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First-order sentences in random groups II: V3-sentences
Olga Kharlampovich and Rizos Sklinos

Abstract. We prove that a random group, in Gromov’s density model with d < 1/16, satisfies with
overwhelming probability a universal-existential first-order sentence o (in the language of groups)
if and only if o is true in a nonabelian free group. It is remarked that one can also obtain the optimal
result, that is, replace d < 1/16 by d < 1/2.

1. Introduction

In this paper, we continue our work that connects random groups with the first-order the-
ory of nonabelian free groups (see [6]). We generalize our previous result, that a random
group (of density d < 1/16) satisfies with overwhelming probability a universal sentence
in the language of groups if and only if the sentence is satisfied in a nonabelian free group,
to V3-sentences. Our main result is the following theorem.

Theorem 1. Let 0 be a V3 first-order sentence in the language of groups. Let 0 < d <
1/16 be a real number. Then a random group of density d satisfies, with overwhelming
probability, the sentence o if and only if a nonabelian free group satisfies o.

We will make heavy use of the machinery developed for answering Tarski’s question
and in particular formal solutions, towers, closures of towers (see [3, 11]), and the process
of validating a ¥Y3-sentence (see [4, 12]).

2. Preliminaries

2.1. The density model

Recall Gromov’s density model of randomness.

Definition 2.1 (Gromov’s density model). Let F, := (e, ..., e,) be a free group of
rank n. Let Sy be the set of reduced words on ey, ..., e, of length £.
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Let 0 < d < 1. Then a random set of relators of density d at length £ is a sub-
set of S that consists of (2n — 1)%‘-many elements picked randomly (uniformly and
independently) among all elements of Sy.

A group G := (e1,...,e, | R) is called random of density d at length £ if R is a
random set of relators of density d at length £.

A random group of density d satisfies some property (of presentations) P, with
overwhelming probability, if the probability of occurrence of P tends to 1 as £ goes to
infinity.

We note in passing that at density 0, we have one relator of length £.

Heuristically, one can understand this as follows: the ratio of groups in (2n — 1)4¢
relators all of length £ that satisfy property P over all such groups is a number, say p, that
for “interesting properties” will depend on ¢, that is, p := p(£). If p(£) goes to 1 as £ goes
to 0o, then we say that, with overwhelming probability, a random group has property P.

We work in an expansion of the language of groups £ where we add n constant sym-
bols ¢y, ..., c, that will be interpreted as ey, ..., e, in I, and as the images of those
generators under the canonical maps in a random group I'y.

Definition 2.2. Let Iy be a random group of density d at length £. Let by be an element
in T'y. Then by is a constant if there exists an element b € [, such that b, is the image
of b, under the canonical quotient map, for all £ € N.

Hence, under the above definition, a sentence with constants in IF,, makes sense in
a random group and likewise a sentence with constants in a random group makes sense
in IF,,.

We will need the following results from [6].

Theorem 2.3 ([6, Theorem 7.19]). Let d < 1/16. Let 6 be a universal sentence in the
language £ U {cy,...,cu}. Then o is almost surely true in a random group (of density d )
with constants interpreted as 7w(ey), ..., w(ey) if and only if it is true in F,,.

Theorem 2.3 was obtained as a corollary of the following.

Theorem 2.4 ([6, Proposition 7.18]). Let d < 1/16. Let V(X, ey, ...,e,) = 1 be a sys-
tem of equations over I,. Suppose Ty is a random group of density d at length { and
7 . F, — 'y the natural quotient map.

Then, every solution by of V(X) = 1 in Ty is the image of a solution ¢; of V(X) = 1 in
I, under the canonical quotient maps, that is, w(cg) = by, with probability approaching 1
as € goes to infinity.

To understand Theorem 2.4 in the light of Definition 2.1, one considers the following
property P: for a fixed V(X,e1,...,e,) = 1, every solution of V(X,eq,...,e,) = 1is the
pre-image of a solution of V (X, eq,...,e,) = 1 in F, under the canonical quotient map.
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Alternatively, under the same interpretation, one can think that the above theorem says
that either by is the image (under the canonical map) of a solution of V (X, e1,...,e,) =1
in IF,, or the probability that V' (b, ey, ..., e,) = 1 tends to 0 as £ goes to co.

2.2. Boolean combinations of universal-existential axioms
The following lemma is due to Malcev. Its proof uses the fact that if (a, b, ¢) is a solution

of x2y2z2 = 1 in a free group, then [a,b] = [a,c] = [b.c] = 1 [7].

Lemma 2.5. Let F := (e, e3,...) be a nonabelian free group. Then, conjunctions of
equations are equivalent (over constants), in I, to one equation:

FEVxy(x=1Ay=1) « (%)’ = ((re2)e;”)?).
For disjunctions, we get the following.

