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1. Introduction and statements of the main results

Let n 2N and 1 < r;p <1. Denote by M the standard Hardy–Littlewood maximal
function on Rn such that

Mf .x/ D sup
r>0

1

jBr.x/j

Z
Br .x/

jf .y/jdy; x 2 Rn;

where Br.x/ is the ball centered at x 2 Rn with radius r > 0 and f 2 L1loc.R
n/ is a

locally integrable function. Fefferman and Stein [4] proved the following vector valued
maximal inequality:


�X

j

.Mfj /r
� 1
r




Lp.Rn/

� Cn;p;r




�X
j

jfj j
r
� 1
r




Lp.Rn/

;(1.1)

where fj 2 L1loc.R
n/, j 2 N, and Cn;p;r > 0 is a constant depending only on n; p; r .
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The present paper addresses the corresponding vector valued inequalities in a type
of Sobolev multiplier spaces. Let 0 < ˛ <1 and 1 < s � n=˛. Recall the definition
of Bessel capacities Cap˛;s.�/,

Cap˛;s.E/ D inf
®
k'ksLs.Rn/ W ' � 0; G˛ � ' � 1 on E

¯
;

where E � Rn is an arbitrary set, G˛.x/ D F �1Œ.1C j�j2/�˛=2�.x/, x 2 Rn are the
Bessel kernels, and F �1 is the inverse distributional Fourier transform on Rn. The
Sobolev multiplier spaces M ˛;s

p associated with Bessel capacities are then defined to
be the subclass of the locally p-integrable space Lploc.R

n/ such that

kf kM˛;s
p
D sup

K

 R
K
jf .x/jpdx

Cap˛;s.K/

! 1
p

<1

whenever f 2M ˛;s
p . Here, the supremum is taken over all compact sets K � Rn with

non-zero capacities. It is shown in [7, Theorem 3.1.4] that the quantity kf kM˛;s
p

is
equivalent to the best constant C > 0 making the following trace inequality hold:�Z

Rn
j.G˛ � '/.x/j

s
jf .x/jpdx

� 1
p

� Ck'k
s
p

Ls.Rn/

for all ' 2 Ls.Rn/. Several characterizations of the Sobolev multiplier spaces M ˛;s
p

are studied in [8]. I. E. Verbitsky showed in [6, Theorem, Section 2.6.3] that

kMf kM˛;s
p
� Cn;˛;s;pkf kM˛;s

p
(1.2)

(see also Proposition 2.2 below). Motivated by (1.1) and (1.2), one may reasonably
suspect if the following Fefferman–Stein type vector valued inequality
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.Mfj /r
� 1
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M
˛;s
p

� Cn;˛;s;p;r




�X
j

jfj j
r
� 1
r




M
˛;s
p

(1.3)

holds. Unfortunately, it turns out that (1.3) does not hold, which we will show in the
proof of Theorem 1.1 in Section 2. Nevertheless, the following local type of vector
valued inequality is true.

Theorem 1.1. Let n 2 N, 0 < ˛ <1, 1 < s � n=˛, and 1 < p; r <1. Define
the local Hardy–Littlewood maximal function Mloc by

Mlocf .x/ D sup
0<r�1

1

jBr.x/j

Z
Br .x/

jf .y/jdy; x 2 Rn;
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where f 2 L1loc.R
n/. Then the vector valued inequality


�X

j

�
Mlocfj

�r� 1r 



M
˛;s
p

� Cn;˛;s;p;r




�X
j

jfj j
r
� 1
r




M
˛;s
p

(1.4)

holds for any sequence ¹fj º of functions such that .
P
j jfj j

r/
1
r 2M

˛;s
p . The vector

valued inequality .1.4/ does not hold if Mloc is replaced by M.

Proposition 1.2. The vector valued inequality .1.4/ fails for r D 1. In other words,
there is a sequence ¹fj º of functions such that


X

j

jfj j




M
˛;s
p

<1 but



X

j

Mlocfj





M
˛;s
p

D1:

The following theorem gives another localized version of the Fefferman–Stein type
vector valued inequality in terms of M.

