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Property FA is not a profinite property

Tamunonye Cheetham-West, Alexander Lubotzky, Alan W. Reid, and
Ryan Spitler

Abstract. We exhibit infinitely many pairs of non-isomorphic finitely presented, residually finite
groups � and � with � having Property FA, � having a non-trivial action on a tree, and � and �
having isomorphic profinite completions.

Dedicated to Pavel Zalesskii on the occasion of his 60th birthday.

1. Introduction
Let � be a finitely generated residually finite group, the profinite completion y� of � is the
inverse limit of the inverse system consisting of the finite quotients �=N and the natural
epimorphisms �=N ! �=M . A property P for � is said to be a profinite property if
whenever� is a finitely generated residually finite group with y�Š y� , if � has P , then�
also has P . The abelianization is a profinite property (in particular, the first Betti number
is), and a more subtle profinite property is the first `2-Betti number [3, Corollary 3.3]. On
the other hand, in [1], it is shown that Property T is not a profinite property, and it remains
an open question of Remeslennikov [10, Question 5.48] as to whether being a free group
is a profinite property. As is well known (see [18]), if a group � has Property T, then it
also has Property FA of Serre; i.e., every action of � on a tree has a global fixed point.
The main result of this note strengthens that of [1].

Theorem 1.1. There are infinitely many pairs of non-isomorphic, finitely presented, resid-
ually finite groups � and � satisfying the following:

(1) y� Š y�;

(2) � has Property T and hence Property FA;

(3) � has neither Property T nor Property FA.

Recall that a finitely generated group G does not have Property FA if and only if
G is an HNN extension or G admits a decomposition as a non-trivial free product with
amalgamation. For a finitely generated group, being an HNN extension is equivalent to
having infinite abelianization, which, as noted above, is a profinite property. Hence, a
corollary of Theorem 1.1 is the following.
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Corollary 1.2. Being a free product with amalgamation is not a profinite property.

To put Theorem 1.1 and Corollary 1.2 in context, we make two remarks:

(1) The aforementioned examples of Aka [1] provide pairs of groups G and H with
the same profinite completion with G having Property T, H does not, but we
emphasize that both of G and H have Property FA. This is clear for G since as
remarked upon above, having Property T implies Property FA [18]. That H has
Property FA can be seen as follows: H is an arithmetic lattice in the Lie group
Spin.n; 1/ � Spin.n; 1/ which has rank 2, and so H and all the subgroups of the
finite index have finite abelianization. Hence, H cannot be an HNN extension.
That H does not admit a decomposition as a free product with amalgamation
follows from the work of Margulis [8] exploiting the fact that H is an arithmetic
lattice in a product of rank one groups, none of which is p-adic. Alternative proofs
of this are now known; see for example [11,12,17]. In particular, the examples of
[1] cannot be used to prove Theorem 1.1 and Corollary 1.2.

(2) It was previously known that there exist non-isomorphic groups that are free prod-
ucts with amalgamation having isomorphic profinite completions. For example, in
[7, Example 4.11], Grunewald and Zalesskii provide examples of non-isomorphic
free products with amalgamation where the groups in question are finite, and in
[19, Section 10], examples of non-isomorphic graph manifold groups are given
that are free products with amalgamation associated with non-trivial JSJ decompo-
sitions of the 3-manifolds. For emphasis, we note that it remains an open question
(see [6, Question 3]) as to whether being a free product is or is not a profinite
property (as remarked upon above, even for the free group). In connection with
this, and in the spirit of this work, in [6], it was shown that a subgroup of a finitely
generated virtually free group G is a free factor if and only if its closure in the
profinite completion of G is a profinite free factor.

The infinitude of examples stated in Theorem 1.1 are S -arithmetic groups that arise by
choice of a rational prime. Fixing a prime p, the group � of Theorem 1.1 is the S -
arithmetic group SL.4;ZŒ 1

p
�/. Hence, a corollary of independent interest is the following.

Recall that a finitely generated residually finite group � is profinitely rigid if whenever ƒ
is a finitely generated residually finite group with yƒ Š y� , then ƒ Š � .

Corollary 1.3. SL.4;ZŒ 1
p
�/ is not profinitely rigid.

It remains open as to whether SL.4;Z/ (or indeed any SL.n;Z/, n � 2) and also
SL.n;ZŒ 1

p
�/ for n D 2; 3 are profinitely rigid.

2. The groups
For the remainder of this note, we fix a rational prime p. As noted in Section 1, the group
� will be taken to be SL.4;ZŒ 1

p
�/, an S -arithmetic lattice in SL.4;R/ � SL.4;Qp/. We

record some facts about �.
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Lemma 2.1. The group � is finitely presented, has Property T, and hence has Prop-
erty FA.