Lemma 2.6. Let F := (ey, e3,...) be a nonabelian free group. Then, a disjunction of
equations is equivalent (over constants), in IF, to four conjunctions of equations:

F | Vx,y(<x =lvy=ho N = 1).
ae{el,el_l}
be{ez,ez_l}

In particular, one easily obtains the following corollary.

Corollary 2.7. A disjunction of conjunctions (or conjunction of disjunctions) of equations
with constants in F is equivalent, in F, to one equation.

Since the above corollary can be expressed by a universal formula, we also get the
following corollary.

Corollary 2.8. Letd < 1/16 and T be a random group at density d. A disjunction of con-
Jjunctions (or conjunction of disjunctions) of equations with constants in T is equivalent
in ' to the same one equation as in .

Lemma 2.9 (Cf. [3, Lemma 6]). Let v be a V3 first-order sentence in the language of
groups. Then, T is equivalent in ¥, to a sentence ¢ of the form

VX3y(o(X.y.a) = 1 Ay (X, y.a) # 1),

where o(X,y,a) = 1 is an equation and (X, y,a) # 1 is an inequation, both over
constants from IF,.

Moreover, if d < 1/16, then t is almost surely true in a random group of density d if
and only if the sentence  is.
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Proof. Every V3-sentence in the language of groups is (logically) equivalent to a formula
in prenex (disjunctive) normal form:

m
vrcay‘( V(EiE7) = 1A W(E7) # 1)).
i=1
In any nontrivial group, the quantifier-free part, \/7, (Ei x,y) =1AY;(x,y) # 1), of
the above sentence is equivalent to

331,...,3,,,((/\3,- + 1) AV (Ei(X. ) = 1A W(E.7) :z,-)).

i=1 i=1
By Corollary 2.7, the disjunction of conjunctions of equations

V(EGE ) =1AW(E 7)) =7)

i=1
is equivalent to one equation o (X, ¥, Z1,...,Zm,a) = 1 over constants in [F,,. Similarly,

the conjunction -, Z; # 1 is equivalent to a single inequation ¥ (Z1, ..., Zm, a) # 1
over constants in IF,,. Hence, we can take for ¢ the following sentence:

VX353z1, . Zm (VG Fme @) £ LA GE, T, Z0, - T, @) = 1),

For a random group I" of density d < 1/16, we argue as follows. In this case, the sen-
tence Vx3y(\/ 1(2 x,y) =1AY;(x,y) # l)) is almost surely true in I if and only

if Vx3dydzy,.. ((/\l_l Z; # 1) AVIL(Ei(X,Y) =1AY(X,y) = zl)) is almost
surely true in F. In addition,

F v (A7 £ 1) A VEED =1 anen =)

i=1 i=1
S (WG I @) ELAC(R. V. T1e . T) = 1)).

By Theorem 2.3, the above sentence is almost surely true in I'. In particular, this
implies that VX3y3Z1,....Zn ((Aj=1 zi # 1) A VIZ (Bi(X,7) = 1 AV(X, ) = 7))
is almost surely true in I' if and only if Vx3y3zy,...,Zp, (W(El, cesZm,a) = 1A
o(X,Y.Z1,....Zm,a) = 1) is almost surely true in I'. n

2.3. Limit groups, towers, and resolutions

For the convenience of the reader, we define some basic notions and constructions that
were used in the solution of Tarski’s problem (see also [14]).

A limit group L is a finitely generated group for which there exists a sequence of
morphisms, (f,)n<e : L — T, such that for every nontrivial g € L, h,(g) # 1 for all
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but finitely many n. A restricted limit group R is a finitely generated group with a dis-
tinguished nonabelian free subgroup F, for which there exists a sequence of morphisms
(hn)n<e : R — F, such that h, | F =1d, for n < w, and for every nontrivial g € R,
h,(g) # 1 for all but finitely many n. When we consider morphisms, z# : R — G, from
a restricted limit group, we tacitly assume that they are [F-morphisms, that is, G contains
acopy of F and i | F is the identity. Note that a restricted limit group is, in particular, a
limit group.

We also define a special subclass of limit groups, namely groups that have the structure
of a tower.

A tower is built recursively by adding floors to a given ground floor that consists of a
nonabelian free group. There are two types of floors: surface floors and abelian floors. The
corresponding notion in the work of Kharlampovich—-Myasnikov is the notion of an NTQ
group, that is, the coordinate group of a nondegenerate triangular quasiquadratic system
of equations (see [2, Definition 9]).

Towers can be thought of as groups equipped with construction instructions. The
instructions consist of the nonabelian free group of the ground floor, the additional floors,
and finally the way and order each floor is added to the already constructed tower. Towers
also admit closures. The closure of a tower is obtained by “augmenting” the abelian floors
of the original tower in a way that the original floor sits as a finite index subgroup in the
augmented floor. It is still a tower with the same number, type, and order of floors; more-
over, it contains the original tower as a subgroup. When no abelian floors take part in the
construction of a tower, then we call it hyperbolic and it, of course, coincides with any of
its closures.

