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Boundary maps and reducibility for cocycles
into the isometries of CAT(0)-spaces

Filippo Sarti and Alessio Savini

Abstract. Let I" be a discrete countable group acting isometrically on a measurable field X of
CAT(0)-spaces of finite telescopic dimension over some ergodic standard Borel probability I"-space
(€2, p). If X does not admit any invariant Euclidean subfield, we prove that the measurable field X
extended to a I"-boundary admits an invariant section. In the case of constant fields, this shows the
existence of Furstenberg maps for measurable cocycles, extending results by Bader, Duchesne and
Lécureux. When I' < PU(n, 1) is a torsion-free lattice and the CAT(0)-space is X (p, 00), we show
that a maximal cocycle o : I' x 2 — PU(p, oo) with a suitable boundary map is finitely reducible.
As a consequence, we prove an infinite-dimensional rigidity phenomenon for maximal cocycles in
PU(1, 00).

1. Introduction

The concept of boundary maps for representations in algebraic groups was first introduced
by Furstenberg [18, 19] and represent a powerful tool in the investigation of rigidity phe-
nomena. Examples of results involving such maps are Mostow rigidity [29] and Margulis
superrigidity [23]. Boundary maps gained even more importance in the context of bounded
cohomology, where their application to the work by Burger and Monod [12] has generated
a prolific literature [8,9,11,21,30].

More recently, several authors focused their attention on actions on CAT(k)-spaces
and the associated boundary maps. For instance, CAT(—1)-spaces have been studied by
Burger and Mozes [13] and by Monod and Shalom [26]. Duchesne focused first on actions
on the Hermitian symmetric space X (p, o0) [15] and then, together with Bader and
Lécureux, on a general CAT(0)-space X of finite telescopic dimension [5]. There the
authors proved the existence of a boundary map B — dX whenever the action on X
is not elementary. In this setting, B denotes a I'-boundary in the sense of Bader and
Furman [6]. Such boundary can be seen as an extension both of the Furstenberg—Poisson
boundary [18] and of the strong boundary in the sense of Burger—Monod [12]. In the
general setting studied in [5], we lose the structure of spherical building of d.X(p, 0o)
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exploited in [15], but we can still rely on the rich structure of CAT(0)-spaces. For instance,
a useful tool is the Euclidean de Rham decomposition (see [7]). Additionally, when the
telescopic dimension is finite, Caprace and Lytchak [14] proved that a filtering family
of closed convex subspaces of a CAT(0)-space X has a point fixed by Isom(X) in the
bordification X. Both in [15] and in [5], the arguments rely on the notion of measurable
fields of CAT(0)-spaces that were first introduced by Anderegg and Henry [3] and then
developed by Duchesne [15].

Following the line of some recent works about measurable cocycles by the authors
and Moraschini [27,28, 31-34], in the first part of this paper we prove a generalization
of [5, Theorem 1.1] to measurable fields. For all the definitions concerning measurable
fields, we refer to Section 2.2.

Theorem 1. Let ' be a discrete countable group, (2, ) be an ergodic standard Borel
probability I'-space and B a I'-boundary. Consider a measurable field X of complete sep-
arable CAT(0)-spaces of finite telescopic dimension endowed with an isometric I'-action.
If X does not admit any invariant Euclidean subfield, then there exists an invariant section
of the boundary field 39X, where X is the extension of X to the boundary B.

An immediate consequence of the previous theorem is the existence of invariant
sections for the boundary of constant fields and hence the existence of boundary maps
for measurable cocycles.

Proposition 2. Let I be a discrete countable group, (2, ) be an ergodic standard Borel
probability space and B a I'-boundary. Consider a complete separable CAT(0)-space X
of finite telescopic dimension and a measurable cocycle o : T' x Q — Isom(X). If X does
not admit any Euclidean subfield on Q2 which is o-invariant, then there exists a boundary
map ¢ : B x Q2 — X foro.

The proof of Theorem 1 is based on the arguments used in [5, Theorem 1], where
the crucial point is the measurable version of the Adams—Ballmann theorem [15, Theo-
rem 1.8]. Thanks to [15, Proposition 8.11], we can work with minimal invariant subfields.
Moreover, by applying the measurable Euclidean de Rham decomposition [15, Proposi-
tions 9.2 and 9.3], we reduce ourselves to the particular case when there exists an invariant
minimal family of closed convex spaces with trivial Euclidean factors.

Starting from Theorem 1, we investigate the case of the constant field X = X (p, 00).
Recently, Duchesne, Lécureux and Pozzetti [16] proved that any maximal representation
p: ' = PU(p, 00) of a lattice ' < PU(n, 1), with n > 2, preserves a finite-dimensional
totally geodesic Hermitian symmetric space ¥ C X (p, 00). Moreover, under the additional
hypothesis of Zariski density, they ruled out the existence of any such representation for
any p > 1.

Motivated by such results, we will focus our attention on measurable cocycles o :
I' x Q@ — PU(p, 00), where I' is a complex hyperbolic lattice in PU(n, 1) and (2, )
is an ergodic standard Borel probability I'-space. We actually need to assume something
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more, namely the existence of a boundary map 0H{. x  — I, where I, denotes the set
of p-isotropic subspaces of J£ = CP-°*°. The existence of those maps will be discussed in
the last section.

The most important difference with the finite-dimensional case [30, 31] is that the
group PU(p, 00) is not algebraic in the usual meaning. The absence of such structure moti-
vates the notions of algebraic and of standard algebraic subgroups given by Duchesne,
Lécureux and Pozzetti [16]. In this way, they were able to define the notion of Zariski
density inside PU(p, c0).

The lack of an algebraic structure can be overcome, for instance, when ¢ is cohomol-
ogous to a cocycle whose image is contained in a finite-dimensional algebraic subgroup.
We call such cocycles finitely reducible. Using the machinery of numerical invariants and
maximality developed by Moraschini and the second author [27, 28], we get a statement
similar to [16, Theorem 6.7] for cocycles.

Theorem 3. Let I' < PU(n, 1) be a complex hyperbolic lattice with n > 1 and let
(82, ) be an ergodic standard Borel probability T -space. Consider a measurable cocy-
cleo : T x Q — PU(p, 00) with p > 1 and suppose that there exists a boundary map
¢ : OHE x Q — I,. If o is maximal, then it is finitely reducible.

The structure of the proof is the following. We first refine [ 16, Proposition 6.2], namely
we show that any slice of the boundary map has image essentially contained in a unique
copy of dX (p, q) embedded in X (p, oo) for some p < g < np. Since such construc-
tion varies measurably, ergodicity implies that g does not depend on the slice. Using the
transitive action of PU(p, oco) (Lemma 3.2), we twist the cocycle and the boundary map
in such a way to find a cohomologous cocycle o/ and a boundary map ¢/ with image
of the latter essentially contained in some embedding of d.X (p, ¢) in dX (p, 00), so that
finite reducibility follows.

It seems natural to ask whether Theorem 1 provides a suitable boundary map in the
context of Theorem 3. We notice that by our first result we have an equivariant map
OHE x  — I for some k < p. In particular, for cocycles o : I x & — PU(1, 00), since
maximality implies non-elementarity, Theorem 1 provides a boundary map dHg x Q —
OHE and, by applying Theorem 3 and [31, Theorem 2], we get the following version of
Mostow rigidity for infinite-dimensional cocycles.

Theorem 4. Let I' < PU(n, 1) be a complex hyperbolic lattice withn > 1 and let (2, j1)
be an ergodic standard Borel probability T'-space. Any maximal cocycle 0 : I' x Q —
PU(1, 00) is cohomologous to a cocycle preserving a copy of H. C HZ and acting on it
via the standard lattice embedding.