Proof. Since � is an S -arithmetic lattice, it is finitely presented by [13, Theorem 5.11].
The groups SL.4;R/ and SL.4;Qp/ have Property T (see [9, Theorem III.5.6]), and so
the product SL.4;R/ � SL.4;Qp/ also has Property T by [9, Corollary III.2.10]. Since
� is a lattice in SL.4;R/ � SL.4;Qp/, it follows that � has Property T by [9, Theo-
rem III.2.12]. A theorem of Watatani [18] (see also [9, Theorem III.3.9]) then implies that
� has Property FA.

2.1. Congruence completion and the congruence subgroup property

For convenience, we recall the construction of congruence subgroups of the group �.
Let n 2 Z be a positive integer co-prime to p. Then, by reducing entries modulo n,

we have an epimorphism �n W � D SL.4;ZŒ 1
p
�/! SL.4;Z=nZ/ whose kernel �.n/ is

the principal congruence subgroup of level n. A subgroup H � SL.4;ZŒ 1
p
�/ is called a

congruence subgroup if there exists an n such that �.n/ � H . It is a result of [2] that �
has the Congruence Subgroup Property in the sense that every subgroup of finite index in
� contains some principal congruence subgroup.

An alternative way to describe this is as follows. For any prime l different from p, there
is an embedding of Q into Ql , the l-adic numbers. Using this we obtain an embedding
of SL.4;Q/ into the S -adelic group

Q0
l¤p SL.4;Ql /, which is the restricted product

of the SL.4;Ql / and is given the restricted product topology. The closure of � withinQ0
l¤p SL.4;Ql / is the so-called congruence completion x�. This is a profinite group which

is exactly the inverse limit of the congruence quotients SL.4;Z=nZ/ of �, and in fact
by the Strong Approximation Theorem, x� Š

Q
l¤p SL.4;Zl /, which is a compact, open

subgroup of
Q0

l¤p SL.4;Ql /. That� has the Congruence Subgroup Property is equivalent
to y� Š x�.

2.2. The second group

Before defining the group � itself, we need to define and establish some facts about certain
matrix groups over quaternion algebras. We refer the reader to [13, Chapters 1.4 and 2.3]
for more details on the material described here.

For K a field and A a quaternion algebra over K, we can define the algebra M.2; A/
of 2 � 2 matrices over A. Choosing a quadratic field extension F=K which splits A, we
can embed A into M.2; F /, and hence M.2; A/ embeds into M.4; F / as K-algebras.
Restricting the determinant from M.4; F / to M.2; A/ induces the reduced norm map
Nrd W GL.2; A/! K� where GL.2; A/ is the group of invertible elements of M.2; A/. It
can be shown that Nrd does not depend on the choice of F nor the embedding of A, and
the image of Nrd lies in K� as stated. We now define

SL.2; A/ D
®
g 2 GL.2; A/ W Nrd.g/ D 1

¯
:
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Note that as described in [13, Chapter 2.3.1], if A is a division algebra of quaternions,
SL.2; A/ is the group of K-rational points of a simple, simply connected algebraic group
defined over K of K-rank 1.

Finally, we observe that when A is the split quaternion algebra M.2; K/, the field F
could be chosen as K itself. So in this case, M.2; A/ D M.4;K/, GL.2; A/ D GL.4;K/,
and Nrd is just the usual determinant of GL.4;K/ so that SL.2; A/ D SL.4;K/.

To construct the group � , we first specialize the above discussion, and to that end
let A=Q be the definite quaternion algebra ramified at the infinite place and the place
associated with our fixed rational prime p (so that A is a division algebra). As noted
above, SL.2; A/ is the group of rational points of a simple, simply connected algebraic
group over Q, for which the R-points (resp., the Qp-points) of this algebraic group are
SL.2;H/ (resp., SL.2;Hp/) where H is the usual Hamilton quaternions and Hp is the
unique division quaternion algebra over Qp . Since A is unramified at any prime l ¤ p,
we have

A˝Q Ql Š M.2;Ql /;

and so as described above, the Ql -points can be identified with SL.4;Ql /.
We now consider the S -adelic embedding of SL.2; A/ into

Q0
l¤p SL.4;Ql /. We

will sometimes suppress the embedding and continue to simply refer to SL.2; A/. Since
SL.2;H/ � SL.2;Hp/ is not compact, by the Strong Approximation Theorem, the image
of SL.2; A/ under this embedding is dense [13, Theorem 7.12]. We define the group � as

� D SL.2; A/ \
Y
l¤p

SL.4;Zl /:

Hence, � is an S -arithmetic subgroup of SL.2; A/ and so is finitely presented by [13,
Theorem 5.11]. Moreover, � is an irreducible lattice in SL.2;H/ � SL.2;Hp/. BecauseQ

l¤p SL.4;Zl / is an open subgroup of
Q0

l¤p SL.4;Ql /, in which SL.2; A/ is dense, �
is also dense in

Q
l¤p SL.4;Zl /. Since � is not integral at p, the congruence completion

of � is its closure in
Q0

l¤p SL.4;Ql /. Thus, we have for the congruence completion
x� D

Q
l¤p SL.4;Zl /. Finally, since the Q-rank of SL.2; A/ is 1, and the S -rank is 2

with S D ¹1; pº, a result of Raghunathan [15] (see also [14]) applies to show that the
S -arithmetic group � also has the Congruence Subgroup Property, so that y� Š x� .

