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A height gap in GLd. xQ/ and almost laws

Lvzhou Chen, Sebastian Hurtado, and Homin Lee

Abstract. E. Breuillard showed that finite subsetsF of matrices in GLd.xQ/ generating non-virtually
solvable groups have normalized height Oh.F / � "d , for some positive "d > 0. The normalized
height Oh.F / is a measure of the arithmetic size of F and this result can be thought of as a non-
abelian analog of Lehmer’s Mahler measure problem. We give a new shorter proof of this result.
Our key idea relies on the existence of particular word maps in compact Lie groups (known as
almost laws) whose image lies close to the identity element.

1. Introduction

In [6], E. Breuillard proved what can be considered a non-abelian version of Lehmer’s
problem about the Mahler measure of an algebraic number. He showed that if a finite set
F � GLd .xQ/ of invertible matrices with algebraic entries generates a group that is not
virtually solvable, then its arithmetic height (a measure of its arithmetic complexity) is
bounded below by an absolute constant "d > 0 independent of F . Some consequences of
Breuillard’s theorem include the existence of a lower bound for the exponential growth of
a non-virtually solvable group of GLd .C/, a strong version of the classical Tits alternative
about the existence of free subgroups in linear groups, lower bounds in the girth of finite
groups of Lie type, and very recently some results about the geometry of arithmetic locally
symmetric spaces [11]. See [7] for a discussion of some of these applications.

In this article, we will provide a more elementary proof of Breuillard’s theorem. Our
proof makes use of some of the results about products of matrices proved by Breuillard, for
example, Lemma 2.3, Propositions 3.5 and 3.6, but avoids results in diophantine geometry
such as Bilu’s equidistribution theorem [3], or results of Zhang [16] about small points on
algebraic tori, and also avoids the use of the geometry of Bruhat–Tits buildings. The key
idea in our proof relies on the existence of word maps in compact Lie groups whose image
lies close to the identity element. These words are known as almost laws after Andreas
Thom [14]; see Section 2.2.

1.1. Definitions

Let K � xQ be a number field and let VK be the set of absolute values on K up to equiva-
lence, which are either archimedean (corresponding to real and complex embeddings ofK
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in R or C) or non-archimedean (corresponding to prime ideals in the ring of integers OK
ofK). For v2VK, letKv be the corresponding completion ofK and define nv WD ŒKv W Qp�

if vjp or nv WD ŒKv W R� if R � Kv . For a vector x D .x1; x2; : : : ; xd / in Kdv , we define
kxkv WD maxdiD1 jxi jv if v is non-archimedean and kxkv WD

p
jx1j2v C � � � C jxd j

2
v if � is

archimedean.
For a matrix A in GLd .K/, let kAkv be the operator norm. For a finite set F of

matrices in GLd .K/, let kF kv WD maxA2F kAkv . The height of F is defined as

h.F / WD
1

ŒK W Q�

X
v2VK

nv logC kF kv;

where logC.x/ D log max.jxj; 1/ for a real number x. It does not depend on K as long as
F is a subset of GLd .K/. The normalized height is defined by

Oh.F / WD lim
n!1

h.F n/

n
;

where F n consists of all products of n elements in F . The limit above exists because
h.F n/ is sub-additive, which also implies h.F / � Oh.F /.

Our main result is a new proof of the following theorem due to Breuillard [6].

Theorem 1.1. For any positive integer d , there exists "d > 0 such that for any symmetric
finite set F � GLd .xQ/, either

(1) F generates a virtually solvable group, or

(2) Oh.F / � "d .

Remark 1.2. In Section 4 we give a brief discussion on the possible estimates one can
get of "d by using our methods and ideas of E. Breuillard and A. Thom.

Remark 1.3. In [6], Breuillard proved this theorem without the assumption that F is
symmetric1. Moreover he showed that F can be conjugated in such a way that their height
and normalized height are comparable by a constant only depending on d . Our proof does
not establish these results. Moreover we use the results of Eskin–Mozes–Oh [10] and some
lemmas of E. Breuillard [6] that allow us to compare the height and normalized height.