Plan of the paper. The paper is divided into three sections. Section 2 focuses on the
existence of invariant boundary sections and boundary maps. After a brief introduc-
tion of basics about CAT(0)-spaces (Section 2.1), we define measurable fields of metric
and CAT(0)-spaces. We recall the measurable Euclidean de Rham decomposition and
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the measurable version of the Adams—Ballmann theorem (Section 2.2). Then we define
boundaries and we prove Theorem | (Section 2.3). We conclude the section recalling the
notion of boundary maps and proving Proposition 2.

Section 3 is devoted to reducibility of cocycles into the isometries of X (p, 00). We
first recall some notions about bounded cohomology (Section 3.1). Then we introduce
Hermitian symmetric spaces, and we characterize embeddings of X (p, ¢) inside X (p, 0o0)
(Section 3.2). In this context, we define the Toledo invariant associated to a measurable
cocycle, passing through the definition of Bergman class and the machinery developed
by [27] about numerical invariants of measurable cocycles (Sections 3.3 and 3.4). Then
we move to the notion of algebraic and finite-dimensional algebraic subgroups of GL(H)
(Section 3.5), and we finally provide the proof of Theorem 3 (Section 3.6).

We conclude with Section 4, where we prove Theorem 4.

2. Existence of invariant boundary sections and boundary maps

This section is devoted to prove the existence of boundary maps for measurable cocycles
in the isometries of a complete separable CAT(0)-space. After a brief introduction about
CAT(0)-spaces, measurable fields and boundaries in the sense of Bader and Furman [6],
we give the proof of Theorem 1. Then we move to measurable cocycles and boundary
maps to prove Proposition 2.

2.1. CAT(0)-spaces

A metric space (X, d) is a CAT(0)-space if it is geodesic and for every triple of distinct
points x, y,z € X, given a point m in the geodesic segment between y and z, the following
inequality holds:

dem)? = (A0, +d(x,2)) — 1d(7, 2.

For the purposes of this paper, CAT(0)-spaces will always be assumed to be complete and
separable.

Since embedded flats into CAT(0)-spaces play an important role in the study of their
geometry, we recall the following decomposition into Euclidean and non-Euclidean fac-
tors. Precisely, the Euclidean de Rham decomposition of a CAT(0)-space X is its canon-
ical isometric splitting into a Hilbert space H and a factor Z which cannot be further
decomposed as a product with non-trivial Euclidean factor [7, Theorem 6.15]. Moreover,
for every point x € X, the space H (respectively Z) identifies with a unique closed convex
subspace of X containing x.

Given a subset ¥ C X of a metric space, its diameter is defined as

diam(¥) := sup d(x,y),

x,yeY
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and ¥ is said to be bounded if it has finite diameter. A convex bounded set ¥ has some
preferred points called circumcenters, which are the centers of balls of minimal radius con-
taining ¥. Notice that, without the assumption of convexity, one can still give the notion
of circumcenter, but such points may not belong to ¥. In the case of CAT(0)-spaces, it
turns out that every bounded subset has a unique circumcenter, which we call center. An
equivalent definition can be given in terms of actions of isometries. Precisely, the center
of a bounded subset ¥ C X of a CAT(0)-space is the unique point fixed by any isometry
stabilizing ¥.

Before introducing the notion of telescopic dimension, we need the one of geomet-
ric dimension. This concept was first introduced by Kleiner [22] in terms of the space of
directions at each point and then has been reformulated by Caprace and Lytchak [14, The-
orem 1.3] in the following way. If X is a CAT(0)-space, then its geometric dimension is
< n if for each subset ¥ of finite diameter the following inequality holds:

n .
rad(Y) < /m diam(¥Y).

The number rad(¥) is the circumradius of ¥, namely the infimum of all » > 0 such that ¥
is contained in some closed ball of radius r. The result by Caprace and Lytchak leads to a
characterization of telescopic dimension, originally given by Kleiner [22], that we assume
here as a definition (refer to [14] for more details).

Definition 2.1. A CAT(0)-space X has telescopic dimension < n if for any § > 0 there
exists some constant D > 0 such that for every bounded set ¥ of diameter > D, we have

rad(¥) < (8 + ‘/ﬁ) diam(¥).

As we will recall in Section 3.2, the Hermitian symmetric space X (p, co) is a CAT(0)-
space of telescopic dimension p [15, Corollary 1.4]. This implies that the visual boundary
30X (p, 00) has geometric dimension p — 1 [14, Proposition 2.1].

For a complete CAT(0)-space X with finite telescopic dimension, Caprace and
Lytchak proved that every filtering family of closed convex subspaces of X either inter-
sects at X or at X [14, Theorem 1.1]. Notice that this is equivalent to quasi-compactness
of the bordification X = X U dX endowed with the topology defined by Monod [25,
Section 3.7]. The following technical result is an example of application of [14, The-
orem 1.1], and it turned out to be useful in the proof of [5, Theorem 1.1] and [16,
Theorem 1.7]. It will be exploited to prove Theorem 1.

Proposition 2.2 ([S, Proposition 2.1]). Let E be a Euclidean space and f : E — R be a
convex function. If we denote by m = inf{ f(x) | x € E}, then:

() If m is not attained, then (\ o 0Es # 9, where E; := f~Y((m, m + ¢)) is not
empty and has a center.
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If m is attained, we denote by E,, = f~'(m) and by E,, = F x T its Euclidean de Rham
decomposition. Then one of the following holds:

(1) E,, is bounded and thus it has a center.
(iii) T is bounded and 0E,, = OF is a sphere.
(v) T is not bounded and 0T C OE has radius less than 5.

Notice that, as mentioned in point (iii), boundaries of flats are Euclidean spheres that
can also be interpreted as CAT(1)-spaces. In particular, boundaries of maximal flats are
subcomplexes, called apartments, of the building structure of the visual boundary. We
refer to [1] for the general theory of such building. We only point out that the existence
of circumcenters for bounded subsets [7, Proposition 2.7] holds also in this case. More
precisely, every subset of radius at most 7 in a sphere has a center, and this property will
be used in the proof of Theorem 1.

2.2. Measurable fields and the Adams-Ballmann dichotomy

In this section, we introduce measurable fields of metric spaces together with some results
that we will exploit in the next section to prove the existence of boundary maps. We
refer to Anderegg and Henry [3] for the general theory of measurable fields and to
Duchesne [15] for the measurable version of both the Euclidean de Rham decomposition
and the Adams—Ballmann dichotomy.

Definition 2.3. Given a standard probability space (2, i), a measurable field of metric
spaces on 2 is a collection of metric spaces X = {X, }peq together with a countable
family ¥ C [],cq Xw such that

o forallx,y € ¥, the map > dy (X, o) is measurable;
» for almost every w € 2, the set { f,, | f € ¥} is dense in X,,.

A section of X is an element x € [[,cq Xo such that for every y € ¥, the map
o+ dy(Xe, Vo) is measurable.

If the X,,’s are CAT(0)-spaces, then we call X a measurable field of CAT(0)-spaces.
A subfield Y of X is a collection of non-empty closed convex subsets Y,, C X, such that
for every section Q2 of X, the map @ — d,(x,, Y,) is measurable.

If G is a locally compact group acting on a standard probability space (€2, ) by pre-
serving the measure class, we say that Q is a Lebesgue G-space. A G-action on X is a
collection {0 (g, w)}geG,wes, Where

» forevery g € G and almost every @ € 2, we have 0 (g, w) € Isom(Xyp, Xgw);

o forevery g,h € G and almost every w € 2, the following equality holds:
o(gh,w) =0(g,hw)o(h,w); (1)

» forevery x,y € ¥, the map (g, ®) — d(xy,0(g, g_la))yg-la,) is measurable.
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Example 2.4. Given a standard Borel probability space (€2, ;) and a complete separable
metric space X/, we can build a measurable field X by setting X, := X and taking as
fundamental family the collection { f*}xex;,, Where Xy C X is a countable dense subset
and f := x for every w € Q.

