Subellipticity, compactness, H^{ϵ} estimates and regularity for $\bar{\partial}$ on weakly q-pseudoconvex/concave domains

```
Sayed Saber (*) – Mukhtar Youssif (**) – Yagoub Arko (***) –
Omar Elziber (****) – Mohammed Osman (*****) –
Khalid Adam (*****) – Haroun Adam (******)
```

ABSTRACT – For a weakly q-pseudoconvex (resp. q-pseudoconcave) domain Ω in a Stein manifold X of dimension n, we give a sufficient condition for subelliptic estimates for the $\bar{\partial}$ -Neumann problem. Moreover, we study the compactness of the $\bar{\partial}$ -Neumann operator N on Ω . Such compactness estimates immediately lead to smoothness of solutions, the closed range property, the L^2 -setting and the Sobolev estimates of N on Ω for any $\bar{\partial}$ -closed (r,k)-form with $k \geq q$ (resp. $k \leq q$). Furthermore, we study the $\bar{\partial}$ -problem with support conditions in Ω for forms of type (r,k), with values in a holomorphic vector bundle. Applications to the $\bar{\partial}_b$ -problem for smooth forms on boundaries of Ω are given.

Mathematics Subject Classification 2020 – 35J20 (primary); 35J60, 32F10, 32W05, 32W10 (secondary).

Keywords – $\bar{\partial}$ and $\bar{\partial}$ -Neumann operator, weakly q-convex domains.

- (*) *Indirizzo dell'A*.: Department of Mathematics, Faculty of Science, Al-Baha University, Saudi Arabia; Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni Suef, Egypt; ssahmed@bu.edu.sa, sayed011258@science.bsu.edu.eg
- (**) *Indirizzo dell'A*.: Department of Mathematics and Statistics, College of Science, Taif University, 65511 Taif, Saudi Arabia; mokhtar@tu.edu.sa
- (***) *Indirizzo dell'A*.: Department of Mathematics, Turabah University College, Taif University, Taif, Saudi Arabia; y.arko@tu.edu.sa
- (****) *Indirizzo dell'A*.: Department of Mathematics, Turabah University College, Taif University, Taif, Saudi Arabia; oaziber@tu.edu.sa, omer19712013@gmail.com
- (*****) *Indirizzo dell'A*.: Department of Mathematics, Faculty of Science, University of Tabuk, Saudi Arabia; mtom@ut.edu.sa
- (*****) *Indirizzo dell'A*.: Department of Basic Sciences, Deanship of the Preparatory Year, Najran University, 65511 Najran, Saudi Arabia; kiaahmed@nu.edu.sa
- (******) *Indirizzo dell'A*.: Department of Basic Sciences, Deanship of the Preparatory Year, Najran University, 65511 Najran, Saudi Arabia; hdadam@nu.edu.sa

1. Introduction and main results

The $\bar{\partial}$ -Neumann problem in strongly pseudoconvex domains was solved by Kohn [16, 17], and the technique there showed that the existence of a subelliptic estimate will give the solution. The condition is simply counting the number of positive or negative eigenvalues of the Levi form. In [18], he gave a sufficient condition for subellipticity over pseudoconvex domains with real analytic boundary by introducing a sequence of ideals of subelliptic multipliers; see also [19]. The most general result concerning subelliptic estimates for the $\bar{\partial}$ -Neumann problem was obtained by Catlin [6–8]. He proved [6] that subelliptic estimates hold for k-forms at z_0 on any smoothly bounded, pseudoconvex domain, which is of finite type in the sense of D'Angelo [10]. Herbig [12] extended Catlin's sufficiency result by replacing the boundedness condition on the weight functions with that of self-bounded complex gradient, a weaker condition which allows unbounded families of functions. This notion was introduced by McNeal [20]. However, in the case when the domain is not necessarily pseudoconvex the results are related to the celebrated Z(k) condition which characterizes the existence of subelliptic estimates of index $\epsilon = \frac{1}{2}$ according to Hörmander [13] and Folland–Kohn [11]. Hörmander [13] proved the necessary and sufficient conditions for the $\frac{1}{2}$ estimate on non-pseudoconvex domains. For similar results see [1, 2, 5, 9, 21-26].

The first purpose of this paper is to give a sufficient condition for subelliptic estimates for the $\bar{\partial}$ -Neumann problem on a smoothly bounded, weakly q-pseudoconvex (resp. q-pseudoconcave) domain in a Stein manifold X for forms of type (r,k), with $k \geq q$ (resp. $k \leq q$) with values in a holomorphic vector bundle. Second, we study the compactness and the Sobolev estimates of the $\bar{\partial}$ -Neumann operator N. Such compactness estimates immediately lead to very important qualitative properties of the $\bar{\partial}$ -operator, such as smoothness of solutions, the closed range property, the L^2 -setting and the Sobolev estimates of N on Ω for any $\bar{\partial}$ -closed (r,k)-form with $k \geq q$ (resp. $k \leq q$). The main results generalizes Khanh and Zampieri [14, 15] results to forms with values in a holomorphic vector bundle. The proof starts with the known estimate on scalar differential forms and then obtains a similar estimate locally on bundle-valued forms using a local frame. Then, by using a partition of unity, we globalize this estimate at the cost of the constants.

On the other hand, we study the $\bar{\partial}$ -equation, $\bar{\partial}u=f$, with support conditions in a weakly q-pseudoconvex domain Ω in a Stein manifold X for forms of type (r,k), with $k \ge q$ with values in a holomorphic vector bundle. Similar results for this problem were considered in [3,4,15,27–43]. Applications to the $\bar{\partial}_b$ -problem for smooth forms on boundaries of Ω are given.

2. Preliminaries

2.1 – Notation in \mathbb{C}^n

Let Ω be a bounded domain in \mathbb{C}^n and let $L^2(\Omega)$ denote the space of square integrable functions on Ω . We can write an (r,k)-form f as

$$f = \sum_{I,J}' f_{I,J} \, dz_I \wedge d\bar{z}_J,$$

where $I=(i_1,\ldots,i_r)$ and $J=(j_1,\ldots,j_k)$ are multiindices and $dz_I=dz_1\wedge\cdots\wedge dz_r$, $d\bar{z}_J=d\bar{z}_1\wedge\cdots\wedge d\bar{z}_k$. The notation \sum' means summation over strictly increasing multiindices and $L^2_{r,k}(\Omega)$ denotes the space of (r,k)-forms whose coefficients are in $L^2(\Omega)$. The norm $L^2_{r,k}(\Omega)$ is defined by

$$||f||^2 = \int_{\Omega} |f|^2 dV$$
 and $|f|^2 = \sum_{I,J} f_{I,J} \overline{f_{I,J}}$

for $f \in L^2_{r,k}(\Omega)$ and $dV = i^n dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_n$. Denote by $C^\infty_{r,k}(\overline{\Omega})$ the space of complex-valued differential forms of class C^∞ and of type (r,k) on Ω that are smooth up to the boundary, and denote by $\mathcal{D}_{r,k}(U)$ the elements in $C^\infty_{r,k}(\overline{\Omega})$ that are compactly supported in $U \cap \overline{\Omega}$. For $0 \leq q \leq n$, the Cauchy–Riemann operator, or simply the D-bar operator, $\bar{\partial}: L^2_{r,k}(\Omega) \to L^2_{r,k+1}(\Omega)$ is defined by

$$\bar{\partial} \left(\sum_{I,J}' f_{I,J} \, dz_I \wedge d\bar{z}_J \right) = \sum_{j=1}^n \sum_{I,J}' \frac{\partial f_{I,J}}{\partial \bar{z}_j} \, d\bar{z}_j \wedge dz_I \wedge d\bar{z}_J,$$

with dom $\bar{\partial}=\{f\in L^2_{r,k}(\Omega):\bar{\partial}f\in L^2_{r,k+1}(\Omega)\}$. Here, the derivatives are taken in the distributional sense. The operator $\bar{\partial}$ is linear, closed and densely defined. The Hilbert space theory of unbounded operators gives that the adjoint of $\bar{\partial}$, which we denote by $\bar{\partial}^*$, is also linear, closed and densely defined. The Laplace–Beltrami operator \Box is defined by $\Box=\bar{\partial}\bar{\partial}^*+\bar{\partial}^*\bar{\partial}$: dom $\Box\to L^2_{r,k}(\Omega)$ and $\ker\Box=\{f\in\operatorname{dom}\bar{\partial}\cap\operatorname{dom}\bar{\partial}^*:\bar{\partial}f=0\text{ and }\bar{\partial}^*f=0\}$ is its kernel. One defines the $\bar{\partial}$ -Neumann operator $N\colon L^2_{r,k}(\Omega)\to L^2_{r,k}(\Omega)$ as the inverse of the restriction of \Box to $(\ker\Box)^\perp$.

