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1. Introduction and main results

The N@-Neumann problem in strongly pseudoconvex domains was solved by Kohn
[16,17], and the technique there showed that the existence of a subelliptic estimate will
give the solution. The condition is simply counting the number of positive or negative
eigenvalues of the Levi form. In [18], he gave a sufficient condition for subellipticity
over pseudoconvex domains with real analytic boundary by introducing a sequence
of ideals of subelliptic multipliers; see also [19]. The most general result concerning
subelliptic estimates for the N@-Neumann problem was obtained by Catlin [6–8]. He
proved [6] that subelliptic estimates hold for k-forms at z0 on any smoothly bounded,
pseudoconvex domain, which is of finite type in the sense of D’Angelo [10]. Herbig
[12] extended Catlin’s sufficiency result by replacing the boundedness condition on
the weight functions with that of self-bounded complex gradient, a weaker condition
which allows unbounded families of functions. This notion was introduced by McNeal
[20]. However, in the case when the domain is not necessarily pseudoconvex the
results are related to the celebratedZ.k/ condition which characterizes the existence of
subelliptic estimates of index � D 1

2
according to Hörmander [13] and Folland–Kohn

[11]. Hörmander [13] proved the necessary and sufficient conditions for the 1
2

estimate
on non-pseudoconvex domains. For similar results see [1, 2, 5, 9, 21–26].

The first purpose of this paper is to give a sufficient condition for subelliptic estimates
for the N@-Neumann problem on a smoothly bounded, weakly q-pseudoconvex (resp. q-
pseudoconcave) domain in a Stein manifoldX for forms of type .r; k/, with k > q (resp.
k 6 q) with values in a holomorphic vector bundle. Second, we study the compactness
and the Sobolev estimates of the N@-Neumann operator N . Such compactness estimates
immediately lead to very important qualitative properties of the N@-operator, such as
smoothness of solutions, the closed range property, the L2-setting and the Sobolev
estimates of N on � for any N@-closed .r; k/-form with k > q (resp. k 6 q). The
main results generalizes Khanh and Zampieri [14, 15] results to forms with values
in a holomorphic vector bundle. The proof starts with the known estimate on scalar
differential forms and then obtains a similar estimate locally on bundle-valued forms
using a local frame. Then, by using a partition of unity, we globalize this estimate at
the cost of the constants.

On the other hand, we study the N@-equation, N@u D f , with support conditions in a
weakly q-pseudoconvex domain� in a Stein manifold X for forms of type .r; k/, with
k > q with values in a holomorphic vector bundle. Similar results for this problem
were considered in [3, 4, 15, 27–43]. Applications to the N@b-problem for smooth forms
on boundaries of � are given.



Subellipticity, compactness, H � estimates and regularity for N@ 153

2. Preliminaries

2.1 – Notation in Cn

Let � be a bounded domain in Cn and let L2.�/ denote the space of square
integrable functions on �. We can write an .r; k/-form f as

f D
X
I;J

0

fI;J dzI ^ d NzJ ;

where I D .i1; : : : ; ir/ and J D .j1; : : : ; jk/ are multiindices and dzI D dz1 ^ � � � ^
dzr , d NzJ D d Nz1 ^ � � � ^ d Nzk . The notation

P0 means summation over strictly increas-
ing multiindices and L2

r;k
.�/ denotes the space of .r; k/-forms whose coefficients are

in L2.�/. The norm L2
r;k
.�/ is defined by

kf k2 D

Z
�

jf j2 dV and jf j2 D
X
I;J

0

fI;JfI;J ;

for f 2 L2
r;k
.�/ and dV D indz1 ^ d Nz1 ^ � � � ^ dzn ^ d Nzn. Denote by C1

r;k
.x�/ the

space of complex-valued differential forms of class C1 and of type .r; k/ on � that
are smooth up to the boundary, and denote by Dr;k.U / the elements in C1

r;k
.x�/ that

are compactly supported in U \ x�. For 0 6 q 6 n, the Cauchy–Riemann operator, or
simply the D-bar operator, N@WL2

r;k
.�/! L2

r;kC1
.�/ is defined by

N@

�X
I;J

0

fI;J dzI ^ d NzJ

�
D

nX
jD1

X
I;J

0 @fI;J

@ Nzj
d Nzj ^ dzI ^ d NzJ ;

with dom N@ D ¹f 2 L2
r;k
.�/ W N@f 2 L2

r;kC1
.�/º. Here, the derivatives are taken in

the distributional sense. The operator N@ is linear, closed and densely defined. The
Hilbert space theory of unbounded operators gives that the adjoint of N@, which we
denote by N@�, is also linear, closed and densely defined. The Laplace–Beltrami operator
� is defined by � D N@N@� C N@� N@W dom� ! L2

r;k
.�/ and ker� D ¹f 2 dom N@ \

dom N@�W N@f D 0 and N@�f D 0º is its kernel. One defines the N@-Neumann operator
N WL2

r;k
.�/! L2

r;k
.�/ as the inverse of the restriction of� to .ker�/?.