Given a locally compact group G such that (2, u) is a Lebesgue G-space, a G-
action {0 (g, ®)}geG,wen on X boils down to a map o : G x Q — Isom(X) satisfying
equation (1) and such that the function

(g.w) > d(x,0(g.8 '»)y)

is measurable for all x, y € X.

Example 2.5. Let G be alocally compact group and consider a Lebesgue G-space (€2, it).
Given another Lebesgue G-space (0, v), the product space (2 X ©, u ® v) is again
a Lebesgue G-space with respect to the diagonal action. Consider a measurable field
X = {Xop}wea on Q of CAT(0)-spaces of finite telescopic dimension with an isomet-
ric G-action {0(g, ®)}geG,0en. We can consider the extension X of the field X to the
space © in the following way:

* Weset 5\6(0,,9) 1= X for (w,0) € 2 x O.
* Any section x,, of X can be changed into a section of X by setting X(e,9) = Xo.

«  We define an isometric G-action on X by setting {6(g, w, 0) := o(g, w)} for all
g€CG,we,0e0.

A G-action {0(g, w)}geG,wen On a measurable field X of CAT(0)-spaces induces a
natural G-action on both sections and subfields. Similarly, we have an induced action on
the boundary field 0X of X. The latter is obtained by collecting the boundaries of each X,
and by controlling measurability via the Busemann functions. The G-action on X induces
an action on the sections of 0X given by (g&), = (o(g, g_la))gg—la,). Furthermore, a
subfield Y C X is minimal if it is invariant under the G-action and it does not contain a
proper invariant subfield.

As proved by Caprace and Lytchak [14, Proposition 1.8], any isometric action of a
locally compact group on a complete CAT(0)-space of finite telescopic dimension either
has a fixed point in the boundary or admits an invariant non-empty closed convex sub-
set which is minimal with respect to inclusion. This allows us to reduce the investigation
of existence of boundary maps to minimal actions (see [15, Theorem 1.7] and [5, Theo-
rem 1.1]). The following result can be seen as the generalization of [14, Proposition 1.8]
to measurable fields.

Proposition 2.6 ([ 15, Proposition 8.11]). Let G be a locally compact group and let (2, j1)
be a Lebesgue G-space. Suppose that X is a measurable field on Q2 of CAT(0)-spaces of
finite telescopic dimension, G acts on X and 2 is ergodic. Then either there exists a
minimal invariant subfield of X or there exists an invariant section of 0X.
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A second construction that we will use is the extension of the Euclidean de Rham
decomposition for measurable fields of CAT(0)-spaces.

Proposition 2.7 ([15, Proposition 9.2]). Let G be a locally compact group and let (2, |1)
be a Lebesgue G-space. Let x be a section of a measurable field X on Q2 of CAT(0)-spaces
of finite telescopic dimension. Suppose G acts minimally on X via 0 = {0(g,®)}¢eG,0en
and assume that the action Q2 is ergodic. There exist n € N and two subfields E and Y of X
containing x such that X = E x Y and E,, = R”" for almost every w € Q. Moreover, E is
maximal for those properties.

If vy is another section of X and X = E' x Y' is another such decomposition associated
to y, then for almost every w € 2, the projections EolEL and Ty |y! are isometries. As
a consequence, the G-action on X splits as

0(g,w) = og(g, ®) x oy(g, w),

where {0g(g, )} geG,weq and {0y(g, w)}geG,weq are, respectively, actions on E and Y.

The last preliminary result that we recall is the measurable version of the Adams—
Ballmann dichotomy [2]. In order to state it, we need to recall the definition of amenable
space due to Zimmer [36]. Given a locally compact second countable group G, a Lebesgue
G-space (2, u) is G-amenable if for every G-action on a separable measurable field E of
Banach spaces over 2 and every G-invariant subfield K of weakly compact subsets of the
unit balls of E*, there exists an invariant section of K.

We conclude the section with the following.

Theorem 2.8 ([15, Theorem 1.8]). Let G be a locally compact second countable group
and (2, ) be a Lebesgue G-space which is ergodic and amenable. Let X be a measurable
field on Q2 of complete CAT(0)-spaces of finite telescopic dimension. If G acts on X, then
either there is an invariant section of the boundary field 0X or there exists an invariant
Euclidean subfield of X.

2.3. Existence of invariant sections for extended fields

In this section, we prove Theorem 1. We need first to recall the definition of boundary in
the sense of Bader and Furman [6].

Definition 2.9. Let G be a locally compact second countable group. A fiberwise isometric
G-action on a measurable map p : M — T between standard Borel spaces is a G-invariant
Borel map d : M x, M — Rx such that any fiber p~1(t) C M endowed with the induced
metric d|,-1(;)xp-1(;) i a separable metric space on which G acts in a compatible way,
namely

d(gx,gy) =d(x.y)
for every g € G and every x, y € M with p(x) = p(y).
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A map g : X — Y between Lebesgue G-spaces is relatively metrically ergodic if for
any fiberwise isometric G-action on a measurable map p : M — T between standard Borel
spaces and measurable G-equivariant maps f : X — M and h : Y — T, there exists a
measurable G-equivariant map ¥ : ¥ — M such that the following diagram commutes:

x L m

lq__f/-'-;'j lr

Y — T

Definition 2.10 ([6, Definition 2.3]). Let I' be a locally compact and second countable
group. A I'-boundary is an amenable Lebesgue I'-space (B, v) such that the projections
w1 Bx B — Band ;1 Bx B — B on the first and second factors, respectively, are
relatively metrically ergodic.

Remark 2.11. The notion of I'-boundary contains other versions of boundaries.

(i) The Furstenberg—Poisson boundary of a locally compact and second count-
able group [18] turns out to be a boundary in the sense of Definition 2.10 [6,
Theorem 2.7].

(i) Suppose that ' < H is a lattice into a connected semisimple Lie group of
non-compact type. Given a minimal parabolic subgroup P < H, the quotient
H /P is the Furstenberg—Poisson boundary for I" and hence a I'-boundary by [6,
Theorem 2.3].

(iii) In general, a I'-boundary is a strong I'-boundary in the sense of Burger and
Monod [12] and [6, Remark 2.4].

Since the arguments in the proof of Theorem 1 strongly rely on the objects introduced
in Section 2.2, we recall the following result, due to Duchesne, Lécureux and Pozzetti.

Lemma 2.12 ([16, Lemma 4.11]). Let I" be a countable group and let X be a measurable
field over a Lebesgue T'-space (2, it). Then there exists a full-measure subset Qo C 2, a
standard Borel structure on X = |_|w€g20 X, and a Borel map p : X — Qg that admits
a fiberwise isometric T'-action. Moreover, p~'(w) is X, with the metric d,,.

Proof of Theorem 1. Without loss of generality, we can suppose that the I"-action on the
measurable field X := {X, }peq is minimal. In fact, by Proposition 2.6, either we have
a minimal subfield Y C X on Q or there exists an invariant section of dX. In the second
case, the same section can be viewed as a section of the boundary field 9X of the extension
of X on B, and hence we would conclude.

According to Proposition 2.7, we consider the Euclidean de Rham decomposition
Y = F x Z and we denote by oz and oy the I'-actions induced, respectively, on Z and Y.
We claim that the I'-action oz on Z is minimal. By contradiction, assume that it is not.
Thus, by Proposition 2.6, there exists a minimal invariant subfield W C Z whose product
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with F is a strict subfield of F x Z =Y, contradicting the minimality of Y. Moreover, any
oz-invariant Euclidean subfield of Z would produce an invariant Euclidean subfield of X,
and this would contradict the hypothesis. Notice also that the boundary dZ, is contained
in 0Y,, and a fortiori in 0.X,,.

