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Thurston’s asymmetric metrics for Anosov
representations

Leoén Carvajales, Xian Dai, Beatrice Pozzetti, and Anna Wienhard

Abstract. We provide a good dynamical framework allowing to generalize Thurston’s asymmetric
metric and the associated Finsler norm from Teichmiiller space to large classes of Anosov rep-
resentations. In many cases, including the space of Hitchin representations, this gives a (possibly
asymmetric) Finsler distance. In some cases, we explicitly compute the associated Finsler norm.
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1. Introduction

Let S be a connected orientable surface without boundary, with finitely many punctures
and negative Euler characteristic. The Teichmiiller space Teich(S) of S is the space of
isotopy classes of complete, finite area hyperbolic structures on S. For a pair of points
g1, g2 € Teich(S), Thurston [81] introduces the function

dr(g1..82) = log sup ( c2e 8)
81

where the supremum is taken over all free isotopy classes ¢ of closed curves in S and, for
g € Teich(S), the number L, (c) denotes the length of the unique geodesic in the class c,
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with respect to the metric g. In [81, Theorem 3.1], Thurston shows that dry(+, -) defines
an asymmetric distance on Teich(S) and investigates many properties of this metric. For
instance, he shows (see [81, Theorem 8.5]) that d,(g1, g2) coincides with the least pos-
sible Lipschitz constant of homeomorphisms from (S, g1) to (S, g2) isotopic to ids and
constructs families of geodesic rays for this metric, called stretch lines.

Thurston also constructs a Finsler norm ||-||t, on the tangent bundle of Teichmiiller
space: For v € T, Teich(S), he sets

ol i sup S
c Lg(c)

This is indeed a non-symmetric Finsler norm, namely it is non-negative, nondegenerate,
(R>0)-homogeneous, and satisfies the triangle inequality. Moreover, Thurston shows that
the path metric on Teich(S) induced by this Finsler norm coincides with dry(:, -).

Assume now that S is closed. Then Teich(S) identifies with a connected component
T(S) of the character variety

(1.1)

X(m1(S),PSL(2,R)) := Hom(7r{(S), PSL(2,R))/PSL(2, R).
For a conjugacy class [y] in 7r1(S) and a point p € T(S), we set

LZ1([y]) := 2A1(p()).

where A1(p(y)) denotes the logarithm of the spectral radius of p(y). Identifying iso-
topy classes of closed curves in S with conjugacy classes in 71(S), one deduces from
Thurston’s result that

L (IyD)
it (p1.p2) == sup log (pz—) (1.2)
" blelm @) \LZ([y])

defines an asymmetric distance on T (S). Similarly, one gets an expression for the associ-
ated Finsler norm. The main goal of this note is to generalize this viewpoint, constructing
asymmetric metrics and Finsler norms in other representation spaces that share many fea-
tures with T (.S), namely spaces of Anosov representations, with a particular attention to
Hitchin, Benoist, and positive representations.

1.1. Results

For a finitely generated group I' and a semisimple Lie group G of non-compact type, we
denote by X(I', G) the character variety

X(T,G) := Hom(T', G) /G.

We furthermore denote by a™ a chosen Weyl chamber of G and by A : G — a™ the Jordan
projection. A functional ¢ € a™* is positive on the limit cone of a representation p € X(I", G)
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if for all y € T of infinite order one has ¢(A(o(y))) > c||A(p(y))| for some ¢ > 0 and
some norm on a. With this at hand, for any functional ¢ € a* positive on the limit cone of
p € X(T, G), we can consider its p-marked length spectrum

LE(y) = ¢(A(p(y)))

and its p-entropy
. 1
hY = hmsup?log#{[y] €[T]: LY(y) <t} €0, 00].
t—>00

If X C X(T, G) is a subset, let ¢ € a* be a functional positive on the limit cone of each
representation p € X. Naively, one would like to define df, : ¥ x ¥ — R U {cc} by

LY, (y)
df (p1. p2) = log ([ up_ ng—(;):)) (1.3)
VIE P1

and prove that it defines an asymmetric metric for some specific choices of X. However, in
this general setting, there could exist pairs of representations so that the ¢-length spectrum
of p; is uniformly larger than the ¢-length spectrum of p,: With the above definition, in
that situation we would have d}”h (p1, p2) < 0 (see Remark 6.5 and references therein). To
resolve this issue, we normalize the length ratio by the entropy:

hy, Ly, (y)
dfy(p1.p2) i=log| sup 2P
" yletr] ioy Ly ()

(see Definition 6.1 for more details in the case when I' has torsion). Observe that in the
case when X is the Teichmiiller space, h,z,/ll = 1, and thus, this definition is compatible
with the one given in equation (1.2).

By construction, d;’h satisfies the triangular inequality. Our first result determines a
setting in which such function is furthermore positive and separates points. For this, we
consider the definition of the space of ®-Anosov representations, an open subset of the
character variety X(T', G) depending on a subset ® of the set of simple roots IT of G (we
refer the reader to Section 4 for the precise definition). For any such set ®, we denote by

and by ag < a* the set functionals invariant under the unique projection pg : a — ag
invariant under the subgroup Wg of the Weyl group of G fixing ag pointwise.

Theorem 1.1 (See Theorems 6.2 and 6.8). Assume that G is connected, real algebraic,
simple, and center free. Assume furthermore that X C X (I, G) consists only of Zariski-
dense ©-Anosov representations. Let ¢ € ag, be positive on the limit cone of each rep-
resentation in X, and suppose that an automorphism t : G — G leaving ¢ invariant is
necessarily inner. Then d}ph(-, -) defines a (possibly asymmetric) metric on X.
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The Thurston distance on the Teichmiiller space of a closed surface is complete;
however, in general the distance d}”h might be incomplete also due to the entropy renormal-
ization. This is, for example, the case for the Teichmiiller space of surfaces with boundary
of variable length. It would be interesting to investigate the relation between suitable
metric completions and subsets of the length spectrum compactification, as introduced
in [62].

Provided we have a good understanding of all possible Zariski closures in a given sub-
set X C X(T', G), we can weaken the Zariski density assumption. This is, for instance, the
case for the set of Benoist representations. A Benoist representation is a representation
p: ' = PGL(d + 1, R) that preserves and acts cocompactly on a strictly convex domain
Q, C P (R?). We let Beny (I') be the space of conjugacy classes of Benoist representa-
tions, which by work of Koszul [53] and Benoist [11] is a union of connected components
of the character variety X(I", PGL(d + 1, R)). Benoist representations are ®-Anosov for
® = {a1, 04} (see [10] and [38, Proposition 6.1]). In particular, the logarithm of the spec-
tral radius A and the Hilbert length function H := A — A4 belong to ag. Here we
recall that A ;4 (g) denotes the logarithm of the smallest eigenvalue of g.

Since Benoist computed the possible Zariski closures of a Benoist representation [8],
the argument of Theorem 1.1 can be pushed further to show the following.

Theorem 1.2 (See Corollary 8.3 and Remark 8.4). The following holds:
(1) The function d%hl : Beng (T") x Beng (T') — R given by

RA LA ()
dii (p.p) :=log | sup —o-—L
b leir) Ayt LA (y)

defines a (possibly asymmetric) distance on Beng (I").
(2) The function d : Beny(T') x Beng (') — R given by

p.p):=log| sup —=
" ylery by Lp(v)

is non-negative, and one has
diy(p.p) =0& p=p or p=p"
where p* is the contragredient of p.

A similar result holds for a class of representations of fundamental groups of
closed real hyperbolic manifolds into POy (2, ¢) called AdS-quasi-Fuchsian. These were
introduced by Mess [60] and Barbot—M¢érigot [4, 5] (see Corollary 8.5).

The renormalization by the entropy in equation (1.3) while necessary to ensure positiv-
ity might seem inconvenient: It may be difficult to obtain concrete control on the entropy,
and thus, the relation between such distance and the best Lipschitz constant of associated
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equivariant maps is lost. There are, however, natural classes of representations on which
the entropy of some explicit functionals in the Levi-Anosov subspace ag, is constant. For
instance, this is the case for the unstable Jacobian J;_1 := dA; + A441 on Benoist com-
ponents, thanks to work of Potrie-Sambarino [65, Corollary 1.7]. In Corollary 8.1, we
define the corresponding metric. Another important example is the case of Hitchin rep-
resentations, the representations in the connected component Hit(S, G) of X(71(S), G),
for a split real Lie group G and the fundamental group of a closed surface S, containing
the composition of a lattice embedding 771 (S) — PSL(2, R) and the principal embedding
PSL(2,R) — G [30, 54]. Hitchin representations are Anosov with respect to the minimal
parabolic [30,37], so that ag = a* and the entropy with respect to all simple roots is con-
stant on Hit(S, G) and equal to 1, when G is classical [65,67]. All possible Zariski closures
of PSL(d, R)-Hitchin representations have been determined by Guichard', and recently a
written proof appeared in [73]. This result also covers PSp(2r, R) and PSO(p, p + 1)-
Hitchin representations, but not the Hitchin component of PSOy(p, p) (see Subsection 7.1
for details). As we explain in Subsection 7.1, Sambarino’s approach also works in that
case. We deduce the following.

Theorem 1.3 (See Corollary 7.3). Let G be an adjoint, simple, real-split Lie group of clas-
sical type. Let oo be any simple root of G, with the exception of the roots listed in Table 1.
Then the function df, : Hit(S, G) x Hit(S,G) — R given by

s LE(y)
p.p) :=log | sup
" ylerry L5 ()

defines an asymmetric distance on Hit(S, G).

Also in this case, even for the bad roots we can understand precisely when two
representations have distance zero. See Subsection 8.3 for further families of represen-
tations for which we can generalize Theorem 1.3; this is notably the case for some

Type Group Diagram Bad roots

Aop—1  PSL2n(R) IO {on}
b PO(n,n)Vn =5 e—e 4—{) {a1,...,an—2}
n

PO(4,4) F< {ar,... a4}

Table 1. The roots marked in black are fixed by a nontrivial automorphism and are therefore not
covered by Theorem 1.3.

!This is from unpublished work announced by Oliver Guichard.
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connected components of ®-positive representations of fundamental groups of surfaces
in PO(p, p + 1) [39], which are smooth and conjectured to only consist of Zariski-dense
representations [26, Conjecture 1.7].

As a second theme in the paper, we give an explicit formula for the Finsler norm
associated with the distance on the set Xg(I', G) of ®-Anosov representations. More
specifically, we introduce a function ||-||%, : T¥e (I, G) — R U {Zo00} which is defined
as follows. For a given tangent vector v € T,Xg (I, G), we set

do(h®)(V)LG(y) + hpd, (L (y))(v)
[ylelr] hy LY (y) '

ol =

If p > hY is constant, then this expression naturally generalizes Thurston’s Finsler norm
(1.1). We prove the following.

Proposition 1.4 (See Corollary 6.15). Let {ps}se(—1,1) C ¥o(I', G) be a real analytic
Sfamily and set p := pg and v := %|S:0ps. Then s +— d.(p, ps) is differentiable at s = 0
and

d
¢ _ @
vl = ds s=0dTh(p’pS).
It is natural to ask whether ||-[|$,, defines a Finsler norm. In this direction, we show the
following.

Theorem 1.5 (See Corollary 6.16). Let p € Xg(I', G) be a point admitting an analytic
neighborhood in X¢ (T, G). Then the function ||-||%, : T,Xe (T, G) — R U {£oo} is real
valued and non-negative. Furthermore, it is (Rsq)-homogeneous, satisfies the triangle
inequality, and one has ||v||%, = 0 if and only if

d,(9)(v)

dp(LY(y))(v) = W7 LY(y) (1.4)
0

forall y € T. In particular, if the function p h‘g is constant, then
lvllfy =0 & dp(LE () (v) =0
forall y e T.

Condition (1.4) has been studied by Bridgeman—Canary—Labourie—Sambarino [23,24]
in some situations. By applying their results, we obtain the following.

Corollary 1.6 (See Corollaries 7.11 and 7.12). The functions |-|3 and ||||/Tl}11 define
Finsler norms on Hitg (S) := Hit(S, PSL(d, R)).

We do not know, in this general setting, if the length metric induced by the Finsler
norm ||-||%, agrees with the distance df;: Indeed, it is not clear if the latter distance is
geodesic.
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Our final result is an application of Labourie-Wentworth’s computation of the deriva-
tive of some length functions on Hity (S) along some special directions [55]. By the work
of Hitchin [44], fixing a Riemann surface structure Xy on S, we can parametrize Hitg (.S)
by a vector space of holomorphic differentials (of different degrees) over Xy. Given a
holomorphic differential g of degree k, we associate with a ray ¢ — tg for ¢t > 0 a family
{pt}+>0 of Hitchin representations by the abovementioned Hitchin’s parametrization. We
denote by v(g) € Tx,Hit, (S) its tangent direction at # = 0. The holomorphic differential ¢
also defines a function Re(g) : T' Xy — R. Details for this construction will be given in
Subsection 7.2.

Theorem 1.7 (See Proposition 7.13). There exist constants C1 and C», only depending
on d and k, such that for every vector v = v(q) € Tx,Hity (S) as above, one has

@3 = ¢ sup f Re(q)d(agy))
[ylell]

and

@)1 = Ca sup [ Relg)d3s(apy)
[vlell]

where ¢ denotes the geodesic flow of Xo, apy) C T 1 X denotes the ¢-periodic orbit corre-

sponding to [y, and ¢ (ayy)) denotes the ¢-invariant Dirac probability measure supported

on ary).

1.2. Outline of the proofs

The proofs of our main results follow closely the approach by Guillarmou—Knieper—
Lefeuvre [40], which is based on work of Knieper [51] and Bridgeman—Canary—Labourie—
Sambarino [23]. In [40], the authors work with the space 91t of isometry classes of
negatively curved, entropy one Riemannian metrics on a closed manifold M. For g € I
and an isotopy class ¢ of closed curves in M, one may define L (c) as we did when g
was a point in Teichmiiller space. Guillarmou—Knieper—Lefeuvre define

Lg,(c)
dm(g1, g2) 1= logsup =22,
c Lgl (c)

where the supremum is taken over all isotopy classes ¢ of closed curves in M. In [40,
Proposition 5.4], the authors show

drh(g1,82) =0 (1.5)
for all g1, g> € M, and moreover,
dm(g1.82) =06 Ly = Lg,. (1.6)

Guillarmou—Lefeuvre’s theorem about the local rigidity of the length spectrum [41, The-
orem 1] (see also [40, Theorem 1.1]) gives that equation (1.6) is equivalent to g; = g2,
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provided that these two metrics are sufficiently regular and close enough in some appro-
priate topology. Hence, dy(+, -) defines an asymmetric metric on a neighborhood of the
diagonal of M’ C M, where N’ is the subset of M consisting of sufficiently regular met-
rics (see [40,41] for details). Guillarmou—Knieper—Lefeuvre also construct an associated
Finsler norm [40, Lemma 5.6].

Even though the local rigidity of the length spectrum is a geometric statement, the
proofs of (1.5) and (1.6) can be abstracted to a more general dynamical framework inspired
from [23, Section 3]. We develop this general dynamical framework in detail in Sections 2
and 3, as well as the specific statements needed for the construction of an asymmetric
distance and a Finsler norm in that setting. As we explain, these general constructions can
then be applied not only to the space M as in Guillarmou—Knieper—Lefeuvre but also to
other geometric settings, such as spaces of Anosov representations. We expect that this
can be applicable in many more geometric contexts.

The general dynamical framework in Guillarmou—Knieper—Lefeuvre’s setting arises
as follows: Gromov [34] observed that the geodesic flows of any two g1, g» € It are orbit
equivalent. Roughly speaking, this means that the two flows have the same orbits, trav-
eled at possibly different “speeds” (see Subsection 2.1 for details). The change of speed (or
reparametrization) is encoded by a positive Holder continuous function r = rg, , on the
unit tangent bundle X := T'' M of M. To be more precise, the function rg, 4, is only well
defined up to an equivalence relation, called Livsic cohomology (see Definition 2.2). Thus,
we work in the general dynamical setting of studying the “geometry” of the space £1(X)
of LivSic cohomology classes of entropy one Holder functions on X over the geodesic
flow ¢ of g;.