We define the Fourier transform \hat{u} of u as

$$\hat{u}(\xi) = \int_{\mathbb{R}^n} e^{-ix.\xi} f(x) \, dx,$$

where $dx = dx_1 \dots dx_n$ and $x.\xi = \sum_{j=1}^n x_j \xi_j$. For each $\epsilon \ge 0$ and for any $u \in \mathcal{D}_{r,k}(\mathbb{R}^n)$, the Sobolev norm is given by

$$||f||_{H^{\epsilon}_{r,k}(\mathbb{R}^n)}^2 = \int_{\mathbb{R}^n} (1+|\xi|^2)^{\epsilon} |\hat{u}(\xi)|^2 d\xi.$$

Thus, $H_{r,k}^{\epsilon}(\Omega)$ can be defined as the completion of $\mathcal{D}_{r,k}(\mathbb{R}^n)$ with respect to the norm $\|f\|_{H_{\infty,k}^{\epsilon}(\mathbb{R}^n)}^2$. Moreover, let us restrict to the domain $\Omega \subset \mathbb{R}^n$. Then

$$||f||_{H_{r,k}^{\epsilon}(\Omega)}^{2} = \inf ||F||_{H_{r,k}^{\epsilon}(\mathbb{R}^{n})}^{2},$$

where $F \in H^{\epsilon}_{r,k}(\mathbb{R}^n)$ and $F|_{\Omega} = f$.

DEFINITION 1. The $\bar{\partial}$ -Neumann problem is said to satisfy a subelliptic estimate of order $\epsilon > 0$ at $z_0 \in \bar{\Omega}$ on k-forms if there exist a positive constant c and a neighborhood $V \ni z_0$ such that

$$\|f\|_{H^{\epsilon}}^2 \leq c(\|\bar{\partial}f\|_{H^0}^2 + \|\bar{\partial}^*f\|_{H^0}^2 + \|f\|_{H^0}^2).$$

2.2 – Notation in complex manifolds

Let X be an n-dimensional Stein manifold with a Hermitian metric ω and Ω be a relatively compact domain in X. Let E be a holomorphic vector bundle, of rank p, over X with a Hermitian metric h and E^* its dual. An E-valued differential (r,k)-form u on X is given locally by a column vector $u^T = (u^1, u^2, \ldots, u^p)$, where $u^a, 1 \le a \le p$, are \mathbb{C} -valued differential forms of type (r,k) on X. For integers $r,k \ge 0$, $C_{r,k}^{\infty}(\Omega,E)$ is the complex vector space of E-valued differential forms of class C^{∞} and of type (r,k) on Ω and $C_{r,k}^{\infty}(\bar{\Omega},E)$ is the subspace of $C_{r,k}^{\infty}(\bar{\Omega},E)$ whose elements can be extended smoothly up to $b\Omega$. Let $\mathcal{D}_{r,k}(\Omega,E)$ be the space of E-valued differential forms of type (r,k) with compact support in Ω . Let $\#_E: C_{r,k}^{\infty}(X,E) \to C_{k,r}^{\infty}(X,E^*)$ be the operator defined by $\#_E u = \bar{h}\bar{u}$, which commutes with the Hodge star operator. The corresponding operator $\#_{E^*}: C_{r,k}^{\infty}(X,E^*) \to C_{k,r}^{\infty}(X,E)$ is defined by $\#_{E^*} u = h^{-1}\bar{u} = \#_E^{-1}u$.

For $f, u \in C^{\infty}_{r,k}(X, E)$, a global inner product $\langle f, u \rangle_{\Omega}$ and the norm $\|\cdot\|_{\Omega}$, with respect to ω and h, are defined by

$$\langle f, u \rangle_{\Omega} = \int_{\Omega} f \wedge \star \#_{E} u,$$

 $\|f\|^{2} = \langle f, f \rangle.$

For $f \in C^{\infty}_{r,k}(\Omega, E)$ and $\eta \in \mathcal{D}_{r,k-1}(\Omega, E)$, the formal adjoint operator ϑ of the operator $\bar{\vartheta}: C^{\infty}_{r,k-1}(\Omega, E) \to C^{\infty}_{r,k}(\Omega, E)$ is defined by

(2.1)
$$\langle \vartheta f, \eta \rangle = \langle f, \bar{\partial} \eta \rangle,$$

$$\vartheta = -\#_{E^*} \star \bar{\partial} \star \#_E.$$

Write

$$Q(u, u) = \|\bar{\partial}u\|^2 + \|\bar{\partial}^*u\|^2 + \|f\|^2$$

and

$$\mathcal{B}_{r,k}(\overline{\Omega}, E) = \{ f \in C^{\infty}_{r,k}(\overline{\Omega}, E), \star \#_E f|_{b\Omega} = 0 \}.$$

Let $L^2_{r,k}(\Omega, E)$ be the Hilbert space obtained by completing $C^{\infty}_{r,k}(\overline{\Omega}, E)$ under the norm $||f||^2$. The operators $\bar{\partial}$, $\bar{\partial}^*$, \square and N are defined for E-valued differential (r,k)-forms as in the case of \mathbb{C} -valued differential (r,k)-forms.

DEFINITION 2. A form $u \in L^2_{r,k}(\Omega, E)$ is supported in $\overline{\Omega}$ (supp $u \subset \overline{\Omega}$) or u vanishes to infinite order at the boundary of Ω if u vanishes on $b\Omega$.

Choose a finite covering $\{U_j\}_{j\in J}$ by domains of the charts $\eta_j\colon U_j\to V_j$ and let $\varphi_j\colon E|_{U_j}\to V_j$ be a collection of trivializations. Let φ_j^* be an induced map $\varphi_j^*\xi=\varphi_j\circ\xi\circ\eta_j^{-1}$ acting from $C^\infty(U_j,E|_{U_j})$ to $C^\infty(V_j,\mathbb{C}^p)$ which can be identified with $C^\infty(V_j)^p$. Let $(\rho_j)_j$ be a smooth partition of unity subordinate to $\{f_j\}_{j\in J}$ and put

(2.2)
$$||f||_{H^{\epsilon}(X,E)}^{2} = \sum_{j} ||\varphi_{j}^{*} \rho_{j} f||_{H^{\epsilon}(\mathbb{R}^{n})}^{2},$$

where the right-hand side is the usual Sobolev ϵ -norm defined as in the Euclidean case. Thus, $H_{r,k}^{\epsilon}(\Omega, E)$ can be defined as the completion of $\mathcal{D}_{r,k}(X, E)$ with respect to the norm (2.2). Moreover, let us restrict to the domain $\Omega \subset X$. Then

$$||f||_{H_{r,k}^{\epsilon}(\Omega,E)}^{2} = \inf ||F||_{H_{r,k}^{\epsilon}(X,E)}^{2},$$

where $F \in H_{r,k}^{\epsilon}(X, E)$ and $F|_{\Omega} = f$.

2.3 - q-pseudoconvexity and the (q - P) property

Let Ω be a domain of a Stein manifold X defined by $\rho < 0$ with $d\rho \neq 0$ on the boundary $b\Omega$. Let $T^{\mathbb{C}}b\Omega$ be the complex tangent bundle to the boundary $b\Omega$. For a given boundary point $z_0 \in b\Omega$, we consider a boundary complex frame which means an orthonormal basis $\omega^1, \ldots, \omega^n = d\rho$ of (1,0)-forms with C^{∞} coefficients on a small neighborhood U of z_0 . We denote by $(\rho(z))_{i,j=1}^{n-1}$, the matrix of the Levi form $\partial\bar{\partial}\rho(z)$ in the complex tangential direction at z with respect to the basis $\omega^1, \ldots, \omega^n$. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1}$ be the eigenvalues of $(\rho(z))_{i,j=1}^{n-1}$ and denote by $s_{b\Omega}^+(z)$, $s_{b\Omega}^-(z)$, $s_{b\Omega}^0(z)$ their number according to the different sign. Take a pair of indices $1 \leq q \leq n-1$ and $0 \leq q_0 \leq n-1$ such that $q \neq q_0$. We assume that there is a bundle $V^{q_0} \subset T^{1,0}b\Omega$ of rank q_0 with smooth coefficients in a neighborhood V of z_0 , say the bundle spanned by $\{L_1, L_2, \ldots, L_{q_0}\}$, such that

(2.3)
$$\sum_{j=1}^{q} \lambda_j - \sum_{j=1}^{q_0} \rho_{jj} \geqslant 0 \quad \text{on } b\Omega \cap V.$$

DEFINITION 3. We have the following:

- (i) If $q > q_0$, Ω is said to be weakly q-pseudoconvex at z_0 .
- (ii) If $q < q_0$, Ω is said to be weakly q-pseudoconcave at z_0 .

