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On the spectrum of asymptotic entropies of random walks

Omer Tamuz and Tianyi Zheng

Abstract. Given a random walk on a free group, we study the random walks it induces on the
group’s quotients. We show that the spectrum of asymptotic entropies of the induced random walks
has no isolated points, except perhaps its maximum.

1. Introduction

Let G be a finitely generated group, and let � be a probability measure on G. The �-
random walk on G is a time homogeneous Markov chain g1; g2; : : : on the state space G
whose steps are distributed i.i.d. �: for g; h 2 G the transition probability from g to h is
�.g�1h/. An important statistic of a random walk is its Avez asymptotic entropy [3]

h.G;�/ WD lim
n!1

1

n
H.gn/;

where H.�/ is the Shannon entropy. The importance of asymptotic entropy is due to the
fact that it vanishes if and only if every bounded �-harmonic function is constant, that
is, if the �-random walk has a trivial Poisson boundary [3, 29]. Moreover, as the asymp-
totic entropy is the limit of the mutual information I.g1I gn/ between the first step of the
random walk and its position in later time periods, it quantifies the extent by which the
random walk fails to have the Liouville property.

Suppose that G has d generators, and let � be the symmetric measure that assigns
1=.2d/ to each generator and its inverse. The main question that we ask in this paper is
the following: What possible values of h.G;�/ are attained as we vary the group G?

To formalize and generalize this question, we consider the following setting. Given
G and �, and given a quotient � D G=N , the induced random walk g1N; g2N; : : : on
� has step distribution �� , where, for 
 D gN , ��.
/ D �.gN/. In other words, ��
is the push-forward of � under the quotient map; we will simply write � instead of ��
whenever this is unambiguous. For a given G and �, what values can be realized as the
asymptotic random walk entropies of such quotients? This is particularly interesting when
G has many quotients, and we indeed focus on the case of Fd , the free groups with d � 2
generators.
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Given .G;�/ we denote the spectrum of random walk entropies by

H.G;�/ WD
®
h.�; �/ W � is a quotient group of G

¯
:

We will consider measures � on G that have finite first moment; that is,X
g2G

jgjS�.g/ <1;

where j � jS is the word length with respect to generating set S . Recall that � is non-
degenerate if its support generates G as a semigroup.

Our main result is the following.

Theorem 1.1. Let � be a non-degenerate probability measure with finite first moment on
the free group Fd , d � 2. Suppose � is a proper quotient of Fd . Then for any " > 0, there
exists a quotient group z� of Fd such that Fd � z�� � and

h.�; �/ < h.z�;�/ < h.�; �/C ":

In particular, the set H.Fd ; �/ has no isolated points, except perhaps its maximum.

It follows from Theorem 1.1 that if H.Fd ; �/ is a closed subset in R, then it must be
the full interval Œ0; h.Fd ; �/�. To the best of our knowledge, it is not known whether the
set H.Fd ; �/ is closed.

The key ingredient in the proof of Theorem 1.1 is an explicit construction, which might
be of independent interest, of a sequence of groups in the space Gd of d -marked groups
with the following properties.

Proposition 1.2. Let � be a non-degenerate probability measure on Fd , d � 2, with finite
first moment. Then there exists a sequence of marked groups ..�n;Sn//1nD1 in Gd such that

(i) the sequence .�n; Sn/ converges to .Fd ;S/ as n!1 in the space of d -marked
groups,

(ii) the sequence of asymptotic entropies h.�n; �/! 0 as k !1,

(iii) for each n 2 N, �n is non-amenable, has no nontrivial amenable normal sub-
groups, and has only countably many amenable subgroups.

The moment condition on � is used to bound the asymptotic entropy. It seems to be an
interesting question whether Proposition 1.2 remains true assuming only that � has finite
entropy.

Property (iii) in the statement above implies that the action of �n on the Poisson
boundary of .�n; �/ is essentially free. This property is crucial for our purposes. Any
sequence of d -marked finite groups with girth growing to infinity would satisfy properties
(i) and (ii), but the Poisson boundaries are trivial for finite groups.

We construct the sequence of marked groups as stated via taking extensions of the
Fabrykowski–Gupta group. Necessary terminology and background are reviewed in Sec-
tion 2. Provided the sequence of marked groups stated in Proposition 1.2, the proof of
Theorem 1.1 is completed by taking suitable diagonal product of groups; see Section 4.
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1.1. Boundary entropies

A closely related question—and, to our knowledge, a much better studied one—is that of
the spectrum of Furstenberg entropies. Let .X; �/ be a standard Borel space, equipped
with a probability measure, and on which G acts by measure class preserving transfor-
mations. We say that .X; �/ is a .G; �/-space if the measure � is �-stationary; that is,
� � � D �. The Furstenberg entropy of a .G; �/-space .X; �/ is a numerical invariant
defined in [18] as

h�.X; �/ WD
X
g2G

�.g/

Z
X

� log
dg�1�

d�
d�:

The Furstenberg entropy realization problem is to identify, given .G;�/, the spectrum
of the Furstenberg entropy h�.X; �/, as .X; �/ varies over all ergodic �-stationary actions
of G.

We briefly summarize what is known about this problem. In Kaimanovich and Vershik
[29], it is shown that h�.X; �/ � h.G; �/. The Poisson boundary of an induced random
walk on a quotient group G=N is a .G; �/-space, whose Furstenberg entropy is equal
to the random walk’s asymptotic entropy. Hence, every realizable random walk entropy
value is also a realizable Furstenberg entropy value.