1.2. Idea of the proof of Theorem 1.1

We illustrate the idea of the proof in a very particular case. Assume d D 2, F � SL2.xQ/
and assume that all the entries of elements of F are algebraic integers. In this case, the
only contribution to the height comes from archimedean places. Let K be the number
field generated by the entries of elements in F . Let w 2 F2 be an almost law for SU.2/
(see Section 2.2 for the definition). Suppose for simplicity there exist A;B 2 F such that

1Symmetric means that if x 2 F , then x�1 2 F .
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Tr.w.A;B/ � Id/ ¤ 0 (see Lemma 3.1), and let

Q D

kY
iD1

�
Tr
�
w.Ai ; Bi / � Id

��
; (1)

where k D ŒK W Q�, Ai D �i .A/ and Bi D �i .B/, and �i W K ! C are the different
embeddings of K in C.

By construction, Q is a nonzero integer and therefore jQj � 1. Let ı > 0 be small
enough and let S be the set of i ’s such that either kAik or kBik is greater than eı . There
are two cases: If jS j � k=2, then one of the heights h.A/ or h.B/ must be greater than 1

2
ı

and so h.F / � 1
2
ı and we are done. If S � k=2 we have for i … S , Ai and Bi are close to

a pair of elements of SU.2/ and then for such i ’s, Tr.w.Ai ; Bi /� Id/ is smaller than say
e�10 by choosing the almost law appropriately and ı small enough.

Therefore from jQj � 1, we obtainˇ̌̌Y
i2S

Tr
�
w.Ai ; Bi / � Id

�ˇ̌̌
�

ˇ̌̌Y
i…S

Tr
�
w.Ai ; Bi / � Id

�ˇ̌̌�1
� e10k=2

and this implies that the height of w.A; B/ must be bounded below by a constant c > 0
independent of k. Thus h.F / � 1

jwj
h.F jwj/ � 1

jwj
h.w.A; B// � c

jwj
, where jwj is the

length of w.

1.3. Organization of the article

In Section 2, we recall definitions and facts about heights, normalized heights, and almost
laws. In Section 3, we prove Theorem 1.1. In Section 4 we discuss strategies to obtain
explicit estimates about the constant "d in terms of d .

2. Background

In this section, we give detailed definitions and basic properties of the crucial notions in
the statements and proofs of our results: heights and almost laws.

2.1. Heights

For a number field K � xQ and an absolute value j � jv on K, define nv D ŒKv W Qp�

as the degree of the completion Kv of K over the closure Qp of Q in Kv . In the case
where � is archimedean nv D 1; 2 depending on whether � comes from a real or complex
embedding. When � is non-archimedean, we normalize the absolute value j � jv on Kv
so that its restriction to Qp is the standard absolute value; i.e., jpjv D 1=p. With such
normalization, we have the following product formula.

Theorem 2.1 (Product formula). Let K be a number field and VK the set of equivalence
classes of absolute values on K. Then, for every x 2 K,Y

v2VK

jxjnvv D 1:
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Let k be a local field of characteristic 0. Let k � kk be the standard norm on kd as in
the introduction. We use the same notation for the operator norm on the space Md .k/ of
d -by-d matrices with entries in k. We define below the quantities ƒk.F /, Ek.F / and
Rk.F / for a bounded set F � Md .k/, which were defined in [6] but were also defined
previously by other authors (see Rota–Strang [13], or Breuillard [8] and its references for
a more detailed discussion).