Since ¢ is an Anosov flow, one may study £;(X) through the lens of Thermody-
namic formalism (see Subsection 2.3). Crucial for us is the following rigidity result by
Bridgeman—Canary—Labourie—Sambarino [23, Proposition 3.8] (see Proposition 2.18):
There exists a distinguished ¢-invariant probability measure m®M(¢) so that

/ rdmB®M(¢) > 1 (1.7)

and equality holds if and only if r is Liv§ic cohomologous to the constant function 1,
namely the periods of periodic orbits of ¢ and the reparametrized flow by r coincide.
Thus,

sup/rdm > 1, (1.8)

m
where the supremum is taken over all ¢-invariant probability measures, and equality in the
above formula holds if and only if r is Liv§ic cohomologous to 1. By Proposition 2.15, the
quantity in (1.8) coincides with the supremum of ratios of periods of periodic orbits for ¢
and the reparametrized flow by r. These general dynamical considerations, when applied
specifically to reparametrizing functions associated with g1, g» € I, readily imply (1.5)
and (1.6).
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Now as in [23] for their construction of a pressure metric (see Subsections 1.3 and 3.3
for a detailed comparison), the above general approach can also be applied to study spaces
of Anosov representations. We use Sambarino’s reparametrization theorem [72] (see The-
orem 5.2) to map Xg(I', G) to a space of LivSic cohomology classes of Holder functions
over Gromov’s geodesic flow UL of I'. More precisely, we associate with each Anosov
representation p and each ¢ € ag a Holder reparametrization of the geodesic flow UT
encoding the ¢-spectral data of p. This procedure is more involved than in the case of
negatively curved metrics, not only because it depends on the additional choice of the
functional ¢ but also because the entropy of ¢ is, in general, non-constant. While, when
working with the space 9t one can bypass this problem by normalizing the metric, this is
not a natural procedure in our setting, this is why the extra normalization appears in the
expression for df, (-, ) (see Remark 2.16 for further comments on this point). Neverthe-
less, Bridgmeman—Canary—Labourie—Sambarino’s rigidity statement (1.7) is adapted to
the setting of arbitrary entropy and we deduce

df.(p1.p2) =0 (1.9)
for all p1, p2 € Xg (I, G), and moreover,

dh(p1,p2) =0 hg Ly =hy LY, (1.10)
which are the exact analogs of equations (1.5) and (1.6).

To finish the proof of Theorems 1.1, 1.2, and 1.3, we need to understand under which
conditions one can guarantee renormalized length spectrum rigidity, that is, under which
conditions the equality i, L = h%, L%, implies that p; and p, are conjugate. As in the
case of negatively curved metrics, where length spectrum rigidity is only known to hold
locally, this typically requires restriction to a subset of Xg(I", G). More precisely, we need
to control the Zariski closure G, of p;, fori = 1, 2. Since central elements and compact
factors are invisible to the Jordan projection, we must require that G, is center free and
without compact factors. Once this is assumed, and if we assume moreover that G, is
semisimple, renormalized length spectrum rigidity follows essentially from properties of
Benoist’s limit cone (see Theorem 6.8 and [23, Corollary 11.6]). In some special cases,
such as Hitchin components and some components of Benoist and positive representa-
tions, these arguments can be pushed further to guarantee global rigidity (see Theorem 7.1
and Section 8).

We study the Finsler norm on Xg (I, G) following the same approach, namely by
finding a general dynamical construction inspired by [40] and then pulling back this con-
struction to spaces of Anosov representations. Observe, however, that in this case we need
a more complicated expression than what is available in [40] because we cannot assume
that the entropy is constant.

We may summarize the above discussion by saying that the results of this paper are
obtained by adapting the corresponding constructions in [40] to the context of Anosov
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representations: We can rely on the thermodynamic formalism, on which part of the con-
structions in [40] are based, using the work of Sambarino [72] and Bridgeman—Canary—
Labourie—Sambarino [23], and the local rigidity statement needed in [40] is replaced here
by rigidity statements for Anosov representations from [23]. One of the strong points of
our approach is to find a suitable general setup where both contexts can be encompassed
and which might prove useful for other geometric situations.

1.3. Other related work

In [23, 24], the authors construct Out(I')-invariant analytic Riemannian metrics on
X (T, G): They deduce from the aforementioned rigidity result that the Hessian of the
renormalized intersection (1.7) is a semidefinite non-negative form, called the pressure
form. This can be pulled back to spaces of Anosov representations, sometimes yielding a
positive definite form [23, 24]. The construction of this paper is different: Instead of inte-
grating with respect to a given measure and taking a second derivative, we integrate with
respect to all invariant measures (see Subsection 3.3 for more detailed comparisons).

The rigidity result in equation (1.7) was previously known to hold in other settings.
When restricted to geodesic flows of closed hyperbolic surfaces, this is a reinterpretation
of Bonahon’s intersection rigidity theorem [17, p. 156] (see Appendix A for more details).
More generally, that same result was known to hold for pairs of convex co-compact, rank 1
representations p; and p, of a word hyperbolic group I" (see Burger [25, p. 219]). Burger’s
results readily imply that

ho, Lp,(y)
drh(p1, p2) :=log sup 2
lelr] Mor Lo (¥)

defines an asymmetric distance on a subset of the space of conjugacy classes of convex
cocompact representations I" — G, where G has real rank 1 (note that in a rank 1 situation
the choice of a functional ¢ is irrelevant). Burger also relates the number

Ly, )

(1.11)
iylerr] Lor (V)

with one of the asymptotic slopes of the corresponding Manhattan curve (see [25, The-
orem 1]). Guéritaud—Kassel [36, Proposition 1.13] extend Burger’s asymmetric metric to
some not necessarily convex cocompact representations into the isometry group of the real
hyperbolic space. They also show that in some situations, the value (1.11) coincides with
the best possible Lipschitz constant for maps between the two underlying real hyperbolic
manifolds.

Our construction of the asymmetric metric is done on a very general dynamical setting
and pulled back to Anosov representation spaces through Sambarino’s reparametrization
theorem. For reparametrizations of the geodesic flow of a closed surface, a construction
with similar flavor was introduced by Tholozan [80, Theorem 1.31]. His construction
leads to a symmetric distance, and it is described in terms of the projective geometry of
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some appropriate Banach space (see [80] and Remark 3.3 for further details). It would be
intriguing to understand the relation between Tholozan’s construction and the approach
we carry out here.

1.4. Plan of the paper

In Section 2, we discuss the dynamical setup, and in Section 3, we construct the asym-
metric metric and the corresponding Finsler norm in this general setting. In Section 4, we
recall the definition and main examples of interest of Anosov representations. In Section 5,
we recall Sambarino’s reparametrization theorem. In Section 6, we pull back the construc-
tion of Section 3 to spaces of Anosov representations and also discuss the renormalized
length spectrum rigidity in general. In Sections 7 and 8, we specify the discussion to
Hitchin representations, as well as some components of Benoist and positive representa-
tions. In Appendix A, we discuss in detail the link between the rigidity statement (1.7)
and Bonahon'’s intersection rigidity theorem.

2. Thermodynamic formalism

We begin by recalling some important terminology and results about the dynamics of topo-
logical flows on compact metric spaces. In Subsection 2.1, we recall the notions of Holder
orbit equivalence and Liv§ic cohomology. In Subsection 2.2, we recall the important con-
cept of pressure and fix some terminology that will be used throughout the paper. In Sub-
section 2.3, we recall the notion of Markov coding of a topological flow and state the main
consequences of admitting such a coding. We also recall the notion of metric Anosov flows,
an important class of flows that admit Markov codings. Finally, in Subsection 2.4, we
recall the notion of renormalized intersection, which is central in our study of the asym-
metric metric. The exposition follows closely Bridgeman—Canary—Labourie—Sambarino
[23, Section 3].

2.1. Topological flows, reparametrizations, and (orbit) equivalence

Let ¢ = (¢ : X — X) be a Holder continuous flow on a compact metric space X . In this
paper, we always assume that ¢ is topologically transitive. This means that ¢ has a dense
orbit.

The choice of a continuous function r : X — R+ induces a “reparametrization” ¢”
of the flow ¢. Informally, this is a flow with the same orbits as ¢, but traveled at a different
“speed.” To define this notion properly, we first let «, : X x R — R be given by

o (x.1) = [0 F (s (x))ds.

The function , (x,-) : R — R is an increasing homeomorphism for all x € X and therefore
admits an (increasing) inverse o (x, -) : R — R. That is, we have

Kr (X, 0 (X, 1)) = ap (X, kp (x, 1)) =t
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forall x € X andt € R.

Definition 2.1. The reparametrization of ¢ by a continuous function r : X — R~ is the
flow ¢" = (¢; : X — X) defined by the formula

d’tr(x) = ¢ar(x,t)(x)

forall x € X and ¢ € R. We say that ¢" is a Holder reparametrization of ¢ if r is Holder
continuous. We let HR(¢) be the set of Holder reparametrizations of ¢.

The reader may wonder why we choose the function «; to reparametrize, instead of
directly considering the function «,. One reason is the following. Let ¢ € HR(¢) and
denote by r4  the corresponding reparametrizing function, that is, Yy = ¢"#¥. Denote by
O the set of periodic orbits of 1 (note that this set is independent of the choice of ).
Given a € O, we denote by py (a) the period, according to the flow , of the periodic
orbit a. Then for every x € a one has the following equality:

Dpy(a)
/0 o,y (e (x))dt = py(a).

Hence, by choosing the function ¢, , (instead of k;, , ), we avoid a cumbersome formula
involving the integral of 1/ o when computmg the periods of the new flow.

If we take another point w € HR(¢), then Visa reparametrization of ¥, that is, one
has w =19 for some positive continuous function ryg-1In fact, an explicit computation
shows P
= ¥ 2.1

T,y
As above, for every a € O and every x € a one has

"y

py (@)
[ ry g = py. 22)

There are two notions of equivalence between topological flows that we now recall. A
Holder continuous flow ¢' = (¢; : X’ — X') on a compact metric space X’ is said to be
(Hélder) conjugate to ¢ if there is a (Holder) homeomorphism /2 : X — X’ satisfying

hogr=g¢;oh

forall # € R. A weaker notion is that of orbit equivalence: The flow ¢’ = (¢} : X' — X')
is said to be (Holder) orbit equivalent to ¢ if it is (Holder) conjugate to a (Holder)
reparametrization of ¢. One can see that every flow in the orbit equivalence class of ¢
is topologically transitive.

To single out elements in HR(¢) which are conjugate to ¢, one introduces Livsic
cohomology. To motivate this notion, consider a Holder continuous function V' : X — R
of class C! along ¢, and let

r(x) = (%

V(¢:(X))) T

t=0
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If r is positive, then ¢” is conjugate to ¢. Explicitly, if one defines /(x) := ¢y () (x), then
ho ¢; = (pt oh
forallt € R.

Definition 2.2. Two Holder continuous functions f, g : X — R are said to be Livsic coho-
mologous (with respect to ¢) if there is a Holder continuous function V' : X — R of class
C! along the direction of ¢, so that for all x € X one has

F@) —g@ =2 Vg,

dr f,—o

In that case we write /' ~4 g and denote the LivSic cohomology class of f with respect

to ¢ by [flg-

2.2. Invariant measures, entropy, and pressure

For ¢ € HR(¢), we denote by P(y) the set of 1-invariant probability measures on X . This
is a convex compact metrizable space. We also let (1) C P(¥) be the subset consisting
of ergodic measures, that is, the subset of measures for which /-invariant measurable sub-
sets have measure either equal to zero or one. The set £() is the set of extremal points
of P(¥).

By the Choquet representation theorem (see Walters [85, p. 153]), every element
m € P(¥) admits an ergodic decomposition. This means that there exists a unique
probability measure 7, on () such that

[ reamen = [ W/)( / f(X)dM(X))dfm(u)

holds for every continuous function f on X.

The set of periodic orbits of ¥ embeds into P(y) as follows: For a € O, recall
that py (a) is the period of the periodic orbit a according to the flow . We denote by
8y (a) € P(¥) the Dirac mass supported on a, that is, the push-forward of the Lebesgue
probability measure on S! = [0, 1]/ ~ (where 0 ~ 1) under the map

S!S Xt Vpy (@)t (X),

where x is any point in a. Note that §,,(a) € E(3). Using equation (2.2), we conclude that
for every ¥ € HR(¢) one has

Pe(@ = 1y @ [ r, 308y, 23)

More generally, for m € P(yr), the map m +— m given by

r, ~dm
din = ¥V

= —f rw,adm 2.4)
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defines an isomorphism P () = CP((/}).
We now recall the notion of topological pressure, which will be central for our
purposes.

Definition 2.3. Let f : X — R be a continuous function (or potential). The topological
pressure (or pressure) of f is defined by

P(¢p, f):= sup (h(qb,m)—i—/xfdm), (2.5)

meP(¢)

where h (¢, m) is the metric entropy of m.

The metric entropy (or measure theoretic entropy) h(¢p, m) is defined using m-
measurable partition of X and is a metric isomorphism invariant (see [85, Chapter 4]).
When there is no risk of confusion, we will omit the flow ¢ in the notation and simply
write P(f) = P(¢, f).

A special and important case is the pressure of the potential f = 0, which is called
the fopological entropy of ¢. It is denoted by hp(¢), or simply by hg. The topological
entropy is a topological invariant: Conjugate flows have the same topological entropy. In
contrast, the topological entropy is not invariant under reparametrizations.

A measure m € P(¢) realizing the supremum in equation (2.5) is called an equilibrium
state of f. An equilibrium state for f = 0 is called a measure of maximal entropy of ¢.

Livsic cohomologous functions share some common invariants defined in thermody-
namic formalism.

Remark 2.4. If f : X — Rand g : X — R are LivSic cohomologous functions (w.r.t. ¢),
then P(¢, /) = P(¢, g) and m € P(¢p) is an equilibrium state for f if and only if it is an
equilibrium state for g. Indeed, if /' ~4 g and m € P(¢), then

/demzfxgdm.

This is a consequence of ¢-invariance of m and the mean value theorem for derivatives of
real functions.

The following is well known and useful.

Proposition 2.5 (Bowen—Ruelle [21, Proposition 3.1], Sambarino [72, Lemma 2.4]). Let
¢ = (¢: : X — X) be a Holder continuous flow on a compact metric space X and
r: X — Rsg be a Holder continuous function. Then a real number h satisfies

P(p,—hr)=0

ifand only if h = hgr.
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2.3. Symbolic coding and metric Anosov flows

We now specify an important class of topological flows for which pressure, equilibrium
states, and LivSic cohomology behave particularly well. The property we are interested in
is the existence of a strong Markov coding for the flow. Informally speaking, a Markov
coding provides a way of modeling the flow by a suspension flow over a shift space.
This allows us to obtain many properties about the dynamics of the flow, by studying the
corresponding properties at the symbolic level. The reader can find a general introduc-
tion on how to model flows by Markov codings and suspension flows in Bowen [20] and
Parry—Pollicott [63, Appendix III]. We give a cursory introduction of suspension flows
and Markov partitions here.

Suppose (X, 04) is a two-sided shift of finite type. Given a “roof function” r : ¥ —
R, the suspension flow of (¥, 04) under r is the quotient space

= {(x,) e ExR:0 =<1 =r(x)}/(x,r(x)) ~ (0a(x),0)
equipped with the natural flow o ((x,7) := (x,7 + ).

Definition 2.6. A Markov coding for the flow ¢ = (¢; : X — X) is a4-tuple (¥, 04, 7,7)
where (X, 04) is an irreducible two-sided subshift of finite type, the functionr : ¥ — R~
and the map 7 : 3, — X are continuous, and the following conditions hold:

* The map 7 is surjective and bounded-to-one.

* The map 7 is injective on a set of full measure (for any ergodic measure of full support)
and on a dense residual set.

e Forallz € Ronehasw ooy, = ¢, om.

If both 7 and r are Holder continuous, we call the Markov coding a strong Markov coding.
The proof of the following proposition can be found in Sambarino [72, Lemma 2.9].

Proposition 2.7. Let ¢ = (¢; : X — X)) be a topological flow admitting a strong Markov
coding. Then every flow in the Holder orbit equivalence class of ¢ admits a strong Markov
coding.

Thanks to the previous proposition, if ¢ admits a strong Markov coding, then every
element ¥ € HR(¢) also does. This has deep consequences for the dynamics of ¥ that
we will discuss in this section. However, before doing that we will discuss an important
class of topological flows that admit Markov codings, namely metric Anosov flows. This
class is important to us because, as proved by Bridgeman—Canary—Labourie—Sambarino
[23, Sections 4 and 5], every Anosov representation induces a geodesic flow which is a
topologically transitive and metric Anosov.

Among flows of class C! on compact manifolds, Anosov flows provide an important
class exhibiting many interesting dynamical properties. They were introduced by Anosov
[2] in his study of the geodesic flow of closed negatively curved manifolds. Anosov flows
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were generalized to Axiom A flows by Smale [77]; we do not give full definitions here and
refer the reader to Smale’s original paper. An example of an Axiom A flow which is not
Anosov is the geodesic flow of a non-compact convex cocompact real hyperbolic man-
ifold, the restriction of the flow to the set of vectors tangent to geodesics in the convex
hull of the limit set shares many dynamical properties with Anosov flows, even though
this set is not a manifold. In some contexts (and particularly in the setting we are focusing
on), Cl-regularity is too much to expect; metric Anosov flows form a class that further
generalize Axiom A flows to the topological setting and still share many desirable prop-
erties with them. They were introduced by Pollicott [64], who also showed that these
flows admit a Markov coding, generalizing the corresponding results for Axiom A flows
obtained previously by Bowen [20].

Let¢ = (¢ : X — X) be a continuous flow on a compact metric space X . For ¢ > 0,
we define the e-local stable set of x by

Wix):={yeX: :dg:x.¢:y) <&Vt >0and d(¢p;x,¢p;y) — 0ast — oo}
and the e-local unstable set of x by
Wr(x):={yeX: :dp_x,¢p_y) <e, VYVt >0and d(p_sx,p_;y) - 0ast — oo}.