We define the Fourier transform Ou of u as

Ou.�/ D

Z
Rn
e�ix:�f .x/ dx;

where dx D dx1 : : : dxn and x:� D
Pn
jD1 xj �j . For each � > 0 and for any u 2

Dr;k.R
n/, the Sobolev norm is given by

kf k2H�
r;k
.Rn/ D

Z
Rn
.1C j�j2/�j Ou.�/j2 d�:
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Thus,H �
r;k
.�/ can be defined as the completion of Dr;k.R

n/ with respect to the norm
kf k2

H�
r;k
.Rn/

. Moreover, let us restrict to the domain � � Rn. Then

kf k2H�
r;k
.�/ D inf kF k2H�

r;k
.Rn/;

where F 2 H �
r;k
.Rn/ and F j� D f .

Definition 1. The N@-Neumann problem is said to satisfy a subelliptic estimate of
order � > 0 at z0 2 x� on k-forms if there exist a positive constant c and a neighborhood
V 3 z0 such that

kf k2H� 6 c.kN@f k
2
H0
C kN@�f k2

H0
C kf k2

H0
/:

2.2 – Notation in complex manifolds

Let X be an n-dimensional Stein manifold with a Hermitian metric ! and � be a
relatively compact domain inX . LetE be a holomorphic vector bundle, of rank p, over
X with a Hermitian metric h andE� its dual. AnE-valued differential .r; k/-form u on
X is given locally by a column vector uT D .u1; u2; : : : ; up/, where ua, 16 a 6 p, are
C-valued differential forms of type .r; k/ onX . For integers r; k > 0, C1

r;k
.�;E/ is the

complex vector space ofE-valued differential forms of classC1 and of type .r;k/ on�
andC1

r;k
.x�;E/ is the subspace ofC1

r;k
.x�;E/whose elements can be extended smoothly

up to b�. Let Dr;k.�;E/ be the space of E-valued differential forms of type .r; k/
with compact support in�. Let #E WC1r;k.X;E/! C1

k;r
.X;E�/ be the operator defined

by #E u D Nh Nu, which commutes with the Hodge star operator. The corresponding
operator #E* WC1

r;k
.X;E�/! C1

k;r
.X;E/ is defined by #E* u D h�1 Nu D #E�1 u.

For f; u 2 C1
r;k
.X;E/, a global inner product hf; ui� and the norm k � k�, with

respect to ! and h, are defined by

hf; ui� D

Z
�

f ^ ? #E u;

kf k2 D hf; f i:

For f 2 C1
r;k
.�; E/ and � 2 Dr;k�1.�; E/, the formal adjoint operator # of the

operator N@WC1
r;k�1

.�;E/! C1
r;k
.�;E/ is defined by

(2.1)
h#f; �i D hf; N@�i;

# D � #E* ?N@ ? #E :

Write
Q.u; u/ D kN@uk2 C kN@�uk2 C kf k2
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and
Br;k.x�;E/ D

®
f 2 C1r;k.

x�;E/; ? #E f jb� D 0
¯
:

LetL2
r;k
.�;E/ be the Hilbert space obtained by completingC1

r;k
.x�;E/ under the norm

kf k2. The operators N@, N@�,� and N are defined for E-valued differential .r; k/-forms
as in the case of C-valued differential .r; k/-forms.

Definition 2. A form u 2 L2
r;k
.�; E/ is supported in x� (supp u � x�) or u

vanishes to infinite order at the boundary of � if u vanishes on b�.

Choose a finite covering ¹Uj ºj2J by domains of the charts �j WUj ! Vj and let
'j WEjUj ! Vj be a collection of trivializations. Let '�j be an induced map '�j � D
'j ı � ı �

�1
j acting from C1.Uj ; EjUj / to C1.Vj ;Cp/ which can be identified with

C1.Vj /
p . Let .�j /j be a smooth partition of unity subordinate to ¹fj ºj2J and put

(2.2) kf k2H�.X;E/ D
X
j

k'�j �jf k
2
H�.Rn/;

where the right-hand side is the usual Sobolev �-norm defined as in the Euclidean case.
Thus, H �

r;k
.�;E/ can be defined as the completion of Dr;k.X;E/ with respect to the

norm (2.2). Moreover, let us restrict to the domain � � X . Then

kf k2H�
r;k
.�;E/ D inf kF k2H�

r;k
.X;E/;

where F 2 H �
r;k
.X;E/ and F j� D f .