Definition 2.2. Let F be a bounded subset of matrices in Md .k/. We set

(1) the norm of F as
kF kk D sup

g2F

kgkk ;

(2) the minimal norm of F as

Ek.F / D inf
x2GLd . Nk/

kxFx�1kk ;

(3) the maximal eigenvalue of F as

ƒk.F / D max
®
j�jk ; � 2 spec.q/; q 2 F

¯
;

and

(4) the spectral radius of F as

Rk.F / D lim
n!1

kF nk
1=n

k
:

For simplicity, when k DC, we drop k in the notation and denote the above quantities
using k � k, E, ƒ, and R, respectively. If k is understood, sometimes we will use the
subscript v for v 2 Vk , such as ƒv , Ev , and Rv , instead of writing subscript kv .

With the above definition, we can reformulate the normalized height for a finite set
F �Md .k/ as follows (see [6, Section 2.2]):

Oh.F / D
1

Œk W Q�

X
v2Vk

nv logCRv.F /:

We will often use two basic properties that follow directly from the definition:

(1) Oh.F n/ D n Oh.F /, and

(2) Oh.F 0/ � Oh.F / for any subset F 0 � F , especially when F 0 consists of a single
matrix A 2 F , in which case we simply write Oh.A/ instead of Oh.¹Aº/.

We will also use Lemma 2.4 below in our estimates, which is based on the following
lemma of Breuillard.

Lemma 2.3 ([6, Proposition 2.7]). ƒk.F / � Rk.F /.

Lemma 2.4. Let j � jv be a non-archimedean place on a field K and equip Md .K/ with
the operator norm k � kv induced by the norm kxkv WD maxi jxi jv on Kd . Then for any
A 2Md .K/ we have

jTrAjv � Rv.A/:
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Proof. Let L be a finite extension of K, such that all the eigenvalues �1; : : : ; �d of A
belong to L. There is a unique completion j � jw extending j � jv . Therefore Tr.A/ D �1 C
� � � C �d and we have jTr.A/jv � maxi j�i jw D ƒw.A/. By Lemma 2.3, we have that
ƒw.A/ � Rw.A/ and it is easily checked that Rv.A/ D Rw.A/.

2.2. Almost laws

Given an element w in a free group Fn D hx1; : : : ; xni of rank n, there is a natural word
map associated with any group G

wW
Y
n

G ! G;

defined as follows: Express w as a reduced word with alphabet ¹x˙11 ; : : : ; x˙1n º, and then
for any .g1; : : : ; gn/ 2

Q
n G, substitute each xi by gi and x�1i by g�1i . For example, if

w D Œx1; x2� D x1x2x
�1
1 x�12 2 F2, then w.A;B/ D ŒA; B�.

Definition 2.5. For a group G, a law is a nontrivial element w 2 Fn such that the image
of wG is the identity element 1G . Given " > 0 and a metric d on G, an "-almost law is a
nontrivial element w 2 Fn such that the image of G lies in an "-neighborhood of 1G .

For instance, the word w D Œx1; x2� 2 F2 is a law in a group G if and only if G is
abelian. In general, groups obeying a law have rather special properties; for instance, they
contain no nonabelian free subgroups, and the stable commutator length vanishes [9]. Our
proof of Theorem 1.1 relies on the following result due to A. Thom, which has also been
attributed to E. Lindestrauss; see [1].

Theorem 2.6 (A. Thom [14]). LetG be a compact Lie group and dG a bi-invariant metric
inG. For every " > 0, there exists an "-almost law w" 2 F2 onG; that is, for all A;B 2 G
we have

dG
�
w".A;B/; 1G

�
< ":

Remark 2.7. To calculate explicitly the constant "d in the main theorem, one needs to
compute jw"=2j.

In GLd .C/, an almost law on the compact subgroup U.d/ extends to a neighborhood.
Below we denote the identity matrix as Id , and let dGLd .C/.X; Y / WD kX � Y k, where
kAk is the operator norm with respect to the Hermitian metric for any A 2Md .C/. Note
that the restriction of dGLd .C/ to U.d/ is bi-invariant.