We assume some familiarity with Bass—Serre theory [13]. We start by defining the
notion of a surface floor.

Definition 2.10 (Surface-type vertex). A vertex v of a graph of groups I' is called a
surface-type vertex if the following conditions hold:

* The group G, carried by v is the fundamental group of a compact surface ¥ (usually
with boundary), with Euler characteristic y(X) < 0.

* Incident edge groups are maximal boundary subgroups of 71(X), and this induces a
bijection between the set of incident edges and the set of boundary components of 3.

Definition 2.11 (Exceptional surfaces). Four hyperbolic surfaces with y(X) = —1 are
considered exceptional because their mapping class group is “too small” (they do not
carry pseudo-Anosov diffeomorphisms): the thrice-punctured sphere, the twice-punctured
projective plane, the once-punctured Klein bottle, and the closed non-orientable surface
of genus 3.

Definition 2.12 (Centered splitting). A centered splitting of G is a graph of groups
decomposition G = 71 (I") such that the vertices of " are v, vy, ..., Uy, With m > 1,
where v is surface type and every edge joins v to some v; (see Figure 1).
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Figure 1. A centered splitting.

The vertex v is called the central vertex of I'. The vertices vy, ..., v, are the bottom
vertices, and we denote by H; the bottom group carried by v;. The base of I is the abstract
free product H = Hy * --- % Hy,.

Definition 2.13 (Surface floor). Let G be a group and H be a nonabelian subgroup of G.
Then G has the structure of a surface floor over H, if the following conditions hold:
* The group G admits a simple non-exceptional centered splitting with bottom group H'.

* There exists a retraction r : G — H that sends the group carried by the central vertex
of I' to a nonabelian image.

An abelian floor is defined in a similar way.

Definition 2.14. Let G be a group and H be a subgroup of G. Then G has the struc-
ture of an abelian floor over H, if G admits a splitting as an amalgamated free product
H xg (E @ Z™), where (the image of) E is a maximal abelian subgroup of H and Z™ is
a free abelian group of rank m (see Figure 2).

We call the image of E in H the peg of the abelian floor.

We can now define towers.

Definition 2.15. A group G has the structure of a tower (of height m) over a non-
abelian subgroup [ if there exists a (possibly trivial) free group F, and a sequence

Eqzm
E
. O

Figure 2. An abelian floor.
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Figure 3. A tower of height 4.

G=G">G"1!>...>GY=F % F, such that for each i, 0 < i < m, Gt is either

a surface floor or an abelian floor over G* (see Figure 3).

In [1] (or rather in [15]), it was proved that the class of limit groups coincides with
the class of constructive limit groups [, Definition 1.14]. Thus, one can easily deduce the
following fact.

Fact 2.16. If G has the structure of a tower, then G is a limit group.
We next define the notion of a closure of a tower.

Definition 2.17 (Abelian closure). Let Z & Z™ := (z,21,22,...,Zm) and Z & A™ :=
(z,a1,as,...,an) be free abelian groups of rank m + 1. Then an embedding f :
7 ®7Z™ — 7Z & A™ such that f(z) = z is called a closure embedding.

Equivalently, we can see that f : Z @& Z™ — Z & A™ is a closure embedding if and
only if f(z) =z and f(Z @& Z™) has finite index in Z & A™. We call the latter group the
group closure of 7. & Z™ with respect to f.

A closure of a tower is obtained by “augmenting” the free abelian vertex group of each
abelian floor by a group closure with respect to some closure embedding. It is still a tower
with the same number of floors.

Definition 2.18 (Tower closure). Let 7(G,IF) be a tower of height m and {E; @ Z™ }; <
be the collection of the free abelian vertex groups of its abelian floors. Let, for each i < k,
fit Ei®@7Z™ — E; @& A™ be a closure embedding. Then the closure of 7 (G, F) with
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respect to { f; }i<k, denoted CI(T (G, IF)), is a tower of height m, defined recursively as

follows:

+ The ground floor of CI(7) is identical to the ground floor of 7, that is, CI(G?) :=

F xIF,.

*  Suppose the tower CI(7); up to the i-th floor (g(Cl(GiJrl), CI(G")), 7;) has been
constructed and has the following properties:

ey
©))
3)

@

The order and the type of floors of C1(7"); are identical to those of 7;.
Cl(Gi+1) o) Gitl

The pegs of abelian floors of CI(7); as subgroups of CI(G*) are identical
with the pegs of the corresponding abelian floors of 7; as subgroups of G'.

The surface-type vertex groups of the surface floors of C1(7T'); are identical to
the surface-type vertex groups of the corresponding surface floors of 7; and
the boundary components are attached through the amalgamation embed-
dings to the same elements as the boundary components of the corresponding
surface floors of 7;.