Now we have a measurable field Z on 2 which is minimal, and it does not admit
any invariant Euclidean subfield. Following Example 2.5, we consider the extension Z
of the field Z to B. By [26, Proposition 2.4], the spaces B x 2 and B x B x Q are
ergodic I"-spaces. By [37, Proposition 4.3.4], B x Q2 is also ['-amenable. In this context,
we apply [15 Theorem 1.8] to Z and we have two possible cases: either there exists a
section of 9Z or there exists an invariant Euclidean subfield E C Z.

We consider the distance map

d:BxBxQ=R. (f1.6.0) > d(Eg o Epw) = inf d(.Ego).
£1.0

where E = {E¢ , }(¢,0)eBxq- Following [5], we have four possible cases, and by ergod-
icity one of them must happen almost surely. For the same reason, the distance map is
essentially equal to some value, say dy, for almost every w € Q and &1, &, € B.

Case (i). Suppose that dj is not attained for almost every w € Q2 and &1, & € B. Hence,
for almost every w € Q2 and &; € B, we can define the subspaces

1
Egl,éz,w = {y € E¢ 0 | d(y, E¢, o) < do + ;}

which are nested subspaces of Eg, . By [15, Proposition 8.10], we have a o-equivariant
map
¥ :BXxBxQ— JE.

To ensure the correct application of [15, Proposition 8.10], we are considering the
extended field {Ef .} 6.0)eBxBxq suchthat Ey . = Eg , forevery w € Q2 and
£1,& € B. It follows directly from Lemma 2.12 that the projection p of (a full-measure
subset of) JE on B x  has a I'-fiberwise isometric action. The metric structure on each
fiber is the same as the one given in [5]. Thus, we can apply relative metric ergodicity to
the following diagram:

BxB —Y 5 1L%Q,IE)

lﬂl ll’sz
B—L 5 19Q,BxQ)

Here L%(R2, -) denotes the space of measurable sections identified j-almost every-
where with the standard measurable structure coming from the topology of convergence
in measure [35, Section 4.4] and [17, Notation 2.4], ¥ is defined by W (&1, &)(x) =
v(x,&1,&), j is given by j(§)(x) = (€, w), m is the projection on the first factor and
pg is defined as po(f)(x) == p(f(w)). The function pg can be equipped with a fiber-
wise isometric I"-action obtained by the one on p by integrating along €2 the functions in
each fiber (see [31, Theorem 1]).
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By relative metric ergodicity, we have a lifting B — L%(Q2, dE), thus ¥ does not
depend on the second factor. Hence, we have a o-invariant map B x Q — JE C 82,
whose existence is ruled out by the dichotomy of Theorem 2.8.

We can suppose that the distance dg, ¢, ,, is attained almost surely, and we define the
non-empty subsets

We, 2.0 = {w e Ee » | d(w, Egz,w) =dy} C Ee 0.

Case (ii). If the Wk g, »’s are bounded, we can associate to any such subset its
circumcenter cg, g,,,. The map

V:BxBxQ—E, Y6 0)=cgo

is o-equivariant, and by applying twice the relative metric ergodicity, we obtain a map
Y : 2 — E such that

Y(yw) = o(y.0)¥ (o).

Since points are 0-dimensional flats, this contradicts the hypothesis on X.
Thus, the We, ¢, »’s are not bounded, and we can consider their Euclidean de Rham
decomposition

Wetr.0 = Fe 0.0 X Tt 6,0

where the Fg, ¢, ,,’s are maximal Euclidean factors.

Case (iii). If T, ¢, , is not bounded, as in Case (i) we realize a map

'(ﬂ N B X B X Q — aTv w(%‘lvszaw) = CE],Ez,a)’

where cg, g,  is the center of 0T, ¢, , and T denotes the measurable field given by the
T, &, ,0's- Notice that cg g, , can be defined, thanks to Proposition 2.2 (iv). Using the
same arguments of Case (i), we get a contradiction.

Case (iv). Finally, if the T, ¢, ,,’s are bounded, we consider a subfield E’ of E whose
sheets are defined as follows:

E 6w = Fritow X e 600)

for every w € Q and £, &, € B, where t¢, ¢, ,, is the circumcenter of T, ¢, ,,. The same
argument used in [5] shows that in fact Eél,&, » = E¢ 0 for almost every @ € Q2 and
£1.&, € B. Moreover, E¢ ,, and Eg ,, are parallel for almost every w € €2 and almost every
€,&" € B. Recall that two Euclidean subspaces are parallel if the restriction on the first one
of the distance to the second one is constant and vice versa (in this context, the sandwich
lemma [7, Exercise 11.2.12 (2)] guarantees that their convex hull splits isometrically as
R” x [0, dy], for some n). We use the notation

E‘g’,w// E&",w-
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By Fubini’s theorem, there exists an element & € B and a full-measure subset
A C B x Q such that

EE,a) //EEO,H)

for every (£, w) € A. We denote by AT = ﬂyer yA which is still of full measure since I"
is countable. We consider the set

Co = convex hull ({E¢ o} (¢,w)ear)
that can be decomposed into Euclidean de Rham factors E,, x T, such that
Ey /| Etw /] Egy00 ()
for every (£, w) € AT. Moreover, for almost every w € Q and y € I, we have

0z(y, w)Cp = convex hull (0z(y, ®) E¢ o) ¢ w)eAT

convex hull (Eyé,yw)(g,w)eAF

convex hull (E¢ o) yw)eal = Cyo,

where to pass from the first line to the second one we used the fact that E is a subfield of Z
and to pass from the second line to the third one we exploited the action on AT. Now, by
the minimality of Z we must have C,, = Z,, for almost every @ € 2, and since Z,, has
trivial Euclidean factor, by equation (2) we have

dim(Eg ) = 0

for every (§,w) € AT . Hence, we have a section B x  — Z and, by the same argument
used in Case (ii), we have a contradiction. [

2.4. Measurable cocycles and boundary maps

In this section, we finally prove Proposition 2. We will first need a short introduction to
measurable cocycles. We refer to [27,28,31] for further details. We will assume that G is a
locally compact and second countable group endowed with its Haar measurable structure,
H is a topological group endowed with its Borel o-algebra and (€2, i) be a standard Borel
probability space endowed with a measure-preserving G-action.

Definition 2.13. A measurable cocycle is a measurable function o : G x 2 — H such
that

0(8182.w) = 0(g1, 820)0 (g2, W)
holds for almost every g1, g2 € G and for almost every w € 2.
For the reader who is confident with measured groupoid theory, measurable cocycles

are almost representations of the measured groupoid G x €2 with values in H . The notion
of homotopic representations can be rephrased as follows.
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Definition 2.14. Let 01,0 : G X Q — H be two measurable cocycles, let f : Q@ — H

be a measurable map and denote by olf the cocycle defined as

ol (g.0) = f(gw) o1 (g, ») f(w)

for every g € G and almost every w € €2. The cocycle olf is the f-twisted cocycle associ-

ated to o1. We say that oy is cohomologous to o if there exists a measurable map f such
that o, = olf .

Example 2.15. Even if there are plenty of examples of measurable cocycles in different
areas, we recall the following ones, since they play a predominant role in our results.

(i) For any standard Borel probability G-space, a homomorphism p : G - H
between a locally compact and second countable group G and a topological
group H defines a cocycle as follows:

0,:GxQ—H, o0y(g 0)=pg).

Conjugated representations give cohomologous cocycles in the sense of Defini-
tion 2.14.

(i) Let X be a CAT(0)-space of finite telescopic dimension. Fix a discrete countable
group I and a standard Borel probability I'-space. We can consider the constant
field X = {X}peq on Q. Following Example 2.4, we know that an isometric I'-
action boils down to a function o : I' x  — Isom(X’) which satisfies equation (1)
and is measurable with respect to the topology on Isom(X) induced by the family
of pseudometrics (g, ) — (gx, hx), where x € X varies in a countable dense
subset of X.