Nevo [36] shows that wheneverG has Kazhdan’s property (T), then there is a constant
c > 0, depending on .G;�/, such that whenever h�.X; �/ < c, then it in fact vanishes. In
[12], Bowen showed that for the free group Fd , d � 2, and � uniform on the symmetric
free generating set S [ S�1, all values in Œ0; h.Fd ; �/� can be realized as the Furstenberg
entropy of an ergodic stationary action of Fd .1

A particularly important class of .G; �/-space is the .G; �/-boundaries. These are
the G-factors of the Poisson boundary of .G; �/ and include the Poisson boundaries of
the induced random walks on quotient groups. For such boundaries, the next result is an
analogue of Theorem 1.1.

Theorem 1.3. In the setting of Theorem 1.1, suppose .X; �/ is a .Fd ; �/-boundary such
that the action of Fd is not essentially free. Then for any " > 0, there exists a .Fd ; �/-
boundary . zX; z�/ such that

h.X; �/ < h. zX; z�/ < h.X; �/C ";

and .X; �/ is a Fd -factor of . zX; z�/.

1The approach in [12] is to take an ergodic invariant random subgroup of G and construct an ergodic
stationary system (which can be referred to as a Poisson bundle, using the terminology introduced in [28]).
The Furstenberg entropy of this stationary system is then studied by considering random walk entropies on
the coset spaces associated with the invariant random subgroups. Recall that an IRS is a Borel probability
measure � on the Chabauty space Sub.G/ of closed subgroups of G, which is invariant under conjuga-
tion by G. For further work on the Furstenberg entropy realization problem using the IRS-Poisson bundle
approach, see [25, 26] and references therein.
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Note that if an ergodic invariant random subgroup is not almost surely a normal sub-
group, then the corresponding Poisson bundle is not a quotient of the Poisson boundary
of .G; �/ because of the measure-preserving factor to the invariant random subgroup.
Hence, Bowen’s results do not resolve the question for Furstenberg entropies of .Fd ; �/-
boundaries, or for asymptotic random walk entropies.

1.2. Spectral radii

The same kind of construction as in the proof of Theorem 1.1 implies the following result
on spectral radii of symmetric random walks. Recall that the spectral radius of a�-random
walk on � is defined as

�.�; �/ D lim sup
2n!1

�.n/.id�/
1
2n ;

where �.n/ is the n-fold convolution of � with itself.

Theorem 1.4. Let � be a symmetric non-degenerate probability measure on the free
group Fd , d � 2. Suppose � is a proper quotient of Fd . Then for any " > 0, there exists a
quotient group z� of Fd such that Fd � z�� � and

�.�; �/ � " < �.z�;�/ < �.�; �/:

Our construction uses a diagonal product of marked groups and is similar to the con-
struction in [31]. A result of Kassabov and Pak [30] states that the set of the spectral radii
¹�.�; �/ W � is a quotient of Fd º contains a subset homeomorphic to the Cantor set. The
same construction shows that the set H.Fd ; �/ contains a subset homeomorphic to the
Cantor set as well. It is not known whether this set of spectral radii is closed.

2. Preliminaries

2.1. .G;�/-boundaries

In this paper we only consider countable groups. A probability measure � on G is non-
degenerate if the support of � generates G as a semigroup. For a countable group G, we
say a Lesbesgue space .X; �/ is a G-space if G acts measurably on X and the probability
measure � is quasi-invariant with respect to the G-action. A G-space .X; �/ is ergodic if
every G-invariant subset is either null or conull. A measurable map � W .X; �/! .Y; �/ is
called a G-map if it is G-equivariant and � is the pushforward of � under � .

Given a probability measure � on G, let � D GN be the path space, P the law of the
�-random walk starting at id, and 	 the � -field on � that is invariant under time shifts.
The Poisson boundary of .G; �/ is denoted by the measure space .B;F ; �B/ together
with aG-map b W .�;	;P�/! .B;F ; �B/, where b�1F D 	 up to null sets with respect
to P�, and the � -algebra F is countably generated and separating points. The existence
and uniqueness up to isomorphism of the Poisson boundary of .G; �/ was shown by
Furstenberg [18–20]. The G-action on the Poisson boundary .B; �B/ is ergodic, and in
fact doubly ergodic, by Kaimanovich [27].
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We use the notation .B; �B/ to denote a compact model of the Poisson boundary of
.G;�/, which exists by the Mackey realization [34]. A .G;�/-boundary .X; �/ is defined
to be a G-factor of .B; �B/. Moreover, the factor map .B; �B/ ! .X; �/ is essentially
unique, see [4, Theorem 2.14], and we will denote it by ˇX .

Denote by P.X/ the space of Borel probability measures on the compact space X . A
factor map � W .Y; �/! .X; �/ gives a unique disintegration map D� W X ! P.Y / such
that for �-a.e. x 2 X , D�.x/ is supported on the fiber of x and

R
X
D�.x/d�.x/ D �. We

say .Y; �/ is a relatively measure-preserving extension of X if D� is G-equivariant; that
is, D�.g � x/ D g �D�.x/.

We will need the following properties regarding Furstenberg entropy and relatively
measure-preserving extensions.

Proposition 2.1 ([37, Proposition 1.9]). Let � W .Y; �/! .X; �/ be a G-factor map. Sup-
pose h.X; �/ <1 and h.Y; �/ D h.X; �/. Then .Y; �/ is a relative measure-preserving
extension of .X; �/.

Lemma 2.2 ([4, Corollary 2.20]). Let � W .Y;�/! .X;�/ be a relatively measure-preserv-
ing extension of two .G;�/-boundaries. Then .Y; �/ D .X; �/.