Corollary 2.8. For every d > 0 and "2 .0;1/, there exists a nontrivial elementw 2F2 and
ıD ı.d;"/> 0 such that for anyA;B 2GLd .C/ satisfying kAk;kA�1k;kBk;kB�1k<eı

we have
dGLd .C/

�
w.A;B/; Id

�
< ":

Moreover, w can be taken as any "
2

-almost law on U.d/, and ı D "
8jwj

.

Proof. Let w D w"=2 be an "
2

-almost law as in Theorem 2.6 for U.d/ with respect to the
restricted metric. Then for any A;B 2 GLd .C/, by the singular value decomposition we
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have A D PAƒAQA and B D PBƒBQB where PA; QA; PB ; QB 2 U.d/ and ƒA; ƒB
are positive diagonal matrices. If kAk; kA�1k; kBk; kB�1k < eı for some ı > 0, then all
diagonal entries of ƒA; ƒB lie in .e�ı ; eı/.

LetA0DPAQA andB 0DPBQB , which lie in U.d/. Note that kA�A0kDkƒA � Idk
� eı � 1 and kA�1 � A0�1k D kƒ�1A � Idk � e

ı � 1, and similarly for B . By inserting
intermediate words replacing one A˙1 (resp. B˙1) by A0˙1 (resp. B 0˙1) at a time in the
word w"=2.A;B/, we obtain from the triangle inequality that

w"=2.A;B/ � w"=2.A0; B 0/

 � jw"=2j � eı.jw"=2j�1/.eı � 1/:
For ı D "

8jw"=2j
< 1, we have eı.jw"=2j�1/ < e"=8 < 2 and eı � 1 < 2ı D "

4jw"=2j
. Hence

w"=2.A;B/ � w"=2.A0; B 0/

 � jw"=2jeı.jw"=2j�1/.eı � 1/ � "

4
� e

"
8 �

"

2
;

and

w"=2.A;B/ � Id

 � 

w"=2.A;B/ � w"=2.A0; B 0/

C 

w"=2.A0; B 0/ � Id

 � "
using the almost law.

Corollary 2.9. For every d > 0 and "2 .0;1/, there exists a nontrivial elementw 2F2 and
ıD ı.d;"/> 0 such that for anyA;B 2GLd .C/ satisfying kAk;kA�1k;kBk;kB�1k<eı

we have
Tr
�
w.A;B/ � Id

�
< ":

Moreover, w can be taken as any "
2d

-almost law on U.d/, and ı D "
8jwj

.

Proof. This easily follows from Corollary 2.8 applied to "=d .

3. Proof of Theorem 1.1

We need to prove the uniform lower bound Oh.F / � "d whenever F � GLd .xQ/ generates
a group that is not virtually solvable.

To make use of this assumption on F , we need the following lemma, which relies on
[10, Proposition 3.2] or [6, Lemma 4.2].

Lemma 3.1. Given any non-trivial word w 2 F2, there is some nw (only depending on
w and d ) such that for any set F � GLd .C/ containing the identity and generating a
non-virtually solvable group, there exists A;B 2 F nw with Tr.w.A;B/ � Id / ¤ 0.

Remark 3.2. The assumption that F contains the identity might be unnecessary, but the
results of Eskin–Mozes–Oh [10] are written using balls instead of spheres. For our appli-
cation, the set F is symmetric so we can replace F by F 2, if necessary. The same applies
for Lemma 3.3 below.



A height gap in GLd .xQ/ and almost laws 905

Proof. Let � be the group generated by F in GLd .C/ and H the Zariski closure of � .
We assumed that � is not virtually solvable, so H is not virtually solvable. We first show
that there exists X; Y 2 � such that Tr.w.X; Y / � Id / ¤ 0.

As H is an algebraic group defined over C, we have the Levi decomposition H D
L Ë U , where U is the unipotent radical of H and L is a reductive Levi subgroup of H .
Furthermore, we have a semisimple algebraic group S D ŒL; L� so that L can be written
as an almost direct product of S and the central torus T ; i.e., LD S � T and jS \ T j<1.
Let S0 be the connected component of identity in S .