Definition 2.8. A topological flow ¢ = (¢; : X — X)) is metric Anosov if the following
conditions hold:

(1) There exist positive constants C, A, & such that
d($:(x), ¢:(y)) < Ce™d(x,y) forally € Wi(x) and > 0,
and
d(p—(x). ¢ (y)) < CeMd(x,y) forally € W*(x) and ¢ > 0.
(2) There exists § > 0 and a continuous function v on the set
Xs ={(x.y) € X x X :d(x,y) <8}

such that for every (x, y) € Xs, the number v = v(x, y) is the unique value for
which W} (¢yx) N W7 (y) is not empty consists of a single point, denoted by

(x, ).

Theorem 2.9 (Pollicott [64]). A topologically transitive metric Anosov flow on a compact
metric space admits a Markov coding.

For the rest of the section, we fix a topologically transitive flow ¢ = (¢; : X — X)
admitting a strong Markov coding. In this case, the entropy of ¢ agrees with the
exponential growth rate of periodic orbits:

1
hy = tli)rgo ;log#{a €0 :pyla) <t} (2.6)
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Moreover, this number is positive and finite (see Bowen [19] and Pollicott [64]).

Another useful consequence of the existence of a Markov coding is the density of @ in
E(¢). Combined with the ergodic decomposition (cf., Subsection 2.2), it provides a nice
way of relating invariant measures and periodic orbits.

Theorem 2.10. Let ¢ = (¢p; : X — X) be a topologically transitive flow admitting a
strong Markov coding. Then for every measure m € (), there is a sequence of periodic
orbits {aj} C O such that, as j — oo,

5¢ (aj) —m
in the weak-x topology.

Proof. This is well known in hyperbolic dynamics (see, e.g., Sigmund [75, Theorem 1]
when ¢ is Axiom A). We comment briefly on the ingredients of the proof, since we have
not found an explicit reference in our specific setting.
By Pollicott [64, p.195], there is a g4-invariant ergodic measure © on X so that

m = w4 ([1), where [I is the probability measure on X, induced by the measure on X x R
given by

nQ dt

[rdp”
Hence, it suffices to prove that y can be approximated by periodic orbits of a4. This is
a consequence of two dynamical properties of o4, called expansiveness and the pseudo-
orbit tracing property (see, e.g., [42, Definition 3.2.11] and [84, Theorem 1]). Indeed,
provided these properties, Sigmund’s argument [76, Theorem 1] can be carried out in the
present framework. n

With respect to equilibrium states, we have the following theorem.

Theorem 2.11 (Bowen—Ruelle [21], Pollicott [64], Parry—Pollicott [63, Proposition 3.6]).
Let ¢ = (¢ : X — X) be a topologically transitive flow admitting a strong Markov coding.
For every Holder continuous function f : X — R, there exists a unique equilibrium state
mg (@) for f with respect to ¢. Furthermore, the equilibrium state is ergodic. Finally,
if g : X — R is Holder continuous and my(¢p) = mg (@), then there exists a constant
Sfunction ¢ so that f — g ~¢ c.

The equilibrium state for f = 0 is called the Bowen—Margulis measure of ¢ and
denoted by m®M(¢). For Anosov flows, the existence of this measure was proved by Mar-
gulis in his PhD Thesis [58]. Uniqueness was originally conjectured by Bowen [20] and
this justifies the name. In a more geometric context, for example, for the geodesic flow of a
convex cocompact real hyperbolic manifold, Sullivan [78] gave a description of this mea-
sure using Patterson—Sullivan theory. Because of this, the measure of maximal entropy in
those contexts is sometimes called the Bowen—Margulis—Sullivan measure.

If f ~¢ g, then the integrals of f and g over every periodic orbit coincide. In the
present setting, we also have a converse statement.
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Theorem 2.12 (Livsic [56]). Let ¢ = (¢: : X — X) be a topologically transitive flow
admitting a strong Markov coding. Suppose that f and g are two Holder continuous
Sfunctions such that for all a € O and all x € a one has

py(@) py(@)
[ rwienan= [ g
0 0

Then f ~¢ g.

A proof of Liv§ic’s Theorem 2.12 can be found in [83, Theorem 4.3]: Even though it is
stated for C! hyperbolic flows, the proof only uses the existence of the Markov partition.

The final property of metric Anosov flows we will need is convexity of the pressure
function and a characterization of its first derivative in terms of equilibrium states. Let S
be a CK (resp., smooth, analytic) manifold. A family of functions { f; : X — R)scs is said
to be a CX (resp., smooth, analytic) family, if for all x € X, the function s — f;(x) is C¥
(resp., smooth, analytic).

Proposition 2.13 (Parry—Pollicott [63, Propositions 4.7, 4.10, and 4.12]). Let ¢ = (¢; :
X — X)) be a topologically transitive flow admitting a strong Markov coding. Then:

(1) For every pair of Holder continuous functions f, g : X — R, the function

s = P(g, [ +52)

is convex. Furthermore, it is strictly convex if g is not LivSic cohomologous
(w.r.t. @) to a constant function.

(2) Let { fs}se(-1,1) be a Ck (resp., smooth, analytic) family of v-Holder continuous
functions on X. Then s +— P(¢, f;) is a C¥ (resp, smooth, analytic) function, and

dPp. )| [ (dfs
s=0 B /X (K s=0)dmf0’

ds
where mys, = my, (@) is the equilibrium state of fo (w.r.t. §).

2.4. Intersection and renormalized intersection

Intersection and renormalized intersection provide a way of “measuring the difference”
between two points in HR(¢). The notion of intersection was introduced by Thurston
in the context of Teichmiiller space (see Wolpert [87]) and then reinterpreted by Bona-
hon [17] (see also Appendix A). Burger [25] generalized this notion to pairs of convex
cocompact representations into Lie groups of real rank equal to 1, and noticed a rigid
inequality for this number after renormalizing by entropy. Bridgeman—Canary—Labourie—
Sambarino [23, Section 3.4] further generalized this (renormalized) intersection in the
abstract dynamical setting we are focusing on. We will use these notions to study the
asymmetric distance and Finsler norm in HR(¢) in Section 3.
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Definition 2.14. Let v, fﬁ\ € HR(¢). For m € P(y), the m-intersection number between
¥, ¥ € HR(¢) is defined by

L.(y,¢) = / rygdm,
X
where the positive continuous function r v is given by equation (2.1).

Recall that ¢ is a topologically transitive flow admitting a strong Markov coding.
Intersection numbers and ratios of periods are linked as follows.

Proposition 2.15. For every , 1//} € HR, the following equality holds:

pyla) ~
sup v = sup LW, v¥).
acl pl#(a) meP(y¥)

Proof. The proof follows closely Guillarmou—Knieper-Lefeuvre [40, Lemma 4.10]. We
include it for completeness.
First of all, we observe that

sup Lu(¥,¥) = sup Ln(y,9). 2.7
meP) me& ()

Indeed, let my € P(y) be such that

sup | (Iﬂ, &) = Imo (W, {ﬁ\)
meP(y)

By ergodic decomposition (cf., Subsection 2.2), we have

/E " ( /X rw@(x)du(x))drmo(u)

sup L (3, IZ) X/ dfmo(/")
mee&(y) EW)

sup L (¥, V).
me&(Y)

Lo (V. V)

IA

The reverse inequality being trivial, this proves equality (2.7).
We now prove

py(a) -
sup v < sup L,(y, ).
aco Py (@) ~ mee(y)

To do that, take a sequence a; € @ such that

rg(a) pyay)
sup v = lim v
aco Py(@)  j—oo py(aj)
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Since () is compact, we may assume 8y (a;) — m for some m € E(y). By equa-
tion (2.3), we have

Pe@ a5y (a) / dm< sup In(¥.9)
sup = lim r, - aj)= [ r, dm < sup ).
aco Pyl@) oo Jy VIV x VY mee()

To finish the proof, it remains to show

py(a) -
sup v > sup L,(y,¥).
aco Py (@) 7 mee(y)

By Theorem 2.10, given m € () we may find a sequence a; € O such that 8., (a;) — m.
Proceeding as above, we have

A Byta)) = [ rygdm =1t )
sup > lim r, = a;) = r, ~dm = SU).
aco Py (@) ~j—oo Jx R A ' VA m

The result follows taking supremum over all m € E(V). |

The supremum
sup Lp(V.¥) = sup / rygdm
meP(y) meP(y)

is a well-studied quantity in dynamics. Indeed, this number and the measure(s) attaining
the sup is the subject of study of ergodic optimization. A general belief in this area is that
“typically” among sufficiently regular functions, the maximizing measure is unique and
supported on a periodic orbit. See Jenkinson [46] and references therein for a nice survey.
However, for the geometric applications, we have in mind these types of generic results
are not enough. In the specific case of reparametrizing functions arising from points in the
Teichmiiller space of a closed surface, Thurston gives a description of the measures real-
izing the sup above: These are always (partially) supported on a topological lamination
on the surface, and this lamination is typically a simple closed geodesic (see [81, p.4 and
Section 10] for details).

The function m — I, (v, 1/7) is continuous with respect to the weak-x topology on
P(y¥). Since P(y) is compact, Proposition 2.15 implies

sup Py @ 2.8)

aco Py (@)
Remark 2.16. Thanks to the above remark, one may try to use directly the log of the

number in (2.8) to produce a metric on HR(¢). However, the following problem arises.
For a constant function r = ¢ > 1, we have

log ( sup p¢_(a)) = log (l) <O0.
acO p¢’(a) ¢

Hence, the quantity in equation (2.8) cannot define a distance in HR(¢). This problem
also arises in the geometric setting we will focus on (cf., Remark 6.5).
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A way of resolving the above issue, natural from the viewpoint of dynamical sys-
tems, is to normalize by the entropy. Together with Proposition 2.15, this motivates the
following definition.

Definition 2.17. Let v, {ﬁ\ € HR(¢) and m € P(y). The m-renormalized intersection
between v and ¥ is

hw
In(W,9) = Im V. 9).
Considering renormalized intersection fixes the above issue.

Proposition 2.18 (Bridgeman—Canary—Labourie—-Sambarino [23, Proposition 3.8]). For
every ¥, € HR one has

Ty (V. 9) = 1.
Moreover, equality holds if and only if(hv; r(w;) ~¢ (hyrs ).

Proof. By equation (2.1), we have

I (09 = 7 / (“"”)deMW)

Now the statement becomes precisely that of [23, Proposition 3.8]. ]

3. Asymmetric metric and Finsler norm for flows

As always, we assume that ¢ is a topologically transitive flow admitting a strong Markov
coding. We want to use the formula

pyla) h pyla)
lo su l// v ) lo (—v’ su v )
s (aeg hy py(a) s hy ned Py (a)

to define a distance on a suitable quotient of HR(¢). We begin understanding which pairs
are at distance zero:

Lemma 3.1. For ¥ and 1/7 in HR, the following are equivalent:
(1) Foreverya € 0, hv;p]z(a) = hy py(a).
2) (hjry 3) ~¢ (hyrey).
(3) rw’v? ~ h‘/’/hTIA/

(4) There exists a constant function ¢ so that Ty ~v C

Proof. Since y and Iﬁ are topologically transitive and admit a strong Markov coding (cf.,
Proposition 2.7), all results from Section 2 apply. In particular, the equivalence between
(3) and (4) follows from equation (2.6).
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The implications (2)=>(1) and (3)=>(1) are straightforward. The implications (1)=(2)
and (1)=(3) hold thanks to LivSic’s Theorem 2.12 (applied to ¢ and ¥/, respectively). m

We say that ¥ and 1:0\ in HR(¢) are projectively equivalent (and denote yr ~ 1}) if any
of the equivalent conditions of Lemma 3.1 hold. We denote by PHR(¢) the quotient space
under this relation and denote by [] € PHR(¢) the equivalence class of .

3.1. Asymmetric metric on PHR(¢)
Define dty, : PHR(¢) x PHR(¢) — R by

- hg py(a)

(91,190 1= tog  sup £ 700
aco Iy py(a)

where ¢ and 1/7 are representatives of [¢] and [1/7], respectively. Lemma 3.1 guarantees

that dy, is well defined, as it does not depend on the choice of these representatives.
Theorem 3.2. The function dry, defines a (possibly asymmetric) distance on PHR(¢).

By “possibly asymmetric,” we mean that there is no reason to expect that the equal-
ity dun([¥], [¥]) = dm([¥]. [¥]) holds for all pairs [¥], [¥/] € PHR(¢). In fact, in
some specific situations it is possible to show that dyy(-, -) is indeed asymmetric (cf.,
Remark 7.10).

Proof. Let [y], [1/7] € PHR(¢) and pick representatives ¥, @ € HR(¢). By Proposi-
tion 2.15, we have
dm (1. [¥]) =10g( sup  Jm (¥, 1Z))-
meP(y)
Proposition 2.18 implies

sup T (V. 1) 2 Iy (V. ) = 1,
meP(y)
and therefore dr([¥/], [1}]) > 0. Moreover, if dm,([V], [IZ]) = 0, then Proposition 2.18
implies (h&rq&,v;) ~¢ (hyrg,y), which by Lemma 3.1 means [y/] = [y]. Since the triangle
inequality for dy(-, -) is easily verified, the proof is complete. |

Remark 3.3. When ¢ is a (not necessarily Holder) continuous parametrization of the
geodesic flow of a closed orientable surface of genus g > 2, Tholozan [80] defined a sym-
metric distance in PHR(¢) which has similar flavor to our dry (-, -). More precisely, he
works in the space of (not necessarily Holder) continuous reparametrizations of ¢ and
considers an appropriate equivalence relation on this space, which restricts to ~ in the
Holder setting. Tholozan proves that the quotient space under this equivalence relation
sits as an open, weakly proper, convex domain in the projective space of some Banach
space. Hence, it carries a natural Hilbert metric (see [80, Proposition 1.29] for details). In
[80, Theorem 1.31], he gives an expression for this Hilbert metric which is a symmetrized
version of dry(+, *).
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3.2. Finsler norm

We now define a Finsler norm |-||t, on the “tangent space” Tjy,]PHR(¢) of every
[] € PHR(¢) and provide a link with the asymmetric distance dy, (-, -) (Proposition 3.6).
Recall that a Finsler norm on a vector space V is a function ||-|| : V' — R such that for all
v,w € V and all a > 0 one has

o |v|| = 0, with equality if and only if v = 0,
* llav] = allv], and
© v+ wl = vl + [lw].
Before starting, we need to make sense of the “tangent space” T[4 PHR(¢) (cf., also
[23, Subsection 3.5.2]). To do this, we express our space of reparametrizations as a level
set of the pressure function and apply Proposition 2.13 and the implicit function theorem
in Banach spaces [45]. We need to be careful though, because the space of Holder continu-
ous functions on X is not closed in the topology of uniform convergence. To fix this issue,
we will fix a Holder exponent v and work restricted to the space #V(X) of v-Holder
functions. In the geometric applications we have in mind, namely for spaces of Anosov
representations, this is not a strong assumption as discussed in [23, Section 6] (see also
Subsection 6.3).

Fix v > 0 and endow #V (X) with the Banach norm

= &) = Jl
11l 3= 1 oo + sup 22200

where ||-||oo denotes the uniform norm. Let BY(X) C #V(X) be the space of ¢-Livsic
coboundaries, that is, the set of v-Holder functions on X which are ¢-LivSic cohomolo-
gus to zero. By Livsic’s Theorem 2.12, BV (X) is a closed (vector) subspace of #V(X).
We endow the quotient space £V(X) := HV(X)/BY(X) of Livsic cohomology classes
in JV(X) with the norm

— inf ||uly,
o+t il

which by abuse of notations will also be denoted by ||-||,,. Note that (#V(X), |-]|v) is a
Banach space.

Let HRV(¢) be the set of reparametrizations ¥ € HR(¢) so that rg y € HV(X) and
PHRY(¢) be its projection to PHR(¢). Let [{y] € PHRY(¢) be any point and take a
representative ¢ € HRV(¢) satisfying iy = 1. By Proposition 2.5, we have

P(p.—1py) = 0.

Moreover, if fﬁ\ € [¥] is another representative satisfying A 7 = 1, Lemma 3.1 states that
Iy ~¢ T¢.w- We then have an injective map from PHRY(¢) to the space

PU(X) := {[r]ls € £U(X) : P($,—r) = 0}.
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Hence, PHRY(¢) identifies with the open subset of $V(X) consisting of Livsic coho-
mology classes of pressure zero, strictly positive, v-Holder continuous functions on X.
In view of this discussion, throughout this section, all representatives v of points [¢/] in
PHR"Y (¢) are assumed to satisfy /iy = 1.

From now on, we simply denote [r]s by [r], omitting the underlying flow ¢. By
Proposition 2.13, for any positive g € F#V(X) one has

diP(#. ) ([g]) > 0.
That same proposition and the implicit function theorem in Banach spaces imply that the

tangent space to SV (X) at [r] is given by

TP o) = {lel € 200 [ gam, =0,

where m_, = m_,(¢) denotes the equilibrium state of —r (w.r.t. ¢). Since PHRY (¢) sits
as an open subset of PV (X), it is natural to define the tangent space to PHRY (¢) at [/]
by

T[W]PHRU (@) := T[r¢,w]¢7jv(X).

