two
Riemannian manifolds and let f: (X, g) — (Y, h) be a smooth uniform map isometric
on the unbounded ends of X . Then there are two £?-bounded operators yo: £*(Y,h) —
L2(Y, h) and zo: £*(X, g) — £2(X, g) such that they preserve the minimal and the
maximal domains of the exterior derivative operators

ﬁ;,z - ﬁ}k”,l =dyo+ yod and 75 —n] =dzo+ zod.
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Proor. Let f01$: Q*(B x [0, 1]) —> Q*(B) be the operator defined in [14, Lemma
4.13]. It is defined as follows: if « is a O-form with respect to [0, 1], then

1 1
/ Q= / gx,.t)p*w =0,
0,&£ 0,£

s

and, if « is a 1-form with respect to [0, 1],

/O;a = (/Olf(x,t)dt)a).

This is an £2-bounded operator and it sends compactly supported C!-forms to
CYH(A*(T*B)). Moreover, if o is a C!-form on 8 x [0, 1], then
1 1
Jra—jia=d o+ da,
0,&£ 0,&£
where j;: 8 — B x [0, 1] is defined as j; (x) := (x,i).

Let ¢; and ¢p9 be two R.—N.-Lipschitz maps which are uniformly homotopic with a
uniformly proper, R.—N.-Lipschitz homotopy H: (8B x [0, 1], gs + dt) — (Y, h). Then,
as a consequence of Lemma 2.2, the operator f 01’ goH isan £2-bounded operator which
preserves the minimal and the maximal domains of the exterior derivative operator
and, on the maximal domain,

sl n) o ([

So, in order to conclude the proof, it is sufficient to find a couple of uniformly proper,
R.-N.-Lipschitz homotopies.
Let A: (8 x [0,1], g5 + dt) — (f*T°Y, gr) be defined as

A(wr(p) ® Vr(p).5) =5 Wr(p) + (1 = 5)vs(p)-

It is an easy exercise to prove that A4 is a uniformly proper R.—N.—Lipschitz map: a proof
of this fact can also be found in the work of the author [15]. Then we can conclude by
observing that ps o A is a homotopy between py, and py, and 7 o A is a homotopy
between 771 and 5. [

The proof of the following lemma is very similar to that given in [15]; however, for
the sake of completeness, it is proved here.

LemMma 4.4. Let (Y = N U Ey, g) be a manifold of bounded geometry with some
possibly unbounded ends. Fix pia: T®Y — Y and let w be a Thom form of the bundle
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7:TY — Y, where n(vp) = p, such that supp(w) C T8Y. Then forall g in N,

/ w=1,
Fq

where Fy is the fiber of pig.

Proor. For all g in N the fiber F, is an oriented compact submanifold with
boundary. The same also holds for B, which is the fiber of the projection 7: T* N — N
defined as w(vy) := q.

Define H: T®N x [0,1] = N as

H(vp,s) = pia(s - vp).

Since H is a proper submersion, the fiber along H given by Fp 4 is a submanifold of
T8N x [0, 1]. Its boundary, in particular, is

0FHq = B) x {0} U Fy x {1} U 4,
where A is contained in
SN :={v, € TN | |vp| = §}.

If w is a Thom form of TN whose support is contained in 7% N, then

(4.6) 0= do =4d a)+/ .
FHq FHCI aFHq

Observe that w is a k-form and dim(Fg,) = k + 1. Then the first integral on the
right-hand side of equality (4.6) is 0. Moreover, we obtain that w is null on A, and so

/a)=0.
A
BS Fy

and we conclude. [

Then, by equality (4.6),

LemMma 4.5. Let (X = M U Ex,g) and (Y = N U Ey, h) be two manifolds of
bounded geometry with unbounded ends and let f:(X, g) — (Y, h) be a uniform
homotopy equivalence isometric on the unbounded ends. Then there are a couple
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of operators y: £*(Y, h) — £2(Y, h) and z: £*(X, g) — £>(X, g) such that they
preserve the minimal and maximal domains of the exterior derivative operators and

V£ T]Ty =dy+yd and 1£T;T] =dz+zd

on the maximal domain of the exterior derivative operator. In this formula, there is a
+ if f reverses the orientations and — otherwise.

Proor. First we focus on z. We have the diagram

Py * (8
B——— £,(T°Y)

T

fHTPY) Y,
where Zﬁf, 1 and ﬁﬁ » are the bundle maps induced by py. Moreover, we also have

8 £xT8Y)
b
SHTPY) —F— X,
where I1; and II, are the bundle maps induced by the projection of the bundle
n: f*T%Y — X.
Denote w; := I1 l* , where w is the Mathai—Quillen-Thom form of f* T8y .

