
Rend. Sem. Mat. Univ. Padova 154 (2025), 77–96
DOI 10.4171/RSMUP/169

© 2024 Università degli Studi di Padova
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Certain homological properties of triangular matrix rings
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Abstract – In this paper, we study the (Gorenstein) flat dimension of modules over triangular
matrix rings, and give estimations of the (Gorenstein) weak global dimension and the supre-
mum of flat lengths of injective modules over triangular matrix rings. As applications, some
new Ding–Chen rings are constructed.
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1. Introduction

Gorenstein flat modules were first introduced by Enochs, Jenda and Torrecillas
in the 1990s [14] as generalizations of the classical flat modules. Such modules over
Gorenstein rings were shown to share many nice properties similar to those of the
classical flat modules over general rings [13]. Recently, Gorenstein flat modules over
more general rings have been studied by many authors (see [2, 5, 10,20,21,24,26,28]),
and Gorenstein flatness of objects in other categories has also been extensively studied
(see [7, 29]). Generally speaking, extension closed properties of this kind of module
were studied by Holm [20] over coherent rings, by Bennis [2] over GF-closed rings,
and finally by Šaroch and Št’ovíček [26], who proved that the class of Gorenstein
flat modules is closed under extensions, or equivalently, that the class is resolving,
over an arbitrary ring. The size of the Gorenstein flat dimension measures how far
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a module is from being Gorenstein flat, which was investigated by Christensen et al.
[4, 5], Emmanouil [10], Iacob [21], Wang and Zhang [27] and others. It turns out that
such a dimension has an important application in representation theory of groups and
rings, and is closely related to Auslander categories and Tate homologies.

Let A and B be rings and U be a .B; A/-bimodule. Then T D
�
A 0
U B

�
forms a

triangular matrix ring with the usual matrix addition and multiplication. Triangular
matrix rings play an important role in ring theory and the representation theory of
algebra. Mainly because this kind of ring is generally noncommutative and left-right
nonsymmetric, they are initially used to construct counterexamples, which make the
theory of rings and modules more abundant and concrete. So the properties of triangular
matrix rings and modules over them have attracted great interest from scholars (see
[1, 12, 17–19, 22, 24, 25, 28, 31]) since classical results were established by Green [15].
In particular, Zhu, Liu and Wang [31] characterized Gorenstein flat modules over a
triangular matrix ring T under the condition that T is a Gorenstein ring, BU and UA
are finitely generated and have finite projective dimension. Mao [24] improved this
characterization from the Gorensteinness assumption to the one of coherence, and
proved the following results.

Theorem A ([24, Theorems 2.6 and 2.7]). Let T D
�
A 0
U B

�
be a right coherent

triangular matrix ring with U a flat B-module. The following statements hold:

(1) If Gwgldim.B/ <1, U has a finite flat or injective dimension as an Ao-module
and X D

�
X1

X2

�
'X is a T -module, then

max
®
GfdA.X1/;GfdB.X2/

¯
� GfdT .X/ � max

®
GfdA.X1/C 1;GfdB.X2/

¯
:

(2) If U has a finite flat or injective dimension as an Ao-module, then

max
®
Gwgldim.A/;Gwgldim.B/

¯
� Gwgldim.T /
� max

®
Gwgldim.A/C 1;Gwgldim.B/

¯
:

This paper is intended to show that the result in Theorem A can be obtained in
a more general setting. To be exact, using a more direct method, by Proposition 4.3
and Theorem 4.4 we remove the coherence assumption of T in Theorem A and then
obtain Theorem B below. We also note that the condition Gwgldim.B/ <1 implies
sfli.Bo/ <1 (see Lemma 2.1), but the converse is not true in general (see [23, Example
2.5]).

Theorem B. Let T D
�
A 0
U B

�
be a triangular matrix ring with U a flat B-module.

The following statements hold:
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(1) If sfli.Bo/ <1, U has a finite flat or injective dimension as an Ao-module and
X D

�
X1

X2

�
'X is a T -module, then

max
®
GfdA.X1/;GfdB.X2/

¯
� GfdT .X/ � max

®
GfdA.X1/C 1;GfdB.X2/

¯
:

(2) If U has a finite flat or injective dimension as an Ao-module, then

max
®
Gwgldim.A/;Gwgldim.B/

¯
� Gwgldim.T /
� max

®
Gwgldim.A/C 1;Gwgldim.B/

¯
:

As an application, the Gorenstein weak global dimension of higher-order triangu-
lar matrix rings over a ring R is characterized and some new Ding–Chen rings are
constructed.