Vice versa, any cocycle o : I' x  — Isom(X) which is measurable with respect
to the Borel structure induced by the previous pseudometrics on Isom(X) gives
rise to an isometric I"-action on the constant field X.

Now we are ready to give the definition of a boundary map.

Definition 2.16. Let I" be a discrete countable group, (€2, i) be a standard Borel probabil-
ity I'-space, H a topological group and ¥ a measurable H -space. Consider a measurable
cocycle o : I' x Q@ — H. For any I'-boundary B, a boundary map is a measurable map

¢:BxQ—>Y
which is o-equivariant, namely
¢(yb, yw) = o (y, w)p (b, w)

for every y € T" and almost every b € B,w € Q.
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We are finally ready to prove the existence of boundary maps.

Proof of Proposition 2. We consider the constant field X := {X},eq given by Exam-
ple 2.4. By Example 2.15 (ii), the measurable cocycle o : I' x 2 — Isom(X) induces
an isometric G-action on X. Since we assumed by hypothesis that there are no invari-
ant Euclidean subfield of X, we can apply Theorem 1 to obtain an invariant section of
the boundary field 8&, where X is the extension of X to B. By [5, Lemma 3.10], this is
equivalent to a boundary map ¢ : B x @ — 9dX. ]

Remark 2.17. Fix positive integers n and p < q. In the setting of Proposition 2, suppose
that " is a complex hyperbolic lattice in PU(#, 1) and X (p, ¢) denotes the Hermitian
symmetric space associated to the group SU(p, ¢) (see Section 3.2). By Proposition 2,
we have a boundary map ¢ : dH"” x Q@ — dX(p, q). By the ergodicity of B x Q, we
have that ¢ takes values in the set of isotropic k-dimensional subspace in the boundary
X (p, q), for some k < p. To see this, for each pair (§, w) € JHZ x  one can take
the smallest cell in the spherical building of X (p, ¢) which contains ¢ (&, ®), that cor-
responds to a totally isotropic flag of C?+4 (see [15]). By ergodicity, the type of this flag
must be the same for almost every pair in dH{g, x €2, and by taking the maximal isotropic
spaces of any flag, we get the desired map. If we assume that o is Zariski dense, the same
argument in [ 16, Theorem 1.7] shows that k = p, namely the target is the Shilov boundary
of X(p., q).

Now, since Zariski density implies non-elementarity, this gives an alternative proof
of [31, Theorem 1].

3. Finite reducibility

In the second part of this paper, we study cocycle actions on the Hermitian sym-
metric space X (p, co). We first give a brief overview about bounded cohomology in
order to define the Toledo invariant and maximal cocycles. Then, we recall basic facts
about X (p, 00), and we parametrize the space of embeddings of X (p, g) inside X (p, 00).
Later, we characterize finite algebraic subgroups, and we use this notion to define finite
reducibility. Finally, we prove Theorem 3.

3.1. Bounded cohomology

Let G be a locally compact and second countable group and let E be a Banach G-module
(namely a Banach space together with an action of G by isometries). Continuous bounded
cohomology is usually defined via the complex of continuous bounded functions on G.
Burger—Monod [12] showed that more generally we can consider the cohomology of any
strong resolution of E by relatively injective G-modules. More precisely, we have that the
continuous bounded cohomology of G with coefficients in E is the cohomology of the
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G-invariant vectors of any such resolution (E£°, §*), namely
HE (G: E) = HF((E®)C,5°).

If E is the dual of some Banach G-module endowed with the weak-* topology and
assuming that G is a semisimple Lie group of non-compact type, we can define the cochain
complex of essentially bounded weak-* measurable functions on the Furstenberg bound-
ary B(G), denoted by (L(B(G)**!; E), §*), where §° is the standard homogeneous
coboundary operator. Since the previous complex can be completed to a strong resolution
of E by relatively injective modules, we have an isomorphism

HY (G: E) = HFN (LR (B(G)* T E)9.5%) 3)

for any k > 0. By [12, Corollary 1.5.3], the isomorphism is actually isometric, that is, it
preserves the natural seminormed structures on those spaces.

If we consider the complex of bounded weak-* measurable functions on a measurable
G-space X, denoted by (B3 (X *+1: E), §*), we obtain only a strong resolution of E.
Nevertheless, Burger and Iozzi [10] showed that there exists a canonical non-trivial map

K HF(B® (X E)Y,5%) — HE (G E) 4)

for every k > 0.

Let I' < G be a lattice. As in the case of representations, given a measurable cocycle
o : I' x Q — H, there exists a natural notion of pullback in bounded cohomology. More
precisely, for any Banach H-module E, the map

Cl(0): Co(H; )Y — o (T E)T,

)
CoO) W) Yor - 7e) = /Q Vo o). o @) ) dp),

is a well-defined cochain map [33, Lemma 2.7], inducing a map at the level of cohomology
groups
H{(0) : Hy (H: E) > HE(T: E), HE(0)(W]) = [CE@)(¥)]

for every k > 0. If o additionally admits a boundary map ¢ : B(G) x @ — Y, one can
define

C*'(@%) : BX( T E) - LR (BG)* ! E),

6
C* (@) W) (o, - &) 1=/Q1//(45(&'0,60),~~-,¢(S-,X))dﬂ(w)~ ©

As shown by the second author and Moraschini [27, 28], the above map is a cochain
map which does not increase the norm and it induces well-defined maps in cohomology
H (@) : HY (B> (Y* T E)) > HE(TS E),  HY(@%)([y)) := [CH(@®)(¥)]

for every k > 0.
Thanks to [33, Lemma 2.10], one can check that the class H’bc (o)([¥]) admits as a
natural representative the cocycle ck (P2) ().
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3.2. The symmetric space X (p, q)

Let (p,q) € N x N U {oo} with p < g and consider a (p + ¢)-dimensional Hilbert space
J over C. Let {e;}7 =+ 7 be a Hilbert basis for . We denote by L(H) the set of C-linear
bounded operators with respect to the operator norm and by GL(#) the group of bounded
invertible C-linear operators of J with bounded inverse.

We define the Hermitian form Q of signature (p, ¢) as follows:

P pta
Q) =) xi%i— Y xi¥Xi,
i=1 i=p+1

where x = Zf’:lq x;e; for all x € J. We denote with U(p, g) the subgroup of GL(H)
of isometries with respect to Q, that means linear maps % : # — J such that Q (v, w) =
O (h(v), h(w)) for all v, w € K. If we define the space

X(p.q) ={V < H |dimV = p, Q|y > 0},

then by Witt’s theorem, the group U(p, ¢) acts transitively on it [4, Theorem 3.9]. More-
over, the stabilizer of Vp := Span{e;, ..., ep} is the product U(p) x U(g), where U(m) is
the orthogonal group of the Hilbert space of dimension m, for any m € N U {oco}. Hence,
we can identify X (p, ¢) with the quotient

U(p,q)/U(p) x U(g),

and one can show that it has a structure of simply connected non-positively curved
Riemannian symmetric space with real rank p [15].

Homotheties act trivially on X (p, ¢), so we have an isometric action by isometries of
the quotient

PU(p.q) = U(p.q)/{A1d,[A] = 1}

on X(p.q).

We define the boundary 0X (p, ¢) as the set of subspaces of J on which the restriction
of Q isidentically zero (i.e., totally isotropic subspaces). In 0X (p,q), foreach 1 <k < p,
we denote as I (p, q) (or simply Iz ) the set of totally isotropic subspaces of dimension k.
In particular, we will be interested in the set I, of maximal totally isotropic subspaces.
Finally, two points in .I,(p, ¢) defined by totally isotropic subspaces V; and V, are said
to be opposite if Vi NV, = 0.