Fix @ and 8 in Q’c‘(X) for some k in N. Then
(Ty Tl B g2cx.gy = (T tTTB) g2y
=/ (/ a)z/\n;oz)/\(/ a)l/\nl**,B)
N F> Fq
= deg(f) (/ 6()2/\7T;(,¥)/\a)1/\7[ik*/3
FIETN \JF,

:deg(f)(—l)j("+j)/ wl/\nf*ﬂ/\(/ wz/\n;a)

fETN F>

:deg(f)(—l)j(”+-i)[ w1 AT x BAwy AT 0
B

=deg(f)/ TS AT * BAW AW
B
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Then, as a consequence of 75 = 7y + dzo + zod, we obtain
(TfT;a;,B)xz(X’g) = deg(f)/ﬁ TiA AT * BA® A0

—I—deg(f)/ (dzo + zod)a A7Tf x B A @1 AWy
8
= (deg(f) - la; B) g2(x.q) + ([d(=2) + (=2)d]o; B) £2(x ¢)

where z := —deg(f) - mx 0 ey 0 [1p, © M5 w © Z0-
Observe that z is a composition of £2-bounded operator and z(2}(X)) C
C2(A*(T*X)). Moreover,

2t = —deg(f)zgornzswol'[;orwon*

is an £2-bounded operators and —zT(Q*(Y)) € C2(A*(T*Y)). So by Lemma 2.2,
we know that z preserves the minimal and the maximal domains of d and

1+ Ty T = dz + zd,

where we have a — if f preserves the orientations and a + otherwise.
Let us focus on the operator y. Given o and 8 in 27 (Y'), we obtain

(T;Tfa’ BYe2vmy = (Tro. tTrtB)g2(x,g)

~% ~%k
= p oz/\a)z)/\(/ D *,3/\0)1)
/M(/Bg s BY 1

= (/ Prd Awa) A Prix B A
/f*(TJY)l B} 12 &

= (_1)("+j)f/ pr. *x B A A (/ P 0(/\602)
ooy PP 5y 712

2

= (_1)(n+j)j [B 15;,1 * B AW A ﬁ}"za A Wy
— (_1)(n+j)j(_1)(n+j)j /{B ﬁ},za A ﬁ;l * B AW AW
= [BﬁzzaAﬁzl * A A .
Then, thanks to Lemma 4.3, we obtain
(T;Tfa, Ble2v.ny = /ﬂ@ Pri(@nxB) Ao Aw;

+/(dy0+y0d)a/\ﬁ;§’l*ﬂ/\a)1/\w2
B
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= deg(/) /T @B Ao

+ ((dy + yd)a, B) g2(v n)
= (deg(f) - 1(@): B)g2v,m) + ((dy + yd)a, B) g2y,

where y := ps,oe,0llq 0 erte © Yo- Notice that y is a composition of £2-bounded
operators and y(Q2X(Y)) € CZ(A*(T*Y)). Moreover,

y'=ydormr, oM ory o p;,

and so yT(Q*(X)) € C2(A*(T*X)). So, as a consequence of Lemma 2.2, we obtain
that y preserves the maximal and the minimal domains of d and

I:ET;Tf=dy+yd. [

THEOREM 4.6. Let f:(X = M U Ex,g) —> (Y = N U Ey, h) be a uniform
homotopy equivalence quasi-isometric on the unbounded ends. Then, for each k in N,
the operators Ty and T; induce the following isomorphisms:

HS (X, 8) = HY o (Y, ),
HS o (X, 8) = HY o (Y, ),
Hz min (X, 8) = Hz min (Y 1),
H;, mm(X g) = Hy mm(Y h).

Proor. The proof immediately follows by Lemma 4.5. ]

5. Consequences
5.1 — A mapping cone for the L*-cohomology

In this subsection, given a Riemannian manifold (X, g), we will denote Q;\ m X, 8)
= dom(dmin\max,X) and dX,m\M = dmin\max,X-

Let f:( X =M U Ex,g)— (Y = N U Ey, h) be auniform map quasi-isometric on
the unbounded ends. It is not required that f is a uniform homotopy equivalence. Thanks
to Proposition 4.2, we know that there is an £2-bounded operator Ty: £2(N,h) —
&£2(M, g) such that Ty (Q* M (M, g)) € Q* \M(N h). In this subsection we will
define the L2-mapping cone of a map f and we will see some properties of this cone.
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DeriNtTION 5.1. Let f:(X = M U Ex,g) — (Y = N U Ey, h) be a uniform
map quasi-isometric on the unbounded ends between two Riemannian manifold and

let us denote by (25 min\max( ). dfmin\max) the cochain complexes
0 df,m\oMVO 1 df,m\M,l 3 df,m\M,Z
0— Qz,m\,M(f) Qz,m\,M(f) Qz,m\,M(f) —_—

where Q3 (f) = Q. 4 (V1) @ Q3L (X, ) and dpm e (@, B) 1= (=dim\ ey
Tra — dm\m,x B).-