Theorem 1.3. Let n 2N, 0 < ˛ <1, 1 < s � n=˛, 1 < p; r <1, x0 2 Rn, and
R0 > 0. Then the vector valued inequality
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j

.Mfj /r
� 1
r
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p

� Cn;˛;s;p;r;R0
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j
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� 1
r
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˛;s
p

(1.5)

holds true for any sequence ¹fj º of functions such that .
P
j jfj j

r/
1
r 2M

˛;s
p , where

supp.fj / � BR0.x0/, j 2 N, and the constant Cn;˛;s;p;r;R0 > 0 depends only on the
parameters n; ˛; s; p; r; R0 but not on x0. The vector valued inequality .1.5/ fails for
r D 1.

Assume further that 1 < s < n=˛. Then, the vector valued inequality


�X
j

.Mfj /r
� 1
r




M
˛;s
p

� Cn;˛;s;p;r;R0




�X
j

jfj j
r
� 1
r




M
˛;s
p

(1.6)

holds true for any sequence ¹fj º of functions such that .
P
j jfj j

r/
1
r 2M

˛;s
p , where

supp.fj / � BR0.x0/ and j 2 N.

A function spaceX is said to be a predual ofM ˛;s
p if the dual spaceX� is isomorphic

to M ˛;s
p . In other words, for any continuous linear functional L 2 X�, there exists a

unique function g 2M ˛;s
p , such that

L.f / D

Z
Rn
f .x/g.x/dx; f 2 X
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and the operator norm kLk satisfies

C�1kgkM˛;s
p
� kLk � CkgkM˛;s

p

for some constant C > 0. Several preduals ofM ˛;s
p have been characterized in [8], one

of which is the space N ˛;s
q , q D p=.p � 1/, which consists of functions f with the

finite quantity

kf kN˛;sq D inf
!

�Z
Rn
jf .x/jq!.x/1�qdx

� 1
q

;

where the infimum is taken over all weights ! � 0 such that

k!kL1.Cap˛;s/ D

Z 1
0

Cap˛;s
�
¹x 2 Rn W !.x/ > tº

�
dt � 1:

It is shown in [8, Theorem 1.10] that

kMlocf kN˛;sq � Cn;˛;s;qkf kN˛;sq(1.7)

and the inequality (1.7) cannot be improved by replacing Mloc with M since N ˛;s
q is

canonically embedded into L1.Rn/ (see Proposition 2.1 below) and it is known that M
is unbounded onL1.Rn/. The vector valued analogue of (1.7) is given by the following
theorem.

Theorem 1.4. Let n 2 N, 0 < ˛ <1, 1 < s � n=˛, and 1 < q; r <1. Then,
the vector valued inequality


�X

j

�
Mlocfj

�r� 1r 



N
˛;s
q

� Cn;˛;s;q;r




�X
j

jfj j
r
� 1
r




N
˛;s
q

(1.8)

holds for any sequence ¹fj º of functions such that .
P
j jfj j

r/
1
r 2 N

˛;s
q . The vector

valued inequality .1.8/ fails for r D 1.

Note that the Fefferman–Stein type vector valued inequalities also hold for Morrey
spaces and their preduals in place of M ˛;s

p in (1.3) (see [5, Theorems 2.9 and 2.12]).
Our method to prove Theorems 1.1 and 1.4 can also be applied to the Morrey spaces
and their preduals (see Section 4 for details).

2. Proofs of the main results

Proposition 2.1. Let n 2 N, 0 < ˛ <1, 1 < s � n=˛, and 1 < q <1. It holds
that

kf kL1.Rn/ � Cn;˛;s;qkf kN˛;sq
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for any function f 2 N ˛;s
q . As a result, .1.7/ fails by replacing Mloc with M.

Proof. We first show that

kf kM˛;s
p
� kf kL1.Rn/:(2.1)

Indeed, by Young’s inequality, one has

kG˛ � 'kLs.Rn/ � kG˛kL1.Rn/k'kLs.Rn/ D k'kLs.Rn/;

which gives

jEj � Cap˛;s.E/; E � Rn;(2.2)

and hence

kf kM˛;s
p
D sup

K

�R
K
jf .x/jpdx

Cap˛;s.K/

� 1
p

� kf kL1.Rn/ sup
K

� R
K
1dx

Cap˛;s.K/

� 1
p

D kf kL1.Rn/ sup
K

�
jKj

Cap˛;s.K/

� 1
p

� kf kL1.Rn/;

which yields (2.1). Now, we use the fact that N ˛;s
q is isomorphic to the Köthe dual