Assume that Tr.w.X; Y / � Id / D 0 for all X; Y 2 � . We claim that S0 is trivial.
Indeed, by Borel’s theorem [5], the restriction of the word map to S0, wWS0 � S0 ! S0

is dominant; i.e., the image is Zariski dense in S0. As R D ¹X 2 H W Tr.X/ D dº is a
Zariski closed subset of H , the image of the word map w and hence S0 are contained in
R. It is easy to see that if a matrix X satisfies Tr.Xm/D d for allm, then X is a unipotent
element. This implies that every element in S0 is unipotent so it must be trivial as S0

is semisimple. Therefore, H is virtually solvable, as virtually it is an extension of the
solvable group U by the abelian group T . This contradicts our assumption. Hence there
are X; Y 2 � such that Tr.w.X; Y / � Id / ¤ 0.

For the rest of proof, we think of GLd .C/ � GLd .C/ as a subgroup in GL2d .C/
diagonally. Let H 0 be the Zariski closure of � � � in GL2d .C/. Then the subset

X D
®
.A;B/ 2 GLd .C/ � GLd .C/ W Tr

�
w.A;B/ � Id

�
D 0

¯
\H 0 � GL2d .C/

is Zariski closed inH 0. As we saw above, X is a proper Zariski closed subset inH 0. Using
the fact that � � � is generated by F � F , [10, Proposition 3.2] or [6, Lemma 4.2] says
that there exists nw � 1 only depending on d and w such that we have®

.A;B/ 2 � � � W A;B 2 F n � �
¯

ª X

as desired.

LetK be a number field so that F � GLd .K/. Let k D ŒK W Q� and let �1; �2; : : : ; �k
be all the embeddings of K in C. Fix any " 2 .0; 1/, choose an "

2
-almost law w D w"=2

on U.d/, and let ı D "
8jwj

as in Corollary 2.9. For w D w.x; y/ 2 F2 D hx; yi, let w0 D
w.Œx; y�; Œx�1; y�/ 2 F2. Note that w0 is still nontrivial since Œx; y� and Œx�1; y� generate
a free subgroup of F2. Denote the word length of w by jwj.

For technical reasons later, we need the following improvement of Lemma 3.1 to
ensure that A;B 2 SLd .C/.

Lemma 3.3. In the above setting, there is n D nw only depending on w and d such that
for any finite set F � GLd .C/ containing the identity and generating a subgroup that is
not virtually solvable, there exists A;B 2 F nw \ SLd .C/ with Tr.w.A;B/ � Id / ¤ 0.

Proof. Applying Lemma 3.1 to w0 we described above, we obtain some n0 (relying only
on w and d ) and A1; B1 2 F n

0

such that Tr.w0.A1; B1/ � Id / ¤ 0. Let n D nw WD 4n0,
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AD ŒA1;B1� andB D ŒA�11 ;B1�. ThenA;B 2F n \ SLd .C/, andw.A;B/Dw0.A1;B1/
by definition. Hence Tr.w.A;B/ � Id / ¤ 0.

Throughout this section, let n D nw and A;B 2 F nw \ SLd .C/ be as in Lemma 3.3.
Consider the following quantity:

Q WD

kY
iD1

�
Tr
�
w.Ai ; Bi / � Id

��
; (2)

where Ai D �i .A/ and Bi D �i .B/.
This is a nonzero rational number since Tr.w.A;B/ � Id/ ¤ 0. Let

"2 D
log 1

"

log 2d
"
C

jwjı2

16d log 1c

and "1 D
1

2

�
log

1

"
� "2 log

2d

"

�
;

where ı D "
8jwj

as in Corollary 2.9 and 0 < c < 1 is the constant (only depending on d )
from Proposition 3.6, which can be chosen as c D 1