REmMARK 15. Notice that, since Ty and the exterior derivative operator commute,
2 —
then d S min\max = 0-
DEerINITION 5.2. The k-th group of the L?-mapping cone of f is the cohomology
group of the L2-mapping cone, i.e.

ker(d f,m\m k)

Hk¥ = .
2 (/) im(d fm\p k)

The reduced k-th group of the L?-mapping cone of f is the group defined as

= ker(dfm\ k)
A ) = Smot)
o im(df,m\a k)
Exactly as the mapping cone in the de Rham case, we have a short exact sequence
*—1 A * B *
0— Q5 \w(X.8) = Q5 (f) = 25 u (Y. ) =0,

where A(w) := (0, ) and B(c, w) := «. This sequence induces a long exact sequence
on cohomology, and so

8
0= Hy () = HY s y(X. 8) = Hy oy (Yo 1) = HY () = -+,

where § is the connecting homomorphism.
Following the proof given in Bott and Tu [2, p. 78], we obtain that §[w] := [Trw].
So we obtain the following proposition.

ProrositioN 5.1. Let f:(X = M U Ex,g) — (Y = N U Ey, h) be a uniform
map quasi-isometric on the unbounded ends of M and N. Then the following two
statements are equivalent:

(1) the morphism induced by Ty on L?-cohomology is an isomorphism,
S

(2) all the cohomology groups of Q2 m\M (f) are null.
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Proor. This s a classical proof which holds for each cochain morphism 7r: A — B
between cochain complexes on an additive category. ]

RemMark 16. The author used a bounded geometry version of Proposition 5.1
in [15] in order to prove the invariance of the Roe index of the signature operator
of a manifold of bounded geometry under uniform homotopy equivalences which
preserve the orientations. As a consequence of Proposition 5.1, it could be compelling
to generalize this result to a broader context, for example in the case of complete
Riemannian manifolds with uniform homotopy equivalence which are quasi-isometric
on the unbounded ends.

In the reduced case we also obtain a long sequence

0— Y Bogo ey Lm0 Ny A il
- 2,m\M(f)—> 2,m\.M( 8 — 2,m\M( Jh) — z,m\M(f)—>"',

butitis not exact this time. Indeed it is exact only on ['_Izkm\.M (f)andon I-_Ié‘m\M (M, 9),
while on I-_Ié‘,m\!M (N, h) it is just weakly exact, which means that ker(7r) = im(B*).

5.2 — Uniform homotopy invariance of signature

Let (X, g) be a complete Riemannian manifold. Recall that in this case there is
exactly one closure for the operator d. This means that the maximal and minimal
L?-cohomology groups coincide, both the reduced and the unreduced ones. In the next
pages we will denote the unique closed extension of the exterior derivative operator
byd.

In this subsection we introduce the L2-signature oj; of a manifold (X, g) with
dim(X) = 4k such that H2¥(X, g) is finite-dimensional. This L2-signature is the
signature of a pairing defined on ﬁZZk (X, g). Consider the operator d + d*. This
operator switches the eigenspaces of the chiral operator z, so it is possible to define the
L?-signature operator (d + d*)™ as the restriction of d + d* to the +1-eigenspace
of .

We obtain that (d + d*)" is a Fredholm operator and its index equals the L2-
signature. The definitions and the proofs of all these facts can be found in the work of
Bei [1].

ProrosiTiION 5.2. Let f:(X = M U Ex,g) — (Y = N U Ey, h) be a uniform
homotopy equivalence quasi-isometric on the unbounded ends. Assume that (X, g) and
(Y, h) are complete Riemannian manifolds:

(1) The operator Ty is well behaved with respect to the pairings on M and N, i.e.
(Trlal. Ty [B]) £2(x.g) = deg(f) - (o], [B]) £2(v,n)-
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(2) oy = deg(f) - on. This implies that the index of the L?-signature operator is
invariant under uniform homotopy equivalences quasi-isometric on the unbounded
ends which preserve the orientations.