.M
˛;s
p /0 defined by

kf k.M˛;s
p /0 D sup

²Z
Rn
jf .x/g.x/jdx W g 2M ˛;s

p ; kgkM˛;s
p
� 1

³
; q D

p

p � 1

(see [8, Theorem 1.7]). As a result, we obtain by (2.1) that

kf kL1.Rn/ D sup
²Z

Rn
jf .x/g.x/jdx W g 2 L1.Rn/; kgkL1.Rn/ � 1

³
� sup

²Z
Rn
jf .x/g.x/jdx W g 2M ˛;s

p ; kgkM˛;s
p
� 1

³
D kf k.M˛;s

p /0

� Cn;˛;s;qkf kN˛;sq ;

which yields the result.
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Readers may find that Verbitsky’s proof of (1.2) in [6, Theorem, Section 2.6.3] is
not complete, as the assumption s < n=˛ is made throughout the argument. We supply
the proof which includes the case s D n=˛ in the following proposition.

Proposition 2.2. Let n 2 N, 0 < ˛ <1, 1 < s � n=˛, and 1 < p <1. It holds
that

kMf kM˛;s
p
� Cn;˛;s;pkf kM˛;s

p

for any function f 2M ˛;s
p .

Proof. Introduce

eMf .x/ D sup
r>1

1

jBr.x/j

Z
Br .x/

jf .y/jdy; x 2 Rn;

where f 2 L1loc.R
n/. It is clear that Mf �Mlocf C eMf . We first show that

keMf kM˛;s
p
� Cn;˛;s;pkf kM˛;s

p
:(2.3)

Recall the estimate

C�1n;˛;sjBr.x/j � Cap˛;s.Br.x// � Cn;˛;sjBr.x/j; r > 1; x 2 Rn

(see [7, Proposition 3.1.4 (iii)]). Then, we have by Hölder’s inequality that

fMf.x/ � sup
r>1

�
1

jBr.x/j

Z
Br .x/

jf .y/jpdy

� 1
p

� Cn;˛;s;pkf kM˛;s
p
:

By using (2.2), one has

kfMf kM˛;s
p
� Cn;˛;s;p sup

K

�
jKj

Cap˛;s.K/

� 1
p

kf kM˛;s
p
D Cn;˛;s;pkf kM˛;s

p
;

which yields (2.3). It remains to show that

kMlocf kM˛;s
p
� Cn;˛;s;pkf kM˛;s

p
:(2.4)

To this end, let K � Rn be a compact set with Cap˛;s.K/ > 0. Then, there exists a
V K � 1 on K nN for some set N � Rn with Cap˛;s.N / D 0 and

.V K/ı 2 Aloc
1 ;(2.5) �

.V K/ı
�
Aloc
1

� c.n; ˛; s; ı/;

.V K/ı


L1.Cap˛;s/

� Cap˛;s.K/;(2.6)
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where ı 2 .1; n=.n � ˛// for s < 2 and ı 2 .s � 1; n.s � 1/=.n � ˛s// for s � 2 (see
[8, Lemma 3.2]). Note that in (2.5), a nonnegative weight ! is said to be in the Aloc

1

class provided that

Mloc!.x/ � C!.x/ a:e:(2.7)

for some constant C > 0. The infimum of all such constants is denoted by Œ!�Aloc
1

.
Recall that if ! 2 Aloc

1 , thenZ
Rn

�
Mloc'.x/

�q
!.x/dx � C.n; q; c/

Z
Rn
j'.x/jq!.x/dx

for some constant C.n; q; c/ > 0 depending only on n; q; c with Œ!�Aloc
1
� c (see [8,

Lemma 8.2]). Further, note that Cap˛;s.N /D 0 entails jN j D 0 by (2.2). Consequently,
it follows thatZ

K

�
Mlocf .x/

�p
dx �

Z
Rn

�
Mlocf .x/

�p
.V K/ı.x/dx

� Cn;˛;s

Z
Rn
jf .x/jp.V K/ı.x/dx

D Cn;˛;s

Z 1
0

Z
¹.VK/ı>tº

jf .x/jpdxdt

� Cn;˛;skf k
p

M
˛;s
p

Z 1
0

Cap˛;s
�®
x 2 Rn W .V K/ı.x/ > t

¯�
dt

D Cn;˛;skf k
p

M
˛;s
p



.V K/ı


L1.Cap˛;s/

� Cn;˛;skf k
p

M
˛;s
p
� Cap˛;s.K/:

Dividing both sides by Cap˛;s.K/ and then taking supremum over all such compact
sets K, one obtains the estimate (2.4) and the proof is now complete.