*  We construct the i + 1-th floor of C1(77):

€]

©))

If the i + 1-th floor of T is a surface floor, then the i 4 1-th floor of C1(7")
is identical except that it is added on top of CI(G*1) which contains G* 1.
The retraction 7;+1 coincides with 7;41 on the surface-type vertex and the
Bass—Serre elements and is the identity on CI(G**!). Points (1)—(4) in the
recursive assumption hold by construction.

If the i + 1-th floor of T is an abelian floor, with free abelian vertex group
E; ®Z™ forsome j <k, thenthei + 1-th floor of C1(J") is an abelian floor
with free abelian vertex group, E; @ A™/, the group closure of E; & 2"
with respect to f;, and it is attached (in CI(G'*1)) to the same cyclic sub-
group that E; @ Z™ was attached (in G'*1). This latter group remains
maximal abelian in CI(G?), since the only maximal abelian groups in G'
that are not maximal abelian in C1(G;) are free abelian of higher rank. Again
points (1)—(4) in the recursive assumption hold by construction.

The group, CI(G), that corresponds to a closure of a tower 7 (G, [F) contains G as
a subgroup. A covering set of closures of T is a finite set of towers, 77, ..., T, which
are closures of 7 and for any morphism 4 : G — F which is the identity on F, there
exists i < k such that i extends to the group that corresponds to J;. Equivalently, for each
abelian floor, Z & Z™, of 7 the union of cosets, i; + Al that each corresponds to the
group closure of Z & Z™ in J;, cover Z™.

Towers are constructed from well-structured resolutions of (restricted) limit groups
(see [11, Definition 1.12]). As a matter of fact in the aforementioned paper, they are called
“completions of well-structured resolutions”. It will be helpful for the sequel to explain
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the notion of a resolution of a (restricted) limit group. Toward this end, we will record
some background results on limit groups.

We now define the modular automorphism group of a one-ended limit group. We
quickly note that when an automorphism of a vertex group (of a graph of groups)
restricts to conjugation on its edge groups, then there is a natural way to extend it to
an automorphism of the whole group. We call such an extension the standard extension.

Definition 2.19. Let L be a one-ended limit group and A an abelian graph of groups
decomposition of L. Then the group of modular automorphisms with respect to A,
Mody (L) < Aut(L), is generated by the following automorphisms:

* Inner automorphisms of L.
* Dehn twists along edges by elements that centralize an edge group.

* Standard extensions of automorphisms of QH subgroups — these automorphisms are
obtained by surface homeomorphisms fixing all the boundary components.

» Standard extensions of automorphisms of abelian vertex groups that are the identity
on their peripheral subgroups.

The modular automorphism group, Mod(L), of a one-ended limit group L is the group
of automorphisms generated by Mod (L) for every abelian graph of groups decomposi-
tion, A, of L. In the case of a restricted limit group, we impose the extra condition that
the modular automorphisms fix pointwise the distinguished free subgroup.

Fact 2.20. Let Lo - L; — --- — L, — --- be a chain of proper quotients of limit
groups. Then it terminates after finitely many steps.

Fact 2.21. Let L be a (restricted) freely indecomposable limit group (respectively
indecomposable with respect to ). Then there exist finitely many proper quotients
My, ..., My of L such that any (F)-morphism factors through one of them after
pre-composing by a modular automorphism.

We are now able to define a diagram that encodes all possible morphisms from a limit
group to a free group. Let L be a limit group, and Ly * Ly * --- % Ly * [y, its Grushko
decomposition. For each non-free (freely indecomposable) factor, we draw arrows from
L; toward M;1, ..., M;y,, the proper quotients given by Fact 2.21. We iterate the proce-
dure for each M;;. By Fact 2.20, the procedure stops in finitely many steps. Likewise, we
can construct a diagram that encodes all IF-morphisms from a restricted limit group. We
call such diagram a (restricted) Makanin—Razborov diagram (see [11, p. 67]). As a matter
of fact, such a diagram is canonical.

Definition 2.22 (Resolution). Let L be a (restricted) limit group and MR(L) its
(restricted) Makanin—Razborov diagram. Then the subdiagram that consists of one arrow
for each Grushko factor at each stage of the iterative procedure is called a resolution (see
Figure 4).
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L
I
L1 % Ly x . * Lg x Fpy
% N N [ N2 N
Mi; Miz -~ My, Mgr Mga - Mg,
I I
ML« M2, % - *M%z*lﬁ‘mlz lk *M2 * - *quq*IE‘mqkq
F*-«-*lez*---*Iqukq*--«*Fm

Figure 4. A Makanin—Razborov diagram for L and a resolution in red.