Prookr. Inorder to prove the first point, we need to introduce the pairing (-;-) g2 (x ¢)-
This is defined in [1] as

(. e2x.0) Hy(X. ) x Hy(X,g) — R,

([l []) —>/XnAw-

Let id be the identity map on ¥ and let jiq: T®Y — Y be the submersion related to id.
Because of Lemma 4.5, we know that this is an R.—N.—Lipschitz map and so T4 is an
L?-bounded operator. Let us denote K := .[Oljti op,, where pj: T3Y x[0,1] = Y is
defined as pp(wp., s) := pia(s - wp). By applying the same proof as [14, Lemma 4.11],
we obtain that j, is an R.—-N.—Lipschitz map and so K is an L2-bounded operator such
that

Tiy—1d=dK + Kd

for each smooth form «. Then, as a consequence of Lemma 4.5, we obtain that 7j4 and
K both preserve the domain of d.

Observe that the operator Ty = f* o Tiq: this directly follows by the definition of
Tr and by fF(; F*a = f* [ . Here, F* is the bundle map induced by f, and Fo
and F are the fibers of TY and of f*TY. Observe that Tiqr is a smooth form on
Y \ ON and so f*Tjqo is smooth on X \ oM.

Then we can easily conclude as follows:

(750, [T D) 220,09 = /X Tro ATy
- / F*(Tao) A f*(Tu) = / F*(Taa A Tah)
X X
— deg(f)- /Y T A TB
— deg(f) /Y (& +dn) A (B + dv)
= deg(f) /Y o A B + deg(f) /N d(e A v)
1 deg(f) [ d(n A B) + deg(f) / d(n A dv)
Y Y
— deg(f) /Y o AP+ 0= deg(){lal. [B) g2crm.
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We have proved point (1). The proof of point (2) is a direct consequence of point (1)
and [1, Theorem 4.2]. [ ]

5.3 — Compact manifolds with unbounded ends

Notice that Theorem 4.6 is coherent with Lott in [9, Proposition 5]. In Lott’s work,
it is proved that if two complete Riemannian manifolds (X, g) and (Y, /) are isometric
outside a compact set, then, for each k in N,

dim(H¥ (X, g)) = +00 < dim(HX(Y, h)) = +oo0.

Then, as a consequence of Theorem 4.6, we can say something more if we add some
assumptions on f on the compact subsets. On the other hand, we are not assuming the
completeness of (X, g) and (Y, &) and we also relax the assumptions on f on the ends.

CoroOLLARY 5.3. Let (X, g) and (Y, h) be two (possibly not complete) oriented Rie-
mannian manifolds. Let K be a compact subset of M. We denote K’ := f(K). Assume
the existence of a homotopy equivalence f:(X,g) — (Y, h) such that fix\x: (X \
K,g) — (Y \ K', h) is a quasi-isometry. Then both the minimal and maximal L?-
cohomology groups are isomorphic. The same also happens for the reduced L>-
cohomology groups.

Proor. Thanks to Proposition 1.5 we can assume that f|g is an isometry. Fix a
number r > 0 and denote by B,(K) (resp. B,(K’)) the subset of the points whose
distance from K (resp. K') is less than r. Let § be a number small enough such that
Bs(K) and Bs(K') are two tubular neighborhoods of K and K’. Then Bs(K) and
Bs(K') are two open subsets of bounded geometry and f is a uniform homotopy
equivalence isometric on the unbounded ends. Then we conclude by applying Theorem
4.6. ]

ExaMPLE 5.1. Let X be the three punctured sphere S2 \ {p1, p2, p3} and let Y
be a punctured torus S! x S\ {¢}. It is a well-known fact X and Y are homotopy
equivalent even if they are not homeomorphic.

In particular, there exists a homotopy equivalence f: X — Y such that, given some
neighborhoods Uy, and U(g) of p; and of g respectively and given € in (0, 27),

f(Upl) = U(CI),
f(Up,) = (0.0) x S,
F(Uy,) = S' % (0.6).
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Denote K = X \ [[|;—;,3Up]and K" =Y \ [U(g) U (0, 0) x Stu st x(0,0)].
We can also assume that f|Uﬂi is a local diffeomorphism and that f(K) C K'.

Let g and /1 be two Riemannian metrics on X and Y such that, foreachi = 1,2, 3,
we have that f*h and g are quasi-isometric on Uy, . For example, we can fix f*h = g
since f is a local diffeomorphism on Uy, .

Observe that, since Y is not compact, the L2-cohomology groups do depend on
the choice of the metric 4 around q.

Thanks to Corollary 5.3, we know that the maximal and minimal cohomology groups
of (X, g) and (Y, h) are isomorphic, in both their reduced and unreduced versions.
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