Before we proceed to the proof of Theorem 1.1, we recall some classic facts regarding
weighted norm inequalities. For 1 < p <1, we say that a nonnegative weight ! 2 Ap
if there exists a constant C > 0 such that�

1

jBj

Z
B

!.x/dx

��Z
B

!.x/�
1
p�1dx

�p�1
� C(2.8)

for all balls B in Rn. On the other hand, we say that ! 2 A1 if

M!.x/ � C!.x/ a:e:
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for some constant C > 0. The infima of all such constants C > 0 are denoted by Œ!�Ap
for 1� p <1. We haveAp � Aq for 1� p � q <1with Œ!�Aq � Œ!�Ap . It is shown
in [3, Theorem 3.1] thatZ

Rn

�X
j

�
Mfj .x/

�r�pr
!.x/dx � N

�
Œ!�Ap

� Z
Rn

�X
j

jfj .x/j
r
�p
r

!.x/dx(2.9)

for some increasing function N W Œ0;1/! Œ0;1/, where 1 < p; r <1 and ! 2 Ap .
On the other hand, the local version Aloc

p for 1 < p <1 is defined to be the class
consisting of nonnegative weights ! such that (2.8) is satisfied for all balls with radii
less than 1. We have similarly thatAloc

p �A
loc
q for 1� p � q <1with Œ!�Aloc

q
� Œ!�Aloc

p
.

Besides that, by [9, Lemma 2.11], one has

Z
Rn

�X
j

�
Mlocfj .x/

�r�pr
!.x/dx � N 0

�
Œ!�Aloc

p

� Z
Rn

�X
j

jfj .x/j
r
�p
r

!.x/dx

(2.10)

for some increasing function N 0 W Œ0;1/! Œ0;1/, where 1 < p; r <1 and ! 2 Aloc
p .

Proof of Theorem 1.1. Recall the characterization of M ˛;s
p as

k'kM˛;s
p
� sup

!

�Z
Rn
j'.x/jp!.x/dx

� 1
p

;(2.11)

where the supremum is taken over all nonnegative weights ! 2 Aloc
1 with the properties

k!kL1.Cap˛;s/ � 1 and Œ!�Aloc
1
� c.n; ˛; s/ for some constant c.n; ˛; s/ > 0 depending

only on n; ˛; s (see [8, Theorem 1.2]). As a result, (1.4) follows by combining (2.11)
and (2.10). To show that (1.4) does not hold if Mloc is replaced by M, we consider the
following example in the one-dimensional case R (see also [10, Theorem 1, page 51]).
Let fj D �.2j�1;2j � for j D 1; 2; : : : Then�X

j

jfj j
r
� 1
r

D �.1;1/ 2 L
1.R/:

Note that �.1;1/ 2M ˛;s
p by (2.1). Since Mfj .x/ � 1=8 for all jxj � 2j , we obtainX

j

.Mfj .x//r �
X

j W2j�jxj

1

8r
;

which yields X
j

.Mfj .x//r D1
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everywhere x 2 R and hence (1.4) fails for these fj .

Proof of Proposition 1.2. We consider the one-dimensional case R. LetN 2N,
N � 3,

fj D �
h
j�1
N ; jN

�; j D 1; 2; : : : ; N;

and fj D 0 for j � N C 1. Fix j D 1; 2; : : : ; N and x 2 Œ0; 1�. Assume that x �
.j � 1/=N . Let ı D j=n � x. Clearly, 0 < ı < 1, and hence

Mlocfj .x/ �
1

j.x � ı; x C ı/j

Z xCı

x�ı

fj .y/dy D

1
N

2. j
N
� x/

:

If .j � 1/=N < x < j=N , then by choosing 0 < ı < 1 small enough such that
.x � ı;xC ı/� ..j � 1/=N;j=N /, one has Mlocfj .x/� 1. Subsequently, if x � j=N ,
then by letting ı D x � .j � 1/=N , we have 0 < ı < 1 and hence

Mlocfj .x/ �
1

j.x � ı; x C ı/j

Z xCı

x�ı

fj .y/dy D

1
N

2.x � j�1
N
/
:

We conclude that for x 2 Œ0; 1�, it follows that

Mlocfj .x/ �

´
1
2j
; x � j�1

N
;

1
2.N�jC1/

; x > j�1
N
:

Consequently, for x 2 Œ0; 1�, we haveX
j

Mlocfj .x/ D
X

1�j�N

x� j�1N

Mlocfj .x/C
X

1�j�N

x> j�1N

Mlocfj .x/

�
1

2

X
1�j�N

x� j�1N

1

j
C
1

2

X
1�j�N

x> j�1N

1

N � j C 1

�
1

2

NX
jD2

1

j
:

Note that X
j

fj D �Œ0;1/ 2M
˛;s
p
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by (2.1). However,


X
j

Mlocfj




p
M
˛;s
p

�
1

Cap˛;s.Œ0; 1�/

�Z 1

0

X
j

Mlocfj .x/
�p
dx � C

NX
jD2

1

j
!1

as N !1. Hence, (1.4) fails for r D 1.

Proof of Theorem 1.3. Let x0 2 Rn, R0 > 0, and ! 2 Aloc
1 . Then there exists

! 2 A1 such that ! D ! on BR0.x0/ with Œ!�A1 � Cn;R0 Œ!�A1 , where Cn;R0 > 0 is
a constant depending only on n and R0 but not on x0 (see [8, Lemma 8.1]).

Note that ! 2 Ap with Œ!�Ap � Œ!�A1 . ThenZ
Rn

�X
j

.Mfj .x//r
�p
r

� �BR0 .x0/
.x/!.x/dx

D

Z
Rn

�X
j

.Mfj .x//r
�p
r

!.x/dx

� N .Œ!�A1/

Z
Rn

�X
j

jfj j
r
�p
r

!.x/dx(2.12)

D N .Œ!�A1/

Z
Rn

�X
j

jfj j
r
�p
r

!.x/dx(2.13)

� N .Cn;R0 Œ!�A1/

Z
Rn

�X
j

jfj j
r
�p
r

!.x/dx

where we have used (2.9) in (2.12) and (2.13) follows by the fact that .
P
j jfj j

r/
p
r

is supported in BR0.x0/. As a result, (1.5) follows by combining the above estimates
with (2.11).

The example given in the proof of Proposition 1.2 also shows that (1.5) fails for
r D 1.

The proof of (1.6) is postponed to Section 4 for technical reasons.

Proof of Theorem 1.4. Note that

k'kN˛;sq � inf
!

�Z
Rn
j'.x/jq!.x/1�qdx

� 1
q

;(2.14)

where the infimum is taken over all nonnegative weights ! 2 Aloc
1 with

k!kL1.Cap˛;s/ � 1 and Œ!�Aloc
1
� c.n; ˛; s/
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for some constant c.n; ˛; s/ > 0 depending only on n; ˛; s (see [8, page 6]). Now,
observe that when ! 2 Aloc

1 � A
loc
p , we have !1�q D !�1=.p�1/ 2 Aloc

q , which yields
(1.8) by combining (2.14) and (2.10).

The failure of (1.8) when r D 1 is exhibited by the same example in the proof
of Proposition 1.2. To this end, we first show that �Œ0;1� 2 N

˛;s
q . Indeed, by letting

K D Œ0; 1� and choosing
�
V K

�ı as in (2.5), then



�Œ0;1�

qN˛;sq �

Z 1

0

�
.V K/ı

.V K/ıkL1.Cap˛;s/

�1�q
dx

�


.V K/ı

q�1

L1.Cap˛;s/

� Cn;˛;s;q

<1;

as claimed. Now, we see that for N D 1; 2; : : : ,

C

NX
jD2

1

j
k�Œ0;1�kN˛;sq �




X
j

Mlocfj





N
˛;s
q

� Cn;˛;s;q




X
j

fj





N
˛;s
q

D Cn;˛;s;qk�Œ0;1/kN˛;sq :

Since 0 < k�Œ0;1�kL1.Rn/ � Cn;˛;s;qk�Œ0;1�kN˛;sq by Proposition 2.1, taking N !1
would yield a contradiction.