2.2. The space of marked groups and convergence to the free group

Denote by Gd the space of d -generated groups .G; S/, where S D .s1; : : : ; sd / is a gen-
erating tuple, equipped with the Cayley–Grigorchuk topology. We refer to the pair .G; S/
as a marked group and Gd the space of d -marked groups. Recall that in this topology,
two marked groups .G1; S1/ and .G2; S2/ are close if marked balls of large radius in the
Cayley graphs of .G1; S1/ and .G2; S2/ around the identities are isomorphic. This space
is introduced by Grigorchuk in [23].

Denote by .Fd ; S/ a free group of rank d , where S D .s1; : : : ; sd / consists of the
free generators. Let G be a d -generated group. Following the definition in Akhmedov [2]
and Ol’shanskiı̆–Sapir [38], we say a nontrivial word w.x1; : : : ; xd / is a d -almost-identity
forG if the identityw.g1; : : : ;gd /D 1 is satisfied for any d -generating tuple .g1; : : : ;gd /.
By [38, Theorem 9], there exists a sequence of d -markings .G; Sk/1kD1 that converges to
.Fd ; S/ in the Cayley–Grigorchuk topology if G is d -generated and satisfies no d -almost
identity.

In [1], Abért gives a general criterion for a group to satisfy no identity. SupposeGÕX

by permutations. We say G separates X if for every finite subset Y of X , the pointwise
fixator

GY D ¹g 2 G W y � g D y for all y 2 Y º

has no fixed point outside Y . Abért shows that if G separates X , then G satisfies no
identity. Bartholdi and Erschler [6] provide a criterion for the absence of almost-identities:
under the additional assumption that the Frattini subgroupˆ.G/ has finite index in G, the
condition in Abért’s criterion implies that G satisfies no almost-identity. Recall that the
Frattini subgroup of G is the intersection of all the maximal subgroups of G.
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Weakly branch groups provide examples of groups satisfying Abért’s criterion. The
notion of weakly branch group is introduced by Grigorchuk in [24]. Let T be a rooted
spherical symmetric tree. For a vertex u 2 T, let Cu be the set of infinite rays with prefix u.
We say a group G acting by automorphisms on T is weakly branching if it acts level
transitively and the rigid stabilizer RistG.Cu/ of any vertex u 2 T is nontrivial. Recall that
RistG.Cu/ D ¹g 2 G W x � g D x for all x … Cuº, that is, the set of group elements that
only move the descendants of u. If G is weakly branching, then G separates the boundary
@T of the tree; see [1, Proof of Corollary 1.4]. If in addition the product of rigid stabilizersQ
u2Tn RistG.Cu/ is a finite index subgroup ofG for every n, thenG is said to be a branch

group.

3. A sequence of marked groups

This section is devoted to the proof of Proposition 1.2. To fix ideas, we start with the
Fabrykowski–Gupta group introduced in [14]. It is a group acting on the ternary rooted
tree T. Encode vertices of T by finite strings in the alphabet 0; 1; 2, and the boundary of
the tree by infinite strings in 0; 1; 2. Denote by Tn the level n vertices of the rooted tree T
and StG.n/ the level n stabilizer; that is, StG.n/ D ¹g 2 G W u � g D u for all u 2 Tnº.

The Fabrykowski–Gupta group is generated by two elements: a root permutation a
which permutes the three subtrees of the root cyclically and a directed permutation b
which fixes the right most ray 21 and is defined recursively by

b D .a; id; b/:

In other words, we have for any ray w 2 ¹0; 1; 2º1,

0w � a D 1w; 1w � a D 2w; 2w � a D 0wI

0w � b D 0.w � a/; 1w � b D 1w; 2w � b D 2.w � b/:

See Figure 3.1. For more background on groups acting on rooted trees and the notation of
wreath recursion, see [8]. The group G D ha; bi is called the Fabrykowski–Gupta group.
It is an example of non-torsion Grigorchuk–Gupta–Sidki (GGS) groups.

The group G D ha; bi is known to have the following properties:

• G is a just infinite branch group which is regularly branching over its commutator
group ŒG;G� [7].

• G is of intermediate growth [9, 15].

• G has the congruence subgroup property: every finite index subgroup of G contains
some level stabilizer StG.n/ [16].

3.1. Permutation wreath extensions

Let Gn be the quotient group G=StG.n/, which acts faithfully and transitively on Tn.
We denote by Na; Nb 2 Gn the images of the generators a; b under the quotient map G !
G=StG.n/. Consider the level n Schreier graph �n with vertex set Tn and edge set E D
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S0

a

S1

b
S2

S3

b

a

b b

Figure 3.1. The action of the Fabrykowski–Gupta group on the first four levels of the rooted ternary
tree. Self loops are not depicted. Arrows show the action on the roots of subtrees, with corresponding
arrows in the rest of the subtree not drawn explicitly. The restriction of �3 to its red (and likewise
gray and blue) vertices forms a copy of �2. The Schreier graph �3 is the disjoint union of these three
graphs, with the addition of the three edges labeled by b.

¹.x; x � Na/; .x; x � Nb/ W x 2 Tnº. It is a finite graph on 3n vertices. Consider the permutation
wreath product of the free product A D .Z=3Z/ � .Z=3Z/ and Gn over the set Tn; that is,

A oTn Gn D
�M

Tn

A
�
ÌGn;

where Gn acts on
L

Tn A by permuting the coordinates. We write elements of A oTn Gn as
pairs .'; g/, where ' 2

L
Tn A is regarded as a function Tn ! A and g 2 Gn.

Denote by s and t the two standard generators of A, AD hs; t js3 D t3 D 1i. Consider
the subgroup Wn of A oTn Gn generated by

an D .id; Na/; bn D .ı
s
2n�10

C ıid
2n�11

C ıt2n ;
Nb/; (3.1)

where in the direct sum
L

Tn A, ı
x denotes the function that is 
 at x and identity else-
where. We use additive notation ı
1x C ı


2
y , x ¤ y, for the function that is 
1 at x, 
2 at y,

and identity elsewhere.
The choice of .an; bn/ guarantees the following lemma.