We denote by O, , the Hermitian form of signature (p, ¢) with p < g < +o0. Let
{E;}\? =+1q and (e; );en be two bases of C?-¢ and of an infinite-dimensional Hilbert space #

12
over C, respectively.

Definition 3.1. An embedding of X (p,q) into X (p,00) is a linear map ¢ : C?-? — J¢ that
preserves the Hermitian forms QO , and Qp o, namely Qp oo (t(x), t(y)) = Op,q(x.y)
for every x, y € CP4. The group U(p, g) of linear bounded transformations preserving
0Op,q embeds in U(p, 0o) in the following way: the action on ¢(C#?) is the one of U(p, q)
and is trivial on the orthogonal complement of ¢ (C?9).
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Among all embeddings of X (p, g) in X (p, 00), we consider the standard embedding
defined by the map ¢y : CP? — J defined as 1o(E;) = ¢; fori = 1,..., p + ¢. In this
special case, the space X (p, q) inside X (p, co) can be identified with the set

Vo ={V < Span{e1,...,ep1q} | dimV = p, Q) ooy > 0}

and the group U(p, ¢) is identified with elements g in U(p, oo) such that
gle) =Y ajej.
jeN

p+q

where for either i or j bigger than p + g, then a;; = §;;, and the matrix 4 = (aij)l.’jzl

represents an element in U(p, g), namely it satisfies

«(1d, 0 _(ld, 0
A(o —1d, 4= —1d, )

The notion of embedding given in Definition 3.1 corresponds to the one of standard
embedding given in [16]. This choice is motivated by the fact that here we need to distin-
guish the particular objects described above, whose role among all embeddings is clarified
by the following.

Lemma 3.2. Any embedding of X (p, q) of X (p, 00) can be obtained by composition of
an element g € U(p, o0) with the standard embedding.

Proof. Let: CP2 — J¢ be an isometric linear map. For each e;, we set u; := t(e;) and
U, .= Span{uy, ..., up14}.
There is a natural identification of X (p, ¢) with the subspace of X (p, co) defined by
V. ={V <U/|dimV = p, Qp |y > 0}.

If we denote with Uy the subspace of # spanned by the first p + g vectors of the basis
(ei)ien, we can define an isometric linear map & : Uy — U, on the basis as follows:

h(ei) = u;,

and then extend it by linearity. Since / preserves the Hermitian form Q, by Witt’s theo-
rem it extends to an isometry of J with respect to O, namely to an element g € U(p, 00).
The thesis follows noticing that the isometric linear map g o ¢ actually gives the standard
embedding. [ ]

Remark 3.3. As a subspace of the Grassmannian Gr(p + ¢, #), the set of embedding
of X (p, q) inside X (p, co) naturally inherits the topology induced by principal angles,
that in this case coincides with the Wijsman topology (see [16]). Since by Lemma 3.2 the
group U(p, 00) acts transitively on the set of all such embeddings, we have an identifica-
tion with the PU(p, co)-orbit of the standard embedding in Gr(p + ¢, #). Moreover, this
can be identified with the quotient PU(p, 00)/ Stabpy(p,o0) Vo, Where Vg is the image of
the standard embedding.
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3.3. The Kiihler class and the Bergman cocycle

A crucial difference between the finite case and the infinite one in the context of symmetric
spaces is that PU(p, ¢) is locally compact for ¢ < oo, whereas PU(p, 00) is not. To over-
come this problem, we will deal with the bounded cohomology groups Hf (PU(p, c0); R),
namely its continuous bounded cohomology if we endow PU(p, co) with the discrete
topology.

Since X (p, 0o) is a Hermitian symmetric space, there exists a Kihler form w, that is,
a PU(p, oo)-invariant closed 2-form on X (p, co). Using such an invariant form, we can
define :

oy 1 PU(p,0)* > R,  wx(g0,21,82) = —/ o,
A(gox,81%,82%)

where x is a point in X (p, oo) and A(gox, g1X, g2x) is a triangle in X (p, oo) with
vertices goX, g1X, g2x and geodesic edges. The map w, defines a strict PU(p, c0)-
invariant cocycle, and by [16, Lemma 5.3] different choices of the basepoint 2 lead
to cohomologous cocycles. In this way, we obtain a well-defined cohomology class
k';U(p’oo) € H2(PU(p, 00); R), called bounded Kiihler class of PU(p, oo). Now, taking
the Gromov norm |||| oo, it follows from the definition that

We will need to define the Bergman class extending the one given in finite case, namely
to construct a cocycle on the boundary .

Given any three maximal totally isotropic subspaces Vy, V1, V2 € I,, since they are
contained in a finite-dimensional subspace of dimension at most 3p, we can use the defi-
nition of the Bergman cocycle associated to SU(p, 2p) to get a strict PU(p, oo)-invariant
cocycle

B:I,—[-p.pl
We recall that the maximal value is taken on triples of pairwise opposite totally isotropic
subspaces which lie in a 2 p-dimensional subspace [30, Proposition 2.1]. Now, given a
point V' € I, the cocycle Cy defined as

Cy(go.81.82) = B(goV.21V. g2V)

still represents the bounded Kéhler class ng(p ) € Hg (PU(p, 00);R) [16, Lemma 5.4].

3.4. The Toledo invariant

Let ' < PU(n, 1) be a complex hyperbolic lattice, (€2, ) be a standard Borel probability
I'-space and let 0 : I' x 2 — PU(p, co) be a measurable cocycle. Following [31], we
define the transfer map

T% : Hﬁ(l";R) — Hfb(PU(n, 1);R)
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as the map induced in cohomology by the function
Ty : L®((QHE)* R)T — L((0HE); R)PVC-D,

T2(0) (ko 1.£2) = / ¢(Bo, BE1. TE) M pun.n) (B)-

'\ PU(n,1)
Considering H% (PU(n, 1); R) = Rkll;U(n,l)’ where ng(n,l) is the bounded Kihler class

of PU(n, 1), by composing with the pullback of equation (5), we get
Tg © Hg(a)(klt;U(p,oo)) = tang(n,l) (8)
for some real number t, .

Definition 3.4. Given a lattice I' < PU(n, 1) and a standard Borel I"-space (€2, i), let
o : ' x @ — PU(p, co) be a measurable cocycle. The number t, is the Toledo invariant
associated to o.

Since both Tﬁ and Hﬁ (o) are norm non-increasing, by equation (7) we have |ts| < p
and the following.

Definition 3.5. Given I' < PU(n, 1) and a standard Borel I'-space (€2, i), a measurable
cocycle o : I' x Q — PU(p, 00) is maximal if its Toledo invariant is equal to p.

If o admits a boundary map ¢ : 0H{, x 2 — I, exploiting the version of the pullback
given by equation (6), we get a map

Tp o H* () : HA((8%(Z,)"T1: R)PV»>) - HZ (PU(n, 1): R).
In this way, we can rewrite equation (8) as follows
T o Hy (@) ([B]) = tokRygs, -
Writing down the above equation in terms of cochains, we get the formula
[ [ B0 @.0).6(@E0). 6@ 0)du@dir o @
T\PU(n,1) /Q
:tU'Cn(§07élvs2) (9)

that holds for every triple of distinct points (£o, &1, £2) in dH{ [30,31]. Here ¢, is Cartan’s
angular invariant that represents the bounded Kihler class of PU(n, 1) [20].

3.5. Algebraic subgroups of GL(J)

We first introduce the notion of polynomial map.
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Definition 3.6. A map f : L(H#) — R is a polynomial map if it is a finite sum of maps
fi,--., fx, where foreachi = 1,..., k, there exists an n;-linear map h; € L™ (L(J),R)
such that fj(g) = hi(g,...,g) forevery g € L(H). The degree of f is the maximum of
the n;’s.

Now, in parallel to the finite-dimensional case, we define an algebraic subgroup as the
set of the zero locus of some family of polynomial maps.