Since $\sum_{i=1}^{q_0} \rho_{jj}$ is the trace of the restricted form $(\rho_{jj})|_V$, then Definition 3 depends only on the choice of the bundle V, not on its basis. Condition (2.3) is equivalent to

(2.4)
$$\sum_{\substack{|I|=r\\|K|=k-1}}' \sum_{i,j=1}^{n-1} \rho_{ij} f_{I,iK} \bar{u}_{I,jK} - \sum_{j=1}^{q_0} \rho_{jj} |u|^2 \geqslant 0,$$

for any (r, k)-form u with $k \ge q$. In this form (2.3) will be applied. For some cases, instead of (2.4), it is better to consider the variant

(2.5)
$$\sum_{\substack{|I|=r\\|K|=k-1}}^{\prime} \sum_{i,j=1}^{n-1} \rho_{ij} f_{I,iK} \bar{u}_{I,jK} - \sum_{\substack{|I|=r\\|K|=k-1}}^{\prime} \sum_{j=1}^{q_0} \rho_{jj} |f_{I,jK}|^2 \ge 0.$$

It is obvious that if $L_{h\Omega}|_V$ is assumed to be diagonal, instead of ≤ 0 , the left-hand side of (2.5) equals

$$\sum_{\substack{|I|=r\\|K|=k-1}}' \sum_{i,j=q_0+1}^{n-1} \rho_{ij} f_{I,iK} \bar{u}_{I,jK};$$

thus, if U is the Levi-orthogonal complement of V, then (2.5) is equivalent to $L_{b\Omega}|_{U} \ge 0$.

Remark 1. Definition 3 is a generalization of the usual pseudoconvexity or pseudoconcavity, as well as of the celebrated condition Z(q) (cf. [3, 14, 15, 27]) (that is, the Levi form has at least n-q positive eigenvalues or at least q+1 negative eigenvalues). Note that a pseudoconvex domain is characterized by $s^-(z) = 0$; thus, it is 1-pseudoconvex in our terminology.

Example 1. Let $s^-(z)$ be constant for $z \in \Omega$ close to z_0 . Then (2.3) holds for $q_0 = s^-$ and $q_0 = s^- + 1$. In fact, we have $\lambda_{s^-} < 0 < \lambda_{s^- + 1}$, and thus the negative eigenvectors span a bundle \mathcal{V}^{q_0} for $q_0 = s^-$, which, identified to the span of $L_1, L_2, ..., L_{q_0}$, yields $\sum_{j=1}^{q} \lambda_j \ge \sum_{j=1}^{q_0} \rho_{jj}$.

Example 2. Let Ω satisfy the Z(q) condition at z_0 , that is, $s^+(z) \ge n - q$ or $s^-(z) \leq q+1$ for $z \in V \cap b\Omega$. Thus Ω is strongly q-pseudoconvex or strongly qpseudoconcave at z_0 .

EXAMPLE 3. It is readily seen that for $q_0 = s^- + s^0$ and for any $q > q_0$ (resp. $q_0 = s^-$ and any $q < q_0$), (2.3) is satisfied in a suitable local boundary frame. Thus any index $q \notin [s^-, s^- + s^0]$ satisfies (2.3) for either choice of q_0 . Note that $s^- + s^0 = n - 1 - s^+$ and thus $q \notin [s^-, n - 1 - s^+]$ coincides, in the terminology of [12], with condition Z(q). Instead, we use the terminology of strong q-pseudoconvexity (concavity) when $q > n - 1 - s^+$ (resp. $q < s^-$) because this is the same as asking that (2.3) holds with strict inequality.

The condition in Definition 4 below generalizes to domains which are not necessarily pseudoconvex, the celebrated P property by Catlin [6, 8].

DEFINITION 4. A boundary $b\Omega$ is said to have the (q-P) property in V if for every positive number M there is a function $\phi^M \in C^\infty(\overline{\Omega} \cap V)$ with $|\phi^M| \leq 1$ on Ω and such that, if we denote by $\lambda_1^{\phi^M} \leq \lambda_2^{\phi^M} \leq \cdots \leq \lambda_{n-1}^{\phi^M}$ the ordered eigenvalues of the Levi form (ϕ_{ij}^M) , we have

(2.6)
$$\sum_{j=1}^{q} \lambda_j^{\phi^M} - \sum_{j=1}^{q_0} \phi_{jj}^M \ge c \left(M^{-2\epsilon} + \sum_{j=1}^{q_0} |\phi_j|^2 \right) \quad \text{on } \overline{\Omega} \cap V,$$

and

$$\sum_{j=1}^{q} \lambda_j^{\phi^M} - \sum_{j=1}^{q_0} \phi_{jj}^M \ge M \qquad \text{on } b\Omega \cap V,$$

where $\epsilon > 0$ and the constant c > 0 does not depend on M.

REMARK 2. We notice that if condition (2.6) holds for forms in some degree $q > q_0$ (resp. $q < q_0$), then it also holds in any degree $k \ge q$ (resp. $k \le q$). In fact, (2.6) forces $\lambda_q^{\phi} \ge 0$ (resp. $\lambda_q^{\phi} \le 0$) which implies $\lambda_q^{\phi} \ge 0$ for any $k \ge q$ (resp. $\lambda_q^{\phi} \le 0$ for any $k \le q$).

Now we give a geometric condition on $b\Omega$ which implies that $b\Omega$ has property (q - P).

DEFINITION 5. Let Ω be a smoothly bounded, weakly q-pseudoconvex domain in a Stein manifold and let V be the bundle which occurs in the above definitions. The boundary $b\Omega$ is said to be weakly q regular at z_0 if there exist a neighborhood V of z_0 and a finite number of relatively compact subsets S_i of $b\Omega \cap V$, i = 0, 1, ..., N, such that

(1)
$$\emptyset = S_N \subset S_{N-1} \subset \cdots \subset S_1 \subset S_0 = b\Omega \cap V$$
;

(2) if $z \in S_i \setminus S_{i+1}$, then there are a neighborhood $V' \subseteq V$ and a CR submanifold D of $b\Omega \cap V'$ of CR dimension q with $z \in D$ which satisfy

- (a) $S_i \cap V' \subset D$,
- (b) $V_{z_0}|_D \subset T_{z_0}^{1,0}D$,
- (c) if $\lambda_1^D \leq \cdots \leq \lambda_q^D$ are the ordered eigenvalues of the restricted Levi form $(\rho_{ij})|_{T\mathbb{C}_D}$, then

$$\sum_{j=1}^{q} \lambda_{j}^{D} - \sum_{j=1}^{q_{0}} \rho_{jj} > 0, \quad z \in D.$$

This generalizes the notion of weak regularity of a pseudoconvex boundary introduced by Catlin [6].

Proposition 2.1. If the boundary of Ω is weakly q-regular, then it satisfies property (q-P).

PROOF. The proof is the same as in [14, Theorem 2.1].

Let Ω be a domain of a Stein manifold defined by $\rho < 0$ with $d\rho \neq 0$ on the boundary $b\Omega$. Let V be a subbundle of $T^{1,0}b\Omega$ of rank, say, q_0 , W a bundle contained in V^{\perp} , the orthogonal to V in $T^{1,0}b\Omega$ with respect to $\partial\bar{\partial}\rho$, such that $W\cap V=\{0\}$ and $V + W = T^{1,0}b\Omega$. The boundary $b\Omega$, as well as the bundles V and W, is supposed to be real analytic.

Proposition 2.2. Assume that in a neighborhood V of a boundary point z_0 , in addition to the above hypotheses, the following two conditions are also fulfilled:

(2.7)
$$\partial \bar{\partial} \rho |_{V} \leq 0, \quad \partial \bar{\partial} \rho |_{W} \geq 0,$$

and $W \cap \ker L_{b\Omega}$ is involuting and that there is no complex curve $\gamma \subset b\Omega$ such that $T_{\nu} \subset W$. Then $b\Omega$ satisfies the (q - P) property.