2.3 – q-pseudoconvexity and the .q�P / property

Let � be a domain of a Stein manifold X defined by � < 0 with d� ¤ 0 on the
boundary b�. Let T Cb� be the complex tangent bundle to the boundary b�. For a
given boundary point z0 2 b�, we consider a boundary complex frame which means
an orthonormal basis !1; : : : ; !n D d� of .1; 0/-forms with C1 coefficients on a
small neighborhood U of z0. We denote by .�.z//n�1i;jD1, the matrix of the Levi form
@N@�.z/ in the complex tangential direction at z with respect to the basis !1; : : : ; !n.
Let �1 6 �2 6 � � � 6 �n�1 be the eigenvalues of .�.z//n�1i;jD1 and denote by sC

b�
.z/,

s�
b�
.z/, s0

b�
.z/ their number according to the different sign. Take a pair of indices

1 6 q 6 n� 1 and 0 6 q0 6 n� 1 such that q ¤ q0. We assume that there is a bundle
Vq0 � T 1;0b� of rank q0 with smooth coefficients in a neighborhood V of z0, say
the bundle spanned by ¹L1; L2; : : : ; Lq0º, such that

(2.3)
qX

jD1

�j �

q0X
jD1

�jj > 0 on b� \ V :
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Definition 3. We have the following:

(i) If q > q0, � is said to be weakly q-pseudoconvex at z0.

(ii) If q < q0, � is said to be weakly q-pseudoconcave at z0.

Since
Pq0
jD1 �jj is the trace of the restricted form .�jj /jV , then Definition 3 depends

only on the choice of the bundle V , not on its basis. Condition (2.3) is equivalent to

(2.4)
X
jI jDr
jKjDk�1

0
n�1X
i;jD1

�ijfI;iK NuI;jK �

q0X
jD1

�jj juj
2 > 0;

for any .r; k/-form u with k > q. In this form (2.3) will be applied. For some cases,
instead of (2.4), it is better to consider the variant

(2.5)
X
jI jDr
jKjDk�1

0
n�1X
i;jD1

�ijfI;iK NuI;jK �
X
jI jDr
jKjDk�1

0
q0X
jD1

�jj jfI;jK j
2 > 0:

It is obvious that if Lb�jV is assumed to be diagonal, instead of 6 0, the left-hand side
of (2.5) equals X

jI jDr
jKjDk�1

0
n�1X

i;jDq0C1

�ijfI;iK NuI;jK I

thus, ifU is the Levi-orthogonal complement ofV , then (2.5) is equivalent toLb�jU >0 .

Remark 1. Definition 3 is a generalization of the usual pseudoconvexity or pseu-
doconcavity, as well as of the celebrated condition Z.q/ (cf. [3, 14, 15, 27]) (that is,
the Levi form has at least n � q positive eigenvalues or at least q C 1 negative eigen-
values). Note that a pseudoconvex domain is characterized by s�.z/ D 0; thus, it is
1-pseudoconvex in our terminology.

Example 1. Let s�.z/ be constant for z 2 � close to z0. Then (2.3) holds for
q0 D s� and q0 D s� C 1. In fact, we have �s� < 0 < �s�C1, and thus the nega-
tive eigenvectors span a bundle Vq0 for q0 D s�, which, identified to the span of
L1; L2; : : : ; Lq0 , yields

Pq
jD1 �j >

Pq0
jD1 �jj .

Example 2. Let � satisfy the Z.q/ condition at z0, that is, sC.z/ > n � q or
s�.z/ 6 q C 1 for z 2 V \ b�. Thus � is strongly q-pseudoconvex or strongly q-
pseudoconcave at z0.
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Example 3. It is readily seen that forq0D s�C s0 and for anyq >q0 (resp.q0D s�

and any q < q0), (2.3) is satisfied in a suitable local boundary frame. Thus any index
q … Œs�; s�C s0� satisfies (2.3) for either choice of q0. Note that s�C s0 D n� 1� sC

and thus q … Œs�; n � 1 � sC� coincides, in the terminology of [12], with condition
Z.q/. Instead, we use the terminology of strong q-pseudoconvexity (concavity) when
q > n� 1� sC (resp. q < s�) because this is the same as asking that (2.3) holds with
strict inequality.

The condition in Definition 4 below generalizes to domains which are not necessarily
pseudoconvex, the celebrated P property by Catlin [6, 8].

Definition 4. A boundary b� is said to have the .q � P / property in V if for
every positive number M there is a function �M 2 C1.x� \ V / with j�M j 6 1 on �
and such that, if we denote by ��

M

1 6 ��
M

2 6 � � � 6 ��
M

n�1 the ordered eigenvalues of
the Levi form .�Mij /, we have

qX
jD1

�
�M

j �

q0X
jD1

�Mjj � c

�
M�2� C

q0X
jD1

j�j j
2

�
on x� \ V ;(2.6)

and
qX

jD1

�
�M

j �

q0X
jD1

�Mjj �M on b� \ V ;

where � > 0 and the constant c > 0 does not depend on M .

Remark 2. We notice that if condition (2.6) holds for forms in some degree q > q0
(resp. q < q0), then it also holds in any degree k > q (resp. k 6 q). In fact, (2.6) forces
�
�
q > 0 (resp. ��q 6 0) which implies ��q > 0 for any k > q (resp. ��q 6 0 for any
k 6 q).