3. Vector valued maximal inequalities in Sobolev multiplier spaces associated
with Riesz capacities

Let n 2N, 0 < ˛ <1, and 1 < s < n=˛. The Riesz capacities cap˛;s.�/ are defined
to be

cap˛;s.E/ D inf
®
k'ksLs.Rn/ W ' � 0; I˛ � ' � 1 on E

¯
;

where E � Rn is an arbitrary set, I˛.x/ D jxj�.n�˛/, x 2 Rn are the Riesz kernels.
The (homogeneous) Sobolev multiplier spaces PM ˛;s

p for 1 < p <1 associated with
Riesz capacities are defined to be the subspaces of Lploc.R

n/ such that

kf k PM˛;s
p
D sup

K

�R
K
jf .x/jpdx

cap˛;s.K/

� 1
p

<1
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whenever f 2 PM ˛;s
p . Here, the supremum is taken over all compact sets K � Rn with

cap˛;s.K/ > 0. Denote by PN ˛;s
q the preduals of PM ˛;s

p , where q D p=.p � 1/. We have
similar characterizations as in (2.11) and (2.14):

k'k PM˛;s
p
� sup

!

�Z
Rn
j'.x/jp!.x/dx

� 1
p

;(3.1)

where the supremum is taken over all nonnegative weights ! 2 A1, with the properties
k!kL1.cap˛;s/ � 1 and Œ!�A1 � c.n; ˛; s/, and

k'k PN˛;sq
� inf

!

�Z
Rn
j'.x/jq!.x/1�qdx

� 1
q

;(3.2)

where the infimum is taken over all nonnegative weights ! 2 A1 with

k!kL1.cap˛;s/ � 1

and Œ!�A1 � c0.n; ˛; s/. Here, the constants c.n; ˛; s/; c0.n; ˛; s/ > 0 depend only on
n; ˛; s. As a result, combining (3.1) and (3.2) with (2.9), we have the vector valued
maximal inequalities that


�X

j

.Mfj /r
� 1
r




X
� Cn;˛;s;p;r




�X
j

jfj j
r
� 1
r




X

(3.3)

for X D PM ˛;s
p and PN ˛;s

q . As in Proposition 1.2, the vector valued inequalities (3.3) fail
for r D 1.

We remark that the example given in the proof of Theorem 1.1 does not counter
the validity of (3.3) for X D PM

˛;s
p . In fact, �.1;1/ … PM ˛;s

p . To see this, for each
N D 1; 2; : : : , we compute that

k�.1;1/k
p

PM
˛;s
p

�

R N
0
�.1;1/.x/dx

cap˛;s.Œ0; N �/
�
N � 1

N 1�˛s
!1

as N !1. Here, we have used the fact that cap˛;s.Br.x// D rn�˛s � cap˛;s.B1.0//
(see [1, Theorem 5.1.2]).

It is worth mentioning that the embeddingL1.Rn/ ,! PM
˛;s
p fails, as already shown

in the above example. Nevertheless, the following embedding

L
np
˛s ;1.Rn/ ,! PM ˛;s

p(3.4)

is valid. Indeed, by the Sobolev embedding theorem, one has

kI˛ � 'kLs� .Rn/ � Cn;˛;sk'kLs.Rn/;
1

s�
D
1

s
�
˛

n
;
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which yields

jEj1�
˛s
n � Cn;˛;s � cap˛;s.E/; E � Rn:

As a result, the embedding (3.4) follows since

kf k PM˛;s
p
D sup

K

�R
K
jf .x/jpdx

cap˛;s.K/

� 1
p

� Cn;˛;s;p sup
K

�R
K
jf .x/jpdx

jKj1�
˛s
n

� 1
p

D Cn;˛;s;p sup
K

jKj�
1
pC

˛s
np

�Z
K

jf .x/jpdx

� 1
p

� Cn;˛;s;pkf k
L
np
˛s ;1.Rn/

;

where we have used a standard fact that

kf kLq;1.Rn/ � sup
0<jE j<1

jEj�
1
rC

1
q

�Z
E

jf .x/jrdx

� 1
r

;

here, 0 < q <1 and 0 < r < q.