Lemma 3.1. The sequence .Wn; .an; bn// converges to .G; .a; b// in the Cayley–Grig-
orchuk topology as n ! 1. Indeed, for every n, .WnC1; .anC1; bnC1// is a marked
quotient of .Wn; .an; bn//, and the ball of radius 2n�2 around id in the Cayley graph
of .Wn; .an; bn// coincides with the ball of radius 2n�2 around id in .G; .a; b//.

Proof. The Fabrykowski–Gupta group belongs to the class of bounded automaton groups.
Schreier graphs of bounded automaton groups are studied systematically in Bondarenko’s
dissertation [11]. In particular, on the finite Schreier graph �n, we have that the graph dis-
tance between the vertices 2n�10, 2n satisfies d�n.2

n�10; 2n/ D 2n � 1. For more details,
see [11, Chapter VI].
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Note that G embeds as a subgroup of G oTn Gn, where the embedding is given by the
wreath recursion

a 7! .id; Na/; b 7!
�
ıa
2n�10

C ıid
2n�11

C ıb2n ;
Nb
�
:

Now consider a word w D w1 � � �w`, where wj 2 ¹a˙1; b˙1º and evaluate this word in
G oTn Gn by the embedding above. Denote the image in G oTn Gn by .�w ; Nw/. For the
configuration �w 2

L
Tn G, we have that

�w.x/ D

nY
iD1

�wi .x � w1 � � �wi�1/:

It follows from the triangle inequality that if ` � 2n�2, then the trajectory ¹x; x � w1; : : : ;
x � w1 � � �w`�1º can visit at most one point in the set ¹2n�10; 2nº. In particular, �w.x/ is
an element in either hai or hbi. Thus if we evaluate the same word w inWn under a 7! an
and b 7! bn, the resulting element .z�w ; Nw/ can be identified with .�w ; Nw/ in G oTn Gn.
Namely, �w is obtained from z�w by replacing s with a and t with b and vice versa.

The quotient map from .Wn; .an; bn// to .WnC1; .anC1; bnC1// is given as follows.
Note that A oTnC1 GnC1 D .A o¹0;1;2º hai/ oTn Gn. Let � W A! A o¹0;1;2º hai be the group
homomorphism determined by �.s/ D .id; a/ and �.t/ D .ıs0 C ı

id
1 C ı

t
2; id/. The homo-

morphism � extends to
L

Tn A!
L

Tn.A o¹0;1;2º hai/ coordinate-wise; that is, �.�/.x/D
�.�.x//, x 2 Tn. It follows from the wreath recursion formula in G that the map

Wn ! WnC1

.�; g/ 7!
�
�.�/; g

�
is a marked group epimorphism which sends an to anC1 and bn to bnC1.

Next we verify that Wn is virtually a direct product of free groups.

Lemma 3.2. The group Wn contains
L

Tn ŒA;A� as a finite index normal subgroup.

Proof. We proceed by induction on n.
As in the proof of Lemma 3.1, let � W A! A o¹0;1;2º hai be the group homomorphism

determined by �.s/D .id;a/ and �.t/D .ıs0C ı
id
1 C ı

t
2; id/, where a is the 3-cycle .0;1;2/.

When nD 1, by definition,W1 is generated by a1 D �.s/ and b1 D �.t/. Since a�11 b1a1 D

.ıid
0 C ı

t
1 C ı

s
2; id/, it follows that the projection of W1 \

L
T1 A to the component over

vertex 2 is A. Direct calculation shows that Œb1a�11 b1a1; a1b1a
�1
1 b1� D .ısts

�1t�1

2 ; id/.
It follows that ŒW1; W1� \

L
T1 A contains ¹.ı
2 ; id/ W 
 2 hsts

�1t�1iAº, while the nor-
mal closure hsts�1t�1iA is exactly the commutator subgroup ŒA;A�. Since �.s/ acts as
a 3-cycle permuting T1 D ¹0; 1; 2º, it follows that ŒW1; W1� \

L
T1 A >

L
T1 ŒA;A�. The

quotient group W1=
L

T1 ŒA;A� is a subgroup of .A=ŒA;A�/ oT1 hai, which is finite.
We have shown that �.ŒA;A�/ contains

L
T1 ŒA;A� as finite index normal subgroup,

which reflects the property that G is regularly branching over its commutator subgroup.
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Suppose the statement is true for n thatWn contains
L

Tn ŒA;A� as a finite index normal
subgroup. To prove the claim for nC 1, it suffices to show that .ı


2nC1
; id/ 2WnC1 for any


 2 ŒA;A�. Recall the quotient map � WWn!WnC1 explained in the proof of Lemma 3.1,
where A oTnC1 GnC1 is identified with .A o¹0;1;2º hai/ oTn Gn. By the induction hypothesis,
.ı�2n ; id/ 2 Wn for any � 2 ŒA;A�. Under the quotient map � , we have

�
�
.ı�2n ; id/

�
D .ı

�.�/
2n ; id/:

With the map � we are back in the situation of the induction base, where we have shown
that �.ŒA;A�/ contains

L
T1 ŒA;A�. In particular, for any 
 2 ŒA;A�, there is an element

� 2 ŒA;A� such that �.�/D .ı
2 ; id/. It follows that �..ı�2n ; id//D .ı
�.�/
2n ; id/D .ı


2nC1
; id/;

in particular, it is an element of WnC1.