Now we give a geometric condition on b� which implies that b� has property
.q � P /.

Definition 5. Let � be a smoothly bounded, weakly q-pseudoconvex domain in
a Stein manifold and let V be the bundle which occurs in the above definitions. The
boundary b� is said to be weakly q regular at z0 if there exist a neighborhood V of
z0 and a finite number of relatively compact subsets Si of b� \ V , i D 0; 1; : : : ; N ,
such that

(1) ¿ D SN � SN�1 � � � � � S1 � S0 D b� \ V ;

(2) if z 2 Si n SiC1, then there are a neighborhood V 0 b V and a CR submanifold D
of b� \ V 0 of CR dimension q with z 2 D which satisfy
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(a) Si \ V 0 � D,

(b) Vz0 jD � T
1;0
z0 D,

(c) if �D1 6 � � � 6 �Dq are the ordered eigenvalues of the restricted Levi form
.�ij /jTCD , then

qX
jD1

�Dj �

q0X
jD1

�jj > 0; z 2 D:

This generalizes the notion of weak regularity of a pseudoconvex boundary intro-
duced by Catlin [6].

Proposition 2.1. If the boundary of� is weakly q-regular, then it satisfies property
.q � P /.

Proof. The proof is the same as in [14, Theorem 2.1].

Let � be a domain of a Stein manifold defined by � < 0 with d� ¤ 0 on the
boundary b�. Let V be a subbundle of T 1;0b� of rank, say, q0, W a bundle contained
in V ?, the orthogonal to V in T 1;0b�with respect to @N@�, such that W \ V D ¹0º and
V CW D T 1;0b�. The boundary b�, as well as the bundles V and W , is supposed
to be real analytic.

Proposition 2.2. Assume that in a neighborhood V of a boundary point z0, in
addition to the above hypotheses, the following two conditions are also fulfilled:

(2.7) @N@�jV 6 0; @N@�jW > 0;

and W \ kerLb� is involuting and that there is no complex curve 
 � b� such that
T
 � W . Then b� satisfies the .q � P / property.

Proof. It is obvious that (2.7), combined with W � V ?, implies (2.3); in fact,
if V is the bundle of the first q0 eigenvalues and if � is the minimum eigenvalue of
@N@�jW , which is supposed to be non-negative, then

qX
jD1

�j �

q0X
jD1

�jj > �:

Thus, � is q-pseudoconvex for q D q0 C 1. Then, from Proposition 2.1, b� satisfies
the .q � P / property.
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3. Subellipticity of the N@-Neumann problem

Theorem 3.1. Let� be a weakly q-pseudoconvex (resp. q-pseudoconcave) domain
with smooth boundary in Cn. Suppose that b� has property .q �P /. Then �-subelliptic
estimates at z0 hold for forms of degree k > q (resp. k 6 q). More precisely, there
exist a positive constant � and a positive constant c such that

(3.1) kuk2H� 6 cQ.u; u/;

for u 2 Dr;k.�/.

Proof. Let Sı D ¹z 2 � W �ı < �.z/ 6 0º be a strip, where ı is a small enough
positive number. Following Khanh and Zampieri [15],

(3.2) kuk2H� 6 cQ.u; u/;

for u 2 Dr;k.Sı \ �/ with k > q (resp. k 6 q). Since b� is compact, by a finite
covering ¹U�º�D1 of b� by neighborhoods U� as in (3.2), we have

(3.3) kuk2H� 6 cQ.u; u/;

when u is supported in the strip Sı .
Now we estimate the integral over� n Sı . Choose 
ı 2D.�/ such that 
ı.z/ D 1

whenever �.z/ 6 �ı and z 2 � n Sı . Using (3.3), one obtains

kuk2H� 6
Z
Sı

juj2 dV C k
ıuk
2
H�

6 c1Q.u; u/C kuk2H�
D .c1 C c

0/Q.u; u/;

for some c1, c0. Thus, we obtain the subelliptic estimate

kuk2H� 6 cQ.u; u/;

for u 2 Dr;k.�/. Thus the proof follows.

Theorem 3.2. Let X be a Stein manifold of complex dimension n. Let � be a
weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X .
Suppose that b� has the property .q � P /. Let E be a holomorphic vector bundle,
of rank p, on X . Then, for k > q (resp. k 6 q), the �-subelliptic estimates at zo for
E-valued .r; k/-forms hold for the N@-Neumann problem on �. More precisely, there
exists a positive constant c such that

(3.4) kuk2H�.E/ 6 cQ.u; u/;

for u 2 Dr;k.�;E/.
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Proof. Let ¹fj ºNjD1 be a finite covering of b� by a local patching. Extend the
subelliptic estimate (3.1) toE-valued forms. Let e1; e2; : : : ; ep be an orthonormal basis
onEz D ��1.z/, for every z 2 fj , j 2 J . Thus everyE-valued differential .r; k/-form
u on X can be written locally, on fj , as u.z/ D

Pp
aD1 u

a.z/ea.z/, where ua are the
components of the restriction of u on fj . Since b� is compact, there exist a finite
number of elements of the covering ¹fj º, say, fj , j D 1; 2; : : : ;m, such that

Sm
�D1 fj�

cover b�. Let ¹�j ºmjD0 be a partition of unity such that �0 2 Dr;k.�/, �j 2 Dr;k.fj /,
j D 1; 2; : : : ; m, and

Pm
jD0 �

2
j D 1 on x�, where ¹Uj ºjD1;:::;m is a covering of b�.