3. Completing the proof of Theorem 1.1

It is immediate from Sections 2.1 and 2.2 that y� Š y� since both have the Congruence
Subgroup Property and x� Š x� . Thus, to complete the proof, we must show that � does
not have Property FA. We now describe how this is done and to that end briefly recall the
construction of a tree on which � acts non-trivially (following [16, Chapter II]).

3.1. The Bruhat–Tits tree X associated with SL.2 ; Hp/

We include a quick description of the tree X associated with G D SL.2;Hp/. This is
similar to the construction of the tree of SL2 over a local field in [16, Chapter II], and
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indeed, it is implicit in [16, Chapter II] (see in particular the discussion on [16, pp. 74–75])
that the local field can be replaced by the case at hand, the division algebra Hp . We briefly
comment on the construction of X following [16, Chapter II].

The quaternion algebra Hp has a p-adic valuation ˛ WH�p!Z obtained by composing
the reduced norm on Hp with the p-adic valuation on Qp . In particular, since Hp is a
division algebra, there is a uniformizer for Hp; i.e., an element � 2 Hp with ˛.�/ D 1.
Furthermore, Hp has a unique maximal order Op D ¹x 2 Hp j ˛.x/ � 0º (where we set
˛.0/ D 1). The tree X is constructed using the lattices in the left Hp-vector space H2

p ,
that is, the finitely generated left Op submodules of H2

p which generate all of H2
p over Hp .

The vertices of the tree X are the Hp-homothety classes of lattices, and two classes of
lattices are connected by an edge in X exactly when they can be represented by lattices L
and L0 with L0 < L and L=L0 Š Fp as Op-modules. This gives rise to a .p C 1/-regular
tree X .

Lemma 3.1. The action of � on the tree X is non-trivial. In particular, � does not have
Property FA nor Property T.

Proof. The group � is a dense subgroup of SL.2;Hp/ which inherits the transitive action
of SL.2;Hp/ on the edges of X . Thus, there is no global fixed point for the action of
� on X , and therefore, � does not have Property FA. That � does not have Property T
follows as above using [18].

Putting everything from Sections 2 and 3 together completes the proof of Theorem 1.1.

4. Final remarks
Inspired by Corollary 1.3, one might be tempted to reproduce this construction to find
other S -arithmetic groups which have the same profinite completions as SL.2;ZŒ 1

p
�/ or

SL.3;ZŒ 1
p
�/. However, the analogous construction does not produce the desired results in

these cases. For SL.2;ZŒ 1
p
�/, one would want to consider an S -arithmetic subgroup ofA1,

the group of norm 1 elements in the quaternion algebra A which we defined previously.
Unfortunately, such an S -arithmetic group would be a lattice in the compact group H1 �

H1
p and hence would be finite.

In fact, this is the only other case that needs to be considered when searching for an S -
arithmetic group with the same profinite completion as SL.2;ZŒ 1

p
�/. Because SL.2;ZŒ 1

p
�/

has the Congruence Subgroup Property, any S -arithmetic subgroup with the same profinite
completion would have to have the same congruence completion as well. If it did not,
Strong Approximation could be used to provide a finite quotient that SL.2;ZŒ 1

p
�/ does

not have. One can then check that A1 is the only other potential Q-group whose local
behavior is consistent with this congruence completion.

A similar situation occurs in the case of SL.3;ZŒ 1
p
�/, which excludes the possibility of

a different S -arithmetic group having the same profinite completion. Using the “road map”
set out in [5], one can show that to establish whether or not these groups are profinitely
rigid actually reduces to answering the following question.
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Question 4.1. If � is SL.2;ZŒ 1
p
�/ or SL.3;ZŒ 1

p
�/, can � contain a finitely generated

proper subgroup H whose inclusion induces an isomorphism yH Š y�?

If such anH existed, .�;H/ would be a Grothendieck pair (see [4], for example). The
case of � D SL.2;ZŒ 1

p
�/ is especially provocative because it splits as an amalgam, which

would have significant consequences for the structure of the potential subgroup H .
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