2d
. Note that "2 < log 1

"
= log 2d

"
< 1

and thus "1 > 0. Let

"d WD
"2ı

2

32nd log 1
c

D
ı2 log 1

"

32nd log 2d
"

log 1
c
C 2njwjı2

; (3)

which is at least at the order of 1
n.d2jwj2Cjwj/

as d !1 by setting " 2 .0; 1/ independent
of d . The constants "1 and "2 are chosen so that

"d D
"2ı

2

32nd log 1
c

D
�"1 C .1 � "2/ log 1

"
� "2 log 2d

njwj
D

"1

njwj
;

which are the lower bounds of the normalized height in the analysis below.
We consider the two possibilities in the following two subsections.

3.1. Case 1: jQj � e�"1k

In this case, we will use the estimate

Oh.F / D
1

k

X
v2VK

nv logCRv.F / �
1

k

kX
iD1

logCRi .F /; (4)

where Ri .F / D R.�i .F // and we simply ignore the non-archimedean places.
Partition the index set I WD ¹1; 2; : : : ; kº as I D IS t IM t IL, where

IS WD
®
i W
ˇ̌
Tr
�
w.Ai ; Bi / � Id

�ˇ̌
< "

¯
; IL WD

®
i W
ˇ̌
Tr
�
w.Ai ; Bi / � Id

�ˇ̌
> 2d

¯
;

and IM D I n .IS t IL/. Note that IS \ IL D ; since " < 1.
We further consider two subcases depending on the size of IS .
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3.1.1. Case 1a: jIS j > .1 � "2/k. In this case, we haveY
i…IS

ˇ̌
Tr
�
w.Ai ; Bi / � Id

�ˇ̌
D

jQjˇ̌ Q
i2IS

Tr
�
w.Ai ; Bi / � Id

�ˇ̌ � e�"1k � "�jIS j:
Taking log on both sides, we haveX
i…IS

log
ˇ̌
Tr
�
w.Ai ; Bi / � Id

�ˇ̌
� �"1k C jIS j log

1

"
� �"1k C .1 � "2/k log

1

"
:

As jTr.w.Ai ; Bi / � Id /j � 2d for all i 2 IM , it follows thatX
i2IL

log
ˇ̌
Tr
�
w.Ai ; Bi / � Id

�ˇ̌
�

X
i…IS

log
ˇ̌
Tr
�
w.Ai ; Bi / � Id

�ˇ̌
� jIM j log 2d

� �"1k C .1 � "2/k log
1

"
� jIM j log 2d: (5)

Lemma 3.4. For anyX 2GLd .C/, if jTr.X � Id /j> d , then the spectral radiusƒ.X/�
1
d
jTr.X � Id /j � 1. Moreover, if jTr.X � Id /j > 2d , then ƒ.X/ � 1

2d
jTr.X � Id /j.

Proof. Let r D 1
d
jTr.X � Id /j and let �1; : : : ; �d 2 C be the eigenvalues of X . Then for

the average x� D 1
d

Pd
jD1 �j we have r D jx� � 1j.

It follows that some �i lies outside the open disk D of radius r around 1 2 C since
otherwise their average x� lies in D by convexity, contradicting r D jx� � 1j.

Since r > 1 by our assumption, the disk D contains the open disk B of radius r � 1
around 0 2 C. Thus �i … B and ƒ.X/ � j�i j � r � 1.

In the case r > 2, we further have ƒ.X/ � r � 1 � r � r
2
D

r
2

.