Let U be a small neighborhood of a given boundary point �0 2 b� such that
U b V b fj� , for a certain j� 2 I . If u 2Dr;k.�;E/, 0 6 r 6 n, q 6 k 6 n� 2, on
applying the subelliptic estimate (3.1) to each ua and adding for a D 1; : : : ; p, we get
the subelliptic estimate for uj�\U ,

k�0uk
2
H� . cQ.�0u; �0u/ . �Q.u; u/:

Similarly, for j D 1; : : : ; m, we get subelliptic estimate for uj�\Uj

k�juk
2
H� . cQ.�ju; �ju/ . �Q.u; u/:

Summing over j , we get
kuk2H�.E/ 6 cQ.u; u/:

Thus the proof follows.

4. Compactness,H � estimates and regularity for N@

As a consequence of the subelliptic estimate (3.4), one first proves the L2 existence
theorem of the N@-Neumann operator.

Theorem 4.1. Let X be a Stein manifold of complex dimension n. Let � be a
weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X .
Suppose that b� has the property .q � P /. Let E be a holomorphic vector bundle,
of rank p, on X . Then, for k > q (resp. k 6 q), ker.�; E/ is finite-dimensional and
the range of � is closed in L2

r;k
.�;E/, and there exists a bounded linear operator

N WL2
r;k
.�;E/! L2

r;k
.�;E/ satisfying the following properties:

(i) Ran.N;E/ � dom.�; E/; N� D I �H on dom.�; E/;
(ii) for f 2 L2

r;k
.�;E/, we have f D N@N@�Nf ˚ N@� N@Nf ˚Hf ;

(iii) N N@ D N@N on dom.N@;E/ and N N@� D N@�N on dom.N@�; E/;
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(iv) for all f 2 L2
r;k
.�;E/, we have the estimates

kNf k � ckf k;

kN@Nf k C kN@�Nf k �
p
ckf kI

(v) if f 2 L2
r;k
.�;E/ \ ker.N@;E/, then N@�Nf gives the solution u to the equation

N@u D f of minimal L2
r;k�1

.�;E/-norm;

(vi) if f 2 L2
r;k
.�;E/ \ ker.N@�; E/, then N@Nf gives the solution u to the equation

N@�u D f of minimal L2
r;kC1

.�;E/-norm.

Proof. From (3.4) at � D 1
2
, and for f 2 dom.N@;E/ \ dom.N@�; E/, we have

(4.1) kf k2
H1=2.E/

6 C.kN@f k2
H0.E/

C kN@�f k2
H0.E/

C kf k2
H0.E/

/:

This gives the existence of the N@-Neumann operator Nr;k WL2r;k.�;E/! H 1
r;k
.�;E/.

Inequality (4.1) implies that from every sequence ¹f�º1�D1 in dom.N@;E/\ dom.N@�;E/
with kf�k bounded, N@f� ! 0 in L2

r;kC1
.�; E/, and N@�f� ! 0 in L2

r;k�1
.�; E/ as

�!1. Then (4.1) implies that kf�k2H1=2.E/ 6 C for some constantC . By the Rellich
lemma, the inclusion map i�WH 1=2

r;k
.�; E/! L2

r;k
.�; E/ is compact, and one can

extract a subsequence of the sequence f� which converges in the L2
r;k
.�;E/-norm.

Thus, for f 2 dom.N@;E/\ dom.N@�;E/, f ? ker.�;E/, the hypotheses of [13, Theo-
rem 1.1.3] are satisfied and so this theorem implies that ker.�;E/ is finite-dimensional
and the estimate

(4.2) kf k2
H0.E/

6 C.kN@f k2
H0.E/

C kN@�f k2
H0.E/

/

holds, and hence

(4.3) kf k2
H0.E/

6 Ck�f k2
H0.E/

; for f 2 dom.�; E/, f ? ker.�; E/:

Thus the closed graph theorem (cf. [13, Theorem 1.1.1]) implies that � has closed
range and forces, since� is self-adjoint, the strong Hodge decomposition

L2r;k.�;E/ D Ran.�; E/˚ ker.�; E/

D N@N@� dom.�; E/˚ N@� N@ dom.�; E/˚ ker.�; E/:

Estimate (4.3) also implies the existence of N as a unique bounded operator on
L2
r;k
.�; E/ that inverts � on ker.�; E/?. We extend N to the whole L2

r;k
.�; E/

space by setting N D 0 on ker.�; E/. The properties follow directly, as in the proof
of [9, Theorem 3.1.14].
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Theorem 4.2. Under the same assumptions as Theorem 4.1, for k > q (resp. k 6 q),
the N@-Neumann operator N WL2

r;k
.�;E/! L2

r;k
.�;E/ is compact.