PROOF. It is obvious that (2.7), combined with $W \subset V^{\perp}$, implies (2.3); in fact, if V is the bundle of the first q_0 eigenvalues and if λ is the minimum eigenvalue of $\partial \bar{\partial} \rho |_{\mathbf{W}}$, which is supposed to be non-negative, then

$$\sum_{j=1}^{q} \lambda_j - \sum_{j=1}^{q_0} \rho_{jj} \geqslant \lambda.$$

Thus, Ω is q-pseudoconvex for $q=q_0+1$. Then, from Proposition 2.1, $b\Omega$ satisfies the (q - P) property.

3. Subellipticity of the $\bar{\partial}$ -Neumann problem

Theorem 3.1. Let Ω be a weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in \mathbb{C}^n . Suppose that $b\Omega$ has property (q-P). Then ϵ -subelliptic estimates at z_0 hold for forms of degree $k \geq q$ (resp. $k \leq q$). More precisely, there exist a positive constant ϵ and a positive constant c such that

$$||u||_{H^{\epsilon}}^2 \leqslant c Q(u, u),$$

for $u \in \mathcal{D}_{r,k}(\Omega)$.

PROOF. Let $S_{\delta} = \{z \in \Omega : -\delta < \rho(z) \le 0\}$ be a strip, where δ is a small enough positive number. Following Khanh and Zampieri [15],

$$||u||_{H^{\epsilon}}^2 \leqslant c Q(u, u),$$

for $u \in \mathcal{D}_{r,k}(S_{\delta} \cap \Omega)$ with $k \ge q$ (resp. $k \le q$). Since $b\Omega$ is compact, by a finite covering $\{U_{\nu}\}_{\nu=1}$ of $b\Omega$ by neighborhoods U_{ν} as in (3.2), we have

$$||u||_{H^{\epsilon}}^2 \le c Q(u, u),$$

when u is supported in the strip S_{δ} .

Now we estimate the integral over $\Omega \setminus S_{\delta}$. Choose $\gamma_{\delta} \in \mathcal{D}(\Omega)$ such that $\gamma_{\delta}(z) = 1$ whenever $\rho(z) \leq -\delta$ and $z \in \Omega \setminus S_{\delta}$. Using (3.3), one obtains

$$||u||_{H^{\epsilon}}^{2} \leq \int_{S_{\delta}} |u|^{2} dV + ||\gamma_{\delta}u||_{H^{\epsilon}}^{2}$$
$$\leq c_{1} Q(u, u) + ||u||_{H^{\epsilon}}^{2}$$
$$= (c_{1} + c') Q(u, u),$$

for some c_1 , c'. Thus, we obtain the subelliptic estimate

$$||u||_{H^{\epsilon}}^2 \leqslant c Q(u, u),$$

for $u \in \mathcal{D}_{r,k}(\Omega)$. Thus the proof follows.

Theorem 3.2. Let X be a Stein manifold of complex dimension n. Let Ω be a weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X. Suppose that $b\Omega$ has the property (q-P). Let E be a holomorphic vector bundle, of rank p, on X. Then, for $k \ge q$ (resp. $k \le q$), the ϵ -subelliptic estimates at z_0 for E-valued (r,k)-forms hold for the $\bar{\partial}$ -Neumann problem on Ω . More precisely, there exists a positive constant c such that

$$||u||_{H^{\epsilon}(E)}^{2} \leqslant c Q(u, u),$$

for $u \in \mathcal{D}_{r,k}(\Omega, E)$.

PROOF. Let $\{f_j\}_{j=1}^N$ be a finite covering of $b\Omega$ by a local patching. Extend the subelliptic estimate (3.1) to E-valued forms. Let e_1, e_2, \ldots, e_p be an orthonormal basis on $E_z = \pi^{-1}(z)$, for every $z \in f_j$, $j \in J$. Thus every E-valued differential (r,k)-form u on X can be written locally, on f_j , as $u(z) = \sum_{a=1}^p u^a(z)e_a(z)$, where u^a are the components of the restriction of u on f_j . Since $b\Omega$ is compact, there exist a finite number of elements of the covering $\{f_j\}$, say, f_j , $j = 1, 2, \ldots, m$, such that $\bigcup_{v=1}^m f_{jv}$ cover $b\Omega$. Let $\{\zeta_j\}_{j=0}^m$ be a partition of unity such that $\zeta_0 \in \mathcal{D}_{r,k}(\Omega)$, $\zeta_j \in \mathcal{D}_{r,k}(f_j)$, $j = 1, 2, \ldots, m$, and $\sum_{j=0}^m \zeta_j^2 = 1$ on $\overline{\Omega}$, where $\{U_j\}_{j=1,\ldots,m}$ is a covering of $b\Omega$.

Let U be a small neighborhood of a given boundary point $\xi_0 \in b\Omega$ such that $U \subseteq V \subseteq f_{j_{\nu}}$, for a certain $j_{\nu} \in I$. If $u \in \mathcal{D}_{r,k}(\Omega, E)$, $0 \le r \le n$, $q \le k \le n-2$, on applying the subelliptic estimate (3.1) to each u^a and adding for $a = 1, \ldots, p$, we get the subelliptic estimate for $u|_{\Omega \cap U}$,

$$\|\zeta_0 u\|_{H^{\epsilon}}^2 \lesssim c Q(\zeta_0 u, \zeta_0 u) \lesssim \epsilon Q(u, u).$$

Similarly, for j = 1, ..., m, we get subelliptic estimate for $u|_{\Omega \cap U_j}$

$$\|\zeta_j u\|_{H^{\epsilon}}^2 \lesssim c Q(\zeta_j u, \zeta_j u) \lesssim \epsilon Q(u, u).$$

Summing over j, we get

$$||u||_{H^{\epsilon}(E)}^{2} \leqslant c Q(u, u).$$

Thus the proof follows.

4. Compactness, H^{ϵ} estimates and regularity for $\bar{\eth}$

As a consequence of the subelliptic estimate (3.4), one first proves the L^2 existence theorem of the $\bar{\partial}$ -Neumann operator.

Theorem 4.1. Let X be a Stein manifold of complex dimension n. Let Ω be a weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X. Suppose that $b\Omega$ has the property (q-P). Let E be a holomorphic vector bundle, of rank p, on X. Then, for $k \ge q$ (resp. $k \le q$), $\ker(\Box, E)$ is finite-dimensional and the range of \Box is closed in $L^2_{r,k}(\Omega, E)$, and there exists a bounded linear operator $N: L^2_{r,k}(\Omega, E) \to L^2_{r,k}(\Omega, E)$ satisfying the following properties:

- (i) \Re an $(N, E) \subset dom(\square, E)$; $N\square = I \mathbb{H}$ on $dom(\square, E)$;
- (ii) for $f \in L^2_{r,k}(\Omega, E)$, we have $f = \bar{\partial}\bar{\partial}^* N f \oplus \bar{\partial}^* \bar{\partial} N f \oplus \mathbb{H} f$;
- (iii) $N\bar{\partial} = \bar{\partial}N$ on $dom(\bar{\partial}, E)$ and $N\bar{\partial}^* = \bar{\partial}^*N$ on $dom(\bar{\partial}^*, E)$;

(iv) for all $f \in L^2_{r,k}(\Omega, E)$, we have the estimates

$$||Nf|| \le c ||f||,$$

$$||\bar{\partial}Nf|| + ||\bar{\partial}^*Nf|| \le \sqrt{c} ||f||;$$

- (v) if $f \in L^2_{r,k}(\Omega, E) \cap \ker(\bar{\partial}, E)$, then $\bar{\partial}^* Nf$ gives the solution u to the equation $\bar{\partial} u = f$ of minimal $L^2_{r,k-1}(\Omega, E)$ -norm;
- (vi) if $f \in L^2_{r,k}(\Omega, E) \cap \ker(\bar{\partial}^*, E)$, then $\bar{\partial}Nf$ gives the solution u to the equation $\bar{\partial}^*u = f$ of minimal $L^2_{r,k+1}(\Omega, E)$ -norm.