The paper is organized as follows. In Section 2 we give some definitions and
notation for use in the paper. In Section 3 we first focus on investigating the classical
flat dimension of T -modules, and give estimations of the homological invariants,
wgldim.T /, the weak global dimension of T , and sfli.T /, the supremum of the flat
lengths (dimension) of injective modules over T , where T D

�
A 0
U B

�
is a triangular

matrix ring (see Proposition 3.3, Theorems 3.4 and 3.6). Sections 4 and 5 are devoted
to obtaining Theorem B and its applications.

2. Preliminaries

Throughout the paper, all rings R under consideration have an identity and all
modules are unitary. An R-module will mean a left R-module, unless stated otherwise.
We also refer to right R-modules as modules over the opposite ring Ro of R. As usual,
the symbols fdR.�/ and GfdR.�/ stand for the flat and the Gorenstein flat dimension,
respectively.

In the following, we give some definitions and notation for use later.

Gorenstein flat module. Recall that an R-module G is Gorenstein flat [14] if there is
an exact sequence

� � � // F2
f2 // F1

f1 // F0
f0 // F�1

f�1 // F�2 // � � �

of flat R-modules with G D Ker.f�1/, which remains exact after applying I ˝R �
for any injective Ro-module I .
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Gorenstein flat dimension. The Gorenstein flat dimension of an R-module M ,
GfdR.M/, is the smallest nonnegative integer m for which there is an exact sequence

0 // Gm // Gm�1 // � � � // G1 // G0 // M // 0

with each Gi Gorenstein flat. If no such integer exists, then we set GfdR.M/ D1.

Global dimensions. LetR be a ring andM be anR-module. Then homological algebra
attaches kinds of dimensions to M , such as projective, injective and flat dimensions,
respectively. By taking the supremum of one of these dimensions as M ranges over
specified R-modules, one obtains various left (relative) global dimensions of the ring
R ([5, 9–11,20]). For example, the left weak global dimension of R,

wgldim.R/ D sup
®
fdR.M/

ˇ̌
M is an R-module

¯
;

and the left Gorenstein weak global dimension of R

Gwgldim.R/ D sup
®
GfdR.M/

ˇ̌
M is an R-module

¯
:

Emmanouil [11] introduced another relative global dimension sfli.R/, which is defined
as

sfli.R/ D sup
®
fdR.I /

ˇ̌
I is an injective R-module

¯
:

The corresponding right (relative) global dimensions of a ringR can be defined similarly.
It is well known that the weak global dimension of a ring is a left-right symmet-

ric invariant, that is, wgldim.R/ D wgldim.Ro/. Recently, Christensen, Estrada and
Thompson [5, Corollary 2.5] have proved the Gorenstein version of the equality. Further-
more, by [5, Theorem 2.4, Corollary 2.5] and [10, Theorem 5.3], one has the following
result for the Gorenstein weak global dimension.

Lemma 2.1. The following equality holds for any ring R:

Gwgldim.R/ D Gwgldim.Ro/ D max
®
sfli.R/; sfli.Ro/

¯
:

3. Flat dimensions over triangular matrix rings

In this section, T D
�
A 0
U B

�
always stands for a triangular matrix ring, where A and

B are rings and U is a .B; A/-module. It follows from Green [15] that a T -module
X can be viewed as a triplet

�
X1

X2

�
'
, where X1 is an A-module, X2 is a B-module

and 'WU ˝A X1 ! X2 is a B-homomorphism. A T -homomorphism from
�
X1

X2

�
'

to�
Y1

Y2

�
 

is a pair
�
f1

f2

�
, where f1WX1! Y1 is an A-homomorphism and f2WX2! Y2 is
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a B-homomorphism such that  .1˝ f1/ D f2'. Given such a triplet
�
X1

X2

�
'
, we shall

denote by Q' the morphism from X1 to HomB.U;X2/ given by Q'.x/.u/ D '.u˝ x/
for each u 2 U and x 2 X1.

We notice that a sequence of T -modules

0 //

 
X1

X2

!
'

//

 
Y1

Y2

!
 

//

 
Z1

Z2

!
�

// 0

is exact if and only if the two sequences of A-modules or of B-modules

0 // X1 // Y1 // Z1 // 0 and 0 // X2 // Y2 // Z2 // 0

are both exact.
The following lemma is well known; compare to [18, Theorem 3.1].