Proof. To show thatN is compact, it suffices to show compactness on ker.�;E/?

(since N D 0 on ker.�; E/). When f 2 ker.�; E/? (and hence Nf 2 ker.�; E/?),
integration by parts and the Cauchy–Schwarz inequality imply

kN@Nf k2
H0.E/

C kN@�Nf k2
H0.E/

D hf;Nf iH0.E/

6 kf kH0.E/kNf kH0.E/ 6 kf k2H0.E/:

The last inequality follows from (4.3) for Nf . Applying (4.1) and then (4.3) to Nf ,
one obtains

kNf k2
H1=2.E/

6 C.kN@Nf k2
H0.E/

C kN@�Nf k2
H0.E/

C kNf k2
H0.E/

/ 6 Kkf k2
H0.E/

;

whereK is a positive constant. ThusN is compact onL2
r;k
.�;E/ by the Rellich lemma

(the embedding of H 1=2

r;k
.�;E/ into L2

r;k
.�;E/ is compact).

Theorem 4.3. Under the same assumptions as Theorem 4.1, the following are
equivalent:

(1) the compactness of the N@-Neumann operators N ;

(2) the compactness of the embedding jr;k of the space dom.N@; E/ \ dom.N@�; E/,
provided with the graph norm kf k C kN@uk C kN@?uk, into C1

r;k
.x�;E/;

(3) for every " > 0 there is a C" > 0 such that, for u 2Dp;q , 0 < q < n� 1, we have

(4.4) kuk2 6 "Q.u; u/C C"kuk2H�1.E/
:

Proof. First we prove (3)) (1). We want to prove that for any bounded sequence
¹unº � C

1
r;k
.x�;E/, the sequence ¹Nr;k.un/º admits a convergent subsequence. Since

Nr;k is a bounded operator in C1
r;k
.x�;E/, we observe that ¹Nr;k.un/º is a bounded

sequence inC1
r;k
.x�;E/. According to the Bolzano–Weierstrass theorem, every bounded

sequence has a convergent subsequence. Hence there exists a subsequence vj D fnj
such that ¹N.vj /º converges in H�1

r;k
.�;E/ since C1

r;k
.x�;E/ is compactly embedded

in H�1
r;k
.�;E/. To conclude that, it is sufficient to prove that ¹Nr;k.vj /º is a Cauchy

sequence. We observe that estimate (3.1) applied to ¹Nr;k.vj /º gives

kNr;k.vj � vl/k � "kvj � vlk C C"kNr;k.vj � vl/kH�1.E/:

For fixed ı > 0, we get the conclusion choosing " such that "kvj � vlk � ı
2

for any
j , l and M 2 N such that "kNr;k.vj � vl/k 6 ı

2
for any j; l �M . Then ¹Nr;k.vj /º
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is a Cauchy sequence. Similarly, one obtains that ¹�Nr;k.vj /º is a Cauchy sequence
which implies that ¹vj º is a Cauchy sequence.

Now we prove (1)) (2). It is easy to observe that Nr;k D jr;k , when the range
dom.N@;E/ \ dom.N@�; E/ is endowed with the graph norm. On the other hand, com-
pactness is stable under adjunction.

Finally, we prove (2)) (3). If the compactness estimate does not hold we can
choose a sequence ¹unº such that Q.un; un/ D 1 and

(4.5) 1 � kunk
2
� � C nkunk

2
H�1.E/

for any n 2 N. By compactness of the embedding there exists a subsequence vj D fnj
which converges in C1

r;k
.x�;E/ and hence also inH�1

r;k
.�;E/. From (4.5) the common

limit is 0. But this contradicts the fact that, again by (4.5), kunk > �.

Now we briefly review classical results about Sobolev estimates for�.

Theorem 4.4. Let X be a Stein manifold of complex dimension n. Let � be a
weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X .
Suppose that b� has the property .q � P /. Let E be a holomorphic vector bundle, of
rank p, on X . Then

kf k2H�.E/ . k�f k
2
H�.E/; for f 2 Dr;k.�;E/ \ dom.�; E/:

Proof. Let ¹fj ºNjD1 be a finite covering of b� by a local patching. Extend the
subelliptic estimate

kf k2H� . k�f k
2
H� ; for f 2 Dr;k.�/ \ dom.�/

to E-valued forms (for the proof see [34, Theorem 3.1]). Thus the proof follows as in
Theorem 3.2.