PROOF. From (3.4) at $\epsilon = \frac{1}{2}$, and for $f \in \text{dom}(\bar{\partial}, E) \cap \text{dom}(\bar{\partial}^*, E)$, we have

$$(4.1) ||f||_{H^{1/2}(E)}^2 \le C(||\bar{\partial}f||_{H^0(E)}^2 + ||\bar{\partial}^*f||_{H^0(E)}^2 + ||f||_{H^0(E)}^2).$$

This gives the existence of the $\bar{\partial}$ -Neumann operator $N_{r,k}\colon L^2_{r,k}(\Omega,E)\to H^1_{r,k}(\Omega,E)$. Inequality (4.1) implies that from every sequence $\{f_{\nu}\}_{\nu=1}^{\infty}$ in $\mathrm{dom}(\bar{\partial},E)\cap\mathrm{dom}(\bar{\partial}^*,E)$ with $\|f_{\nu}\|$ bounded, $\bar{\partial}f_{\nu}\to 0$ in $L^2_{r,k+1}(\Omega,E)$, and $\bar{\partial}^*f_{\nu}\to 0$ in $L^2_{r,k-1}(\Omega,E)$ as $\nu\to\infty$. Then (4.1) implies that $\|f_{\nu}\|_{H^{1/2}(E)}^2\leqslant C$ for some constant C. By the Rellich lemma, the inclusion map $i_{\Omega}\colon H^{1/2}_{r,k}(\Omega,E)\to L^2_{r,k}(\Omega,E)$ is compact, and one can extract a subsequence of the sequence f_{ν} which converges in the $L^2_{r,k}(\Omega,E)$ -norm. Thus, for $f\in\mathrm{dom}(\bar{\partial},E)\cap\mathrm{dom}(\bar{\partial}^*,E)$, $f\perp\mathrm{ker}(\Box,E)$, the hypotheses of [13, Theorem 1.1.3] are satisfied and so this theorem implies that $\mathrm{ker}(\Box,E)$ is finite-dimensional and the estimate

(4.2)
$$||f||_{H^{0}(E)}^{2} \leq C(||\bar{\partial}f||_{H^{0}(E)}^{2} + ||\bar{\partial}^{*}f||_{H^{0}(E)}^{2})$$

holds, and hence

$$(4.3) ||f||_{H^0(E)}^2 \le C ||\Box f||_{H^0(E)}^2, \text{for } f \in \text{dom}(\Box, E), f \perp \text{ker}(\Box, E).$$

Thus the closed graph theorem (cf. [13, Theorem 1.1.1]) implies that \square has closed range and forces, since \square is self-adjoint, the strong Hodge decomposition

$$L^{2}_{r,k}(\Omega, E) = \Re \operatorname{an}(\square, E) \oplus \ker(\square, E)$$
$$= \bar{\partial}\bar{\partial}^{*} \operatorname{dom}(\square, E) \oplus \bar{\partial}^{*}\bar{\partial} \operatorname{dom}(\square, E) \oplus \ker(\square, E).$$

Estimate (4.3) also implies the existence of N as a unique bounded operator on $L^2_{r,k}(\Omega,E)$ that inverts \square on $\ker(\square,E)^{\perp}$. We extend N to the whole $L^2_{r,k}(\Omega,E)$ space by setting N=0 on $\ker(\square,E)$. The properties follow directly, as in the proof of [9, Theorem 3.1.14].

Theorem 4.2. Under the same assumptions as Theorem 4.1, for $k \ge q$ (resp. $k \le q$), the $\bar{\partial}$ -Neumann operator $N: L^2_{r,k}(\Omega, E) \to L^2_{r,k}(\Omega, E)$ is compact.

PROOF. To show that N is compact, it suffices to show compactness on $\ker(\Box, E)^{\perp}$ (since N=0 on $\ker(\Box, E)$). When $f \in \ker(\Box, E)^{\perp}$ (and hence $Nf \in \ker(\Box, E)^{\perp}$), integration by parts and the Cauchy–Schwarz inequality imply

$$\|\bar{\partial}Nf\|_{H^{0}(E)}^{2} + \|\bar{\partial}^{*}Nf\|_{H^{0}(E)}^{2} = \langle f, Nf \rangle_{H^{0}(E)}$$

$$\leq \|f\|_{H^{0}(E)} \|Nf\|_{H^{0}(E)} \leq \|f\|_{H^{0}(E)}^{2}.$$

The last inequality follows from (4.3) for Nf. Applying (4.1) and then (4.3) to Nf, one obtains

$$\|Nf\|_{H^{1/2}(E)}^2 \le C(\|\bar{\partial}Nf\|_{H^0(E)}^2 + \|\bar{\partial}^*Nf\|_{H^0(E)}^2 + \|Nf\|_{H^0(E)}^2) \le K\|f\|_{H^0(E)}^2,$$

where K is a positive constant. Thus N is compact on $L^2_{r,k}(\Omega, E)$ by the Rellich lemma (the embedding of $H^{1/2}_{r,k}(\Omega, E)$ into $L^2_{r,k}(\Omega, E)$ is compact).

Theorem 4.3. Under the same assumptions as Theorem 4.1, the following are equivalent:

- (1) the compactness of the $\bar{\partial}$ -Neumann operators N;
- (2) the compactness of the embedding $j_{r,k}$ of the space $\operatorname{dom}(\bar{\partial}, E) \cap \operatorname{dom}(\bar{\partial}^*, E)$, provided with the graph norm $||f|| + ||\bar{\partial}u|| + ||\bar{\partial}^*u||$, into $C_{r,k}^{\infty}(\bar{\Omega}, E)$;
- (3) for every $\varepsilon > 0$ there is a $C_{\varepsilon} > 0$ such that, for $u \in \mathcal{D}^{p,q}$, 0 < q < n-1, we have

(4.4)
$$||u||^2 \leq \varepsilon Q(u,u) + C_{\varepsilon} ||u||_{H^{-1}(E)}^2.$$

PROOF. First we prove $(3) \Rightarrow (1)$. We want to prove that for any bounded sequence $\{u_n\} \subset C^{\infty}_{r,k}(\overline{\Omega}, E)$, the sequence $\{N_{r,k}(u_n)\}$ admits a convergent subsequence. Since $N_{r,k}$ is a bounded operator in $C^{\infty}_{r,k}(\overline{\Omega}, E)$, we observe that $\{N_{r,k}(u_n)\}$ is a bounded sequence in $C^{\infty}_{r,k}(\overline{\Omega}, E)$. According to the Bolzano–Weierstrass theorem, every bounded sequence has a convergent subsequence. Hence there exists a subsequence $v_j = f_{n_j}$ such that $\{N(v_j)\}$ converges in $H^{-1}_{r,k}(\Omega, E)$ since $C^{\infty}_{r,k}(\overline{\Omega}, E)$ is compactly embedded in $H^{-1}_{r,k}(\Omega, E)$. To conclude that, it is sufficient to prove that $\{N_{r,k}(v_j)\}$ is a Cauchy sequence. We observe that estimate (3.1) applied to $\{N_{r,k}(v_j)\}$ gives

$$||N_{r,k}(v_j - v_l)|| \le \varepsilon ||v_j - v_l|| + C_\varepsilon ||N_{r,k}(v_j - v_l)||_{H^{-1}(E)}.$$

For fixed $\delta > 0$, we get the conclusion choosing ε such that $\varepsilon ||v_j - v_l|| \le \frac{\delta}{2}$ for any j, l and $M \in \mathbb{N}$ such that $\varepsilon ||N_{r,k}(v_j - v_l)|| \le \frac{\delta}{2}$ for any $j, l \ge M$. Then $\{N_{r,k}(v_j)\}$

is a Cauchy sequence. Similarly, one obtains that $\{\Box N_{r,k}(v_j)\}$ is a Cauchy sequence which implies that $\{v_j\}$ is a Cauchy sequence.

Now we prove $(1) \Rightarrow (2)$. It is easy to observe that $N_{r,k} = j_{r,k}$, when the range $dom(\bar{\partial}, E) \cap dom(\bar{\partial}^*, E)$ is endowed with the graph norm. On the other hand, compactness is stable under adjunction.

Finally, we prove $(2) \Rightarrow (3)$. If the compactness estimate does not hold we can choose a sequence $\{u_n\}$ such that $Q(u_n, u_n) = 1$ and

$$(4.5) 1 \ge ||u_n||^2 \ge \epsilon + n||u_n||_{H^{-1}(E)}^2$$

for any $n \in \mathbb{N}$. By compactness of the embedding there exists a subsequence $v_j = f_{n_j}$ which converges in $C_{r,k}^{\infty}(\overline{\Omega}, E)$ and hence also in $H_{r,k}^{-1}(\Omega, E)$. From (4.5) the common limit is 0. But this contradicts the fact that, again by (4.5), $||u_n|| \ge \epsilon$.

Now we briefly review classical results about Sobolev estimates for \square .