We are now ready to define our Finsler norm.

Definition 3.4. Let [g] be a vector in T[] PHR" (¢). We define

gdm
I[glllth := sup f—
mep(g) J To.pdm

Note that this is well defined, that is, it does not depend on the choice of the repre-
sentatives g and 74y in the respective ¢-LivSic cohomology classes (cf., Remark 2.4).
Furthermore, by equation (2.4), we have the following more succinct expression:

lellm = sup [ (i)dm. a1
meP(¥) T'e.y

By definition of the tangent space, ||[g]]Th > 0. Moreover, (R~ ¢)-homogeneity and the
triangle inequality are easily verified. Hence, the following shows that |||, is a Finsler
norm.

Lemma 3.5. Let [g] € Tjy)PHRY (¢) be such that ||[g]|ltn = 0. Then [g] = 0.

Proof. To prove the lemma, it suffices to show that g is LivSic cohomologous (w.r.t. ¢) to
a constant function c. Indeed, if this is the case, then by Remark 2.4, we have

c = /cdm_rqw = /gdm—w,w =0.

Hence, [g] = 0 as desired.
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Let us assume by contradiction that g is not Liv§ic cohomologous to a constant. By
Proposition 2.13, the function s > P(¢, —rg 4 + sg) is then strictly convex and

d
i P(p,—rg,y +58) = /gdm_,w =0.
S s=0

Strict convexity implies then

P(p,—rpy + &) > P(p,—rpy) =0.

On the other hand, we show that ||[g]||th = O implies P(¢, —rg y + g) <0, giving the
desired contradiction. Indeed, note that

P(p,—rg,y +8) < sup (h(qb,m)—[rq;,wdm) + sup [gdm.

meP(¢) meP(p)

Since ||[g][ltn = 0 and rg 4 is positive, we have

sup /gdm <0,
meP(p)

and therefore

P(¢,—rpy +8) = sup (h(¢,fn) - / V¢,wdm) =P(p,~rp,y) = 0. u
meP(¢)

We now link the Finsler norm |||, and the asymmetric distance dm(-, ). A path
{[¥*1}se=1,1) C PHRY(¢) is analytic (resp., Ck, smooth) if there is an analytic (resp., C¥,
smooth) path {g }se(—1,1) C ¥ (X) of strictly positive functions so that [¢§S] = [y*] for
alls € (—1,1).

Pick a path {[/*]}se(~1,1) C PHRY (¢) of class C! and let {Z }se(—1,1) C HV(X) be as
above. By Bridgeman—Canary—Labourie-Sambarino [23, Proposition 3.12], the function
S = h¢§s is of class C!. Hence, s > g5 := h¢§s g, is also C!. Furthermore, we have

[0%] = [p%] = [v°]

for all s, and therefore we may choose ¥ = ¢&s. By construction, we have /s = 1, that
is, P(¢, —gs) = O forall s € (—1, 1) (Proposition 2.5). If we denote go := (f—s|s=0gs, we

have
[&5].
s=0

[0] = d
ds
and Proposition 2.13 gives

OZ/(_gO)dm—gov

where m_g, = m_g,(¢) is the equilibrium state of —go (w.r.t. ). That s, setting ¥ := y/°,
we have [go] € Tjy1PHRY (¢).
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Proposition 3.6. With the notations above, the function s — d,([V], [V*]) is differen-
tiable at s = 0. Furthermore, one has

o]l = 35| _ em(L. 19D

Proof. Compare Guillarmou—Knieper—Lefeuvre [40, Lemma 5.6]. Let

. &8s 8s
s 1= = =,
ey &0
which is the reparametrizing function from ¥ to ¥*. Note that
. ._d go
rO = 5 rS = ’
dslsmo = T
and by equation (3.1), we have
I[go]|y = sup / Fodm. (3.2)
meP(y)

On the other hand, let u(s) := e4m1L0V°D Notice /1ys = 1. By Theorem 2.10, peri-
odic orbit measures are dense in the space of invariant probability measures. We therefore
have

u(s) = sup / redm.
meP(y)
It suffices to show that u is differentiable at s = 0 and u'(0) = ||[g0]|/h. Since ro = 1, we
have

us) —u©) _ SUPmep(y) J Tsdm — SUPep(y) [ 1dm — wp /(rs - l)dm,
g s meP() s

and thanks to equation (3.2), we need to show

-1
lim( sup f(rs )dm) = sup /r’odm.
570\ meP(y) s meP ()

Fix some & > 0. The mean value theorem implies that ~ ss_l converges uniformly to 7 as

s — 0. There exists then § > 0 so that, for all 0 < |s| < § one has

rs(x) —1
p —
xeX

—Fo(x)| <e.

Fix any s so that 0 < |s| < §. For every m € P(y), we have
rs —1 .
/ dm—/rodm
s

-1
/r'odm—8< rs—dm</i’0dm+8,
s

= sup —ro(x)| < e

re(x) —1
xeX s

Therefore,

for all m € P(y). Taking supremum over all m € P(¥), the result follows. |
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Remark 3.7. We make some remarks about the Finster norm ||-|| .

(1) Keeping the notations from above, Proposition 3.6 can be restated as

d
|5

We will come back to this equality in Subsection 3.3, comparing our viewpoint

_d
m ds

( sup Jm(‘/f,l/fs))-
s=0 \meP(y)

with previous work of Bridgeman—Canary—Labourie-Sambarino [23].

(2) Notice that although |||, is a Finsler norm induced from the asymmetric distance
dtn(+,-), it is not clear whether dy, (-, ) is the length distance induced from ||-|| .
In the context of Teichmiiller space (cf., Remark 7.10), Thurston [81] shows that
dmn (-, -) coincides with the length distance induced by the Finsler norm.

(3) The Finsler norm |||y is, in general, not induced by an inner product. Indeed, in
some concrete examples (cf., Remark 7.10), one may find tangent vectors [g] for
which

gl 7 Il = [g]llmn.

3.3. Comparison with pressure norm

Thurston also introduced a Riemannian metric on the Teichmiiller space of a closed sur-
face S, which agrees with the Weil-Petersson metric (see Wolpert [87]). McMullen [59]
reinterpreted this construction using thermodynamic formalism, and Bridgeman—Canary—
Labourie—Sambarino [23] took inspiration from this to produce a Euclidean norm ||-||p on
TiyPHRY (¢p). We now briefly recall the construction of [23] and point out the difference
with our approach.
Let [{y] € PHRY(¢) and [g] € TjyPHRY(¢) be a tangent vector. Thanks to Proposi-
d2

tion 2.13, one has ~—

447 |S:0P(—r¢,1/, + sg) > 0. Hence, one may define

2
(SY_Z ’s:()P(_r¢’1/f + Sg)

f r¢,¢dm_,¢,w

Ilgllle :=

Work of Ruelle and Parry—Pollicott implies that ||-||p is a norm” on 77, jPHRY (¢), called
the pressure norm. Moreover, this norm is induced from an inner product, and in fact, one
has

lim7 o0 5 (foT g(¢s(x))ds)2dm_r¢,v, (x)

Itellp =
f r¢,¢dm_r¢,w

See [23, Subsection 3.5.1] for details.

2In particular, one has to show that ||[g]||p = 0 if and only if [g] = 0.
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As noticed in [23, Subsection 3.5.2] the pressure norm is related to the mBM(y)-
renormalized intersection. Indeed, consider the function Jjyj(-) on PHRY(¢) given
by

T (WD) = Jmen gy (V. V),

where ¥ (resp., (ﬁ\) is a representative of [¢] (resp., [1}]) One may check that this is a
well-defined function, as it does not depend on the choice of these representatives. Further-
more, by Proposition 2.18, this function has a minimum at [{] and therefore its Hessian
at [] defines a non-negative symmetric bilinear form on 7, jJPHRY (¢). In fact, if we let
{gs}se(—1,1) be a smooth path as in Proposition 3.6, then one has

d
ds S=Ogs

See [23, Proposition 3.11] for details.
Hence, the second derivative of the mBM(y)-renormalized intersection defines an
inner product on Ty, PHRY (¢). In contrast, our viewpoint is different: Rather than taking

2_d2

~ ds2
p ds

Jp1 (D).
=0

N

a second derivative of the renormalized intersection with respect to a given measure, we
take the supremum of renormalized intersections over all measures and then take a first
derivative (cf., Remark 3.7).

4. Anosov representations

Anosov representations were introduced by Labourie [54] for fundamental groups of neg-
atively curved manifolds and then extended by Guichard—Wienhard [38] to general word
hyperbolic groups. They provide a stable class of discrete representations with finite kernel
into semisimple Lie groups, that share many features with holonomies of convex cocom-
pact hyperbolic manifolds. We will briefly recall this notion in Subsection 4.2, after fixing
some notations and terminology in Subsection 4.1. In Subsection 4.3, we discuss exam-
ples. For a more complete account on the state of the art of the field, see, for example,
[49, 66, 86] and references therein.

4.1. Structure of semisimple Lie groups

Standard references for this part are the books of Knapp [50] and Helgason [43].

Let G be a connected real semisimple algebraic group of non-compact type with Lie
algebra g. Let K be a maximal compact subgroup of G and 7 be the corresponding Cartan
involution of g. Let

p={veg:tv=—v}

We fix a Cartan subspace a C p and let M be the centralizer of a in K.
A natural dynamical system one may look at when studying a discrete subgroup A < G,
is the right action of a on A\G/M. When G has real rank equal to 1, this action is conjugate
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to the action of the geodesic flow of the underlying negatively curved manifold. However,
in general it may be hard to study the action a ~, A\G/M. In many situations (including
the setting we are aiming for), it proves useful to consider a “more hyperbolic” dynamical
system, namely the action of the center of the Levi group associated with a parallel set.
We now fix the terminology needed to define this dynamical system.

Denote by X the set of roots of a in g, that is, the set of functionals « € a* \ {0} for
which the root space

ge :={Y €eg:[X, Y] =a(X)Y forall X € a}

is non-zero. Fix a positive system £ 1 C X associated with a closed Weyl chamber a™ C a.
The set of simple roots for X% is denoted by I1.

Example 4.1. Suppose G = PSL(V), where V' is a real (resp., complex) vector space of
dimension d > 2. The Lie algebra of G is the space of traceless linear operators in V.
Hence, every element of g acts on V. A maximal compact subgroup is the subgroup of
orthogonal (resp., unitary) matrices with respect to an inner (resp., Hermitian inner) prod-
uct o in V. A Cartan subspace a C p is the subalgebra of matrices which are diagonal on
a given projective basis & of IV orthogonal with respect to 0. The choice of a closed Weyl
chamber a™ C a corresponds to the choice of a total order {£, ..., £s} on &. Explicitly,
if A;(X) denotes the eigenvalue of X € a on the eigenline ¢;, the Weyl chamber a™ is
given by the set of matrices X € a for which

M(X) = e = Ag(X),
Fori # j,weleta; ;j(X) := A;(X) —A;(X). Then
Y ={o;:i#j} and TT ={ey;:i <j}
The set of simple roots is
O={ajjy1:i=1,...,d —1}.
Sometimes we will write the elements of IT simply by o; := ; ;+1.
Let W be the Weyl group of ¥. We realize it as
W 2 Ng(a)/M,

where Ng(a) is the normalizer of a in K. The group W acts simply transitively on the set of
Weyl chambers in a; thus, there exists a unique element wo € W taking a™ to —a™. The
opposition involution associated with a™ is ¢ := —wy.

We will furthermore need the structure of parabolic subgroups of G. Fix a non-empty
subset ® C II. Consider the subalgebras

po =00 P ae P s

aext ae(IT-0)
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and

6:=00® P se P ae

aext ae(lT-0)

where (IT — ®) denotes the set of positive roots generated by roots in IT — ®. We let Pg
and Pg be the corresponding subgroups of G. Every parabolic subgroup of G is conjugate
to a unique Pg, for some ® C II. Note that Pg is conjugate to P.(®), where

1(®) :={aot:a € 6O}

The parabolic subgroup Pg is opposite to Pg.
Let
Fo :=G/Pg and Fg := G/E@

be the corresponding flag manifolds of G. Two flags £ € Fg and £ € Fg are transverse if
(&, &) belongs to 3"(2), the unique open orbit of the action of G on Fg x Fg. We also let

F:= I and @ := F2

Example 4.2. Let G be as in Example 4.1. When d = 2, there is only one flag manifold,
which identifies with P(R?) (the projective space of R?). When d = 3, there are three
flag manifolds, namely P (R?), P((R3)*), and

F={¢") e PR xP(RY)") : ¢! C €7,

where in the above formula, we have implicitly identified P((R3)*) with the Grassman-
nian of two-dimensional subspaces of R3.

More generally, for arbitrary d > 2 the choice of ® is equivalent to the choice of a sub-
set{l <i; <---<ip, <d—1},forsome 1 < p <d — 1. Then JFg identifies with the space
of partial flags indexed by ®, that is, the space of sequences £ of the form (§'1 C --- C £'7),

where £% is a linear subspace of V' of dimension i}, for all Jj=1....p. Furthermore, one
has (@) ={1<d—-i, <---<d—i; < d - 1} Aﬂagé € Fg is transverse to £ € Fg
if and only if forall j = 1,..., p, the sum E + £9 is direct.

A point in (£, §) € ffg ) determines a parallel set of the Riemannian symmetric space
X of G. It is the union of all parametrized flat subspaces f of X so that the flag asso-
ciated with f(a®) (resp., f(—a™)) belongs to the fiber over £ (resp., £), for the fibration
F — Fo (tesp., F — Fe). When the real rank of G is equal to 1, this is just a geodesic
of Xs. When ® = TII, it is a maximal flat subspace of X;. Any parallel set is identified
with the Riemannian symmetric space of the Levi subgroup Lg = Pg N Pg, a reductive
subgroup of G.

Let

ﬂ kero

acll-0
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be the Lie algebra of the center of Lg = Pg N Pg (in particular, ayy = a). There is a
unique projection pg : a — ag invariant under the group

We (= {w e W: w|gg = idag}-

The dual space ag, identifies naturally with {¢ € a* : ¢ o pg = ¢}. We will use this
identification throughout the paper.

Consider the space 3"8 ) x a@, endowed with the action of ag by translations on the
last coordinate. This action commutes with a natural action of G that we now describe, and
the quotient dynamics is the “more hyperbolic” dynamical system we have referred to at
the beginning of this subsection.

Let N be the unipotent radical of P = Pyy, that is, the connected subgroup of G
associated with the Lie algebra ), cs+ @o. The Iwasawa decomposition is

G = Kexp(a)N.

In particular, F = K/M and for £ € F. We may find k € K such that kM = &. Quint [70]
defines a map 0 : G X F — a by the formula

gk = lexp(o(g, kM)n,

where n € N and / € K. Quint [70, Lemme 6.11] also shows that pg 00 : G X F — ag
factors through a map og : G X Fg — ag. Forevery g,h € G and § € Fg one has

oo (gh.§) = oe(g.h-§) +oe(h.§).

The map og is called the ®-Busemann—Iwasawa cocycle of G. Observe that the action of
a@ on 3"8 ) x ae commutes with the action of G given by

g EEX)=(g-E.g 6 X—00(g.£)).

Remark 4.3. The Busemann—Iwasawa cocycle of G is a vector—valued version of the
Busemann function of the Riemannian symmetric space X of G. Indeed, when G has real
rank equal to 1, then F identifies with the visual boundary dX¢ of Xg. Let 0 € X be the
point fixed by K. After identifying a with R suitably, one has

U(gvs) = b‘é,:(O, g_l . 0)7

where b.(,-) : 0Xg X Xg X Xg — R is the Busemann function. A similar interpretation
holds in higher rank (cf., [70, Lemme 6.6]).

In Section 5, we will consider a flow space which is even better behaved than the
action of ag associated with a parallel set. It will be induced by the choice of a functional
in ag. Natural generators of ag, are the fundamental weights associated with ®, whose
definition we now recall.
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Denote by (-, -) the inner product on a* dual to the Killing form of g. For ¢, ¥ € a*

(p.¥)
(p.¥) :==2——.

V. ¥)
Given « € I1, the corresponding fundamental weight is the functional w, € a* defined by
the formulas (wy, B) = 8op for B € I1. One has

set

Wy © P = Wy 4.1

for all @ € ® (cf., Quint [69, Lemme I1.2.1]). In particular, we have w,, € ag.

Fundamental weights are related to a special set of linear representations of G intro-
duced by Tits [82]. If A : G — PGL(V) is an irreducible representation, a functional y € a*
is a weight of A if the weight space

Vy:={veV:AlxpX)) v= XXy forall X € a)

is non-zero. Tits [82] shows that there exists a unique weight y o which is maximal with
respect to the order given by y > x' if y — y’ is a linear combination of simple roots
with non-negative coefficients. The functional y A is called the highest weight of A, and
the representation is proximal if the associated weight space Vy, is one-dimensional. The
next proposition is useful.