3.2. Choices of marked subgroups

We are given a fixed rank d 2N, d � 2. Since the Fabrykowski–Gupta groupGD ha;bi is
a branch group acting faithfully on the ternary tree T, by Abért’s criterion [1, Theorem 1.1]
and its proof, we have that given any n 2 N, and any vertex v 2 T, there exist elements


.n/
1 ; : : : ; 


.n/

d
2 RistG.v/ such that w.a
 .n/1 ; b


.n/
2 ; 


.n/
3 ; : : : ; 


.n/

d
/ ¤ id for all reduced

word w of length 1 � jwj � n.
In what follows we fix the choice of v to be the child of the root indexed by 1. For

each n 2 N, fix a choice of 
 .n/1 ; : : : ; 

.n/

d
2 RistG.1/ such that the tuple�

a

.n/
1 ; b


.n/
2 ; 


.n/
3 ; : : : ; 


.n/

d

�
does not satisfy any reduced word w of length jwj 2 Œ1; n�.

Lemma 3.3. Denote by Hn the subgroup of G generated by the first two elements of the
tuple chosen above,

Hn D
˝
a


.n/
1 ; b


.n/
2

˛
:

Then Hn acts level transitively on the rooted ternary tree T.

Proof. The statement is equivalent to that the Schreier graph on level k vertices Tk with
respect to .a
 .n/1 ; b


.n/
2 / is connected.

With respect to the original generators a; b, the Schreier graph �k with vertex set Tk
under the action of G can be drawn recursively as follows; see [11, Chapter V]. The level
1 graph �1 on ¹0; 1; 2º has (directed) edges .0; 1/, .1; 2/, .2; 0/ labeled by a, and self loops
at each vertex labeled by b. To draw �kC1, take three copies of �k , and append letter 0, 1,
or 2 to the strings indexing the vertices of �k respectively in each copy. Then connect the
three copies by edges .2k�100;2k�101/, .2k�101;2k�102/, and .2k�102;2k�100/ labeled
by b. In Figure 3.1, this is depicted for k D 2. There, �3 is seen to be the union of three
copies of �2, which are shown with red, gray, and blue vertices, respectively. The three
additional edges connecting them and labeled by b are those in the bottom right of the
figure.
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It follows that in �k , if we remove all vertices of the form 1u, u 2 ¹0; 1; 2ºk�1 and
edges connecting to such vertices, the remaining graph is connected. Denote the remaining
graph by � 0

k
. Since 
 .n/1 , 
 .n/2 are chosen to be in the rigid stabilizer of vertex 1, in the

subgraph � 0
k

, we may replace label a by a
 .n/1 and label b by b
 .n/2 . The element a
 .n/1
moves 1u, u 2 ¹0; 1; 2ºk�1 into the vertex set of � 0

k
, namely, a string starting with 2. It

follows that the graph on Tk with respect to .a
 .n/1 ; b

.n/
2 / is connected.

Denote by `n the maximal word length of elements in the tuple chosen, with respect
to the original generating set .a; b/; that is,

`n D max
®ˇ̌
a


.n/
1

ˇ̌
¹a;bº

;
ˇ̌
b


.n/
2

ˇ̌
¹a;bº

; : : : ;
ˇ̌


.n/

d

ˇ̌
¹a;bº

¯
: (3.2)

Recall the subgroup Wk of A oTk Gk , generated by .ak ; bk/, as defined in (3.1). By
Lemma 3.1, the ball of radius 2k�2 around the identity element in the Cayley graph of
.Wk ; .ak ; bk// coincides with the ball of radius 2k�2 around the identity in .G; .a; b//.
In particular, for k � 2C log2.n`n/, elements in the tuple .a
 .n/1 ; b


.n/
2 ; 


.n/
3 ; : : : ; 


.n/

d
/

have images in .Wk ; .ak ; bk// under the identification of balls of radius 2`n around the
identities. Record the image tuple of elements inWk as .h.n;k/1 ; : : : ; h

.n;k/

d
/. Finally, denote

by �n;k the subgroup of Wk generated by the tuple

Sn;k D
�
h
.n;k/
1 ; : : : ; h

.n;k/

d

�
:

Note that by our choices, for k � 2C log2.n`n/, the ball of radius n around the identity
in the Cayley graph of .�n;k ; Sn;k/ is the same as the ball of radius n in the Cayley graph
of the free group .Fd ;S/.

3.3. Random walks on �n;k

Let � be a non-denegerate probability measure on the free group Fd . Next we consider
the �-random walk on the group �n;k defined in the previous subsection, with n � 1,
k � log2.n`n/. Our goal is to show that the action of �n;k on the Poisson boundary of
.�n;k ;�/ is essentially free; and given any " > 0, for all k sufficiently large, the asymptotic
entropy of the �-random walk on �n;k is smaller than ".

By [13, Theorem 5.1], for a non-degenerate probability measure � on a countable
group � , a sufficient condition for the action of � on the Poisson boundary of .�;�/ to be
essentially free is that

(1) � has only countably many amenable subgroups,

(2) � does not contain any nontrivial normal amenable subgroup; in other words, the
amenable radical of � is trivial.

We verify that these two properties are satisfied by �n;k in the following lemma.

Lemma 3.4. For each n and k � 2C log2.n`n/, the group �n;k is non-amenable, has no
nontrivial normal amenable subgroup, and has only countably many amenable subgroups.
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Proof. We first introduce some notations. Given a subgroup H of

A oTk Gk D
�M

Tk

A
�
ÌGk ;

for g 2 Gk , let
SH .g/ WD

®
� 2

M
Tk

A W .�; g/ 2 H
¯
:

Then SH .idGk / is a subgroup of
L

Tk
A. For g 2 Gk , SH .g/ is either empty, or a right

coset of SH .idGk / in
L

Tk
A. Denote by �k the natural projection A oTk Gk ! Gk .