Theorem 4.4. Let X be a Stein manifold of complex dimension n. Let Ω be a weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X. Suppose that $b\Omega$ has the property (q - P). Let E be a holomorphic vector bundle, of rank p, on X. Then

$$||f||_{H^{\epsilon}(E)}^{2} \lesssim ||\Box f||_{H^{\epsilon}(E)}^{2}, \quad for \ f \in \mathcal{D}_{r,k}(\Omega, E) \cap dom(\Box, E).$$

PROOF. Let $\{f_j\}_{j=1}^N$ be a finite covering of $b\Omega$ by a local patching. Extend the subelliptic estimate

$$||f||_{H^{\epsilon}}^2 \lesssim ||\Box f||_{H^{\epsilon}}^2, \quad \text{for } f \in \mathcal{D}_{r,k}(\Omega) \cap \text{dom}(\Box)$$

to E-valued forms (for the proof see [34, Theorem 3.1]). Thus the proof follows as in Theorem 3.2.

Theorem 4.5 (Cf. [23]). Let X be an n-dimensional complex manifold of complex dimension n and Ω be a bounded domain of X. Let $\Omega \in X$ be a submanifold with smooth boundary. Suppose the compactness estimate (4.4) holds on Ω . Let E be a holomorphic vector bundle, of rank p, on X. Suppose further that the $\bar{\partial}$ -closed (r,k)-form α is in $H^m(\Omega, E)$ and $\alpha \perp \ker(\Box, E)$. Then there is a constant C_m such that the canonical solution u of $\bar{\partial} u = \alpha$, with $u \perp \ker \bar{\partial}$, satisfies

$$||f||_{H^m(E)} \le C_m(||\alpha||_{H^m(E)} + ||f||).$$

Since $C^{\infty}(\overline{\Omega}, E) = \bigcap_{m=0}^{\infty} H^m(\Omega, E)$, it follows that if $\alpha \in C^{\infty}_{r,k}(\overline{\Omega}, E)$, then $u \in C^{\infty}_{r,k-1}(\overline{\Omega}, E)$.

Theorem 4.6. Let X be a Stein manifold of complex dimension n. Let Ω be a weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X. Suppose that $b\Omega$ has the property (q - P). Let E be a holomorphic vector bundle, of rank p, on X. Then, for $\alpha \in C^{\infty}_{r,k}(\overline{\Omega}, E)$, $q \leq k \leq n-2$, satisfying $\bar{\partial} f = 0$ in the distribution sense in X, there exists $u \in C^{\infty}_{r,k-1}(\overline{\Omega},E)$, such that $\bar{\partial}u = f$ in the distribution sense in X.

5. Closed range property

Closed range properties of the $\bar{\partial}$ -operator are closely connected to the existence of the ∂ -Neumann operator.

THEOREM 5.1. Under the same assumptions as Theorem 4.1, for $k \ge q$ (resp. $k \le q$), we have

- (i) the operator $\bar{\partial}$ has closed range in $L^2_{rk}(\Omega, E)$ and $L^2_{rk+1}(\Omega, E)$,
- (ii) the operator $\bar{\partial}^*$ has closed range in $L^2_{rk}(\Omega, E)$ and $L^2_{rk-1}(\Omega, E)$.

PROOF. Using (4.2) and by using [13, Theorems 1.1.3 and 1.1.2], we obtain that $\bar{\partial}: L^2_{r,k}(\Omega, E) \to L^2_{r,k+1}(\Omega, E)$ and $\bar{\partial}^*: L^2_{r,k}(\Omega, E) \to L^2_{r,k-1}(\Omega, E)$ have closed

Theorem 5.2. Under the same assumptions as Theorem 4.1, for $k \ge q$ (resp. $k \le q$), the $\bar{\partial}$ -Neumann operator N exists and N: $L^2_{r,k}(\Omega, E) \to H^1_{r,k}(\Omega, E)$.

Proof. From (4.1),

$$||f||_{H^{1/2}(E)}^2 \le C(||\bar{\partial}f||_{H^0(E)}^2 + ||\bar{\partial}^*f||_{H^0(E)}^2 + ||f||_{H^0(E)}^2),$$

for $f \in \mathcal{D}om(\bar{\partial}, E) \cap \mathcal{D}om(\bar{\partial}^*, E)$. Since there exists an interpolation between $H^1_{rk}(\Omega, E)$ and $L^2_{rk}(\Omega, E)$ as illustrated in [9, Appendix B and Theorem B.3] and by using the procedure of [9, Theorem 5.2.1], we conclude that the range of N is $H^1_{r,k}(\Omega,E)$. This gives the existence of the $\bar{\partial}$ -Neumann operator $N:L^2_{r,k}(\Omega,E)\to$ $H_{r,k}^{\hat{1}}(\Omega,E).$

THEOREM 5.3. Under the same assumptions as Theorem 4.1, for $k \ge q$ (resp. $k \le q$), there exists $u \in H^{1/2}_{r,k}(\Omega, E)$ with $\bar{\partial}u = f$.

PROOF. From Theorem 4.1, for any $f \in L^2_{r,k}(\Omega, E) \cap \ker(\bar{\partial}, E)$ and $f \perp \ker(\Box, E)$, there exists a $u \in H_{r,k}^{1/2}(\Omega, E)$ with $\bar{\partial}u = f$.

6. The $\bar{\partial}$ problem with support condition

By applying the duality of the $\bar{\partial}$ -Neumann problem one obtains a solution to the $\bar{\partial}$ -equation with exact support on such domains.

Theorem 6.1. Let X be a Stein manifold of complex dimension n. Let Ω be a weakly q-pseudoconvex domain with smooth boundary in X. Suppose that $b\Omega$ has the property (q-P). Let E be a holomorphic vector bundle, of rank p, on X. Then, for $q \leq k \leq n-q$ and for $f \in L^2_{r,k}(X,E)$, supp $f \subset \overline{\Omega}$ with $\overline{\partial} f = 0$ in the distribution sense in X, there exists $u \in L^2_{r,k-1}(X,E)$, supp $u \subset \overline{\Omega}$ such that $\overline{\partial} u = f$ in the distribution sense in X.

PROOF. Let $f \in L^2_{r,k}(X,E)$ and supp $f \subset \overline{\Omega}$. Then $f \in L^2_{r,k}(\Omega,E)$. From Theorem 4.1, $N_{n-r,n-k}$ exists for $n-k \geq q$, and since $N_{n-r,n-k} = (\Box_{n-r,n-k})^{-1}$ on $\Re \operatorname{an}(\Box_{n-r,n-k},E^*)$ and $\Re \operatorname{an}(N_{n-r,n-k},E^*) \subset \operatorname{dom}(\Box_{n-r,n-k},E^*)$, we have $N_{n-r,n-k} \#_E \star f \in \operatorname{dom}(\Box_{n-r,n-k},E^*) \subset L^2_{n-r,n-k}(\Omega,E^*)$, for $k \leq n-q$. Thus, one can define $u \in L^2_{r,k-1}(\Omega,E)$ by

(6.1)
$$u = - \star \#_{E^*} \bar{\partial} N_{n-r,n-k} \#_E \star f.$$

Extend u to X by defining u=0 in $X\setminus \overline{\Omega}$. That the extended form u satisfies the equation $\bar{\partial}u=f$ in the distribution sense in X is proved as follows. We shall first prove that $\bar{\partial}u=f$ in the distribution sense in Ω .

For $\eta \in \text{dom}(\bar{\partial}, E^*) \subset L^2_{n-r,n-k-1}(\Omega, E^*)$, one obtains

$$\begin{split} \langle \bar{\partial} \eta, \#_E \star f \rangle_{\Omega} &= \int_{\Omega} \bar{\partial} \eta \wedge \star (\#_{E^*} \#_{E^*} \star f) = (-1)^{r+k} \int_{\Omega} \bar{\partial} \eta \wedge f \\ &= (-1)^{(r+k)(r+k-1)} \int_{\Omega} f \wedge \bar{\partial} \eta = (-1)^{r+k} \langle f, \#_{E^*} \star \bar{\partial} \eta \rangle_{\Omega}. \end{split}$$

Since $\vartheta = \bar{\partial}^*$ on $\mathcal{B}_{r,k}(\bar{\Omega}, E)$, when ϑ acts in the distribution sense and $\mathcal{B}_{r,k}(\bar{\Omega}, E)$ is dense in $\text{dom}(\bar{\partial}, E) \cap \text{dom}(\bar{\partial}^*, E)$ in the graph norm, from [13, Proposition 2.1.1], then from (2.1) one obtains

$$\langle \bar{\partial} \eta, \#_E \star f \rangle_{\Omega} = \langle f, \bar{\partial}^* \#_{E^*} \star \eta \rangle_{\Omega}.$$