Lemma 3.1. Let T D
�
A 0
U B

�
be a triangular matrix ring. Then the following

statements hold:

(1) A left T -module
�
X1

X2

�
'

is injective if and only if X2 is an injective B-module and
the morphism Q' is surjective with kernel injective over A.

(2) A left T -module
�
X1

X2

�
'

is flat if and only ifX1 is a flatA-module and the morphism
' is injective with cokernel flat over B .

Recall from [13] that anR-module C is cotorsion if Ext1R.F;C /D 0 for any flatR-
module F . In order to estimate the flat dimension of T -modules, we need the following
lemma.

Lemma 3.2. Let T D
�
A 0
U B

�
be a triangular matrix ring with U a flat B-module,

and X D
�
X1

X2

�
'

a T -module. If there are two exact sequences

0 // K1
�1 // P0

f0 // X1 // 0 and 0 // C1 // F0
g0 // X2 // 0

of A-modules and B-modules, respectively, with P0; F0 flat, and C1 cotorsion, then
we have the following exact sequence of T -modules:

(�) 0 //

 
K1

.U˝AP0/˚C1

!
�

//

 
P0

.U˝AP0/˚F0

! �
f0

h0

�
//

 
X1

X2

!
'

// 0;

where h0 D .' ı .Id˝ f0/; g0/.
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Proof. By using the tensor functor U ˝A �, we have an exact sequence

U ˝A K1
Id˝�1 // U ˝A P0

Id˝f0 // U ˝A X1 // 0:

If we take into account h0 D .' ı .Id˝ f0/; g0/W .U ˝A P0/˚ F0 ! X2, then we
have the following commutative diagram:

U ˝A K1

�

��

Id˝�1 // U ˝A P0�
Id
0

�
��

Id˝f0 // U ˝A X1

'

��

// 0

0 // C

�
˛
ˇ

�
// .U ˝A P0/˚ F0

h0 // X2 // 0;

whereC is someB-module such that the second row is exact. Thus we get the following
pullback diagram:

0 // C1 // C

�ˇ

��

˛ // U ˝A P0

'ı.Id˝f0/

��

// 0

0 // C1 // F0
g0 // X2 // 0:

Noting that U ˝A P0 is flat and C1 is cotorsion under our assumption, we get that the
first row in the above pullback diagram splits, and so C Š .U ˝A P0/˚ C1. Thus we
have the following commutative diagram with exact rows:

U ˝A K1

�

��

Id˝�1 // U ˝A P0�
Id
0

�
��

Id˝f0 // U ˝A X1

'

��

// 0

0 // .U ˝A P0/˚ C1 // .U ˝A P0/˚ F0
h0 // X2 // 0;

which yields the exact sequence (�), where �WU ˝A K1 ! .U ˝A P0/ ˚ C1 is a
morphism such that the left square in the above diagram commutes.

Now we give an estimation of the flat dimension of T -modules, which supplements
Hirano’s [19, Lemma 2.7] and Mao’s [25, Theorem 2.4].

Proposition 3.3. Let T D
�
A 0
U B

�
be a triangular matrix ring with U a flat B-

module. Then there are inequalities for any T -module X D
�
X1

X2

�
'X :

max
®
fdA.X1/; fdB.X2/

¯
� fdT .X/ � max

®
fdA.X1/C 1; fdB.X2/

¯
:

Proof. We first prove that fdT .X/ � max¹fdA.X1/C 1; fdB.X2/º. Without loss
of generality, we assume that max¹fdA.X1/C 1; fdB.X2/º D n <1. Then there are
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exact sequences

0 // Pn�1
fn�1// Pn�2

fn�2 // � � � // P1
f1 // P0

f0 // X1 // 0

and
0 // Fn

gn // Fn�1
gn�1 // � � � // F1

g1 // F0
g0 // X2 // 0

such that Pi and Fi are flat A-modules and B-modules, respectively, for 0 � i � n,
and such that Ci D Ker.gi�1/ are cotorsion B-modules for 1 � i � n. Note that the
second exact sequence exists because of any module admitting a flat cover (see [3]).

Write K0 D X1 (resp. C0 D X2) and Ki D Ker.fi�1/ (resp. Ci D Ker.gi�1/) for
1 � i � n.