Proposition 4.4 (Tits [82]). For every a € I, there exists a finite-dimensional real vec-
tor space Vy and a proximal irreducible representation Ay : G — PGL(Vy) such that the
highest weight yo = A, is of the form kqwq, for some integer ky > 1.

We fix from now on a set of representations {Ay}qer as in Proposition 4.4. Observe
that for all @ € ®, we have

Xa© PO = Xa- 4.2)

and therefore y, belongs to ag.
We conclude recalling the definitions of Cartan and Jordan projections of G for later
use. The Cartan projection of g € G is the unique element 1(g) € a™ satisfying

g € Kexp(u(g))K.
The Jordan projection of g is defined by

A(g) := lim M

n—o00 n

One may show that for all « € IT and all g € G one has

A (Aa(8)) = Xa(A(g)) = kawa(A(8)), (4.3)
where A1(Aq(g)) denotes the logarithm of the modulus of the highest eigenvalue of
Aa(g).

We denote

He :=peoi and Ag:= pgoA.
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4.2. Anosov representations and their length functions

We now define Anosov representations and their corresponding length functions and
entropies. The definition that we present here is not the original definition, but an
equivalent one established in [15,35,47].

Let I be a finitely generated group and |-| be the word length associated with a finite
generating set (that we fix from now on).

Definition 4.5. Let ® C II be a non-empty set. A representation p : I' — G is Pg-Anosov
(or ®-Anosov) if there exist positive constants C and ¢ such that for all « € ® one has

a(u(p(y)) = Cly|—c.

When ® = IT and G is split, p is sometimes called Borel-Anosov. When G = PSL(V)
with V as in Example 4.1, {&1 }-Anosov representations are also called projective Anosov.

An immediate consequence of Definition 4.5 is that Anosov representations are quasi-
isometric embeddings from I to G. In particular, they are discrete and have finite kernels.
A deeper consequence is a theorem by Kapovich—Leeb—Porti [48, Theorem 1.4] (see also
[15, Section 3]): If p : I' — G is ®-Anosov, then I' is word hyperbolic. Throughout the
paper, we shall assume that I" is nonelementary and denote by dI" its Gromov boundary.
We also let 3@ T be the space of ordered pairs of different points in dI". Every infinite
order element y € I' has a unique attracting (resp., repelling) fixed point in dT", denoted
by y+ (resp., y—). We let I'y C T be the subset consisting of infinite order elements. The
conjugacy class of y € T is denoted by [y], and the set of conjugacy classes of elements
of I' (resp., I'y) will be denoted by [I"] (resp., [[x])-

A central feature of ®-Anosov representations is that they admit limit maps. By
definition, these are Holder continuous, p-equivariant, dynamics preserving maps

£,:0' > JFg and gpiar—>§~@,
which are moreover transverse, that is, for every x # y in 0" one has
€, (). 6() € 5.

The limit maps exist and are unique (see [15,35,47] for details).

Example 4.6. Let G be as in Example 4.1 and ® = {1 <i; <--- <i, <d — 1} for some
1 <p<d-—1/(cf,Example4.2).For j = 1,..., p, welet

79T — Gy, (V)

be the ij-coordinate of &, into the Grassmannian G;, (V') of ij-dimensional subspaces
of V.
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The set of ®-Anosov representations from I to G is an open subset of the space of all
representations I' — G. This is a consequence of the original definition [38, 54]. Indeed,
the original definition requires a priori the word hyperbolicity of I" and the existence of
the limit maps, with them one constructs a flow space which, by definition, satisfies cer-
tain form of uniform hyperbolicity. General results in hyperbolic dynamics give that this
is an open condition.

Projective Anosov representations are very general.

Proposition 4.7 (Guichard—Wienhard [38, Proposition 4.3]). Let p: I' — G be ®-Anosov.
Then for every o € O, the representation Ay o p : I' — PGL(V,,) is projective Anosov.

We denote by X (I, G) the space of conjugacy classes of Pg-Anosov representations
from T to G. Length functions and entropies are important invariants to study this space.
By work of Sambarino [71,72] that we will recall in Section 5, they provide a way of asso-
ciating with each p € Xg (I, G) certain flow space as in Sections 2 and 3, and therefore one
may use the thermodynamic formalism to study X (I", G). To define length functions and
entropies properly, we need to recall the definition of a fundamental object, introduced by
Benoist [7] for general discrete subgroups of G.

Definition 4.8. The O-limit cone of p € Xg(T, G) is the smallest closed cone [‘;(? C ag
containing the set {Ag(p(y)) : y € I'}. The limit cone £, of p is the IT-limit cone.

In the above definition, we abuse notations, because p is a conjugacy class of repre-
sentations. However, it is clear that the ®-limit cone is independent of the choice of a
representative in this conjugacy class.

Under the assumption that p is Zariski dense, Benoist [7] showed that £, is a convex
cone with non-empty interior.® Since pg is a surjective linear map, the same properties
hold for the ®-limit cone.

Let

(L) ==1p cap:¢lo =0}

be the dual cone. We denote by int((Ll(?)*) the interior of (L;(?)*’ that is, the set of
functionals in ag which are positive on L/(? \ {0}.
Fix a functional
pe [ int((E)H*).
peXe(T,0)
The above intersection is non-empty. For example, it contains A; and more generally wg
for all @ € II.

3In fact, Benoist shows this result for any Zariski-dense discrete subgroup of G.
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Definition 4.9. The ¢-marked length spectrum (or simply @-length spectrum) of p €
Xo(T, G) is the function LY : T' — R given by

LY(y) == ¢(Ae(p(¥))).

Observe that for a ®-Anosov representation p, Lﬁ(y) > O ifand only if y € I'y (i.e.,
if it has infinite order). Furthermore, the ¢-length spectrum is invariant under conjugation
in I' and therefore descends to a function [I'] — R(. We will often abuse notations and
denote this function by L% as well.

Definition 4.10. The g-entropy of p is defined by
) 1
hY = hmsup;log#{[y] €[T]: LY(y) <t} €0, 0]
t—>00

The g-entropy of p was introduced by Sambarino [71,72], who showed that this quan-
tity is defined by a true limit, is positive, finite, and coincides with the topological entropy
of a suitable flow associated with p and ¢. We will briefly recall these results and facts in
Section 5.

Example 4.11. Here is a concrete set of length spectra that will be of interest (the corre-
sponding entropies are named accordingly). Let G = PSL(V') with V' as in Example 4.1:

¢ Ifp:T — Gis ®-Anosov and o; € ® belongs to ag, (this is always the case if @ = II),
then L} is called the i th-simple root length spectrum of p.

 Ifp: I — Gis projective Anosov, then L‘zl’d is called the Hilbert length spectrum of
p. We denote it by LY.

e If p: ' — G is projective Anosov, then Lﬁ‘ is called the spectral radius length
spectrum of p.

4.3. Examples of Anosov representations

Schottky-type constructions as in Benoist [6] provide basic examples of ®-Anosov repre-
sentations of free groups. In this subsection, we give a list of other examples that will be
of interest to us.

Example 4.12 (Teichmiiller space). Let S be a connected, closed, orientable surface of
genus > 2 and I' = m;(S) be its fundamental group (in short, I is a surface group). The
Teichmiiller space of S is the space of isotopy classes of Riemannian metrics on S of con-
stant curvature equal to —1. Throughout the paper, we identify this space with a connected
component T (S) of the space of PSL(2, R)-conjugacy classes of faithful and discrete rep-
resentations I' — PSL(2, R). By the Svarc—-Milnor Lemma (see [31, Proposition 19 of
Chapter 3]), representations in T () are Anosov.
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Example 4.13 (Hitchin representations). An important class of Anosov representations
is given by Hitchin representations. For every split real Lie group G, we denote by
T : PSL(2, R) — G the principal embedding [52], which is well defined up to conjuga-
tion. In the case of G = PSL(d, R), 7 gives the unique irreducible linear representation
of PSL(2, R). It was proven by Labourie [54] and Fock—Goncharov [30] that, given the
holonomy pj, : I' — PSL(2, R) of any chosen hyperbolization % of S, the entire connected
component of t o p; consists of Borel-Anosov representations. This component is usu-
ally referred to as the Hitchin component. An element in it is called a (conjugacy class of)
Hitchin representation. We will denote by Hity (S) (resp., Hit(S, G)) the Hitchin compo-
nent of I" in PSL(d, R) (resp., in G). Any Hitchin representation is Borel-Anosov, that is,
it is Anosov with respect to any subset of I1. It was proven in [65, 67] that the entropy of
each simple root is constant and equal to 1 on each Hitchin component, when G is not of
exceptional type.

Example 4.14 (®-positive representations). A general framework encompassing all cases
of connected components of character varieties of fundamental groups of surfaces only
consisting of Anosov representations was proposed by Guichard—Wienhard [39] (see
also [37]). They introduce the class of ®-positive representations, which includes, apart
from Hitchin components, maximal representations in Hermitian Lie groups, as well as
the connected components of representation in the POy ( p, ¢)-character variety and some
components in the character varieties of the four exceptional Lie groups with restricted
root system of type F4. While Hitchin representations are Borel-Anosov, the other rep-
resentations are, in general, only Anosov with respect to a proper subset ® < II, which
consists of a single root in the case of maximal representations and has p — 1 elements
in the case of POy (p, g)-positive representations. It was proven in [68] that for maximal
and ®-positive representations in POy (p, q), the entropy with respect to any root in ® is
equal to 1.

Example 4.15 (Hyperconvex representations). Another important class of Anosov rep-
resentations are (1, 1, p)-hyperconvex representations studied in [67]. These are rep-
resentations p : I' — PGL(d, R) that are {o, op}-Anosov and satisfy the additional
transversality property that for all triples of pairwise distinct points x, y, z € dI", the
sum £3(x) + £, (y) + Eg_p(z) is direct. If " is a cocompact lattice in PO(1, p), so that
dr = SP~1, it follows from [67] that £} (3T) is a C'-submanifold of P (R?). Furthermore,
it was proven in [68] that for these representations, which sometimes admit nontrivial
deformations, the entropy for the functional pwgy, — @y, is constant and equal to 1. Impor-
tant examples of this class are the groups I' dividing a properly convex domain in P (R%)
studied by Benoist [9-12]. These are (1, 1, d — 1)-hyperconvex and were already studied
by Potrie-Sambarino [65].

Example 4.16 (AdS-quasi-Fuchsian representations). Let g > 2 and I" be the fundamen-
tal group of a closed g-dimensional manifold. A representation p : I' — PO(2, g) is said
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to be AdS-quasi-Fuchsian if it is faithful, discrete, and preserves an acausal topological
(g — 1)-sphere on the boundary of the anti-de Sitter space AdS'4. Recall that AdS' is
defined as the set of negative lines for the underlying quadratic form (-, -)» 4, and its bound-
ary is the space dAdS"¥ of isotropic lines. A subset of JAdS™ is said to be acausal if
it lifts to a cone in R?*4 \ {0} in which all (-, -}, 4-products of noncollinear vectors are
negative. The fundamental example of an AdS-quasi-Fuchsian representation is given by
AdS-Fuchsian representations, that is, representations of the form

I' - PO(1,q) — PO(2,q),

where the first map is the holonomy of a closed real hyperbolic manifold and the second
arrow is the standard embedding stabilizing a negative line in R?14.

AdS-quasi-Fuchsian representations were introduced in seminal work by Mess [60]
for ¢ = 2 and then generalized by Barbot—Mérigot [5] and Barbot [4] for g > 2.
They are {o;}-Anosov representations, where «; is the simple root in PO(2, ¢) cor-
responding to the stabilizer of an isotropic line (see [5]). Furthermore, the space of
AdS-quasi-Fuchsian representations is a union of connected components of the rep-
resentation space (see [4]). AdS-quasi-Fuchsian representations were generalized to
H?~14-convex-cocompact representations by Danciger—Guéritaud—Kassel [29].

5. Flows associated with Anosov representations

We now recall Sambarino’s reparametrization theorem [71,72]. This result associates with
each pe Xg(I',G) andeach ¢ € int((L?)*) a topological flow on a compact space, record-
ing the data of the ¢-length spectrum of p and admitting a strong Markov coding. Through
the thermodynamic formalism, this provides a powerful tool to study the representation p
and the space Xg (I, G) of Pg-Anosov representations.

Sambarino deals originally with Anosov representations of the fundamental group of a
closed negatively curved manifold. In that case he uses the geodesic flow of the manifold
(which is Anosov) as a “reference” flow, and from p and ¢ builds a Holder reparametriza-
tion of that flow encoding the periods LY (y) = ¢(Ae(p(y))). In the present framework,
we are dealing with more general word hyperbolic groups. Nevertheless, his result is
known to still hold: One may replace the reference geodesic flow of the manifold by the
Gromov-Mineyev geodesic flow of T". This is a topologically transitive Holder continuous
flow on a compact metric space UI', well defined up to Holder orbit equivalence. It was
introduced by Gromov [33] (see also Mineyev [61] for details). To define this flow space,
one considers a proper and cocompact action of I on 9T x R, extending the natural
action of T on @ T'. The space T x R equipped with this action will be denoted by
ﬁ, and we refer to this action as the ['-action on 8T x R. In the sequel, we will con-
sider many different actions of ' on 9T x R, depending on various choices, and this
justifies this specific terminology and notation.
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The T"-action commutes with the R-action given by
t:i(x,y,8) > (x,y,5+1).

We let ¢ = (¢; : UT" — UT") be the quotient Gromov—Mineyev geodesic flow. Central in
all what follows is a result by Bridgeman—Canary—Labourie-Sambarino [23, Sections 4
and 5], stating that in the present setting ¢ is metric Anosov, and one has the following
(see also [27]).

Theorem 5.1 ([19,20,23,64]). Let I" be a word hyperbolic group admitting an Anosov
representation. Then ¢ admits a strong Markov coding.

5.1. The reparametrization theorem

Provided Theorem 5.1, Sambarino’s reparametrization theorem carries on to this more
general setting, as summarized in detail in [74]. More precisely, Sambarino shows that to
define a Holder reparametrization of ¢, it suffices to consider a Holder cocycle over I with
non-negative periods and finite entropy. We do not give full definitions here and refer the
reader to [74, Sections 3.1 and 3.2] for details, but let us now recall how this construction
works specifically for the ¢-Busemann—Iwasawa cocycle of p (also called the p-refraction
cocycle of p in [74, Definition 3.5.1]).

Let p € Xo(I', G) and consider the pullback ,3(‘:) : ' x ' — ag of the Busemann—
Iwasawa cocycle of G through the representation p, that is,

Bo (v, x) 1= 06 (p(¥), £p(x)).
The group I acts on 9®T x R by

yeo(x.y.8) = -x,y-y.5s—@oBgy.y).

The space 9T x R equipped with this action will be denoted by ﬁp"/’, and we refer to
this action as the (p, ¢)-refraction action (or simply the (p, ¢)-action). We let UT'?-¢ be
the quotient space. The (p, ¢)-action commutes with the R-action given by

t:(x,y,8) > (x,y,s —1).

We let ¢P¢ = (¢p*? : UTP¥ — UI'*¥) be the quotient flow, called the (p, ¢)-refraction
flow. As shown by Sambarino, to prove that ¢**¢ is Holder orbit equivalent to ¢ one needs
to analyze the periods and entropy of the (p, ¢)-refraction cocycle. Let us now recall these
notions.

For every y € I'y one has ﬁg(y, y+) = Ae(py) (cf., [72, Lemma 7.5]). In particular,
the period p(B% (. y+)) = Lj(y) of y € Ty is positive. In [74, Section 3.2], the entropy
of ¢ o Bg is defined by

timsup - log #{[y] € [Tl - @85 4)) < 1) € 0. o0l

t—>00
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Note that the definition of this entropy differs from the ¢-entropy of p by the fact that here
we are only considering conjugacy classes of infinite order elements in I', while for h‘g we
also allow conjugacy classes represented by finite order elements. However, the two num-
bers coincide: A theorem by Bogopolskii—Gerasimov [16] (see also Brady [22]) states that
there exists a positive Kt such that every finite subgroup of I" has at most K elements.
In particular, there are only finitely many conjugacy classes of finite order elements in "
and therefore

1
hip = lim sup — log#{[y] < [T P(Bo(y.y+)) <1} €[0,00]. (5.1)

Moreover, the g-entropy is positive and finite. Indeed, let « € ® and consider the function
P (L) — Rxg given by
Rv ¢(v) ,
Xe (V)
where v # 0 is any vector representing the line Rv. Since IP’(L?) is compact, we find a
constant ¢ > 1 so that

@
—1 < Lp ) <
Xe(A(p(y)))
for all y € I'y. Applying equation (4.3), we conclude

-1 _ Lﬁ()’) <e
T M(Aa(p(») T

for all y € T'y. Thanks to Proposition 4.7, to show 0 < hj < oo it suffices to show that the
spectral radius entropy of a projective Anosov representation is positive and finite. On the
one hand, finiteness follows by an easy geometric argument (see [74, Lemma 5.1.2]). Pos-
itiveness though follows from dynamical reasons: The spectral radius entropy coincides
with the topological entropy of the geodesic flow of p, introduced in [23, Section 4]. Since
the latter flow is metric Anosov, we know by Subsection 2.3 that its topological entropy is
positive (see [74, Theorem 5.1.3] for details).