Well-structured resolutions, that are used to construct towers, are resolutions satisfying
some extra conditions. The main properties of well-structured resolutions are as follows:
every subgroup generated by a rigid subgroup and its edge groups is mapped monomor-
phically to the next level, and images of different factors in the Grushko decomposition
are maximally separated on the next level and separated from the subsurfaces mapped to
free groups. As defining them properly is technical and beyond the purpose of this paper,
we refer the reader to [11, Definition 1.11]. In [4], the analogue of a resolution is called
a fundamental sequence and there are restrictions on fundamental sequences that make
them similar to well-structured resolutions [4, Sections 7.3, 7.8, 7.9].

2.4. Validation of a Y3-sentence in nonabelian free groups

Let VXx3y(2(x,y,a) = 1 AV(X, y,a) # 1), where (X, y,a) = 1 is a conjunction
of equations and W(X, y, a) # 1 a conjunction of inequations, be a true sentence in a
nonabelian free group F := (a). The idea, for validating the above sentence, is to find
witnesses for the existentially quantified variables y in terms of the universally quantified
variables X and the constants @ as words in (X, @). Indeed, the first step of the validating
process is based on the following theorem [3] and [11, Theorem 1.2].

Theorem 2.23. Let F = VX3V (E(X,y,a) = 1 AV(X, y,a) # 1). Then, there exists a
tuple of words w(X, @) in the free group (X, a), such that ¥ (x, w(x, a), a) is trivial in
(x,a) and, moreover, F = IXxV (X, w(X,a),a) # 1.

In the special case where no inequations exist, Theorem 2.23 is known as Merzlyakov’s
theorem and leads to the equality of the positive theories of nonabelian free groups. We
think of (X, @) as validating the sentence in a particular subset of F ¥, What is left to do
is find validating witnesses for the complement of this subset. The subset of IF X! for which
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the formal solution does not work is first order definable by the union of the following
“varieties” ¥ (X, w(X,a),a) = 1,...,¥r(X,w(X,a),a) = 1, where each ¥; (X, ¥, a), for
i <k,isawordin ¥V (¥, y,a). One can further split each variety ¥; (X, w(x, a)) in finitely
many irreducible varieties, that is, systems of equations X;;(X,a) =1,..., X, (X,a) =1
fori <k,suchthat L;; := (x,a | ¥;;(x,a)),fori <k and j < my;,is a (restricted) limit
group.

The iterative step of the process uses a further generalization of Merzlyakov’s theo-
rem that we record next (see [3] and [11, Theorem 1.18]). For convenience of notation,
we denote by G(x) a group G with generating set X.

Theorem 2.24. Let L(X,a) := (X,a | R(X,a)) be a restricted limit group, and T (X,Z, a)
a tower constructed from a well-structured resolution of L(x, a).
Suppose

F = VYR, a) = | — I9(S(F, 7,a) = | AV(E, 7,a) # 1))

e Foreach1 <i < g, the words ¥ (X, w;(X,Z,5,a),a) are trivial in C;(X,Z,5,a).

* Foreach 1 <i < g, there exists a morphism h; : C; — F, which is the identity on F
and such that W (h; (X), h; (w;),a) # 1.

In principle, formal solutions do not exist in arbitrary limit groups, but only in limit
groups that admit a special structure — the structure of a tower. A tower is constructed as
a nested graph of groups based on a free group and “gluing” at each step, either a surface
with boundaries (along the boundaries) or a free abelian group along a direct factor. The
covering closure of a tower is a finite set of towers where the free abelian “floors” are
augmented to finite index supergroups (see [11, Definition 1.15]). It covers the original
tower in the sense that every morphism from the original tower to a free group extends (as
a closure contains the tower as a subgroup) to a morphism from some closure. The precise
construction is of no practical importance for this paper, but we note that as a consequence,
the (new) subset of F*I for which the (new) formal solution does not work is not a union
of varieties anymore but is contained in a union of Diophantine sets. This subtlety makes
the proof that the process terminates quite involved. In any case, the important fact for us
is that after repeatedly using the above theorem, we will eventually cover all of F*! with
finitely many subsets for which some formal solution works.

We will give some more details on the procedure avoiding the technical results that
imply its termination after finitely many steps. It will be important to carefully collect the
“bad” tuples in a set in such a way that the procedure terminates. This set will occasionally
be larger than needed, that is, it will also contain tuples for which a formal solution already
works, but this is unavoidable, under the existing methods, if one wants to guarantee the
termination. We next explain how this works. For presentational purposes, we will first
record a special case, called the minimal rank case.
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The minimal rank case. The assumption in this case is that all (restricted) limit groups
L;j, fori <k and j < m;, that collect the “bad” tuples in the first step of the procedure
do not admit a surjection (that is the identity on [F) to a free product F * F,, for some
nontrivial free group F,. This simplified version of the iterative procedure is presented,
for example, in [12, Section 1]. This assumption considerably simplifies the technicali-
ties in the construction of the towers on each consecutive step and guarantees that their
complexity decreases.