Consider the following short exact sequences:

0 // K1 // P0 // K0 // 0

and
0 // C1 // F0 // C0 // 0 :

In view of Lemma 3.2, they induce an exact sequence

0 //

 
K1

.U ˝A P0/˚ C1

!
//

 
P0

.U ˝A P0/˚ F0

!
//

 
K0

C0

!
'

// 0:

It follows easily from Lemma 3.1 that the middle term module is flat. Applying Lemma
3.2 continually to the exact sequences

0 // KiC1 // Pi // Ki // 0

and

0 // CiC1 // .U ˝A Pi�1/˚ Fi // .U ˝A Pi�1/˚ Ci // 0;

as well as

0 //

 
KiC1

.U ˝A Pi /˚ CiC1

!
//

 
Pi

.U ˝A Pi /˚ .U ˝A Pi�1/˚ Fi

!

//

 
Ki

.U ˝A Pi�1/˚ Ci

!
// 0;



G. Yang – J. Wang 84

with the middle term module flat for i D 1; 2; : : : ; n� 1, we have a long exact sequence

0

 
0

.U ˝A Pn�1/˚ Fn

!  
Pn�1Ln�1

iDn�2.U ˝A Pi /˚ Fn�1

!
� � �

 
P1L1

iD0.U ˝A Pi /˚ F1

!  
P0

.U ˝A P0/˚ F0

!  
X1

X2

!
'

0;

which implies that fdT
�
X1

X2

�
'
� n since 
0

.U ˝A Pn�1/˚ Fn

!
;

 
P0

.U ˝A P0/˚ F0

!
and  

Pi

.U ˝A Pi�1/˚ .U ˝A Pi /˚ Fi

!
are flat for i D 1; 2; : : : ; n � 1. This implies that

fdT .X/ � max
®
fdA.X1/C 1; fdB.X2/

¯
:

Next we prove that max¹fdA.X1/; fdB.X2/º � fdT .X/. We let fdT .X/ D n <1.
So there is an exact sequence of T -modules

0 //

 
Fn

F 0n

!
'n

�
fn

f 0n

�
//

 
Fn�1

F 0n�1

!
'n�1

// � � � //

 
F0

F 00

!
'0

�
f0

f 0
0

�
//

 
X1

X2

!
'

// 0;

with each
� Fi

F 0
i

�
'i

flat for i D 0; 1; : : : ; n. By Lemma 3.1, all modules Fi and Coker.'i /
are flat, and each 'i is injective. Since U is flat as a B-module by our assumption, we
have each B-module U ˝A Fi is flat for i D 0; 1; : : : ; n. Hence, the exactness of the
sequence

0 // U ˝A Fi
'i // F 0i

// Coker.'i / // 0

implies that each F 0i is also flat for i D 0; 1; : : : ; n. Since there are exact sequences

0 // Fn
fn // Fn�1 // � � � // F0

f0 // X1 // 0

and

0 // F 0n
f 0n // Fn�10 // � � � // F 00

f 0
0 // X2 // 0;
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we have fdA.X1/ � n and fdB.X2/ � n. In other words, max¹fdA.X1/; fdB.X2/º �
fdT .X/.

The following theorem gives an estimation of the homological invariant, wgldim.T /,
the weak global dimension of a triangular matrix ring T .

Theorem 3.4. Let T D
�
A 0
U B

�
be a triangular matrix ring with U a flat B-module.

Then

max
®
wgldim.A/;wgldim.B/

¯
� wgldim.T / � max

®
wgldim.A/C 1;wgldim.B/

¯
:

Proof. We first prove that max¹wgldim.A/;wgldim.B/º � wgldim.T /. We let
wgldim.T / D n <1.

For any A-module X and any B-module Y , one has fdT
�
X
0

�
� n and fdT

�
0
Y

�
� n

by the assumption. So by Proposition 3.3 we have

fdA.X/ � fdT
�
X
0

�
� n and fdB.Y / � fdT

�
0
Y

�
� n;

which yields
max¹wgldim.A/;wgldim.B/º � n:

Next we prove that

wgldim.T / � max
®
wgldim.A/C 1;wgldim.B/

¯
:

We may assume that max¹wgldim.A/C 1;wgldim.B/º D mC 1 <1. Then we have
wgldim.A/�m and wgldim.B/�mC 1. LetZ D

�
X
Y

�
'

be any T -module. It follows
from Proposition 3.3 that

fdT .Z/ � max
®
fdA.X/C 1; fdB.Y /

¯
� mC 1;

and hence one has wgldim.T / � mC 1. This completes the proof.

As an application of theorem above, we give a characterization of the von Neumann
regular triangular matrix ring.

Proposition 3.5. Let T D
�
A 0
U B

�
be a triangular matrix ring. Then T is von

Neumann regular if and only if A and B are von Neumann regular, and U D 0.