Definition 3.7. A subgroup G of GL(J#) is algebraic if there exists a positive integer n
and family & of polynomial maps of degrees at most n such that

G ={geGL(H)| P(g.g7")=0,VP e P}.
A strict algebraic subgroup is a proper algebraic subgroup of GL(H).

To define a linear algebraic subgroup of GL(n, R), we consider polynomial equations
in matrix coefficients. The generalization to infinite dimension of this notion is the content
of the following definition.

Definition 3.8 ([16, Definition 3.4]). Let J be an infinite-dimensional Hilbert space and
choose an orthonormal basis (e,),en. A homogeneous polynomial map P : L(H) x
L(#) — R is standard of degree d if there exist two naturals £, m such that £ +m = d
and a family of real coefficients (A;);cn2¢ and (i4));en2m such that for any (M, N) €
L () x L(#), we have that P can be expressed as the absolute convergent series

P(M,N)= > X Pi(M)P;(N),

ieN2¢ jeN2m

where Pi(M) = [TZo(Meiy. iy, and Pi(N) = [T{=g (Nejp €y, )-

A standard polynomial map is a finite sum of standard homogeneous polynomial
maps.

An algebraic subgroup of L(J) is standard if it is defined by a family of standard
polynomial maps.

Hence, we have the following interesting property that shows how proper standard
algebraic subgroups are closely related to finite-dimensional subspace of # .

Lemma 3.9 ([16, Lemma 3.6]). If H is a strict standard algebraic group, then there
exists a finite-dimensional subspace E of K such that the group Hg == {g € H | g(E) =
E, g g1 = id} is a strict algebraic subgroup of GL(E).

We call the subspace E support of the strict algebraic subgroup H and the group Hg
the E-part of H. We are now ready to give the following.
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Definition 3.10. A finite-dimensional algebraic subgroup is a standard algebraic sub-
group of GL(J) of the form Hg.

Hence, it follows by Lemma 3.9 a characterization of finite-dimensional algebraic
subgroups.

Lemma 3.11. If E is a finite-dimensional subspace of # and H is a subgroup of GL(H)
contained in GL(E), then H is algebraic in GL(E) if and only if it is a finite-dimensional
algebraic subgroup of GL(H).

Proof. If H is a finite-dimensional algebraic subgroup of GL(#), then H = Hg, and by
Lemma 3.9 it is algebraic in GL(E). Conversely, if H is algebraic in GL(E), it is also
an algebraic subgroup in GL(#). Moreover, any polynomial which defines H on GL(E)
can be turned into a polynomial on the entries of the matrices. Hence, the same polyno-
mials, seen as standard polynomial maps in the sense of Definition 3.8, define a standard
algebraic subgroup in GL(J). Since it fixes E~, then it coincides with its E-part and we
are done. ]

The group U(p, oo) is algebraic subgroup of GL(#). Indeed, suppose Vy :=
Span{ey, ..., ep}, we have that

U(p.o0) = {g € GL(H) | " Idp,c0 § = Idp,c0}.

where Idp, o is the linear map Idy, & — Idy.. Since the map (A4, B) — A*1dp o0 B —1dp oo
is bilinear on L(#) x L(J), then U(p, co) is algebraic in GL(#r) and hence in GL(H)
(see [16] for more details). By Proposition 3.11, we can say immediately that the
groups U(p, g) with g < oo, seen as subgroups of U(p, co) inside GL(#), are actually
finite algebraic since they stabilize the embedding of X (p, ¢) inside X (p, 00).

Since we work with the quotients PU(p, ¢) instead of the groups U(p, ¢), we call
finite algebraic a subgroup of PU(p, 0o) if its preimage under the projection U(p, co) —
PU(p, o0) is finite algebraic in GL(#) in the sense of Definition 3.10.

3.6. Proof of finite reducibility

Given a measurable cocycle o : I' x Q — PU(p, 00), one can ask when its image is
contained in some suitable subgroup of PU(p, c0).

Definition 3.12. A cocycle 0 : I' x Q — PU(p, 00) is finitely reducible if it admits a
cohomologous cocycle with image contained in a finite-dimensional algebraic subgroup
of PU(p, 00).

Before proving the main theorem, we recall that a p-chain is a copy of I,(p, p) in
I,(p, 00) determined by an embedding of X (p, p) in X (p, 00).
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Definition 3.13. A measurable map ¢ : 0H¢. — I, almost surely maps chains to chains
if for almost every chain € C 0H{ there is a p-chain 7 C I, such that for almost every
point§ € €,¢() € T.

An equivalent condition [30, Lemma 4.2] to the one above is to check that for almost
every pair (x, y) € dHg x dH, the points ¢ (o) and ¢ (&1) are opposite and, for almost
every z € Cg, g, , the subspace ¢(z) is contained in (¢ (o), ¢ (£1)). Before passing to the
proof of Theorem 3, we need the following result about maps that almost surely maps
chains to chains, which is a slight refinement of [ 16, Proposition 6.2]. Since there is a nat-
ural embedding 0H¢. C P"C, we can say that a set of kK < n + 1 points in dH, is generic
if, for every 1 < h < k, any subset of & points does not span an (4 — 2)-dimensional
subspace.

Lemma 3.14. Let ¢ : JH. — I, be a measurable map that almost surely maps chains to
chains. Then there exists a unique minimal totally geodesic embedded copy of X (p,q) C
X (p, 00) that contains the image of almost every (n + 1)-tuple of generic points in JH..
Moreover, p < g < np.

Proof. We argue by induction on n. The case n = 1 is clear, since there is only one chain €
in 3H(‘C, and for almost every 71, 17, € € the subspace (¢ (n1), ¢ (n2)) C H defines a copy
of X(p, p) C X(p,00). The fact that ¢ almost surely maps chains to chains implies that
for almost every £ in dH{. we have ¢(§) < (¢(1n1), $(n2)).

Assume that the statement holds for n — 1. Thanks to the construction in [16,
Section 7.1], we can define a full-measure subset § of the set of (n + 1)-tuple of points
in general position of dH{. such that for every (o, ...,&,) € &, the following conditions
hold:

*  P,....n) almost surely maps chains to chains;

o for almost every n € (&, ..., E,—1), then {¢(n), ¢(§,—1)) is a 2p-dimensional
subspace on which the restriction of Q has signature (p, p);

o for almost every n € (§,-1, &), then (¢ (), ¢(€,—1)) is a 2 p-dimensional subspace
on which the restriction of Q has signature (p, p);

o for almost every 0y € (§,—1,&n), 12 € (£0, ..., En—1), the space {(¢p(n1), P(n2)) has
dimension 2 p and the restriction of Q has signature (p, p).

As proved in [16, Proposition 6.2], for almost every (&, ..., &,) € G, the space

Veo.nbn = (#(0).....0(En))

contains ¢ (n) for almost every n € dH{¢ . Furthermore, the restriction of Q to Vg, ¢, is
non-degenerate of signature (p, q) with p < g < np.

We now prove that almost every pair of tuples ((£o.,....&r). (0. ....7n)) € §2 gives
the same subspace. We first note that since Vg, g, contains the image of almost every
point in dHY., it clearly contains ¢(ng), ..., ¢ (1,), and hence (¢(no), ..., ¢(ny)), for
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almost every (1o, ..., M) € §. Hence, there exists a full-measure subset @ C § x § such
that

VEQ,...,EH < V’IOan-Jln

for almost every ((§o,...,&n), (Mo, ..., Nn)) € @. By taking the measure-preserving
idempotent function of ¥ x § which swaps the tuple, one gets a second full-measure
subset @. Hence, the intersection @ N @ is a full-measure subset of § x § of pairs

(go» .o »én), (770, ey r)n) SuCh that

which implies the uniqueness.