Since supp $f \subset \overline{\Omega}$, then we obtain

$$\langle \bar{\partial} \eta, \#_{E^*} \star f \rangle_{\Omega} = \langle f, \bar{\partial}^* \#_{E^*} \star \eta \rangle_{\Omega} = \langle \bar{\partial} f, \#_{E^*} \star \eta \rangle_{X} = 0.$$

It follows that $\bar{\partial}^*(\#_E \star f) = 0$ on Ω . Using Theorem 4.1 (iii), we have

(6.2)
$$\bar{\partial}^* N_{n-r,n-k}(\#_E \star f) = N_{n-r,n-s-1} \bar{\partial}^* (\#_E \star f) = 0.$$

Thus, from (2.1), (6.1) and (6.2), we obtain

$$\bar{\partial}u = -\bar{\partial} \star \#_{E^*} \bar{\partial} N_{n-r,n-k} \#_E \star f
= (-1)^{r+k} \star \#_{E^*} \bar{\partial}^* \bar{\partial} N_{n-r,n-k} \#_E \star f
= (-1)^{r+k} \star \#_{E^*} (\bar{\partial}^* \bar{\partial} + \bar{\partial} \bar{\partial}^*) N_{n-r,n-k} \#_E \star f
= (-1)^{r+k} \star \#_{E^*} \#_E \star f
= f$$

in the distribution sense in Ω . Since u = 0 in $X \setminus \Omega$, then for $\eta \in \text{dom}(\bar{\partial}^*, E) \subset$ $L_{rk}^2(X, E)$, we obtain

$$\langle u, \bar{\partial}^* \eta \rangle_X = \langle u, \bar{\partial}^* \eta \rangle_{\Omega} = \langle \#_E \star \bar{\partial}^* \eta, \#_E \star u \rangle_{\Omega}.$$

Thus, from (2.1), we obtain

$$(6.3) \quad \langle u, \bar{\partial}^* \eta \rangle_X = (-1)^{r+k} \langle \bar{\partial} \#_E \star \eta, \#_E \star u \rangle_{\Omega} = \langle \#_E \star \eta, \#_E \star \bar{\partial} u \rangle_{\Omega} = \langle \bar{\partial} u, \eta \rangle_{\Omega},$$

where the second equality holds since

$$\#_E \star u = (-1)^{r+k+1} \bar{\partial} N_{n-r,n-k} \#_E \star f \in \text{dom}(\bar{\partial}^*, E^*).$$

Thus, from (6.3), we obtain

$$\langle u, \bar{\partial}^* \eta \rangle_X = \langle f, \eta \rangle_{\Omega} = \langle f, \eta \rangle_X.$$

Thus $\bar{\partial} u = f$ in the distribution sense in X. Thus the proof follows.

This gives the extension of $\bar{\partial}_b$ closed forms from the boundary of such domains, where $\bar{\partial}_b$ is the tangential Cauchy Riemann operator.

Theorem 6.2. Under the same assumptions as Theorem 6.1, for $f \in C^{\infty}_{r,k}(b\Omega, E)$, $q \leq k \leq n-q-1$, satisfying $\bar{\partial}_b f = 0$, there exists $F \in C^{\infty}_{r,k}(\bar{\Omega}, E)$ such that $F|_{b\Omega} = f$ and $\bar{\partial} F = 0$.

PROOF. Let $f \in C^{\infty}_{r,k}(b\Omega, E)$, $q \leq k \leq n-q-1$, with $\bar{\partial}_b f = 0$. Then there exists $f' \in C^{\infty}_{r,k}(\overline{\Omega}, E)$ such that $f'|_{b\Omega} = f$ and $\bar{\partial} f'$ vanishes to infinite order on $b\Omega$. Following Theorem 6.1, there exists $f\in C^\infty_{r,k}(\overline{\Omega},E)$ with supp $f\subset \overline{\Omega}$ such that $\bar{\partial} f = \bar{\partial} f'$. Then the form F = f' - f satisfies $F \in C^{\infty}_{r,k}(\overline{\Omega}, E)$, $F|_{b\Omega} = f$ and $\bar{\partial}F=0.$

Theorem 6.3. Under the same assumptions as Theorem 6.1, if $f \in C^{\infty}_{r,k}(b\Omega, E)$, $q \le k \le n-q-1$, with $\bar{\partial}_b f = 0$, there exists $u \in C^{\infty}_{r,k-1}(b\Omega, E)$, such that $\bar{\partial}_b u = f$. PROOF. Let $f \in C^{\infty}_{r,k}(b\Omega, E)$, $q \leq k \leq n-q-1$, with $\bar{\partial}_b f = 0$. Then from Theorem 6.2 there exists $F \in C^{\infty}_{r,k}(\bar{\Omega}, E)$ such that $F|_{b\Omega} = f$ and $\bar{\partial} F = 0$. Following Theorem 6.1, there exists $U \in C^{\infty}_{r,k-1}(\bar{\Omega}, E)$ satisfying $\bar{\partial} U = f$ in Ω . Then $u = U|_{b\Omega}$ satisfies $\bar{\partial}_b u = f$.

The necessary and sufficient condition on $f \in H^{1/2}_{r,k}(b\Omega, E)$ to have a $\bar{\partial}$ -closed extension F on Ω is summarized as follows. In what follows, differentiation is always taken in the distribution sense.

THEOREM 6.4. Under the same assumptions as Theorem 6.1, for $f \in H^{1/2}_{r,k}(b\Omega, E)$, $q \le k \le n-q-1$, we assume that

$$\bar{\partial}_b f = 0.$$

Then there exists $F \in L^2_{r,k-1}(\Omega,E)$ such that F = f on $b\Omega$ and $\bar{\partial}F = 0$ in Ω .

PROOF. Since $f \in H^{1/2}_{r,k}(b\Omega, E)$ is a form, one can extend f componentwise to Ω such that each component is in $H^1(\Omega, E)$. For the detailed construction of such an extension, see e.g. [7, Lemma 9.3.3]. Let f' be an arbitrary extension of f with $f' \in H^1_{r,k}(\Omega, E)$.

From (6.4), we can require that $f_1 = \bar{\partial}_b f' = 0$ in $b\Omega$. If we extend f_1 to be zero outside $\bar{\Omega}$, we get $\bar{\partial} f_1 = 0$ in X in the distribution sense. We set

$$v = - \star \#_{E^*} \bar{\partial} N \#_E \star f.$$

From Theorem 6.1 and its proof, we have $v \in L^2_{r,k}(\Omega, E)$. We set v = 0 outside Ω . Then $\bar{\partial}v = f_1$ in the distribution sense on X with v supported in $\bar{\Omega}$.

Setting F = f' - v in Ω , we have F = f on $b\Omega$ and $\bar{\partial}F = \bar{\partial}f' - \bar{\partial}v = f_1 - f_1 = 0$ on Ω .

Funding – The authors would like to acknowledge the Deanship of Graduate Studies and Scientific Research, Taif University, for funding this work.

REFERENCES

- [1] O. ABDELKADER S. SABER, Vanishing theorems on strongly *q*-convex manifolds. *Int. J. Geom. Methods Mod. Phys.* **2** (2005), no. 3, 467–483. Zbl 1090.32010 MR 2152171
- [2] O. Abdelkader S. Saber, Solution to $\bar{\partial}$ -equations with exact support on pseudo-convex manifolds. *Int. J. Geom. Methods Mod. Phys.* **4** (2007), no. 3, 339–348. Zbl 1142.32020 MR 2343350