(1) In the first step of the procedure, we now apply Theorem 2.23 to the sen-
tence Vx3Iy(2(X,y,a) =1 A V¥(X, y,a) # 1) and obtain a formal solution
w(X, a) that does not work in the union of varieties ¥ (X, w(X, a), a) =
1,....¥x (X, w(X,a),a) = 1.

(2) The latter union of varieties can be further decomposed as Homp (L;;, ), for
i <kandj < m;, where L;; is a restricted limit group, and Homp (L;;, ) is the
set of restricted homomorphisms from L;; to IF. Equivalently, this can be seen as
a decomposition of each variety to its irreducible components.

(3) In the iterative step of the procedure, we work with each L;; in parallel. Thus, we
can fix L := L;; for some i < k and j < m;. To each (restricted) limit group L,
we can assign finitely many towers (based on well-structured resolutions of L),
Ti, ..., Ty, such that any (restricted) morphism / : L — F factors through T7;,
for some i < £. We will, again, work in parallel with each T;. Thus, we can fix
T :=T;,forsomei < {.

(4) We apply Theorem 2.24 for the couple L and T and obtain finitely many clo-
sures C1(X,z,5,a),...,Cy(x,Z,5,a) and the corresponding formal solutions
w1(X,z,5,a),...,wye(X,Zz,5,a) for each closure, that each does not work in the
definable set

HE»E(ECl (E5 25 E’ E) = 1)
A VE,E(@M(}?, w;(X,z,5,a),a) =1v---vyr(x,wi(x,z,5,d),a) = 1).

(5) We do not continue with the previous definable set but rather with the larger set
defined by

T, E(Ec,. (%,%,5,3)
— 1AW (F, @(F,2,5,3),8) = 1V -V Y (%, T (%, %, 5,a), @) = 1)).

(6) We work with each closure in parallel. Thus, for some i < g, we fix C(X,z,5,a) :=
C;(x,z,s,a). We consider the set of (restricted) morphisms, Homp (C, F), whose
images satisty ¥ (X, w;(X,z,5,a),a) =1V --- Viyp(X,w;(x,z,5,a),a) =1
in F. There exist finitely many (restricted) limit groups, QL1, ..., QL,,, which
are quotients of C and such that a (restricted) morphism 4 : C — F satisfies the
previous condition if and only if it factors through one of these quotients.
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(7) We repeat the procedure for each QL; and towers based on resolutions constructed
asin [12, Proposition 1.13]; by [12, Theorem 1.18], the procedure terminates after
finitely many steps.

We next record the general case.

The general case. In the general case, not only the resolutions (used to construct tow-
ers) are modified but also the family of morphisms that descend to the next step of
the procedure. Instead of well-structured resolutions, we restrict to a special subclass
called well-separated resolutions (see [12, Definition 2.2]). One of the properties of well-
separated resolutions is that they can be used to endow each surface that corresponds to
a QH subgroup of every JSJ decomposition along the resolution with a family of (two-
sided, disjoint, non-null-homotopic, non-parallel) simple closed curves. This family of
curves induces a splitting, as a graph of groups, of the fundamental group of the surface
by cutting it along them.

Definition 2.25. Let ¥ be a compact surface. Given a homomorphism % : 71(¥) - H
a family of pinched curves is a collection € of disjoint, non-parallel, two-sided simple
closed curves, none of which is null-homotopic, such that the fundamental group of each
curve is contained in ker % (the curves may be parallel to a boundary component).

The map ¢ is non-pinching if there is no pinched curve: ¢ is injective in restriction to
the fundamental group of any simple closed curve which is not null-homotopic.

Let nj41 : Li — L;4+1 be part of a well-separated resolution and 7;(X) := Q is a
QH subgroup in a JSJ decomposition of a freely indecomposable free factor of L;. Then,
a family of pinched curves on ¥ may be assigned to n;+; and the free decomposition of
L; . This family will be used later in order to define a special class of morphisms called
taut with respect to the given resolution (see [12, Definition 2.4]).

Remark 2.26. When a morphism /4 : L — [ factors through a resolution, L := Ly —
Ly — L, — --- — L, then for each i < p, there exists a section with respect to the
quotient map n; : Lj—y — L;, for0 <i < p, thatis, a morphism, %; : L; — [F, such that
h =h;on;owa;j_10---0ny oy, where o; is in Mod(Lj;).

For economy of notation when we say that / (does not) kill an element of L;, we mean
that /; (does not) kill it.

Definition 2.27 (Taut morphism). Let & be a morphism that factors through a well-
separated resolution

L:=Lo—>Li—Ly,—---— L.
Then 4 is taut with respect to the given resolution if the following conditions hold:

* Every abelian edge group in each abelian decomposition at every level of the
resolution is not killed by 4.
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* Every QH subgroup in each abelian decomposition at every level of the resolution
does not have an abelian image under 4.