4. Completion of the proof of Theorem 1.3

In this section, we prove the remaining estimate (1.6) in Theorem 1.3. In this case,
the condition ˛s < n is assumed. We first observe that

k'kM˛;s
p
� k'k PM˛;s

p
(4.1)

for any function ' with supp.'/ � BR0.x0/, where the implicit constants depend only
on n; ˛; s; p, and R0 but not on x0. To show (4.1), recall that

cap˛;s.E/ � Cn;˛;s � Cap˛;s.E/; ˛s < n;(4.2)

where E � Rn is an arbitrary set (see [1, Proposition 5.1.4 (a)]). Then, it follows that

k'kM˛;s
p
D sup

K

�R
K
j'.x/jpdx

Cap˛;s.K/

� 1
p

� Cn;˛;s;p sup
K

�R
K
j'.x/jpdx

cap˛;s.K/

� 1
p

D Cn;˛;s;pk'k PM˛;s
p
:(4.3)
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We remark that the support condition of ' is irrelevant in showing (4.3). On the other
hand, recall that

k'kM˛;s
p
D sup

K

�R
K
j'.x/jpdx

Cap˛;s.K/

� 1
p

� sup
KWdiam.K/�R0

�R
K
j'.x/jpdx

Cap˛;s.K/

� 1
p

;

where the last supremum is taken over all compact sets K � Rn with diam.K/ � R0
(see [7, Corollary 1.2.2]). As a consequence, we have

k'k PM˛;s
p
D sup

K

�R
K
j'.x/jpdx

cap˛;s.K/

� 1
p

D sup
K

�R
K\BR0 .x0/

j'.x/jpdx

cap˛;s.K/

� 1
p

� sup
K

�R
K\BR0 .x0/

j'.x/jpdx

cap˛;s.K \ BR0.x0//

� 1
p

� sup
KWdiam.K/�R0

�R
K
j'.x/jpdx

Cap˛;s.K/

� 1
p

� k'kM˛;s
p
;

which yields (4.1).
Let ¹fj º be a sequence of functions such that supp.fj / � BR0.x0/ for j 2N. Note

that .
P
j jfj j

r/
1
r is supported in BR0.x0/. Hence, (4.1) and (3.3) yield


�X
j

.Mfj /r
� 1
r




PM
˛;s
p

� Cn;˛;s;p;r




�X
j

jfj j
r
� 1
r




PM
˛;s
p

� Cn;˛;s;p;r;R0




�X
j

jfj j
r
� 1
r




M
˛;s
p

:

Inequality (1.6) follows by combining the above estimates with (4.3). The proof of
Theorem 1.3 is now complete.

5. Vector valued maximal inequalities in Morrey spaces

The Morrey space Lp;� for 1 < p <1, 0 < � � n is defined to be the set of all
locally p-integrable functions f 2 Lploc.R

n/ such that

kf kLp;� D sup
.x;r/2Rn�.0;1/

r��n
�Z

Br .x/

jf .y/jpdy

� 1
p

<1:
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Denote by q D p=.p � 1/. The corresponding vector valued inequalities for Lp;� and
their preduals H q;� read as


�X

j

.Mfj /r
� 1
r




X
� Cn;�;p;r




�X
j

jfj j
r
� 1
r




X

(5.1)

for X D Lp;� and H q;�. The proof of (5.1) can be obtained similarly to those of
Theorems 1.1 and 1.4. Indeed, part of the results in [2] say that

kf kLp;� � sup
²�Z

Rn
jf .x/jp!.x/dx

� 1
p

W ! 2 A1; k!k
L1
�
ƒ
.1/

N��

� � 1³;
(5.2)

kf kHp0;� � inf
²�Z

Rn
jf .x/jq!.x/1�qdx

� 1
q

W ! 2 A1; k!k
L1
�
ƒ
.1/

N��

� � 1³;
(5.3)

where ƒ.1/
N��

is the Hausdorff capacity. Combining (5.2) and (5.3) with (2.9) yields
(5.1). This is a different approach than the proof of (5.1) in [5].
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