Applying Lemma 3.4 to the left-hand side of equation (5) we obtainX
i2IL

log
�
2dƒ

�
w.Ai ; Bi /

��
� �"1k C .1 � "2/k log

1

"
� jIM j log 2d;

X
i2IL

log
�
ƒ
�
w.Ai ; Bi /

��
� �"1k C .1 � "2/k log

1

"
�
�
jIM j C jILj

�
log 2d

> �"1k C .1 � "2/k log
1

"
� "2k log 2d

since jIM j C jILj D jI j � jIS j < "2k.
Combining this with equation (4) and Lemma 2.3, as w.A;B/ 2 F njwj, we conclude

njwj � Oh.F / D Oh.F njwj/ �
1

k

X
i2IL

log
�
Ri
�
w.A;B/

��
�
1

k

X
i2IL

log
�
ƒ
�
w.Ai ; Bi /

��
� �"1 C .1 � "2/ log

1

"
� "2 log 2d D njwj"d :

Thus Oh.F / � "d as desired in this situation.
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3.1.2. Case 1b: jIS j � .1 � "2/k. Recall that for any i … IS , we haveˇ̌
Tr
�
w.Ai ; Bi /

�
� Id

ˇ̌
� ":

Since trace is conjugate-invariant, we know that jTr.w.CAiC�1;CBiC�1//� Id j � " for
all C 2 GLd .C/. Thus by Corollary 2.9, for any i … IS and any C 2 GLd .C/, at least
one of the four matrices CA˙1i C�1; CB˙1i C�1 has norm no less than eı . Thus we have
E.Ti / � e

ı for Ti WD ¹A˙1i ; B˙1i º.
In particular, this implies that for one element among ¹A˙1; B˙1º, let us say A, we

have kAik � eı for 1
4
"2k different i ’s and that implies the lower bound

h.F n/ � h.A/ �
1

4
"2ı;

which implies

h.F / �

1
4
"2ı

n
:

As we want to obtain a bound for the normalized height and not only for the height,
we need a way to compare them. To do this we will make use of the following two propo-
sitions, which are due to Breuillard. Recall that our A;B lie in SLd .C/.

Proposition 3.5 ([6, Proposition 2.9]). For any positive integer M and a finite subset
F � SLd .C/, we have

E.FM / � E.F /

q
M
4d :

Proposition 3.6 ([6, Lemma 2.1(b)]). There are uniform constants c D c.d/ and N.d/
such that for any finite subset F � GLd .C/ and any positive integer M there is q 2
Œ1; N.d/� with

ƒ.F qM / � cqE.FM /q :

The latter proposition can be deduced from an inequality of Bochi [4, Thereom B],
which was also recently proved by Breuillard in [8] with a good choice of c D c.d/ (at
the cost of increasing N.d/); see [8, Theorem 5]. The inequality of Breuillard together
with [8, Lemma 1] implies that one can take c D 1

2d
.

These propositions imply that for every i … IS , there is some q with

ƒ.T
qM
i / � cqE.TMi /q � cqE.Ti /

q

q
M
4d � cqe

qı

q
M
4d :

Note that for T WD ¹A˙1;B˙1º, we have T � F n and thus T qMi � .�iF /
nqM . There-

fore, using the estimate above, we obtain

Ri .F /
nqM
D Ri .F

nqM / D R
�
.�iF /

nqM
�
� R.T

qM
i / � ƒ.T

qM
i / � cqe

qı

q
M
4d :

That is,

logRi .F / �
1

nM

�
log c C ı

r
M

4d

�
:
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Here log.c/ < 0, so the right-hand side is maximized to ı2

16nd log.1=c/ when

M D .16d log2 c/=ı2:

As M is an integer, we should take M D
�
.16d log2 c/=ı2

˘
or
˙
.16d log2 c/=ı2

�
. Since

.16d log2 c/=ı2 is sufficiently large, in either case we get

logRi .F / �
ı2

32nd log 1
c

:

Hence by equation (4), we have

Oh.F / �
1

k

X
i…IS

logCRi .F / �
"2ı

2

32nd log 1
c

D "d :