Theorem 4.5 (Cf. [23]). Let X be an n-dimensional complex manifold of complex
dimension n and � be a bounded domain of X . Let � b X be a submanifold with
smooth boundary. Suppose the compactness estimate (4.4) holds on �. Let E be a
holomorphic vector bundle, of rank p, on X . Suppose further that the N@-closed .r; k/-
form ˛ is inHm.�;E/ and ˛ ? ker.�; E/. Then there is a constant Cm such that the
canonical solution u of N@u D ˛, with u ? ker N@, satisfies

kf kHm.E/ 6 Cm.k˛kHm.E/ C kf k/:

Since C1.x�; E/ D
T1
mD0H

m.�; E/, it follows that if ˛ 2 C1
r;k
.x�; E/, then u 2

C1
r;k�1

.x�;E/.
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Theorem 4.6. Let X be a Stein manifold of complex dimension n. Let � be a
weakly q-pseudoconvex (resp. q-pseudoconcave) domain with smooth boundary in X .
Suppose that b� has the property .q � P /. Let E be a holomorphic vector bundle,
of rank p, on X . Then, for ˛ 2 C1

r;k
.x�; E/, q 6 k 6 n � 2, satisfying N@f D 0 in

the distribution sense in X , there exists u 2 C1
r;k�1

.x�;E/, such that N@u D f in the
distribution sense in X .

5. Closed range property

Closed range properties of the N@-operator are closely connected to the existence of
the N@-Neumann operator.

Theorem 5.1. Under the same assumptions as Theorem 4.1, for k > q (resp. k 6 q),
we have

(i) the operator N@ has closed range in L2
r;k
.�;E/ and L2

r;kC1
.�;E/,

(ii) the operator N@� has closed range in L2
r;k
.�;E/ and L2

r;k�1
.�;E/.

Proof. Using (4.2) and by using [13, Theorems 1.1.3 and 1.1.2], we obtain that
N@WL2

r;k
.�; E/ ! L2

r;kC1
.�; E/ and N@�WL2

r;k
.�; E/ ! L2

r;k�1
.�; E/ have closed

range.

Theorem 5.2. Under the same assumptions as Theorem 4.1, for k > q (resp. k 6 q),
the N@-Neumann operator N exists and N WL2

r;k
.�;E/! H 1

r;k
.�;E/.

Proof. From (4.1),

kf k2
H1=2.E/

6 C.kN@f k2
H0.E/

C kN@�f k2
H0.E/

C kf k2
H0.E/

/;

for f 2 Dom.N@; E/ \ Dom.N@�; E/. Since there exists an interpolation between
H 1
r;k
.�;E/ and L2

r;k
.�;E/ as illustrated in [9, Appendix B and Theorem B.3] and

by using the procedure of [9, Theorem 5.2.1], we conclude that the range of N is
H 1
r;k
.�;E/. This gives the existence of the N@-Neumann operator N WL2

r;k
.�;E/!

H 1
r;k
.�;E/.

Theorem 5.3. Under the same assumptions as Theorem 4.1, for k > q (resp. k 6 q),
there exists u 2 H 1=2

r;k
.�;E/ with N@u D f .

Proof. From Theorem 4.1, for anyf 2L2
r;k
.�;E/\ ker.N@;E/ andf ? ker.�;E/,

there exists a u 2 H 1=2

r;k
.�;E/ with N@u D f .
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6. The N@ problem with support condition

By applying the duality of the N@-Neumann problem one obtains a solution to the
N@-equation with exact support on such domains.

Theorem 6.1. Let X be a Stein manifold of complex dimension n. Let � be a
weakly q-pseudoconvex domain with smooth boundary in X . Suppose that b� has the
property .q � P /. Let E be a holomorphic vector bundle, of rank p, on X . Then, for
q 6 k 6 n � q and for f 2 L2

r;k
.X;E/, suppf � x� with N@f D 0 in the distribution

sense in X , there exists u 2 L2
r;k�1

.X; E/, supp u � x� such that N@u D f in the
distribution sense in X .

Proof. Let f 2 L2
r;k
.X; E/ and supp f � x�. Then f 2 L2

r;k
.�; E/. From

Theorem 4.1, Nn�r;n�k exists for n � k > q, and since Nn�r;n�k D .�n�r;n�k/�1

on Ran.�n�r;n�k; E�/ and Ran.Nn�r;n�k; E�/ � dom.�n�r;n�k; E�/, we have
Nn�r;n�k #E ?f 2 dom.�n�r;n�k; E�/ � L2n�r;n�k.�; E

�/; for k 6 n � q. Thus,
one can define u 2 L2

r;k�1
.�;E/ by

(6.1) u D � ? #E* N@Nn�r;n�k #E ?f:

Extend u to X by defining u D 0 in X n x�. That the extended form u satisfies the
equation N@u D f in the distribution sense in X is proved as follows. We shall first
prove that N@u D f in the distribution sense in �.