» For any vertex group of the graph of groups decomposition of a Q H subgroup of any
JSJ decomposition in any level of the resolution, obtained by the family of pinched
curves, the morphism, / o «, that is, & pre-composed by any modular automorphism
of the Q H subgroup, restricted to this vertex group is non-pinching.

A (restricted) limit group L admits a finite family of well-separated resolutions, called
the taut Makanin—Razborov diagram of L, such that any (restricted) morphism from L
to IF factors through a well-separated resolution, and, moreover, it is compatible with its
structure (see [12, Proposition 2.5]).

We next refine the class of taut morphisms by those that are in the shortest form.

Definition 2.28 (Shortest form morphism). Let Res be a well-separated resolution of a
limit group L := Ly:
LO_)LI_)LZ_)"'_)LP‘

For each i < p, let Comp(L;) be the completion up to the step i (see [11, Def-
inition 1.12]), and consider the multi-graded Makanin—Razborov diagram (see [10,
Section 12]) of Comp(L;41) with respect to the images of the rigid subgroups and edge
groups of the JSJ decompositions of each freely indecomposable free factor of L; (see

Figure 5).
For each morphism / : L — [ that factors through Res, there exists a sequence of mor-
phisms ko, k1, ..., hp from Comp(L;) to IF which are defined as sections with respect to

the canonical epimorphisms 7; : Comp(L) — Comp(L;), thatis,h = h; o7r;, 1 <i < p.

We say that a taut morphism, / : L — F, with respect to the given resolution, is in the
shortest form with respect to Res, if every h;, 1 <i < p, as above is shortest with respect
to the modular automorphism of the solid (or rigid) limit group it factors out from, in the
multi-graded Makanin—Razborov diagram it factors through.

Note that any morphism of a given (restricted) limit group can be extended to a
(taut) shortest form morphism that factors through a completed resolution in the taut
Makanin—-Razborov diagram.

Having defined taut shortest form morphisms, we are now ready to briefly describe
the process of the validation of a V3 first-order sentence which is true in a nonabelian free
group.

We perform the same steps (1)—(3) that were described for the minimal rank case. In
item (3), we only consider taut well-structured resolutions.

In items (5) and (6), we now require the values for the variables zZ, s to be images of
(taut) shortest form morphisms for the fixed resolution we work with.

Item (6) differs in a yet another way; it may happen that the natural image of L; in
QL; is a proper quotient of L;. In this case, we go back to item (3) and work with this
proper quotient instead of L;. Otherwise, we go to item (7).
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Lo—> Li——> - — L, — Ly

Comp(Lg) —» Comp(L1) Comp(Ly_1) —> Lg

SN
7\ N

Std

VAN

Fly, Fly

Figure 5. A resolution and a multi-graded Makanin—Razborov diagram of a completed limit group.

For item (7), the construction of towers and well-separated resolutions for each QL;
is much more complicated than in the minimal rank case. It is described, for example,
in [12, Section 4]. Here is where we essentially use that specializations of z, s are short-
est form specializations (see [12, Proposition 4.3]). For the purposes of this paper, it is
enough to know that this process terminates after finitely many steps (see [5, Theorem 3.5]
and [12, Theorem 4.12]); the precise construction is not essential.

3. Main theorem

We are now ready to prove the following theorem.

Theorem 3.1. Let d < 1/16. Then any V3-sentence (with coefficients) that is true in a
nonabelian free group F is true with overwhelming probability in a random group of
density d.

Proof. Allowing constants, by Lemma 2.9, a V3-sentence t is equivalent in [ to a sen-
tence of the form Vx3y (o (X, y,a) = 1 AY(X,y,a) # 1), where o (X, y,a) and ¥ (X, y,a)
are single words in (X, y, a). Suppose 7 is true in [F. We claim that the iterative procedure
presented in Section 2.4 is also valid for a random group (of density d). Hence, the for-
mal solutions produced along the procedure will validate the sentence with overwhelming
probability in the corresponding definable sets in a random group.

By Theorem 2.23, there exists a formal solution w (X, @) such that o (X, w(x, @), a)
is trivial in (X, a@) and w(X, a) witnesses that the inequation also holds in F for tuples
in V¢ := FIXI\ V, where V is the solution set of ¥ (X, W(X,a),a) = | in F, which
is a proper subset of FIX|. We claim that for any tuple by in a random group I'y with
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the property that all of its pre-images are in V¢, then with overwhelming probability
o(be, w(bg,a),a) =1 Ay (by, w(be,a),a) # 1. Indeed, obviously, since o (X, w(X,a), )
is trivial in (X,@), we get o (bg, w(bg, @), a) = 1 for any by in a random group I'y (and actu-
ally in any group). For the inequation, by our hypothesis, we have ¥ (cy, w(cy, a),a) # 1
in F for any pre-image ¢; of b¢. Hence, by Theorem 2.4, either the probability that
W (by, W(be, @), @) = 1 goes to 0 as £ goes to oo and, consequently, the probability
that ¥ (b, w(bg, @), a) # 1 goes to 1, or by is the image of a tuple ¢ that satisfies
Y(x,w(x,a),a) = 1in F, which is a contradiction to the choice of Eg. Therefore, only
the first alternative holds and the result follows.