We have checked the hypothesis on periods and entropy needed to have Sambarino’s
reparametrization theorem.

Theorem 5.2 (See [74, Corollary 5.3.3]). Let p € Xo(I',G) and ¢ € int((Lf:))*). Then
there exists an equivariant Holder homeomorphism

50 . OF — U9,

such that for all (x, y) € 3T, there exists an increasing homeomorphism l;f)’cwy) ‘:R—>R
satisfying

DO (x, y,5) = (x, 3, h(Y (5) (5.2)

for all s € R. In particular, the (p, ¢)-refraction action is proper and cocompact.
Moreover, if we let vP% : UI' — UT'?% be the map induced by VP, then the flow

(WVPP) L o PP o pP Y
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is a Holder reparametrization of ¢.
Define R, : Xo(I', G) — PHR(¢) by
Ry(p) i= [(199) ™" 0 67 0 1P¥].

The map R, is well defined because the map v#>¥, while not canonical, is well defined up
to Liv§ic equivalence. We will use R,, together with the work in Sections 2 and 3 to define
and study an asymmetric metric on a suitable quotient of Xg (I, G): R, might not be injec-
tive. To this aim, we will relate, in Section 6, the ¢-length spectrum (resp., ¢-entropy) of
p with the periods of periodic orbits (resp., topological entropy) of ¢*>¢. We conclude this
section discussing the equality:

hf = hiop(¢”?).

When T is torsion free, this follows directly from [74, Theorem 3.2.2]; we include in the
next subsection a proof allowing for finite order elements in I'.

5.2. Strongly primitive elements, periodic orbits, and entropy

The axis of an element y € 'y is Ay := (y—,y+) xR C 9T x R. The element y acts
via (p, ¢) on A, as translation by —p(Ag(o(y))) = —Lﬁ(y). The axis A, descends to
a periodic orbit aj (y) = aj([y]) of $”**: Conjugate elements in I determine the same
periodic orbit. We let (9% be the set of periodic orbits of ¢?*?. The period pgee(ab(y))
of af (y) divides the number LY (y), and we say that y is strongly primitive (w.r.t. the pair
(p, ¢)) if this period is precisely L% (y). Denote by T'sp C I'y the set of strongly primi-
tive elements. A priori, this set depends on the (p, ¢)-action. However, we will show in
Lemma 6.3 that this is not the case.

Remark 5.3. When T is torsion free, strongly primitive elements coincide with primitive
elements of I, that is, elements that cannot be written as a power of another element. In
that case, there is a one-to-one correspondence between periodic orbits of ¢*>¥ and con-
jugacy classes of primitive elements in I'. However, if I" contains finite order elements,
this correspondence no longer holds (see, e.g., Blayac [14, Section 3.4] for a detailed
discussion).

The discussion above yields a well-defined map
[Cul — O7¢ x(Z>0) : [yl = (ag (). ng(¥)). (5.3)
where n%(y) = n%([y]) is determined by the equality
L3 (y) = ng(y) pgee(@f(y)).

To prove the equality b = hyp(¢”), we first show the following technical lemma (recall
that Kt > 0 is the constant given by Bogopolskii—-Gerasimov’s Theorem [16]).
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Lemma 5.4. The fibers of the map (5.3) have at most Kr elements.

Proof. Take (a,n) € 9P x (Z=o) and fix yo € T'sp such that aj (yo) = a. Let H(yo)
be the set of elements in I'y that act trivially on A,,. Since the (p, ¢)-action is proper,
the subgroup H (yy) is finite and therefore #H (yy) < Kr. We conclude observing that the
fiber over (a, n) is contained in

{lvonl :n € H(yo)}. -

Corollary 5.5. Let p € Xo(I',G) and ¢ € int((Lf?)*). Then the @-entropy of p coincides
with the topological entropy of the refraction flow ¢P.

Proof. The inequality /o (¢§’) < hg is easily seen. To show the reverse inequality, recall
from equation (5.1) that

1
h% = limsup ;log#{[y] € [Tu]: LY(y) <1}.
—>00
Lemma 5.4 implies then
. 1
hy < htrr_igp ;log#{(a,n) € 0P X (Zo) : npgew(a) < t}.

If we let
k= alelggw DPere(a) > 0,
we have

#{(a,n) € OP% x (L>o) : npgov(a) <t} < é x #a € OP% : pgov(a) <t}.

Equation (2.6) implies the desired inequality. ]

6. Thurston’s metric and Finsler norm for Anosov representations

Fix a functional
pe [ int((E)H*).
peXe(T,6)

Recall from Section 5 that this induces a map
Ry : Xo(I',G) - PHR(¢),

where ¢ is a Holder parametrization of the Gromov—Mineyev geodesic flow of I'. In view
of the contents of Section 3 (and thanks to Theorem 5.1), it is natural to try to “pull
back” the asymmetric metric on PHR(¢) to g (I, G) under this map. This motivates the
following definition.
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Definition 6.1. Define dy : Xo(T',G) x ¥o(I, G) - R U {oo} by”

n L;‘;m)

d%,(p. P) = log ([ e
o Lp

vle

The main theorem of this section is the following.

Theorem 6.2. The function d{ph (+,-) is real valued, non-negative, and satisfies the triangle
inequality. Furthermore,

d4(p.P) =0 & h?LY = hELY.

We deduce Theorem 6.2 from Theorem 3.2: In Corollary 6.4, we show that for all
p:p € Xo(I',G),
d’?h (p,p) = dm (Ry(p). Ry (0)),

and in Corollary 6.6, we prove that Ry, (p) = Ry (p) if and only if L) = thg. Both
Corollaries 6.4 and 6.6 are straightforward when I' is torsion free (see Remark 5.3). We
explain the details in Subsection 6.1 allowing for finite order elements in I'". In Sub-
section 6.2, we discuss general conditions that guarantee renormalized length spectrum
rigidity. As a consequence, we will have an asymmetric metric defined in interesting sub-
sets of Xg(I', G) (under some assumptions on G). More examples will be discussed in
Sections 7 and 8. In Subsection 6.3, we use the map Ry, to pull back the Finsler norm of
PHR(¢) to X (T, G).

6.1. Proof of Theorem 6.2

Let p € Xg(T', G). Recall from Subsection 5.2 that y € I'y is strongly primitive (W.r.t.
(p, @)) if the (p, p)-action of y on the axis A, is a translation by the period of the corre-
sponding periodic orbit of ¢*-¢. The following technical lemma implies in particular that
this notion is independent of p (recall the notation introduced in equation (5.3)). We note
that this holds in the more general setting of Holder reparametrizations of the Gromov
geodesic flow (see also Remark 6.7).

Lemma 6.3. Let p and p in Xo(T', G), then for every y € I'y one has
_ 0
ng(y) =n3(y).

In particular, y is strongly primitive for the (p, ¢)-action if and only if it is strongly
primitive for the (p, ¢)-action.

“When y ¢ 'y one has LY (y) =0 = Lg(y). In the above definition, it is understood that in that case
we set v
Lﬁ(y) —o
Ly(y)
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Proof. To ease notations, we let n := n¥(y) and i := n(g(y). Suppose by contradiction
that n # 7, say n < 7.

Let a = aj(y) (resp., @ = a%(y)) be the periodic orbit of ¢ (resp., ¢5"") asso-
ciated with [y]. Fix a strongly primitive yo (resp., Yo) representing a (resp., @) for the
(p, @)-action (resp., (P, ¢)-action). By definition of n and 77, we have

LY (y) = nLj(yo) and LE(y) = ALE (Po). (6.1)

We may assume furthermore that (yo)+ = (Yo)+.
On the other hand, by Theorem 5.2, there exists an equivariant Hoélder homeomor-
phism
y: UTP* — UT?,

such that for all (x, y) € 3@ T there exists an increasing homeomorphism Ay 5y : R — R
satisfying
U(xv Y, S) = ()C, Y, h(x,y)(s))-
Hence, for all n € T" and all (x, y,s) € UL one has
hgxpy)(s—¢o ﬂ%(n, Y) =hxy(s)—¢@o ﬁ(’i)(n, »).
In particular, equation (6.1) gives
h((r)—, o)) (8 = 1L (¥0)) = h(yo)_,r)-0) (8 = L (1)) = h(yo)_,r)-) (8) = LED),

and therefore

h0)-.r0) ) (8 = LG (10)) = hieyo)—.(r0)) () = ALZ (Po)-
Hence,
h((ro)—. o)) (8 = 1L (70)) = h((y)_,r)) (8) = LEFG) = h(ro)—.ro)) (s = LY (7))
We then conclude

M) o)) (8 = L5 (10)) = hro)—.ro) 1) (8 = LG (70))-

This implies

nL%(yo) = nLY (Vo) > nLY (o).
This is a contradiction because Yo was assumed to be strongly primitive for the
(p, p)-action. L]

Corollary 6.4. For every p and p in X (T, G) one has

df.(p. §) = drm(Re(p). Ry (P)).
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Proof. By Corollary 5.5, we have

" huop(¢P9) L5 ()
d? (p,p) =1 Ztoprv U
Th(p /O) og <[y51€1ﬁ_‘] htop(¢p (p) Lq)()/)

Equation (5.3) gives then

0.7 = log [ su hiop(@P9) 15(V) Pgoe (@S ()
mPP) =08\ U e (@79) (1) pgre @) )

By Lemma 6.3, we have

. hiop ($P-2) Pgiw (a5(1))
dw , =1 P
me:0) Og( 1) Fep@P%) pore(@l(y) )

This finishes the proof. ]

Remark 6.5. There are geometric settings in which the renormalization by entropy in
the definition of the asymmetric metric is essential (see also Section 2.4). For instance,
Tholozan [79, Theorem B] shows that there exist pairs p and j in Hit3(S) for which there
isac > 1 so that

Li(y) = cL¥(y) (6.2)

for all y € m1(S) (recall the notation introduced in Example 4.11). Hence,

Li(y) 1
log| sup < log (-) <o.
<[V]€[n1(S)] LY(y) ¢

On the other hand, some length functions on some spaces of Anosov representations
have constant entropies (cf., Subsection 4.3). In these situations, renormalizing by entropy
is not needed.

We now compute the set of points which are identified under the map Ry, finishing the
proof of Theorem 6.2.

Corollary 6.6. Let p and p be two points in Xg(T', G). Then
Ry(p) = Ry(p) & hYLY = h‘pL“’.
Proof. By definition of PHR(¢) and Corollary 5.5, we have

Ro(p) = Rp(P) & I pgoe(af(y)) = hi pyse (@3 ()

for all y € I'y. Thanks to Lemma 6.3, this is equivalent to

B8 () pone (@l () = hEnS(y) pyro @)
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for all y € I'y. Since for all y € I'y we have

n () pgew(ay(y)) = LE(y) and  nS(y)pgie(as(y)) = L5(»).
the proof is finished. ]

To finish this subsection, we record the following technical remark for future use.

Remark 6.7. One may define the notion of strongly primitive elements for the action
' IfJ\I-: in a way analogous to the definition for the action I" ~, UT?¢. As in Lemma 6.3,
one shows that y is strongly primitive for I ~, UT if and only if it is strongly primitive
for the (p, ¢)-action, for some (any) p € Xg (I, G).

On the other hand, if we let O be the set of periodic orbits of ¢, we may take for each
a € O a strongly primitive representative y, € I'sp. We see that

a > [Ay,]

defines a one-to-one correspondence between (@ and O?% for all p € Xg(I', G), where
[4,,] is the image of the axis 4,, under the quotient map UT'*¢ — UI'*?. A set {V4}aco
of strongly primitive elements representing each periodic orbit will be fixed from now on.

6.2. Renormalized length spectrum rigidity

Recall that G is a connected semisimple real algebraic group of non-compact type. In this
subsection, we discuss necessary conditions that two ®-Anosov representations with the
same renormalized length spectra must satisfy.

For a Lie group G;, we denote by (Gy)¢ the connected component, in the Haus-
dorff topology, containing the identity. If o : G; — G, is a Lie group isomorphism, we
denote, with a slight abuse of notation, by o : aa — agz the induced linear isomorphism
between Weyl chambers. Furthermore, if G; < G is a Lie group inclusion, we denote by
e, aa — ag the induced piecewise linear map.

We will need the following fairly general classical rigidity result, which is an applica-
tion of Benoist [7, Theorem 1]. See, for instance, [23, Corollary 11.6], Burger [25], and

Dal’bo—Kim [28].

Theorem 6.8. Let p and p be two ©-Anosov representations into G. Denote by G,
(resp., Gp) the Zariski closure of p(T") (resp., p(I")). Assume that G, and G; are sim-
ple, real algebraic, and center free. Assume furthermore p(I') C (Gp)o and p(I") C (Gp)o.
Then if the equality hy L = thg holds, there exists an isomorphism o : (Gp)o — (Gp)o
such that o o p = p. It furthermore holds ¢ o TG, 00 = ¢ 0 TG,

Denote by fﬂfé(l", G) C X(I', G) the subset consisting of Zariski-dense representa-
tions.



L. Carvajales, X. Dai, B. Pozzetti, and A. Wienhard 776

Corollary 6.9. Assume that G is simple, center free, and for every non-inner automor-
phism o of G one has ¢ o o # ¢. Then di, (-, -) defines a (possibly asymmetric) metric on
¥Z (T, G).

® ’

Remark 6.10. The group G needs to be center free in Theorem 6.8 and Corollary 6.9:
the Jordan and Cartan projections of G factor through the adjoint form of G, thus any two
representations differing by a central character will have the same renormalized length
spectrum, and thus distance zero.

6.3. Finsler norm for Anosov representations

Bridgeman—Canary—Labourie-Sambarino [23,24] used the map R,, to pull back the pres-
sure norm on PHRY (¢) to produce a pressure metric on X (I", G) (for some choices of ¢).
We now imitate this procedure working with the Finsler norm defined in Subsection 3.2.

A family of representations {p, : ' — G},cp parametrized by a real analytic disk D
is real analytic if for all y € T, the map z — p;(y) is real analytic. We fix a real ana-
lytic neighborhood of p € Xg(I', G) and a real analytic family {p,}.ep C ¥o(T, G),
parametrized by some real analytic disk D around 0, so that po = p and | J,cp Pz
coincides with this neighborhood. By abuse of notation, we will sometimes identify the
neighborhood with D itself.

Definition 6.11. Given a tangent vector v € T,Xg(I', G), we set

¢ ._ dp(h?)(W) Ly (y) + hpdy (LY (y))(v)
”v“Th ' [y]S;l[Il?‘H] hﬁLf,’(y)

’

where d,(h¥) (resp., d,(L?(y))) is the derivative of p — h;ﬂ; (resp., p — L%(y)) at p. In

particular, if p hg is constant one has

d(LE)@)

(6.3)
lersl  Lo()

vl =

Remark 6.12. We make two remarks about the ¢-entropy and the Finster norm ||-||%, .

(1) Recall that by [23, Section 8], entropy varies in an analytic way over Xg (I, G). In
particular, h¥ is differentiable.

(2) Equation (6.3) generalizes Thurston’s Finsler norm on Teichmiiller space [81,
p. 20].

We want conditions guaranteeing that ||-[|%,, defines a Finsler norm on 7,X¢ (T, G);
a priori it is not even clear that ||-||%,, is real valued and non-negative. To link ||-||%, and
the Finsler norm of Subsection 3.2, we need the following proposition. We fixed a set of
strongly primitive elements {y, } representing each periodic orbit a € @ in Remark 6.7.
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Proposition 6.13 ([23, Proposition 6.2], [24, Proposition 6.1]). Let {p;};ep be a real
analytic family of ®-Anosov representations. Then up to restricting D to a smaller disk
around 0, there exists v > 0 and a real analytic family {g; : U’ — R.¢}zep C HV(UI)
so that forall z € D, all a € O, and all x € a one has

p¢(a) 5
/0 Z:(be())ds = L (ya).

In particular, the map D — PHRY (¢) given by z — Ry (pz) = [¢§Z] is real analytic.

Proof. The argument follows [24, Proposition 6.1]. Since {wq }ace span ag, there exist
real numbers aq so that ¢ = )", g dawq. The result for projective Anosov representa-
tions and the spectral radius length function is given by [23, Proposition 6.2]; thus, the
proof of [24, Proposition 6.1] applies (cf., Proposition 4.7 and equation (4.3)). ]

Fix a real analytic family {g,} as in Proposition 6.13. By [23, Proposition 3.12], the
function z > h,z, is real analytic. By Corollary 5.5, we get that z hﬁz is real analytic,
as claimed in Remark 6.12.

Proposition 6.13 bridges between ||-||%, and the Finsler norm on PHRV (¢), as we now
explain. First, observe that in Definition 6.11, it suffices to consider only strongly primitive
elements when taking the sup, that is,

o _ do(h?) (W)LY (y) + hpd,(L?(y)) ()
”v“Th - Sup (77 .
[y]€[Tse] hoLp(y)

Indeed, the function p — n%(y) is constant for all y € I'y (Lemma 6.3), and Remark 6.7
gives
ol — sup SOOI Ga) + Ky (L2 (ra) ()
™ acO hﬁLﬁ (Ya)

Recalling the notations from Subsection 3.2, we have the following.