A similar argument can be used to prove minimality, namely that every linear subspace
W < J¢ containing the image of a full-measure subset of dH{, must contain the spaces
constructed above. ]

Remark 3.15. It seems natural to investigate the effective dimension of the copy of
dX (p, q) which contains the essential image of ¢ provided by Lemma 3.14. For instance,
given a chain-preserving map ¢ : dHg — BHé, Burger and lozzi [11] proved the fol-
lowing dichotomy: if the image of almost every triple (&, &1, &2) of generic points is
generic as well, then ¥ coincides almost everywhere with the map induced on boundaries
by an isometric holomorphic embedding Hg, — Hé. If not, then the image is essentially
contained into a chain in dH?.

In our more general context, we do not know if such a dichotomy holds. However,
in our setting, the two cases described above can be interpreted as the limit cases as fol-
lows. In fact, if ¢ : JH{ — I, as in Lemma 3.14 sends almost every (n + 1)-tuple of
generic points of dH{ to (n + 1) generic points of I, then we have that the essential
image of ¢ is contained in d X (p, np). On the other hand, by the same argument used
in [11, Proposition 2.2], if there is a positive measure subset of triple in (B]HH(’:)3 not on a
chain whose image lies on a chain, then the image of ¢ is essentially contained into one
copy of dX (p, p). We point out that these two cases do not produce a dichotomy but a
characterization of the cases when ¢ = p and ¢ = np in the notation of Lemma 3.14.

Now we are ready to give the proof of the main result of this part.

Proof of Theorem 3. By equation (9) and using [16, Corollary 6.1], it follows that almost
every slice ¢, almost maps chains to chains. Hence, by Lemma 3.14, for almost every
w € 2, there exists a unique minimal totally geodesic embedding X, (p, ¢») C X (p, 00)
such that Ess Im(¢,) C X, (p, g, ) for some p < ¢, < np. Notice the X, depends only
on the measure class of ¢,. By [24, Chapter VII, Lemma 1.3], the function

O:Q—L%Q,I,), Ow):=de

is measurable, where LO(Q, Ip) has again the measurable structure coming from the
topology of convergence in measure (the distance on I, is that of Remark 3.3).
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According to Fubini’s theorem, there exists &, ..., &, € JHE so that X, (p, go) :=
(Pw(&0), ..., Pu(&n)) for almost every w € Q. Since ¢, depends measurably on w, the
same holds for X (p, g»).

Moreover, the equivariance of ¢ implies that

o(y,w)Xe(p,q0) = xyw(Pa Qyw)

for almost every y € I' and w € 2. By the ergodicity of €2, the number ¢,, is essentially
constant, namely ¢, = ¢ for almost every w € Q. If we denote by ¢, the isometric lin-
ear map that induces the embedding X, (p, q) C X (p, 00), the uniqueness of X (p, q),
together with the o-equivariance of ¢, implies that the map

Q2 — PU(p, 00)/ Stabpy(p,00) (V0), @ = Xu(p.q) (10)

is measurable (with respect to the measurable structure discussed in Remark 3.3) and o-
equivariant. Here Stabpy(p,0) Vo is the subgroup of PU(p, 0o) preserving the subspace Vj.
Now, thanks to the differentiable structure of the group PU(p, o), we can compose the
function in equation (10) with a measurable section

PU(p, 00)/ Stabpy(p,00) (Vo) = PU(p, 00)
in order to obtain a measurable map

f:Q—PU(p,oo), flw)=g,"

By construction, f(w) sends X, (p, q) to the standard embedded copy X (p, q) C
X (p, 00).
We consider the twisted cocycle o/ : T x Q@ — PU(p, o0) defined as

ol (y.0) = flyw) oy, 0) f(w)

and the associated twisted boundary map ¢ : OHE x @ — I, defined by

7 € 0) = fl0) P E o).

Now, by definition of f, for almost every w € €2, the image of almost every slice ¢, is
contained in the boundary of a fixed X (p, ¢). For almost every w € €2, denote by E,, the
full-measure set of points & in JH{ such that qu{,[ (§) € 0X(p, q). Consider now the set
E = Uycq Eo X {o} (that is of full measure in JH. x 2, by Fubini’s theorem) and the
diagonal action of I" given by

vy, o) = (v, yo).

Since T is countable, we find an invariant full-measure subset £ such that ¢/ (E) C
dX (p, q). More precisely, we set
E = ﬂ yE,
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where y acts diagonally. Being the countable intersection of full-measure sets, it is clear
that £ has full measure. Now, since the image of a full-measure set under ¢/ is con-
tained in the boundary of the embedded X (p, q), it follows that the image of the twisted
cocycle o/ is contained in Stabpy(p,00) Vo, which is finite algebraic as desired. [

Remark 3.16. The descending chain condition that holds for Noetherian spaces (as alge-
braic groups are) allows us to define the algebraic hull for cocycles into algebraic groups.
This cannot be adapted for PU(p, co), namely there exists no well-defined minimal strict
algebraic group containing the image of a twisted cocycle. Nevertheless, by Theorem 3,
any maximal cocycles have a representative in its cohomology class whose image is
contained into the embedding of PU(p, ¢) in PU(p, c0), which is algebraic. For such
particular measurable cocycles, our result recovers an algebraic flavor.

4. Consequences of finite reducibility

The aim of this last section is to link Theorems 1 and 3. We consider the setting of The-
orem 3, namely I is a complex hyperbolic lattice, (€2, 1) is an ergodic standard Borel
probability I'-space and o : I’ x 2 — PU(p, o0) is a maximal cocycle. If we assume
that o is non-elementary, Theorem 1 provides a boundary map ¢ : 9H{g, x 2 — 9 X (p, 00).
Moreover, by Remark 2.17 such a map takes values into Z (p, co) for some k < p. Unfor-
tunately, this is not sufficient to prove reducibility as in Theorem 3, since such k might be
strictly less than p.

However, for cocycles o : I' x Q — PU(1, 0o), one can exploit the geometry of
X (1,00) = H and of its boundary to prove Theorem 4.

Proof of Theorem 4. We first show that maximal cocycles cannot be non-elementary. In
fact, by ergodicity, a o-equivariant family of flats can be made of points or lines. In both
cases, one can twist o into a cocycle whose image is contained either in the stabilizer of a
point or a geodesic, which are both amenable. Since amenable groups have trivial bounded
cohomology, we have a contradiction to maximality.

Since o is not elementary, Theorem 1 provides a boundary map JHf x Q — JH
and then we can apply Theorem 3. Hence, we have that ¢ is cohomologous to a cocycle &
whose image is contained in the stabilizer of an embedded copy of H. in Hg . The stabi-
lizer Stabpy(1,00) (H{) is an almost direct product with one factor isomorphic to PU(n, 1).
By composing with the projection on such factor, we get a maximal cocycle. Hence, we
can apply [28, Theorem 1.5] and we are done. ]

Remark 4.1. In the general setting of Theorem 3, as pointed out in Remark 2.17, The-
orem 3 provides a boundary map into some Iy(p, co). In [16], the authors exploited
Proposition 2.2 to rule out the case k < p for Zariski dense representations. In an attempt
to adapt such an argument in the context of cocycles, we got stuck in the final part. Pre-
cisely, following the proof of Theorem 1.7 of [16], one can construct a o-equivariant
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family {W,,}wecq of non-trivial subspaces of A4 # for some d. Since the stabilizers of
such spaces are standard algebraic subgroups, it would be enough to twist the cocycle
in order to get a cocycle with image contained in one of these stabilizers. However, the
action of PU(p, oo) on the subspaces (a priori of infinite dimension) of A? # seems quite
mysterious to us. Even before, one should clarify the measurable structures involved.
To conclude as in the proof of Theorem 3 or [31, Theorem 2], one should identify the
PU(p, oo)-orbit of some W, with the quotient PU(p, 00)/ Stabpy(p,o0) Wa, for instance
by proving that the action is smooth, which is also not clear to us.
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