Proof. The sufficiency is plain. For the necessity, we let T be a von Neumann
regular ring. Then wgldim.T / D 0, that is, any T -module is flat. In particular,

�
A
0

�
'

is flat. Hence, by Lemma 3.1, 'WU ˝A A! 0 is injective, and so U Š U ˝A A D 0.
Therefore, by Theorem 3.4, it is now easily seen that wgldim.A/ D wgldim.B/ D 0,
as desired.
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If we restrict all modules to injectives, then we have an estimation of the homological
invariant, sfli.T /, the supremum of the flat lengths of injective modules over a triangular
matrix ring T .

Theorem 3.6. Let T D
�
A 0
U B

�
be a triangular matrix ring with U a flat B-module.

Then
max

®
sfli.A/; sfli.B/

¯
� sfli.T /:

Moreover, if U is a flat Ao-module, then

max
®
sfli.A/; sfli.B/

¯
� sfli.T / � max

®
sfli.A/C 1; sfli.B/

¯
:

Proof. We first prove that max¹sfli.A/; sfli.B/º � sfli.T /. We may assume that
sfli.T / <1.

Let X be an injective A-module and Y an injective B-module. Then
�
X
0

�
and� HomB .U;Y /

Y

�
are injective T -modules by Lemma 3.1. In view of Proposition 3.3, we

have

fdA.X/ � fdT

 
X

0

!
� sfli.T / and fdB.Y / � fdT

 
HomB.U; Y /

Y

!
� sfli.T /:

Thus max¹sfli.A/; sfli.B/º � sfli.T /.
Next we prove that sfli.T / � max¹sfli.A/C 1; sfli.B/º under the additional condi-

tion that U is a flat Ao-module. We may assume that max¹sfli.A/C 1; sfli.B/º <1.
Then sfli.A/ and sfli.B/ are both finite. Let Z D

�
X
Y

�
'

be any injective T -module.
Then by Lemma 3.1, Y is an injective B-module, Ker. Q'/ is an injective A-module,
and Q' is surjective. Since U is a flat Ao-module, it follows from [13, Therorem 3.2.9]
that HomB.U; Y / is an injective A-module. Therefore, the exactness of the sequence

0 // Ker. Q'/ // X
Q'
// HomB.U; Y / // 0

implies that X is an injective A-module. It follows from Proposition 3.3 that

fdT .Z/ � max
®
fdA.X/C 1; fdB.Y /

¯
� max

®
sfli.A/C 1; sfli.B/

¯
;

and so we obtain sfli.T / � max¹sfli.A/C 1; sfli.B/º.
Now we are done.

Let us give a particular characterization of sfli.T / D 0 of a triangular matrix ring
T ; such a ring is usually called IF (see [6]).

Proposition 3.7. Let T D
�
A 0
U B

�
be a triangular matrix ring with U a flat Ao-

module. Then T is IF if and only if A and B are IF, and U D 0.
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Proof. The sufficiency is trivial. For the necessity, we let T be an IF ring. Then
by Lemma 3.1,

�
E
0

�
'

is an injective T -module with E an injective A-module, and so
it is flat. Thus, by Lemma 3.1, 'WU ˝A E ! 0 is injective; this implies U ˝A E D 0.
Now consider the exact sequence

0 // A // E // C // 0;

with E an injective A-module. Noting that U is a flat Ao-module, we have an exact
sequence

0 // U ˝A A // U ˝A E // U ˝A C // 0:

This implies that U Š U ˝A A D 0. Hence, by Theorem 3.6, we get that A and B are
IF, as desired.

Corollary 3.8. Let T D
�
R 0
R R

�
be a triangular matrix ring. Then the following

statements hold:

(1) wgldim.T / D wgldim.R/C 1.

(2) sfli.T / D sfli.R/C 1.

Proof. (1) By Theorem 3.4, wgldim.R/ � wgldim.T / � wgldim.R/ C 1. We
assume that wgldim.R/D n. If nD 0, then by Proposition 3.5, one has wgldim.T /� 1
since U D R 6D 0, and so wgldim.T / D wgldim.R/C 1. If n > 0, and letting X be
an R-module with fdR.X/ D n, then there exists an exact sequence of R-modules

0 // Fn
fn // Fn�1

fn�1 // Fn�2
fn�2 // � � � // F0

f0 // X // 0

with each Fi flat, and Kn�1 D Ker.fn�2/ not flat. Now, by using Lemma 3.2, we may
construct the following exact sequence of T -modules:

0

 
0

Fn

!  
Fn

Fn ˚ Fn�1

!  
Fn�1

Fn�1 ˚ Fn�2

!
� � �

� � �

 
F1

F1 ˚ F0

!  
F0

F0

!  
X

0

!
0;
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with
�
0
Fn

�
,
�
F0

F0

�
and each

�
Fi

Fi˚Fi�1

�
flat for i D 1; 2; : : : ; n. Thus the above sequence

is a flat resolution of
�
X
0

�
. Since Ker

�
fn�1

hn�1

�
D
�
Fn

Fn�1

�
fn

, the .n � 1/th yoke of�
X
0

�
, is not flat by Lemma 3.1, we have fdT

�
X
0

�
D nC 1. This proves wgldim.T / �

wgldim.R/C 1. Hence, we have wgldim.T / D wgldim.R/C 1.
(2) The proof is similar to the arguments that used in (1).

4. Gorenstein weak global dimension of triangular matrix rings

In this section, T D
�
A 0
U B

�
always stands for a triangular matrix ring, where A

and B are rings and U is a .B;A/-module, unless stated specifically. Note that a right
T -module is a triple .Y1; Y2/' , where Y1 is an Ao-module, Y2 is a Bo-module and
'W Y2 ˝B U ! Y1 is an Ao-homomorphism. A T o-homomorphism from .Y1; Y2/'

to .Z1; Z2/� is a pair .f1; f2/ such that �.f2 ˝ 1/ D f1', where f1WY1 ! Z1 is an
Ao-homomorphism and f2WY2! Z2 is a Bo-homomorphism. For a given T o-module
.Y1; Y2/' , we shall denote by Q' the morphism from Y2 to HomA.U; Y1/ given by
Q'.y/.u/ D '.y ˝ u/ for each u 2 U and y 2 Y2. By [1] and [17, Proposition 5.1],
it follows that a T o-module .Y1; Y2/' is injective if and only if Y1 is an injective Ao-
module, Ker Q' is an injective Bo-module and Q' is an epimorphism. Also it follows
from [19, Lemma 2.6] that a T o-module .Y1; Y2/' is flat if and only if Y2 is a flat
Bo-module, Coker ' is a flat Ao-module and ' is a monomorphism.

In the following, we shall focus on investigating Gorenstein flat dimensions of mod-
ules, and give estimations of the homological invariants, Gwgldim.T /, the Gorenstein
weak global dimension of a triangular matrix ring T . Before doing this, we also need
to give a characterization of Gorenstein flat modules over triangular matrix rings.

In view of [26, Corollary 4.12], we know that over any ring R the subcategory of
all Gorenstein flat R-modules is closed under extensions. This result was previously
shown over a right coherent ring by Holm [20, Theorem 3.7]. Based on this fact, we can
improve [24, Theorem 2.3] from a right coherent ring to a general one with a similar
proof.

Lemma 4.1. Assume that U has finite flat dimension as a B-module, U has finite
flat or injective dimension as an Ao-module and M D

�
M1

M2

�
'

is a T -module. Then
the following conditions are equivalent:

(1) M is a Gorenstein flat T -module.

(2) M1 is a Gorenstein flat A-module, Coker ' is a Gorenstein flat B-module and '
is a monomorphism.

In this case, U ˝AM1 is Gorenstein flat if and only if M2 is Gorenstein flat.
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Proof. It is similar to [24, Theorem 2.3].

By Lemma 2.1, it follows that if Gwgldim.B/ <1 then sfli.Bo/ <1, but the
converse is not true in general (see [23, Example 2.5]). The following results improve
[24, Lemma 2.5, Theorems 2.6 and 2.7], which are proved under the condition that
Gwgldim.B/ <1.

Lemma 4.2. Let sfli.Bo/ <1, U be a flat B-module and U have finite flat or
injective dimension as anAo-module. IfX is a Gorenstein flatA-module, thenU ˝A X
is a Gorenstein flat B-module.

Proof. Since sfli.Bo/ <1, it is easy to check that any acyclic complex

� � � // F1
f1 // F0

f0 // F�1
f�1 // F�2 // � � �

of flat B-modules remains exact after applying the functor I ˝B � for any injective
Bo-module I . Then the proof is similar to that of [24, Lemma 2.5].

Proposition 4.3. Let sfli.Bo/ <1, U be a flat B-module, U have finite flat or
injective dimension as an Ao-module and X D

�
X1

X2

�
'X be a T -module. Then

max
®
GfdA.X1/;GfdB.X2/

¯
� GfdT .X/ � max

®
GfdA.X1/C 1;GfdB.X2/

¯
:

Proof. By [26, Corollary 4.12], it follows that any moduleM admits a Gorenstein
flat cover, and so there is an exact sequence 0! C ! G ! M ! 0 such that G
is Gorenstein flat and C is Gorenstein flat cotorsion. Now one can prove the result
similarly to Proposition 3.3 by using Lemmas 4.1 and 4.2.