(6.4)

Lemma 6.14. Let {p,}.cp C Xo([, G) be a real analytic family parametrizing an open
neighborhood around p = py. Fix an analytic path z : (—1,1) — D so that z(0) = 0 and
set pg 1= pz(s) and v 1= S| _ ps. Let also hy == hjy_ and g5 := hZ.(s). Then

vl = lgo]lln-

In the above statement, by construction, the LivSic cohomology class [go] = [go]s
belongs to the tangent space Tigso]PHRY ().

Proof. Combining equations (6.4) and (2.3) and Proposition 6.13, we have

0 _ hsL(gs (Ya) _ d h f§§d8¢(a)
”v”Th = sup d_ “o79, L — Sup — h—~—
acO U5 |s—o hpr (Va) aco 45 |g_oho fg0d8¢(a)
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Hence,
0o _ d [ gsd8p(a) J &odby(a)
[vllpy =sup —| T~ =sup G ——.
aco ds s=0fg0d5¢(a) acl@ ngdSq&(a)
By Theorem 2.10, we get
godm
Ivllfy = sup / :
mep(g) J godm
This finishes the proof. |

From Propositions 3.6 and 6.13 and Corollary 6.4, we obtain the following.

Corollary 6.15. Keep the notations from Lemma 6.14. Then s + d (p, ps) is differen-
tiable at s = 0 and

d
0% = 5| _ o0

We now turn to the study of conditions guaranteeing that |||, defines a Finsler norm.

Corollary 6.16. Let p € Xo(I', G) be a point admitting an analytic neighborhood in
Xo(T, G). Then function |-|%, : ToXe (T, G) — R U {oo} is real valued and non-
negative. Furthermore, it is (Rxq)-homogeneous, satisfies the triangle inequality, and
v ||%, = 0 if and only if

dp(h®)(v)

dp(L¥(y))(v) = W7 Le(y) (6.5)
0

forall y € I'y. In particular, if the function p +— hg is constant, then
Il =0 & dp(LE () (v) =0
forall y € T'y.

Proof. By Lemmas 3.5 and 6.14, the function ||-[|5, is real valued, non-negative, (R0)-
homogeneous and satisfies the triangle inequality. Furthermore, keeping the notation from
Lemma 6.14, if ||v[|$,, = 0 then g9 ~¢ 0, and this condition is equivalent to

pgy(a) d py(a)
0= /0 ’ folgronar = o /0 g5(e (0))dt

ds

forall a € O and x € a. Hence,

d py(a@) _ d
0=5| /0 B = g hoLf ()
Thus, 1o
d
a2 ) = =200 19
)

for all a € @. Now by Lemma 6.3, for every y € I'y there is some n > 1 and a € O so
that Lj(y) = nLj(y,) for all p € Xo(T, G). This finishes the proof. n
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In view of Corollary 6.16, to show that ||-||%, is a Finsler norm, one needs to guar-
antee that condition (6.5) implies v = 0. These type of questions have been addressed
by Bridgeman—Canary—Labourie-Sambarino [23, 24] in some situations. Rather than
discussing these results here, we will recall them in the next sections, when needed.

7. Hitchin representations

In this section, we focus on Hitchin representations. The Zariski closures of PSL(d, R)-
Hitchin representations have been classified by Guichard. Hence, the results of the pre-
vious section apply nicely in this setting giving global rigidity results and leading to
asymmetric distances in the whole component. This is explained in detail in Subsec-
tion 7.1, where we also treat the case of PSOg(p, p), the remaining classical case not
covered by Guichard’s classification, using recent results by Sambarino [73]. In Subsec-
tion 7.2, we discuss Finsler norms associated with some special length functionals in
the PSL(d, R)-Hitchin component, showing that they are nondegenerate (this will be a
consequence of Corollary 6.16 and results in [23,24]).

Throughout this section, we let S be a closed oriented surface of genus g > 2 and
denote by I' = m1(S) its fundamental group. We also let G be an adjoint, connected,
simple real-split Lie group. Apart from exceptional cases, G is one of the following:

PSL(d,R), PSp(2r,R), SO¢(p,p+ 1), or PSOy(q,q),

for g > 2. Hitchin representations are I1-Anosov (cf., Example 4.13). We denote by
Hit(S, G) the Hitchin component into G, when G = PSL(d, R) we also use the special
notation Hitg (S).

7.1. Length spectrum rigidity

For p € Hit(S, G) denote £} := (Lpn)* and consider ¢ € [ ,epiys,6) INU(L,) C afp = a*.
The main goal of this section is to prove the following.

Theorem 7.1. Let G be an adjoint, simple, real-split Lie group of classical type. In the
case G = PSOg(p, p), assume furthermore p # 4. Let ¢ € ﬂpeHi[(S,G) int(£L7) be so
that ¢ o 6 # @ for every non-inner automorphism o of G. If p, p € Hit(S, G) satisfy
th% = h%L%, then p = p.

Before going into the proof of Theorem 7.1, we make few remarks and establish the
main corollaries of interest.

Remark 7.2. We make two remarks for the groups G = PSL(d, R) and G = PSO (4, 4).

*  When G = PSL(d, R), Bridgeman—Canary—Labourie-Sambarino [23, Corollary 11.8]
proved Theorem 7.1 for the spectral radius length function ¢ = A;. The proof of
Theorem 7.1 follows the same approach.
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* We aim to define a simple root asymmetric metric on Hit(S, G) (Corollary 7.3). As
every simple root of PSO¢ (4, 4) is fixed by a non-inner automorphism, the function

A2 : Hit(S, PSOg(4, 4)) x Hit(S, PSOo(4, 4)) — R

does not separate points for any simple root «. This is the main reason why we exclude
the case G = PSOy(4, 4) in the statement of Theorem 7.1.

We have the following two consequences of Theorem 7.1.
Corollary 7.3. Let G be an adjoint, simple, real-split Lie group of classical type. Let o be

any simple root of G, with the exception of the roots listed in Table 1. Then the function
df  Hit(S, G) x Hit(S, G) — R given by

st L2(y)
p.p) :=1log | sup
" ylerry L5 ()

defines an asymmetric distance on Hit(S, G).

Proof. By Potrie—Sambarino [65, Theorem B] and Pozzetti-Sambarino—Wienhard [67,
Theorem 9.9], we have h% = 1 for all p € Hit(S, G). Since roots as in the statement are
not fixed by non-inner automorphisms of G, then by Theorems 6.2 and 7.1, the function d
defines a possibly asymmetric metric.

It remains to show that df; is indeed asymmetric. But Thurston [81, p. 5] exhibits
examples of points p, p € Teich(S) for which the distance from p to p is different from the
distance from p to p. Since Hit(S, G) contains a copy of Teich(S), the claim follows. =

Corollary 7.4. Let G = PSL(d, R) and ¢ = Ay be the spectral radius length function.
Then the function d%hl : Hity (S) x Hityz (S) — R given by

RA LA ()
gl (p.p) =log | sup —- 2
™ lelr] ki LA (y)

defines an asymmetric distance on Hitg (S).

Proof. The action on a of the unique non-inner automorphism of PSL(d, R) coincides
with the opposition involution t. When d > 2 note that A; # A; o ¢; hence, in this case the
result follows from Theorems 6.2 and 7.1. If d = 2, the result follows from Theorem 6.2
and the length spectrum rigidity for hyperbolic surfaces. |

We now turn to the proof of Theorem 7.1. In view of the natural inclusions

Hit(S. PSp(2r, R)) C Hitz,(S) and Hit(S, SOo(p. p + 1)) C Hitzp41(S).
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we may assume that G is either PSL(d, R) or PSOg(p, p). We will focus on the case
G = PSOy(p, p), the argument for G = PSL(d, R) is similar (and further, in that case
the reader can also compare with [23, Corollary 11.8]).

The main step in the proof is to carefully analyze the possible Zariski closures of
PSOg(p, p)-Hitchin representations and show that they satisfy the hypotheses of Theo-
rem 6.8. This is achieved in Corollaries 7.8 and 7.9, as an application of recent work by
Sambarino [73].

Let then p > 2 and consider a principal embedding 7 : PSL(2, R) — PSO¢(p, p).
Then 7 factors as

7:PSL(2,R) — SOo(p, p — 1) — PSOo(p, p),

where the first map is the irreducible representation into SL(2p — 1, R) and the sec-
ond is induced by the standard embedding stabilizing a non-isotropic line £, C R??.
We let 7, be the complementary (p, p — 1)-hyperplane. Note that t lifts to a principal
embedding T : PSL(2, R) — SOg(p, p). A Fuchsian representation is a Hitchin represen-
tation into PSOq(p, p) (resp., SOp(p, p — 1)) whose image is contained in a conjugate of
7(PSL(2, R)) (resp., T(PSL(2, R))). The following is well known (see, e.g., [73, p. 25] for
a proof).

Lemma 7.5. Let p € Hit(S, PSOo(p, p)). Then there exists a representation p : I’ —
SO (p, p) lifting p that may be deformed to a Fuchsian representation.

Here is another useful lemma.

Lemma 7.6. Let p: T' — SO¢(p, p) be a Hitchin representation. Then the Zariski closure
Gp of p is reductive.

Proof. Suppose by contradiction that Gz is not reductive. Then G; is contained in a
proper parabolic subgroup of SOg(p, p) [18]. That is, p(T") stabilizes a totally isotropic
subspace W of R??.

Now the proof reduces to Sambarino [73, Theorem B]. Indeed, let g%s be the semisim-
ple part of the Lie algebra g; of G;. By assumption, we have g%x # g5 and so [73,
Theorem B] implies that g%s is either a principal sl,(R) or isomorphic to a copy of
so(p, p — 1), stabilizing a non-isotropic line £ and a complementary hyperplane 7. In
either case, g%s acts irreducibly on a hyperplane 7 of signature (p, p — 1). Butthen £ & W
intersects 7 nontrivially and is g%s-invariant, a contradiction. [

For a Hitchin representation p : I' — SOg(p, p), let g%s be the semisimple part of the
Lie algebra g5 of G5. By Sambarino [73, Theorem Al], if p # 4 then gsﬁs is either so(p, p),
a principal sl,, or the image of the standard embedding so(p, p — 1) — so(p, p). In each
case g%s contains, up to conjugation, the Lie subalgebra d7(sl,).

Lemma 7.7. Let p : ' — SO¢(p, p) be a Hitchin representation. Suppose that g € G,
satisfies ghg™! = +h forall h € Gp. Then g € {id, —id}.
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Proof. Let g € G; be as in the statement. Since T(PSL(2,R)) C (Gp)o, then g centralizes
(up to a sign) the principal PSL(2, R), which factors through SOy(p, p — 1).

Now if & € PSL(2, R) is a hyperbolic element with eigenvalues +A (well defined up
to 1), then 7 (k) acting on 7, is diagonalizable with eigenvalues

A2e=D a2 a2 e

Note that these are positive independently on whether we choose A or —A for the eigen-
values of &; hence, to fix ideas we will assume A > 1. In particular, all the eigenvalues
of 7(h) are positive. We let 7, be the two-dimensional plane spanned by ¢, and the
eigenline in m; of eigenvalue 1, which we denote by K}l. That is, mp, is the eigenspace
of T(h) associated with the eigenvalue 1. We also let £}, be the eigenline of eigenvalue
i=A2P=D A2 272 A2,

Note that gT(h)g~' = 7(h). Otherwise, we would have g7(h)g~! = —7(h) and for
S 62 we have

I . 1.
g-v= Fgr(h) ‘v = —ﬁr(h)g-v.

We would then find a negative eigenvalue of (%), a contradiction. We conclude that
g7 (h)g~' = T(h) as claimed.

It follows that g preserves 62 for all i, and also preserves ;. We claim that g pre-
serves £.. Indeed, note that there is some m € PSL(2, R) so that T(m) - E}l # (1 as the
action of T(PSL(2, R)) on 7, is irreducible. Furthermore, 7 (m) - K}l is different from E;l,
as all these lines are isotropic, while 7(m) - Z}ll is not. By what we just proved, g preserves
Tmhm—1 and therefore preserves 7,,;,,—1 N 7y = £,. Hence, g - £; = £, and therefore
g- K}l = E}z for every hyperbolic & € PSL(2, R).

We conclude that for every hyperbolic & € PSL(2, R), the element g preserves the
projective basis

By = 0PV 2 002, 2Ty,

Fix such an /. Let m € PSL(2, R) be so that 7(m) -E}l ¢ Bj,. Then g preserves the elements
of the basis B,,;,,—1 as well and therefore preserves 2p + 1 lines in general position in
R27_ It follows that g = pid for some 1 € R. Since g € SOg(p. p), then u = £1. ]

Corollary 7.8. Assume p # 4 and let p € Hit(S, PSOg(p, p)). Then the Zariski closure
G, of p is simple and center free, and with Lie algebra so(p, p), so(p, p — 1), or a
principal sl5.

Proof. Let p be alift of p. Then G, = G5/{=id} and by Lemmas 7.6 and 7.7, G,, is reduc-
tive and center free. In particular, it is semisimple and by Sambarino [73, Theorem A], the
result follows. u

The proof of the following well-known fact can be found in [73, Corollary 6.2] for
PSL(d, R)-Hitchin representations, but the proof applies in our setting.
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Corollary 7.9. Let p € Hit(S, PSOq(p, p)). Then p(I') C (Gp)o.

We have now completed the analysis of the possible Zariski closures of PSOg(p, p)-
Hitchin representations, and we can prove Theorem 7.1.

Proof of Theorem 7.1. By Corollaries 7.8 and 7.9 and Theorem 6.8, there exists an iso-
morphism o : (Gp)o — (G5)o so that o o p = p. In particular, (G,)o = (G5)o and we have
three possibilities. If (G,)o is a principal PSL(2, R), then the result follows from length
spectrum rigidity in Teichmiiller space. If (G,)o = PSOg(p, p — 1), then the correspond-
ing Dynkin diagram is of type B, and therefore admits no nontrivial automorphism.
Hence, in that case ¢ is inner as desired.

Finally, assume (G,)o = PSO¢(p, p) and suppose by contradiction that p # p.
Hence, o is a noninternal automorphism. But on the other hand, by Theorem 6.8, we
have ¢ o 0 = ¢, contradicting our hypothesis. ]

Remark 7.10. A natural length function on Hit, (S), specially relevant in the case d = 3,
is the Hilbert length (cf., Example 4.11). However, the Hilbert length is not rigid, as the
contragredient representation p*(y) := ‘p(y)~! of p satisfies hIgLI;I = hE*L;I,, but in
general, one has p* # p. Hence, dfi (-, -) does not separate points of Hitg (S). It follows
from the proof of Theorem 7.1 that this is the only possible situation where two differ-
ent PSL(d, R)-Hitchin representations can have the same Hilbert length spectra. Similar
comments apply to the simple roots listed in Table 1.

7.2. Simple root and spectral radius Finsler norms

We now restrict to G = PSL(d, R). We list some useful consequences of Corollary 6.16
and [23, 24]. For the first simple root, we have the following.

Corollary 7.11. Let ¢ = «; € 11 be the first simple root. The function on THity (S)

dp(L¥ (y))(v)
[vl|$h = sup L=t
T plar Lo’ )

defines a Finsler norm on Hit; (S).

Proof. By Potrie-Sambarino [65, Theorem B], we have hp' = 1 for all p € Hitg(S).
Hence, thanks to Corollary 6.16, we only have to show that ||v||7i = 0 implies v = 0.
But this follows from Corollary 6.16 and [24, Theorem 1.7]: The set {d,(L*' (¥))}yer
generates the cotangent space 7, Hity (S). |

When d = 2j > 2, it is shown in [24, Proposition 8.1] that the middle root pressure
quadratic form is degenerate along representations that factor through PSp(2j, R). The
proof shows that ||-||%"1 is degenerate as well.

With the same argument as in Corollary 7.11 (but applying [23, Lemma 9.8 and
Proposition 10.1] instead of [24, Theorem 1.7]), we obtain the following.
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Corollary 7.12. Let ¢ = Ay be the spectral radius length function. Then the function
|-} THity (S) — Rso, taking v € T,Hity(S) to

olf = sup UEIOLE () 1 4y (L2 () )
[y]<r] ho' Lp' (v)

defines a Finsler norm on Hitg (S).