As shown in the proof of Lemma 3.3, in the Schreier graph on vertex set Tk with
respect to the generating tuple of Hn, there is a path connecting the vertex 2k to the
vertex 2k�10, which does not visit any vertex starting with letter 1. It then follows by the
definition of the generating tuple Sn;k D .h

.n;k/
1 ; : : : ; h

.n;k/

d
/ of �n;k that the set of values

at the coordinate index by 2k is all A; that is,®
�.2k/ W � 2 [g2GkS�n;k .g/

¯
D A:

Note that this implies that S�n;k .idGk / is non-amenable. Indeed, otherwise the free product
A can be written as a union of finitely many right cosets of an amenable subgroup, which
contradicts the fact that A is non-amenable. For each x 2 Tk , write �x for the projection ofL

Tk
A to the x-coordinate; that is, �x.�/ D �.x/. Then the reasoning above shows that

the projection of �n;k \ .
L

Tk
ŒA;A�/ under �2k is non-amenable. Recall that ŒA;A� is a

free group. By Lemma 3.3, the action of �k.�n;k/ is transitive on Tk . It follows then that
�x.�n;k \ .

L
Tk
ŒA;A�// is a free group of rank at least 2 for every vertex in Tk .

Let N be a normal subgroup of �n;k , N ¤ ¹idº. We need to show that N is non-
amenable. Note that for each x 2 Tk , �x.N \

L
Tk
ŒA; A�/ is a normal subgroup of

�x.�n;k \ .
L

Tk
ŒA;A�//, while the latter is a free group of rank at least 2. Thus if on

the contrary N is amenable. Then N \
L

Tk
ŒA;A� D ¹idº. Since A=ŒA;A� is finite, such

trivial intersection implies that SN .idGk / is finite.
We now argue that SN .idGk / being a finite group contradicts with the condition thatN

is a nontrivial normal subgroup of �n;k . Note that sinceGk is finite, SN .idGk / being finite
implies thatN is finite. On the other hand, since for each x 2 Tk , �x.�n;k \ .

L
Tk
ŒA;A�//

is a free group of rank at least 2, it follows that for any element h 2 �n;k , h ¤ id, its
conjugacy class is infinite. Therefore, SN .idGk / being a finite group implies thatN D¹idº.
We conclude that a nontrivial normal subgroup of �n;k is non-amenable.

Since ŒA;A� is a free group, the only amenable subgroups are the trivial group and the
cyclic groups. It follows that the direct sum

L
Tn ŒA;A� has only countably many amenable

subgroups. The property of having only countably many amenable subgroups is clearly
preserved under taking finite extensions and taking subgroups. Thus, by Lemma 3.2, �n;k
has only countably many amenable subgroups.

To bound the asymptotic entropy from above, we simply use the well-known “funda-
mental inequality”; see e.g. [10]. More precisely, let � be a probability measure on Fd
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with finite first moment, � W Fd ! � an epimorphism. Let S D �.S/ be the induced
marking on � and x� D � ı � the pushforward of �. The fundamental inequality implies
that

h.�; x�/ � v�;S � `�;x�;

where v�;S and `�;x� are asymptotic volume growth rate and asymptotic speed with respect
to generating set S :

v�;S D lim
r!1

1

r
logV�;S .r/ and `�;x� D lim

n!1

1

n

X
g2�

jgjS x�
.n/.g/:

By sub-additivity, we have

`�;x� �
X
g2�

jgjS x�.g/ �
X
g2Fd

jgjS�.g/:

Thus, the asymptotic entropy can be bounded by

h.�; x�/ � v�;S
X
g2Fd

jgjS�.g/: (3.3)

The estimate (3.3) is the only place where the moment condition on � is needed.
By Lemma 3.1, the ball of radius 2k�2 around id in the Cayley graph of .Wk ; .ak ; bk//

coincides with the ball of radius 2k�2 around id in .G;.a;b//. It follows by sub-multiplicity
of the volume growth function that the asymptotic volume rate satisfies

vWk ;.ak ;bk/ �
1

2k�2
logVG;.a;b/.2k�2/:

Recall the maximal length `n defined in (3.2). By comparing lengths of generators, we
have that the subgroup �n;k of Wk satisfies

v�n;k ;Sn;k � `nvWk ;.ak ;bk/:

3.4. Proof of Proposition 1.2

We are now ready to prove Proposition 1.2 stated in the Introduction.

Completion of proof of Proposition 1.2. Let � be a non-degenerate probability measure
on Fd given, where d � 2 and � is of finite first moment. For each n 2 N, choose kn �
log2.n`n/ such that �n;kn is defined as in subsection 3.2 and moreover

`n

2kn�2
logVG;.a;b/.2kn�2/ �

1

n
:

This is possible because the Fabrykowski–Gupta group G has sub-exponential volume
growth; that is,

vG;.a;b/ D lim
r!1

1

r
logVG;.a;b/.r/ D 0:



On the spectrum of asymptotic entropies of random walks 891

Now we verify that the sequence .�n;kn ; Sn;kn/ satisfies the properties stated.

(i) By construction, the generating tuple Sn;kn does not satisfy any reduced word
w of length jwj 2 Œ1; n�.

(ii) The fundamental inequality (3.3) implies that with respect to the marking

.Fd ;S/! .�n;kn ; Sn;kn/;

h.�n;kn ; �/ � v�n;kn ;Sn;kn

X
g2Fd

jgjS�.g/ �
1

n

X
g2Fd

jgjS�.g/:

Thus the sequence of asymptotic entropies converges to 0 as n!1.

(iii) This property is shown in Lemma 3.4.

The proof of Proposition 1.2 is complete.