We can prove the following result, which gives an estimate of the Gorenstein weak
global dimension of a triangular matrix ring.

Theorem 4.4. Let U be a flat B-module, U have finite flat or injective dimension
as an Ao-module. Then

max
®
Gwgldim.A/;Gwgldim.B/

¯
� Gwgldim.T /
� max

®
Gwgldim.A/C 1;Gwgldim.B/

¯
:

Proof. The proof is similar to that of Theorem 3.4 by using Proposition 4.3.

Recall that a ringR is Ding–Chen ifR is an n-FC ring for some nonnegative integer
n, that is, is a two-sided coherent ring with finite FP-injective dimension at most n on
both sides. In particular, 0-FC rings are just FC rings.
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Note that a ring R is 0-FC if and only if Gwgldim.R/ D 0 (see [8, Theorem 6]
or [27, Lemma 1.2]). The next result can be viewed as a Gorenstein analogue of
Proposition 3.5.

Proposition 4.5. Let T D
�
A 0
U B

�
be a triangular matrix ring with U a flat Ao-

module and a flat B-module. Then T is 0-FC if and only if A and B are 0-FC, and
U D 0.

Proof. The sufficiency is obvious. For the necessity, we let T be 0-FC. It happens
if and only if Gwgldim.T / D 0, that is, any T -module is Gorenstein flat. In particular,�
A
0

�
'

is Gorenstein flat. Hence, we can infer from Lemma 4.1 that 'WU ˝A A! 0

is a monomorphism, and so U Š U ˝A A D 0. Therefore, it follows by Theorem 4.4
that Gwgldim.A/ D Gwgldim.B/ D 0, as desired.

Proposition 4.6. Let T D
�
R 0
R R

�
be a triangular matrix ring. Then

Gwgldim.T / D Gwgldim.R/C 1:

Proof. Combining Lemma 4.1 and Theorem 4.4 with Proposition 4.5, we can
show the result similarly to Corollary 3.8.

Corollary 4.7. Let T D
�
R 0
R R

�
be a triangular matrix ring and n a nonnegative

integer. Then T is nC 1-FC if and only if R is n-FC. In particular, T is Ding–Chen if
and only if R is Ding–Chen.

Proof. According to [16, Corollary 4.5], we know that R is two-sided coherent
if and only if T is too. Now the result follows by [27, Lemma 1.2] and Proposition
4.6.

5. An application to Tn.R/

As another application, we give an explicit description of the Gorenstein flat Tn.R/-
modules, where

Tn.R/ D

0BBBBBB@
R 0 0 � � � 0

R R 0 � � � 0
:::

:::
: : : � � �

:::

R � � � R R 0

R � � � R R R

1CCCCCCA
is the n � n lower-triangular matrix ring of order n � 2.
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If we put

U D

0BBB@
R

R
:::

R

1CCCA
.n�1/�1

then we may regard U as a natural .Tn�1.R/; R/-bimodule via multiplication of
matrices, and Tn.R/ D

�
R 0
U Tn�1.R/

�
. By [30, Lemma 1.3], a left Tn.R/-module is an

n-tuple 0BBB@
X1

X2
:::

Xn

1CCCA
.�i /

;

where theXi areR-modules for 1� i � n, and �i WXi !XiC1 areR-homomorphisms
for 1 � i � n � 1. A Tn.R/-homomorphism0BBB@

X1

X2
:::

Xn

1CCCA
.�i /

�!

0BBB@
Y1

Y2
:::

Yn

1CCCA
.'i /

is an n-tuple

0BBB@
f1

f2
:::

fn

1CCCA ;
where all fi WXi ! Yi are R-homomorphisms such that the following diagram com-
mutes:

X1

f1

��

�1 // X2

f2

��

�2 // � � �
�n�1 // Xn

fn

��

Y1
'1 // Y2

'2 // � � �
'n�1 // Yn:

It follows from [12, Proposition 2.4] that a Tn.R/-module0BBB@
E1

E2
:::

En

1CCCA
.�i /

is injective if and only if the Ei are injective R-modules, �i WEi ! EiC1 are epi-
morphisms and Ker �i are injective R-modules, for all i . By [12, Theorem 2.5],
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a Tn.R/-module 0BBB@
F1

F2
:::

Fn

1CCCA
.�i /

is flat if and only if Fi are flat R-modules, �i WFi ! FiC1 are monomorphisms and
Coker�i are flat R-modules, for all i . Similarly, characterizations of an injective and a
flat right Tn.R/-module can be given.