For � 2 dom.N@;E�/ � L2
n�r;n�k�1

.�;E�/, one obtains

hN@�; #E ?f i� D
Z
�

N@� ^ ?.#E* #E* ?f / D .�1/rCk
Z
�

N@� ^ f

D .�1/.rCk/.rCk�1/
Z
�

f ^ N@� D .�1/rCkhf; #E* ?N@�i�:

Since # D N@� on Br;k.x�;E/, when # acts in the distribution sense and Br;k.x�;E/

is dense in dom.N@;E/ \ dom.N@�; E/ in the graph norm, from [13, Proposition 2.1.1],
then from (2.1) one obtains

hN@�; #E ?f i� D hf; N@
� #E* ?�i�:

Since suppf � x�, then we obtain

hN@�; #E* ?f i� D hf;
N@� #E* ?�i� D h

N@f; #E* ?�iX D 0:

It follows that N@�.#E ?f / D 0 on �. Using Theorem 4.1 (iii), we have

(6.2) N@�Nn�r;n�k.#E ?f / D Nn�r;n�s�1 N@�.#E ?f / D 0:
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Thus, from (2.1), (6.1) and (6.2), we obtain

N@u D �N@ ? #E* N@Nn�r;n�k #E ?f

D .�1/rCk ? #E* N@� N@Nn�r;n�k #E ?f

D .�1/rCk ? #E*.N@� N@C N@N@�/Nn�r;n�k #E ?f

D .�1/rCk ? #E* #E ?f
D f

in the distribution sense in �. Since u D 0 in X n �, then for � 2 dom.N@�; E/ �
L2
r;k
.X;E/, we obtain

hu; N@��iX D hu;
N@��i� D h#E ?N@

��; #E ?ui�:

Thus, from (2.1), we obtain

(6.3) hu; N@��iX D .�1/
rCk
hN@ #E ?�; #E ?ui� D h#E ?�; #E ?N@ui� D hN@u; �i�;

where the second equality holds since

#E ?u D .�1/rCkC1 N@Nn�r;n�k #E ?f 2 dom.N@�; E�/:

Thus, from (6.3), we obtain

hu; N@��iX D hf; �i� D hf; �iX :

Thus N@u D f in the distribution sense in X . Thus the proof follows.

This gives the extension of N@b closed forms from the boundary of such domains,
where N@b is the tangential Cauchy Riemann operator.

Theorem 6.2. Under the same assumptions as Theorem 6.1, for f 2 C1
r;k
.b�;E/,

q6 k6 n� q� 1, satisfying N@bf D 0, there existsF 2C1
r;k
.x�;E/ such thatF jb�D f

and N@F D 0.

Proof. Let f 2 C1
r;k
.b�; E/, q 6 k 6 n � q � 1, with N@bf D 0. Then there

exists f 0 2 C1
r;k
.x�;E/ such that f 0jb� D f and N@f 0 vanishes to infinite order on

b�. Following Theorem 6.1, there exists f 2 C1
r;k
.x�;E/ with supp f � x� such that

N@f D N@f 0. Then the form F D f 0 � f satisfies F 2 C1
r;k
.x�; E/, F jb� D f and

N@F D 0.

Theorem 6.3. Under the same assumptions as Theorem 6.1, if f 2 C1
r;k
.b�;E/,

q � k � n� q � 1, with N@bf D 0, there exists u 2 C1
r;k�1

.b�;E/, such that N@buD f .
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Proof. Let f 2 C1
r;k
.b�; E/, q 6 k 6 n � q � 1, with N@bf D 0. Then from

Theorem 6.2 there exists F 2 C1
r;k
.x�;E/ such that F jb� D f and N@F D 0. Following

Theorem 6.1, there exists U 2 C1
r;k�1

.x�;E/ satisfying N@U D f in�. Then uD U jb�
satisfies N@bu D f .

The necessary and sufficient condition on f 2 H 1=2

r;k
.b�;E/ to have a N@-closed

extension F on � is summarized as follows. In what follows, differentiation is always
taken in the distribution sense.

Theorem 6.4. Under the same assumptions as Theorem 6.1, for f 2H 1=2

r;k
.b�;E/,

q � k � n � q � 1, we assume that

(6.4) N@bf D 0:

Then there exists F 2 L2
r;k�1

.�;E/ such that F D f on b� and N@F D 0 in �.

Proof. Since f 2 H 1=2

r;k
.b�;E/ is a form, one can extend f componentwise to

� such that each component is in H 1.�; E/. For the detailed construction of such
an extension, see e.g. [7, Lemma 9.3.3]. Let f 0 be an arbitrary extension of f with
f 0 2 H 1

r;k
.�;E/.

From (6.4), we can require that f1 D N@bf 0 D 0 in b�. If we extend f1 to be zero
outside x�, we get N@f1 D 0 in X in the distribution sense. We set

v D � ? #E* N@N #E ?f:

From Theorem 6.1 and its proof, we have v 2 L2
r;k
.�;E/. We set v D 0 outside �.

Then N@v D f1 in the distribution sense on X with v supported in x�.
SettingF D f 0 � v in�, we haveF D f on b� and N@F D N@f 0 � N@vD f1 � f1D 0

on �.
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