Remark 3.5. For d � 3, in the proof of Proposition 1.2, one can use the first Grigorchuk
group G012 D ha; b; ci introduced in [22, 23] instead of the Fabrykowski–Gupta group.
Recall that G012 acts on the rooted binary tree. Then one can consider the permutational
wreath extension B oTn Gn, whereGnDG=StG.n/ and BD .Z=2Z/ � .Z=2Z�Z=2Z/D
.hsi/ � .hti � hui/. Similar to the sequence of extensions �n, set

Hn D han; bn; cni < B oT3n G3n

where the generators are defined as

an D .id; Na/; bn D .ı
t
13n
C ıs

13n�10
; Nb/; cn D .ı

u
13n
C ıs

13n�10
; Nc/:

A similar proof as in this section with �n replaced by Hn shows that for d � 3, Propo-
sition 1.2 is true under the weaker assumption that � has finite ˛0-moment and finite
entropy, where ˛0 is the exponent in the growth upper bound vG012.r/. er

˛0 from [5,35],
˛0 � 0:7674.

We choose to take extensions of the Fabrykowski–Gupta group G here because the
resulting groups are 2-generated, which allows us to cover the case d D 2. It is remarked
in [17] that all maximal subgroups ofG are of finite index, which would imply that there is
a sequence of marking Sk onG such that .G;Sk/ converges to the free group .Fd ;S/when
k !1 by [6]. Since we could not find a written proof of this statement, in this section,
we produce tuples of elements of G, which a priori do not necessarily generate G, where
only Abért’s criterion [1] is invoked.

4. Stationary joinings and proof of the main results

Let .X; �/ and .Y; �/ be two �-stationary G-spaces. Following [21], we say a probability
measure � onX � Y is a stationary joining of � and � if it is �-stationary and its marginals
are � and �, respectively.
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In this section, we focus on the situation where both stationary systems are .G; �/-
boundaries. We use notations introduced in Section 2.1. Denote by .B; �B/ a compact
model of the Poisson boundary of .G;�/. Let .X; �/ and .Y; �/ be compact models of two
.G; �/-boundaries and denote by ˇX and ˇY the corresponding maps from the Poisson
boundary .B; �B/ to .X; �/ and .Y; �/. Consider the map

ˇX � ˇY W B ! X � Y

b 7!
�
ˇX .b/;ˇY .b/

�
;

and denote by Z the range .ˇX � ˇY /.B/ and � � � the pushforward of the harmonic
measure �B under ˇX � ˇY . Then it is clear by definition that .Z; � � �/ is a G-factor
of the Poisson boundary .B; �B/; in other words, it is a .G; �/-boundary. The G-space
.Z; � � �/ is the unique stationary joining of the �-boundaries .X; �/ and .Y; �/; see
[21, Proposition 3.1].

On the level of groups, given two d -marked groups .G1; S1/ and .G2; S2/, one can
take their diagonal product, denoted by .G1 ˝ G2; S/, as the subgroup of G1 � G2 gen-
erated by

S D
��
s
.1/
1 ; s

.2/
1

�
; : : : ;

�
s
.1/

d
; s
.2/

d

��
;

where Si D .s
.i/
1 ; : : : ; s

.i/

d
/, i D 1; 2. This operation on two groups corresponds to taking

stationary joinings of the Poisson boundaries.

Lemma 4.1. Let� be a probability measure on Fd . The Poisson boundary of .G1˝G2;�/
is the stationary joining of the Poisson boundaries of .G1; �/ and .G2; �/.

Proof. Denote by .Bi ; �i / the Poisson boundary of .Gi ; �/, i D 1; 2, and regard them as
G1 ˝ G2-spaces. Denote by .Z; �1 � �2/ the stationary joining of .B1; �1/ and .B2; �2/
as above and �i W Z ! Bi the projections. We need to show .Z; �1 � �2/ is the maximal
.G1 ˝G2; �/-boundary.

Let .Y;�/ be a .G1˝G2;�/-boundary. Denote byKi the subgroup ofG1˝G2 which
consists of elements that project to identity in Gi ; that is,

Ki D
®
.g1; g2/ 2 G1 �G2 W .g1; g2/ 2 G1 ˝G2; gi D idGi

¯
:

Denote by Yi D Y==Ki the space ofKi -ergodic components of Y and �i the pushforward
of the measure � under theKi -factor map Y!Y==Ki . Since .Y;�/ is an ergodicG1˝G2-
space and K1 \ K2 D ¹idº, we have that Y can be viewed as a subset of Y2 � Y1. It
is easy to see that by definition of Ki , G1 ˝ G2=K2 ' G1. It follows that .Y2; �2/ is a
.G1;�/-boundary. Denote by ˇY2 the boundary map from .B1; �1/ to .Y2; �2/. In the same
way we have .Y1; �1/ is a .G2; �/-boundary and denote by ˇY1 W .B2; �2/ ! .Y1; �1/

the boundary map. By uniqueness of stationary joinings of �-boundaries, we have that
.Y; �/ D .Y2 � Y1; �2 � �1/. It follows that .Y; �/ is a factor of .Z; �1 � �2/, where the
boundary map is given by z 7! .ˇY2 ı �1.z/;ˇY1 ı �2.z//.

With the sequence of marked groups provided by Proposition 1.2, we are now ready
to complete the proofs of Theorems 1.1 and 1.3.
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Proof of Theorem 1.1. Denote by .B; �B/ the Poisson boundary of .Fd ; �/. Let�
.�k ; Sk/

�1
kD1

be a sequence marked groups provided by Proposition 1.2. Denote by .…k ;�k/ the Poisson
boundary of .�k ;�/. Since .�k ; Sk/ can be identified with a projection �k W Fd ! �k , we
regard .…k ; �k/ as a .Fd ; �/-space, where the Fd -action factors through �k .