3.2. Case 2: jQj < e�"1k

In this case, for ˛ WD Tr.w.A; B/ � Id /, we can apply the product formula Theorem 2.1
so that Y

v2V
f
K

j˛jnvv D
1

jQj
> e"1k ;

where V fK denotes the non-archimedean places of K.
Since j � jv is an ultrametric for all v 2 V fK , by Lemma 2.4 we have

j˛jv � max
®ˇ̌

Tr
�
w.A;B/

�ˇ̌
v
;
ˇ̌
Tr.Id /

ˇ̌
v

¯
� max

®
Rv
�
w.A;B/

�
; 1
¯
:

Hence for all v 2 V fK we have

log j˛jv � logCRv
�
w.A;B/

�
:

Therefore, this inequality and the product formula together imply

Oh.F / D
1

njwj
Oh.F njwj/ �

1

njwj
Oh
�
w.A;B/

�
�

1

njwjk

X
v2V

f
K

logCRv
�
w.A;B/

�
�

1

njwjk

X
v2V

f
K

log j˛jv

�
1

njwjk
."1k/

D
"1

njwj

D "d :
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4. Remarks about explicit estimates of the height gap "d

One can construct examples showing that the height gap "d � c
d

for some c > 0 inde-
pendent of d . A natural question is to determine the actual order of "d and Breuillard has
asked the following.

Question 4.1. Is "d � 1
CdC

for some C > 0?

We will explain how our method might lead to obtain some explicit bounds for this
constant.

From equation (3), we have that

"d �
ı2 log 1

"

32nwd log 2d
"

log 1
c
C 2nw jwjı2

;

where c is the constant appearing in Proposition 3.6 and ı D "
8jwj

. Recently Breuillard
proved that c can be taken to 1

2d
by [8, Theorem 5 and Lemma 1]. Therefore by taking

" D 1=4, we see that "d is at least at the order of

1

nw
�
d2jwj2 C jwj

� ;
where jwj is the word length of a 1

4
-almost law w on U.d/ and the constant nw comes

from the escape of the hypersurface X defined by

Tr
�
w.X; Y / � Id

�
D 0

as in Lemma 3.1.
One can obtain a bound of the order of 1010

d
for jwj by considering the almost laws

described by Thom in [14]. It is nonetheless likely that a much shorter almost law w

exists. Thom and Breuillard pointed out to us the fact that Kozma and Thom showed in
[12] that for the symmetric group Sd (which in some ways behave similarly to SU.d/
when d is large), there exists a law of order eC log4.d/ log log.d/, which assuming Babai’s
conjecture could be improved to be of the order eC log.d/ log log.d/, which is quite close to
be polynomial.

The constant nw when computed from the generalized Bezout theorem as in [10]
seems to be quite large. It was suggested by Breuillard that there seems to be another
way of estimating nw by considering an appropriate finite quotient of the group generated
by F (for example by moding out a prime ideal of the ring where F is defined), and then
showing that in this finite quotient one can escape from the hypersurface X quickly. The
advantage is that there are various results about the diameter of simple groups. Michael
Larsen suggested the use of a strong approximation theorem by Weisfeiler [15] to find the
appropriate quotient.

To implement this idea, one must make sure the reduction of X to this finite group of
Lie type is a proper subset. The dimension of the variety X is bounded by d jwj and so the
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reduction of X can be proved to be a proper subset via the Schwartz–Zippel lemma, or
via the Lang–Weil estimates, provided that the finite quotient is large enough (the prime
ideal giving rise to the finite quotient must have covolume larger than the degree of X, at
least).

Assuming Babai’s conjecture about the diameter of finite groups one then might expect
that nw could be taken of the order .jd log.jwj//O.1/ and using results towards Babai
conjecture this can possibly be taken to be of the order e.jd log.jwj//O.1/ ; see [2].

A further complication arises in order to use the previous approach. Consider, for
example, the subset of F given by Œ 1 nŠ0 1 � and Œ 1 0nŠ 1 �, where n is a large positive integer.
In this case one must reduce X over a prime larger than n, and so the prime cannot be
independent of F as we wanted, so one has to deal with these cases in a different way.
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