- [3] H. D. S. Adam K. I. Adam S. Saber G. Farid, Existence theorems for the dbar equation and Sobolev estimates on q-convex domains. AIMS Math. 8 (2023), no. 12, 31141– 31157. MR 4670866
- [4] H. D. S. Adam K. I. A. Ahmed S. Saber M. Marin, Sobolev estimates for the ∂ and the $\bar{\partial}$ -Neumann operator on pseudoconvex manifolds. *Mathematics* 11 (2023), no. 19, article no. 4138.
- [5] J. Cao M.-C. Shaw L. Wang, Estimates for the $\bar{\partial}$ -Neumann problem and nonexistence of C^2 Levi-flat hypersurfaces in $\mathbb{C}P^n$. Math. Z. 248 (2004), no. 1, 183–221. Zbl 1057.32012 MR 2092728
- [6] D. Catlin, Necessary conditions for subellipticity and hypoellipticity for the θ-Neumann problem on pseudoconvex domains. In Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N.J., 1979), pp. 93-100, Ann. of Math. Stud 100, Princeton University Press, Princeton, NJ, 1981. Zbl 0467.32010 MR 0627751
- [7] D. CATLIN, Subelliptic estimates for the $\bar{\partial}$ -Neumann problem on pseudoconvex domains. Ann. of Math. (2) 126 (1987), no. 1, 131–191. Zbl 0627,32013 MR 0898054
- [8] D. W. Catlin, Global regularity of the $\bar{\partial}$ -Neumann problem. In Complex analysis of several variables (Madison, Wis., 1982), pp. 39-49, Proc. Sympos. Pure Math. 41, American Mathematical Society, Providence, RI, 1984. Zbl 0578.32031 MR 0740870
- [9] S.-C. Chen M.-C. Shaw, Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. Zbl 0963.32001 MR 1800297
- [10] J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications. Ann. of Math. (2) 115 (1982), no. 3, 615-637. Zbl 0488.32008 MR 0657241
- [11] G. B. FOLLAND J. J. KOHN, The Neumann problem for the Cauchy–Riemann complex. Ann. of Math. Stud. 75, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1972. Zbl 0247.35093 MR 0461588
- [12] A.-K. Herbig, A sufficient condition for subellipticity of the $\bar{\partial}$ -Neumann operator, J. Funct. Anal. 242 (2007), no. 2, 337–362. Zbl 1118.32028 MR 2274813
- [13] L. HÖRMANDER, L^2 estimates and existence theorems for the $\bar{\theta}$ operator. Acta Math. 113 (1965), 89-152. Zbl 0158.11002 MR 0179443
- [14] T. V. Khanh G. Zampieri, Subellipticity of the $\bar{\partial}$ -Neumann problem on a weakly qpseudoconvex/concave domain. Adv. Math. 228 (2011), no. 4, 1938-1965. Zbl 1238.32031 MR 2836110
- [15] T. V. Khanh G. Zampieri, Compactness estimate for the $\bar{\partial}$ -Neumann problem on a Q-pseudoconvex domain. Complex Var. Elliptic Equ. 57 (2012), no. 12, 1325–1337. Zbl 1267.32037 MR 2991575
- [16] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I. Ann. of Math. (2) **78** (1963), 112–148. Zbl 0161.09302 MR 0153030

- [17] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. II. *Ann. of Math.* (2) **79** (1964), 450–472. Zbl 0178.11305 MR 0208200
- [18] J. J. Kohn, Subellipticity of the $\bar{\partial}$ -Neumann problem on pseudo-convex domains: Sufficient conditions. *Acta Math.* **142** (1979), no. 1-2, 79–122. Zbl 0395.35069 MR 0512213
- [19] J. J. Kohn L. Nirenberg, Non-coercive boundary value problems. Comm. Pure Appl. Math. 18 (1965), 443–492. Zbl 0125.33302 MR 0181815
- [20] J. D. McNeal, A sufficient condition for compactness of the $\bar{\partial}$ -Neumann operator. *J. Funct. Anal.* **195** (2002), no. 1, 190–205. Zbl 1023.32029 MR 1934357
- [21] S. SABER, Solution to $\bar{\partial}$ problem with exact support and regularity for the $\bar{\partial}$ -Neumann operator on weakly q-convex domains. *Int. J. Geom. Methods Mod. Phys.* **7** (2010), no. 1, 135–142. Zbl 1204.32027 MR 2647774
- [22] S. Saber, The $\bar{\partial}$ -Neumann operator on Lipschitz q-pseudoconvex domains. Czechoslovak Math. J. **61(136)** (2011), no. 3, 721–731. Zbl 1249.32016 MR 2853086
- [23] S. Saber, Solvability of the tangential Cauchy–Riemann equations on boundaries of strictly q-convex domains. *Lobachevskii J. Math.* 32 (2011), no. 3, 189–193. Zbl 1254.32054 MR 2825494
- [24] S. Saber, Global boundary regularity for the $\bar{\theta}$ -problem on strictly q-convex and q-concave domains. *Complex Anal. Oper. Theory* **6** (2012), no. 6, 1157–1165. Zbl 1275.32030 MR 3000679
- [25] S. Saber, Solution to $\bar{\partial}$ and $\bar{\partial}_b$ problem for smooth forms and currents on strictly *q*-convex domains. *Int. J. Geom. Methods Mod. Phys.* **9** (2012), no. 4, article no. 1220002. Zbl 1257.32037 MR 2917301
- [26] S. Saber, The $\bar{\partial}$ -problem on q-pseudoconvex domains with applications. *Math. Slovaca* **63** (2013), no. 3, 521–530. Zbl 1349.32010 MR 3071972
- [27] S. Saber, The $L^2\bar{\partial}$ -Cauchy problem on weakly q-pseudoconvex domains in Stein manifolds. *Czechoslovak Math. J.* **65(140)** (2015), no. 3, 739–745. Zbl 1363.32018 MR 3407602
- [28] S. Saber, The $\bar{\theta}$ -problem with support conditions and pseudoconvexity of general order in Kähler manifolds. *J. Korean Math. Soc.* **53** (2016), no. 6, 1211–1223. Zbl 1353.32038 MR 3570969
- [29] S. Saber, Global solutions for the ∂̄-problem on non pseudoconvex domains in Stein manifolds. J. Korean Math. Soc. 54 (2017), no. 6, 1787–1799. Zbl 1401.32029 MR 3718424
- [30] S. Saber, Sobolev regularity of the Bergman projection on certain pseudoconvex domains. Trans. A. Razmadze Math. Inst. 171 (2017), no. 1, 90–102. Zbl 1430.32015 MR 3623634
- [31] S. Saber, Compactness of commutators of Toeplitz operators on q-pseudoconvex domains. Electron. J. Differential Equations (2018), article no. 111. Zbl 1390.32025 MR 3831857

- [32] S. Saber, Global regularity for $\hat{\theta}$ on an annulus between two weakly convex domains. Boll. Unione Mat. Ital. 11 (2018), no. 3, 309-314. Zbl 1401.32030 MR 3855761
- [33] S. Saber, The $L^2\bar{\partial}$ -Cauchy problem on pseudoconvex domains and applications. Asian-Eur. J. Math. 11 (2018), no. 2, 1850025. Zbl 1388.32028 MR 3786365
- [34] S. Saber, Solution to $\bar{\partial}$ -problem with support conditions in weakly q-convex domains. Commun. Korean Math. Soc. 33 (2018), no. 2, 409-421. Zbl 1397.32001 MR 3800569
- [35] S. Saber, Compactness of the canonical solution operator on Lipschitz q-pseudoconvex boundaries. Electron. J. Differential Equations (2019), article no. 48. Zbl 1417.32011 MR 3956488
- [36] S. Saber, Compactness of the complex Green operator in a Stein manifold. *Politehn. Univ.* Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 2, 185–200. Zbl 1513.32040 MR 3969820
- [37] S. Saber Compactness of the weighted dbar-Neumann operator and commutators of the Bergman projection with continuous functions. J. Geom. Phys. 138 (2019), 194–205. Zbl 1418.32007 MR 3903949
- [38] S. Saber, Global solvability and regularity for $\bar{\partial}$ on an annulus between two weakly convex domains which satisfy property (P). Asian-Eur. J. Math. 12 (2019), no. 3, article no. 1950041. Zbl 1415.32010 MR 3955344
- [39] S. Saber, L^2 estimates and existence theorems for $\bar{\partial}_b$ on Lipschitz boundaries of Qpseudoconvex domains. C. R. Math. Acad. Sci. Paris 358 (2020), no. 4, 435-458. Zbl 1445.32002 MR 4134253
- [40] S. Saber, The $\bar{\partial}$ -Cauchy problem on weakly *q*-convex domains in $\mathbb{C} P^n$. Kragujevac J. Math. 44 (2020), no. 4, 581-591. Zbl 1488.32016 MR 4227898
- [41] S. Saber, On the applications of Bochner-Kodaira-Morrey-Kohn identity. Kragujevac J. Math. 45 (2021), no. 6, 881-896. Zbl 1499.32026 MR 4369914
- [42] S. Saber A. Alahmari, Global regularity of $\hat{\partial}$ on certain pseudoconvexity. Trans. A. Razmadze Math. Inst. 175 (2021), no. 3, 417-427. Zbl 1487.32199 MR 4351607
- [43] S. Saber A. Alahmari, Compactness estimate for the $\bar{\partial}$ -Neumann problem on a Opseudoconvex domain in a Stein manifold. Kragujevac J. Math. 47 (2023), no. 4, 627-636. MR 4654462

Manoscritto pervenuto in redazione il 22 luglio 2023.