Proposition 5.1. Let Tn.R/ be a triangular matrix ring of order n � 2. Then
Gwgldim.Tn.R// D Gwgldim.R/C 1.

Proof. Note that Gwgldim.T2.R// D Gwgldim.R/C 1 by Proposition 4.6. If we
put Tn.R/ D

�
R 0
U Tn�1.R/

�
as above, then U is flat as both a left Tn�1.R/-module and

a right R-module, and so the assertion follows inductively from Theorem 4.4.

Corollary 5.2. Let Tn.R/ be a triangular matrix ring of order n � 2. Then R is
Ding–Chen if and only if so is Tn.R/.

Proof. According to [16, Corollary 4.5], we know that R is two-sided coherent if
and only if Tn.R/ is too. Now the result follows by [27, Lemma 1.2] and Proposition 5.1.

We end the paper by giving an explicit description of Gorenstein flat Tn.R/-modules.

Proposition 5.3. A Tn.R/-module0BBB@
X1

X2
:::

Xn

1CCCA
.�i /

is Gorenstein flat if and only if the following conditions hold:

(1) All Xi are Gorenstein flat R-modules for 1 � i � n.

(2) All �i WXi ! XiC1 are monomorphisms for 1 � i � n � 1.

(3) All Coker�i are Gorenstein flat R-modules for 1 � i � n � 1.
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Proof. We prove the assertion by induction on n. If n D 2, then the result follows
from Lemma 4.1.

Now we assume that the result holds for n� 1with n > 2. Set Tn.R/D
�
R 0
U Tn�1.R/

�
and X D

�
X1

X 0

�
'
, where

X 0 D

0BBB@
X2

X3
:::

Xn

1CCCA
.�i /

and ' D

0BBB@
�1

�2�1
:::

�n�1 � � ��2�1

1CCCA :
Then U is flat as both a left Tn�1.R/-module and a right R-module.

Let X be a Gorenstein flat Tn.R/-module. Then it follows from Lemma 4.1 that
the sequence

� 0 // U ˝R X1
'
// X 0 // Coker.'/ // 0

is exact, X1 is a Gorenstein flat R-module, and Coker.'/ is a Gorenstein flat Tn�1.R/-
module. Thus, by our assumption on induction, one gets that

U ˝R X1 D

0BBB@
X1

X1
:::

X1

1CCCA
is a Gorenstein flat Tn�1.R/-module, and so is X 0, since the class of all Gorenstein
flat modules is closed under extensions. Now conditions (1), (2) and (3) are easily seen
to be satisfied.

Conversely, if conditions (1), (2) and (3) hold, then we have the exact sequence
(�) as above, that is, ' is monomorphic. If we set YiC1 µ Coker �i�i�1 � � ��1 for
1 � i � n � 1, then

Y µ Coker ' D

0BBB@
Y2

Y3
:::

Yn

1CCCA
. i /

;

where i WYi ! YiC1 areR-morphisms with 2� i � n� 1. In particular, one has Y2 D
Coker�1 Gorenstein as anR-module by condition (3). One gets from condition (2) that
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the following diagrams with exact rows and columns are commutative for 2� i � n� 1:

0

��

0

��

0 // X1
�i�1����2�1 // Xi

�i

��

// Yi

 i

��

// 0

0 // X1
�i ����2�1 // XiC1

��

// YiC1

��

// 0

Coker�i

��

Š // Coker i

��

0 0:

Successively, one can infer from conditions (1) and (3) that all Yi are Gorenstein flat
R-modules. By our assumption on induction, we get that Y µ Coker' is a Gorenstein
flat Tn�1.R/-module, and soX is a Gorenstein flat Tn.R/-module by Lemma 4.1. This
completes the proof.

Remark 5.4. Let R be a ring, and n � 2 a positive integer. We note that the ring
Tn.R/ is defined by the following quiverQ (i.e., if there is a path from i to j , then the
.j; i/-entry is R, or else the .j; i/-entry is 0):

Qµ 1 �! 2 �! � � � �! n � 1 �! n:

In a sense, Gorenstein flat Tn.R/-modules are exactly Gorenstein flat objects in the
category Rep.Q;R/ of representations of Q by R-modules; see [7, Theorem A].
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