Since � is a proper quotient of Fd , N D ker.� W Fd ! �/ is nontrivial. Fix a choice
of element g 2 N , g ¤ id. Choose an index k 2 N sufficiently large such that the balls of
radius 2jgjS around identities in .�k ; Sk/ and .Fd ; S/ coincide and h.�k ; �/ < ". Take z�
to be the diagonal product .� ˝ �k ; S/. Then

h.� ˝ �k ; �/ � h.�; �/C h.�k ; �/ < h.�; �/C ":

Since g acts trivially on the Poisson boundary of .�; �/ but acts freely on .…k ; �k/, it
follows that .…k ; �k/ is not a Fd -factor of the Poisson boundary of .�; �/. By Lemma
2.2, we conclude that h.� ˝ �k ; �/ > h.�; �/.

Proof of Theorem 1.3. The proof is similar to Theorem 1.1. Since .X; �/ is assumed to
be a .Fd ; �/-boundary where the action of Fd is not essentially free, we can choose an
element g 2 Fd , g ¤ 1, such that �.FixX .g// > 0. Choose an index k 2 N sufficiently
large such that the balls of radius 2jgjS around identities in .�k ; Sk/ and .Fd ;S/ coincide
and h.�k ; �/ < ". Take the stationary joining .Zk ; � � �k/ of .X; �/ and .…k ; �k/. By the
general inequality, we have

h.Zk ; � � �k/ � h.X; �/C h.…k ; �k/ � h.X; �/C ":

It remains to show that h.Zk ; � � �k/ > h.X; �/. Suppose on the contrary equality holds.
Then by Lemma 2.2, the equality would imply .Zk ; � � �k/D .X;�/. However, the action
of �k on .…k ; �k/ is essentially free, which implies � � �k.FixZk .g// D 0, contradicting
�.FixX .g// > 0.

We now show an analogous result on spectral radii stated as Theorem 1.4 in the Intro-
duction. Consider a symmetric non-degenerate probability measure � on � . In [32, 33],
Kesten proved the following theorem: let � be a symmetric non-degenerate probability
measure on � and N a normal subgroup of � . Then the following are equivalent.

(i) �.�; �/ D �.�=N;�/,

(ii) N is amenable.

Given a proper quotient � of Fd and " > 0, to prove Theorem 1.4, we take z� to be a
diagonal product � ˝H , for some appropriate choice of H similar to the groups used in
Theorem 1.1.

Proof of Theorem 1.4. Let " > 0 be a constant given. Let � be a proper quotient of Fd
and fix a choice of g0 2 ker.Fd ! �/, g0 ¤ id. Take n � 2jg0jS. As in the beginning
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of Section 3.2, fix a choice of d -tuple of elements in the Fabrykowski–Gupta group G,
T D .a


.n/
1 ; b


.n/
2 ; 


.n/
3 ; : : : ; 


.n/

d
/, which do not satisfy any reduced word of length at

most n. Denote the group generated by this tuple by Gn. Take first the diagonal product
� ˝Gn. By the choice of g and marking on G, we have that N0 D ker.� ˝Gn ! �/ is
nontrivial. Note that N0 can be regarded as a normal subgroup of Gn.

Denote by .W`/ a �-random walk on Fd . For a marked group .H; S/, we write �H
for the quotient map Fd ! H when the marking is clear from the context.

Take a small constant "1 > 0, and choose ` large enough such that

P
�
��.W`/ D id�

�
�
�
.1 � "1/�.�; �/

�`
:

For g 2 N0, set

Q.g/ D
P
�
��˝G.W`/ D g

�
P
�
��.W`/ D id�

� :
ThenQ is a symmetric probability measure onN0. EquipN0 with the induced metric j � jT
from .Gn; T /. LetR be a sufficiently large radius such thatQ.¹
 2N0 W j
 jT >Rº/� "1.
Truncate the measure Q at R and let

QR.g/ D
1

Q
�®

 W j
 jT � R

¯�Q.g/1¹jgjT�Rº:
Since N0 is a subgroup of the Fabrykowski–Gupta group G, thus amenable, there exists
an integer m such that

Q2m
R .idN0/ � .1 � "1/

2m:

With `;m;R chosen as above, for a sufficiently large index k, to be specified shortly,
take the marked group .�n;k ; Sn;k/ defined in Section 3.2. Consider the diagonal prod-
uct � ˝ �n;k . By Lemma 3.1, the ball of radius 2k�2 around id in the Cayley graph of
.Wk ; .ak ; bk// coincides with the ball of radius 2k�2 around id in .G; .a; b//. Choose k
sufficiently large such that k > 2mR.

Now we follow the original argument in Kesten’s theorem (ii))(i) above to show
�.� ˝ �n;k ; �/ > �.�; �/ � ". Write W k`

.k�1/`
D W �1

.k�1/`
Wk`. Consider

P
�
��˝�n;k .W2`m/ D id�˝�n;k

�
� P

� 2m\
kD1

®
��.W

k`
.k�1/`/ D id� ;

ˇ̌
��n;k .W

k`
.k�1/`/

ˇ̌
Sn;k
� R

¯
\
®
��`.W2`m/ D id�n;k

¯�
�
�
.1 � "1/�.�; �/

�2`m
.1 � "1/

2mQ2m
R .idN0/ � .1 � "1/

2mnC4m�2mn:

Choose "1 < "=3. We have that �.� ˝ �n;k ; �/ > .1 � "/�.�; �/.
Finally, by Lemma 3.4, �n;k has no nontrivial amenable normal subgroups. Since by

the choice of markings ker.� ˝Gn;k ! �/ is nontrivial, the kernel is non-amenable. By
Kesten’s theorem (i))(ii), we conclude that �.z�;�/ < �.�; �/.
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