We finish this subsection with a comment on Labourie and Wentworth work [55],
which explicitly compute the derivative of the spectral radius and simple root length
functions at points of the Fuchsian locus Teich(S) C Hit;(S), along some special direc-
tions. More explicitly, fixing a Riemann surface structure Xy on S, the canonical line
bundle K associated with Xy is the (1, 0)-part of the complexified cotangent bundle
T*X (;C =C ®r T*Xo. A holomorphic k-differential is a holomorphic section of the bun-
dle K*, where the power k is taken with respect to tensor operation. In local holomorphic
coordinates z = x + iy, a holomorphic k-differential can be written as

— “e — k
Gk = qx(2)dz ® --- Q@ dz = qr(2)dz",

k times

with g (z) holomorphic. Hitchin’s seminal work [44] parametrizes Hit; (S) by the space
of holomorphic differentials over Xy. More precisely, there exists a homeomorphism

d
Hity (5) = €D H(Xo. K¥).
k=2

where H°(Xo, K¥) denotes the space of holomorphic k-differentials over X,. Given
a holomorphic k-differential ¢ € H°(Xo, K¥), one may consider a natural family of
Hitchin representations {p;};s0, corresponding to {tqx};>0 C H°(Xo. K*¥) under this
parametrization, with py corresponding to the point X in the Teichmiiller space Teich(.S).
Infinitesimally, this gives a vector space isomorphism:

d
TpHity (S) = @) H®(Xo. K¥).
k=2

Given a family of Hitchin representations {p; };>o as above, we denote by v = v(qx) =
% | —oPt € Tx,Hitg (S) the corresponding tangent vector. The computation of the deriva-
tives d,, (L.A"' (y))(v), for 1 < j < d, has been carried out by Labourie—Wentworth [55,
Theorem 4.0.2], using the above identification and information of H°(Xy, K k). To be
more precise, define the function Re g : T'Xo — R as the real part of the holomorphic
differential g3 evaluated on unit tangent vectors. More precisely,

Re g (x) := Re (gk|p(w, w, ..., w))
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for x = (p,w) € T' X,.

Let ¢ be the geodesic flow on T!X,. For y € T, let 15, (y) := 2 Lkl(y) be the
hyperbolic length of the closed geodesic on X corresponding to the free homotopy
class [y].

Proposition 7.13. There exist constants Cy and Cs, only depending on d and k, such that
Sfor any vector v = v(qx) € Tx,Hity (S) as above,

]y Log (V)
lo@ls = €1 sup / Re gi (s (x))ds
[ylelTl] Iﬂo ()’)

and

oo (v)
lv@ol% = C2 sup / Re g1 (s (x))ds,
[ylelr] Loo(¥) (V)

where x = x, is any point on T Xy that lies in the periodic orbit corresponding to y.

Proof. The proof is a simple combination of Definition 6.11 together with [55, Theo-
rem 4.0.2 and Corollary 4.0.5]. One also needs the fact that hg ! <1 with equality precisely
when p is Fuchsian, and 2% = 1 (by [65, Theorem B]). [

8. Other examples

As discussed in Subsection 1.2, we need two ingredients to gain a good understanding of
the asymmetric metric d (-, -):

* A reparametrization of the geodesic flow of I with periods given by the functional ¢:
This is needed to show that df; (-, -) is non-negative, degenerating if and only if the
renormalized length spectra coincide. Sambarino provides such a reparametrization
whenever ¢ € int((L?)*) and O is the set of Anosov roots (see Section 5).

* A good understanding of the Zariski closure and its outer automorphism group for
representations belonging to a given class of interests: This is necessary to obtain
renormalized length spectrum rigidity.

Furthermore, on subsets of representations for which the entropy of some functional
is constant, one can avoid the renormalization by entropy.

We discuss here further classes in which simultaneous knowledge of some of these
aspects can be achieved.

8.1. Benoist representations

Let " be a torsion-free word hyperbolic group. A Benoist representation is a faithful
and discrete representation p : I' — PSL(d + 1, R) dividing an open, strictly convex set
Q, C RP? (recall Example 4.15). We denote by Beng(I") C %(I", PSL(d + 1, R)) the
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space of conjugacy classes of Benoist representations. Koszul [53] showed that Ben, (T")
is an open subset of the character variety, and Benoist [11] showed it is closed. Hence,
Beng (I") is a union of connected components of X (I, PSL(d + 1, R)).

As Benoist representations are ®-Anosov for ® = {o;, o4 }, both the unstable Jacobian
Ji—1 =dwy —wg =dA; + Ag41 and H := A1 — 541 belong to int((L/(;))*) for every
p € Beng (T"). We focus here on these two functionals since it was proven in [65, Corol-
lary 7.1] that J;_; has constant entropy, and the Hilbert length function has particular
geometric significance as Lg(y) coincides with the length of the unique Hilbert geodesic
in p(I")\ 2, in the isotopy class corresponding to [y].

Corollary 8.1. The function d%ﬁ’l :Beng (I') x Beng (I') — R given by

L% (y)
dyi~ (p.p) =log | sup ———
m ylelr] L~ (y)

defines a (possibly asymmetric) distance on Beng (I").

Proof. Benoist [8, Théoreme 3.6] showed that if p € Beng (I") is not Zariski dense, then
o(T') C PSO(d, 1). Hence, by Theorems 6.2 and 6.8, if d,(p, p) = O then there exists
an isomorphism o : (G,)o — (G5)o so that o o p = p. If (Gy)o = (G5)o = PSOo(1, d),
then the equality p = p follows from length spectrum rigidity in Teichmiiller space (when
d = 2) or by Mostow rigidity (when d > 2).

On the other hand, if (Gp)o = (Gp)o = PSL(d + 1,R) and o is non-inner, it acts non-
trivially on the Dynkin diagram of type Ag; hence, its action on a coincides with the
opposition involution ¢. Since J;_; is not (-invariant and has constant entropy by [65,
Corollary 7.1], Corollary 6.9 finishes the proof. ]

Remark 8.2. The same applies for all (1, 1, p)-hyperconvex representations p : I' —
PSL(d, R) of hyperbolic groups having as boundary a (p — 1)-dimensional sphere (see
Example 4.15): It follows from [67, Proposition 7.4] that their projective limit set is
a Cl-sphere and from [68, Theorem A] that then the entropy of the unstable Jaco-
bian J,—1 := pw; — w, is constant and equal to 1. If we then denote by Hyp“(I) the
open subset of the character variety consisting of Zariski-dense (1, 1, p)-hyperconvex
representations, the function

Jp—1
L2 (y)
A (p.p) = log [ sup —2—"
lelrl Ly (y)

defines a (possibly asymmetric) distance on Hyp%(I').

With the same proof as in Corollary 8.1, we get the following result.



Thurston’s asymmetric metrics for Anosov representations 787

Corollary 8.3. The function df : Beng (I') x Beng (I') — R given by

RH LH(y)
dTHh(p,p)=10g< sup o —*

yletry Ay Lp(v)

is real valued, non-negative and d} (p, p) = 0 if and only if p = p or p = p*, where
p*(y) :="p(y)~" forally € T.

Remark 8.4. The Hilbert length function H is the only element in int((Lf;))*) which
is fixed by the opposition involution, and the unstable Jacobian J;_; and its image
Jg—10t=—dAg41 — A1 are the only elements in int((Lf;))*) that have constant entropy
on the whole Beng (I"). In particular, for all other functionals ¢ € int((L?)*), such as, for
example, the spectral radius A1,

dfy(p,p) :=log | sup
" ylerr] 1o L (¥)

defines a (possibly asymmetric) distance on Beng (I"). In all these cases, the renormaliza-
tion by entropy is, however, necessary.

n L%(y))

8.2. AdS-quasi-Fuchsian representations

Letg > 2 and I" be the fundamental group of a closed real hyperbolic g-dimensional mani-
fold. Denote by QF, (") the space of AdS-quasi-Fuchsian representations I' — POy(2, q),
which is a union of connected components of the character variety (recall Example 4.16).
Since representations in QF, (I") are Anosov with respect to the space of isotropic lines,
the Hilbert length functional H = @; — wy+1 belongs to the Anosov-Levi space ag,. This
functional is a multiple of the spectral radius functional on POqy(2, g).
Corollary 8.5. If g > 2, the function dii QF,(I") x QF,(T") — R given by
RE LH(y)
dgy(p, p) = log | sup —Z—=
" letr) 1p Lp ()

defines a (possibly asymmetric) distance on QF,(T').

Proof. For g > 2, the group POy(2, g) is simple, and the associated root system is of
type B,. In particular, it has no nontrivial automorphisms and therefore an automorphism
of POy (2, ¢g) is necessarily inner. Corollary 6.9 then proves the result when restricting to
Zariski-dense AdS-quasi-Fuchsian representations.

Furthermore, Glorieux—Monclair [32, Proposition 1.4] computed the possible Zariski
closures of an AdS-quasi-Fuchsian representation: If p is not Zariski dense, then it is
AdS-Fuchsian. This means that p preserves a totally geodesic copy of HY inside the
anti-de Sitter space and acts cocompactly on it (cf., [29, Remark 1.13]). Therefore,
p(T") CPO(1,g) CPOy(2,q). Hence, the length spectrum rigidity of closed real hyperbolic
manifolds finishes the proof. ]
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In the special case g = 2, the function dij does not separate points. Indeed,
PS0¢(2,2) =~ PSL(2,R) x PSL(2, R) and every representation of the form

o= (p*, p®) : 71 (S) = PSL(2,R) x PSL(2,R),

where p° is a point in Teichmiiller space for ¢ € {L, R}, is AdS-quasi-Fuchsian. However,
the representation p := (pR, p") has the same Hilbert length spectrum as p, but p # p
(unless p~ = pR).

Remark 8.6. Since AdS-quasi-Fuchsian representations have Lipschitz limit set, it fol-
lows again from [68, Theorem A] that the entropy of the unstable Jacobian J;_; :=

qw1 — wg is constant and equal to 1 on QF,(I"). In particular, the function d%‘f;l :
QF,(I') x QF,(I") — R given by

Jg—1
LI (y)
g™ (p, p) :=log [ sup ——
lvlelr] L, (y)

is non-negative.

However, in this case the unstable Jacobian does not belong to the Levi—-Anosov sub-
space. As a result, it is not clear whether a metric Anosov flow with periods J;_; exists,
allowing us to apply the thermodynamic formalism which is at the basis of this work.
Thus, we do not know if the condition d;‘{;l (p, ) = 0 leads to an equality between length
spectra that allows to conclude that d;;’l separates points.

8.3. Zariski-dense ©-positive representations in PO (p, p + 1)

Let2 < p <q.LetI" = m{(S) be a surface group and Pos,, 4 () be the space of ®-positive
representations I' — POg(p, q) (cf., Example 4.14).

Corollary 8.7. For2 < p <qand j =1,..., p—2, let aj be the corresponding simple
root of POo(p, q). Let Poslz,’q (I') C Posp 4 (I') be the subset consisting of Zariski-dense
representations. Then the function

dyy : Posh (') x Posh . (T') > R

given by

. LY (y)
dpy (p.p) =log| sup —&
" yletr] Ly’ ()

defines a (possibly asymmetric) distance on Posg, 7).
Proof. As POy(p, q) ©-positive representations are ®-Anosov for ® = {ay,...,0p—1}

(see [13,37]), we have «; € int((Lf?)*) forevery p € Poslz,,q (I"). Furthermore, o/ -entropy
is constant on the space of POy (p, g)-positive representations [68, Corollary 1.7]. Thus,
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to finish the proof, it only remains to show that o-length spectrum rigidity holds on
Poslz,, 7(D)-

Since POy (p, q) is simple and center free, Theorem 6.8 guarantees that two representa-
tions in Poslz,’ q (") having the same renormalized length spectra differ by an automorphism
of POy (p, q). Since the Dynkin diagram associated with the root system of POgy(p, ¢)
is of type B, and admits no nontrivial automorphism, the outer automorphism group of
POo(p, q) is trivial and this finishes the proof. ]

Remark 8.8. The space Pos, 3(I") contains connected components only consisting of
Zariski-dense representations [1, Theorem 4.40]. More generally, for all p > 2 the space
Posp, p+1(I") contains smooth connected components. It is conjectured that these consist
only of Zariski-dense representations as well (see [26, Conjecture 1.7]), if the conjec-
ture were true, the functions in Corollary 8.7 would define metrics on these connected
components.

On the other hand, it follows from the classification in [3] that for ¢ > p all connected
components of Pos, 4 (.S), with the exception of the Hitchin component if p = ¢, contain
representations with compact centralizer.

A. Geodesic currents

Bridgeman—Canary—Labourie—Sambarino [24, p. 60] remarked that the renormalized
intersection number of Subsection 2.4 can be linked to Bonahon’s intersection number,
in the specific case of geodesic flows associated with points in the Teichmiiller space of a
surface. We explain this in more detail for the reader’s convenience.

Let S be a connected closed orientable surface of genus bigger than one and S be its
universal cover. Let I' be the fundamental group of S. A (complete) geodesic of S is an
element of 9@ T'. A geodesic current is a Borel, locally finite, I'-invariant measure on the
space of geodesics of S, which is also invariant under the map (x, y) — (¥, x). We let
C(S) be the space of geodesic currents in S. An important example of a geodesic current
is given by isotopy classes of closed curves in S: Every such class o defines an element
8 € C(S) by representing « as a conjugacy class ¢y in I" and then considering the sum
of Dirac masses supported on the axes of elements in ¢,. Another interesting example is
given by measured geodesic laminations on S (cf., Bonahon [17, p. 153]).

Bonahon [17] defined a continuous, bilinear, symmetric pairing

i:C(S) x C(S) — Ry,

called the intersection number between geodesic currents. This terminology is motivated
by the following property: If « and B are isotopy classes of closed curves in S, then one
has

iBo ) = inf #a' N B).



L. Carvajales, X. Dai, B. Pozzetti, and A. Wienhard 790

Furthermore, Bonahon defines an embedding
L : Teich(S) — C(S)

from the Teichmiiller space Teich(S) into the space of geodesic currents that can be
described as follows. Since every point p € T(S) is Anosov, we have an equivariant limit
map &, : ' — P(R?) and we may pull back the Haar measure on P(R?) x P(R?) \
{(n,n) : n € P(R?)} under this map. We obtain an element L, € C(S) which is called the
Liouville current of p. Furthermore, the Haar measure on P(R?) x P(R2) \ {(n,7n) : n €
IP(R?)} can be normalized so that for every isotopy class of closed curves & in S

i(Lp’Sa) = Lp(a)» (Al)

where L, (o) is the length of the unique closed geodesic (for the metric p) in the isotopy
class o (cf., [17, Proposition 14]).

The embedding L : Teich(S) — C(S) allows us to relate renormalized intersection and
Bonahon’s intersection. Indeed, pick a base point py € Teich(S) and denote by S, the
underlying hyperbolic surface. The associated geodesic flow ¢ = ¢, is a topologically
transitive Anosov flow and admits a strong Markov coding (cf., Theorem 2.9). Further-
more, the choice of pg induces a homeomorphism between C(S) and the space P(¢).
Indeed, the Busemann—Iwasawa cocycle of py induces an identification between the unit
tangent bundle of the Riemannian universal cover of S,, with

DT xR,

in such a way that the action of the (lifted) geodesic flow is given by translation in the
R-coordinate. The identification C(S) = P(¢) is defined by associating with a geodesic
current v the probability measure m, homothetic to the quotient measure of v ® dr.

The geodesic flow ¥ = ¥, corresponding to another point p € Teich(S) is Holder
orbit equivalent to ¢ = ¢,,, and therefore we may think v as an element of® HR(¢).

Lemma A.1. Let pg and p be two points in Teich(S) and take v € C(S). Then

i(v,Ly)

IWlu ((]57 W) = va(¢v W) = W
» Lpo

Proof. The function J.(¢, ¥) is continuous on P(¢). Similarly, i (-, L,,) and i (-, L,) are
continuous on C(S). Since v + m, is a homeomorphism and multicurves are dense in
C(S) (see Bonahon [17, Proposition 2]), it suffices to prove the statement for v = &,
where « is any isotopy class of closed curves in S.

SFormally, there is no canonical way of identifying v with a specific reparametrization of ¢, but just
to a LivSic cohomology class (cf., Liv§ic’s Theorem 2.12). For simplicity, we will ignore this detail in this
discussion and think that the choice of p induces a specific element ¢ € HR(¢). As it will become clear,
the discussion is independent of this arbitrary choice.
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Assume then v = §4. By equation (A.1), we have
i(V,Lpy) = Lpy() and i(v,L,) = Ly(a).

On the other hand, it is well known that hy = hy = 1 (cf., Manning [57]), hence
I, (@, ¥) = Ly, (¢, V). Also, « defines a periodic orbit aq € O satisfying pg(aq) =
Ly, () and py (aq) = L,(@). Since ms, = 84(aq), equation (2.3) completes the proof. m

One can check that mBM(¢p) = m 0 - Hence, combining Lemma A.1 and Bonahon
[17, Proposition 15], we have

[(Lpy:Lp) _ i(Lpg-Lp)

Jmpvig) (9, V) = i(LpgsLpy)  72[x(S)|’

(A2)

As an interesting consequence, one gets

Jmeng) (@, V) = Ty (¥, @)

for all pg, p € T(S). However, if one considers the supremum of all renormalized inter-
sections (rather than just the Bowen—Margulis-renormalized intersection), this symmetry
no longer holds: Combine Theorem 3.2 with Thurston’s example [81, p. 5].

Another interesting consequence of equation (A.2) is that it recovers a result by
Bonahon [17, p. 156]. Indeed, combining that equation with Proposition 2.18 and length
spectrum rigidity on Teich(.S), one has

i(Lpg:Lp) = 72[1(S)]

for all pg, p € T(S), with equality if and only if p = pyg.
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