We continue with the tuples in a random group whose pre-images not all belong to V€.

Recall that the variety V' can be further seen as the union of irreducible varieties, that
is, varieties that correspond to limit groups. We continue with one such (restricted) limit
group, say L(X,a), and we apply Theorem 2.24 for L(X,a) and a tower T(X,Z,a) in
order to obtain finitely many formal solutions, w;(X,Z,5,a), ..., W4 (X,Z,5,a), and a set
of covering closures, C1(X,Zz,5,a),...,Cy(xX,Z,5,a),of T, so that o (X, w; (X,Z,5,a),a)
is trivial in C; for any i < ¢, that is, for any (restricted) morphism % : C; — I, h kills
o(x,w;(x,z,s5,a),a). Moreover, for each 1 <i < g, there exists a (restricted) morphism
h; : C; — T such that Y (h; (X), h;(w;),a) # 1inF.

At this point, we split the proof into two cases. For clarity, we will first prove the result
in the minimal rank case. Recall that in this case, the termination of the validating process
is easier and the choices for the stratification of F¥! are less complicated.

The minimal rank case: For eachi < g, we consider the subset D };,T of F1*! that contains
all tuples with the following properties: they extend to (restricted) morphisms from C; to IF
and any such extension does not satisfy ¥ (x, w; (x,z,5),a) = 1inF.

D} 7(X):=3Z.5(3¢,(X.Z.5.a) = 1)
AVZ,5(Sc, (X,2.5.a) = | - ¢ (X, 0;(X,2.5).a) # 1).

We note in passing that the solution set of the above formula in F is a proper subset
(in principle) of the “good tuples”, that is, the tuples for which the formal solution w;
validates the sentence at this stage.

By [12, Proposition 1.2], it follows that there exists a finite number of proper quotients
0!(x.2,5,a),...,0%(X,Z,5,a) of C; such that ¢ belongs to DLT if and only if it extends
to a (restricted) morphism from C; to [F and no such (restricted) extension factors through
one of the quotients Q' ..., QL.

For any fixed £, we take a tuple by in a random group I'y such that it has a pre-image c;
that extends to satisfy X¢,(x,z,s,a) = 1 in F and any such pre-image (that extends to
satisfy T¢; (X, Z,5,a@) = 1) belongs to D} ;.

We will show that for such by, we can find a tuple dy so that o(b_g, dy, a)=1n
W (by, dy, @) # 1 with probability tending to 1 as £ goes to co.

Denote the formula that collects the tuples corresponding to U;:l Hom]F(Qj., F)
by ®;(x, z, s, a). The solution set of ®; in I is a union of varieties and, since we
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work over parameters, it is equivalent to a variety that, by abusing notation, we denote
by ®;(x,z,5,a) = 1. Note that, since by has a pre-image that extends to satisfy
Yo (X,z,5,a) =1, 5( itself extends to satisfy X ¢, (X,z,5,a) = 1, say by 5@, l;ell;g To see
this, just consider the projection of the solution of ¥, (X, z,5,a) = 1 inF to I'y. By Theo-
rem 2.4, for the triple (of tuples) 5@, b t} , l;ez either the probability that ®; (5({, 551 , l;g a)=1
tends to 0, as £ goes to 0o, or each such triple is the image of a solution cy, Et} , Eg of the
same formula in F.

* In the first alternative, equivalently, CDi(Eg, EL} , 1;%, a) # 1 with overwhelming proba-
bility, and we are done, since

F = VX,Z.5(S¢, (X.2.5.3)

=1— (®;(x,2.5.2) = | < ¥ (¥, w:(%,2,5.a),a) = 1)).

Thus, since X (be, El,l;%,c_z) = 1, we also get that ¥ (by, wi (bg, b}, b2, a),a) # 1
with overwhelming probability.

* In the second alternative, that is, when the tuple Eg, E} , I;% is the image of a solution
¢, ). ¢; of the same formula in IF, by the choice of b, and since a fortiori ¢y, ¢}, ¢}
satisfies X ¢, (x,Z,5,a) = 1 in I (as the solution set of ®;(X,Zz,s,a) = 1 is a subset
of the solution set of X¢;(X,z,5,a) = 1), we get a contradiction.

We recall that ¢ (X, w(X, a),a) = 1 is the union of finitely many sets of the form
Homp (L; (X, a), F), for i < p, and for each i < p, there exist finitely many towers
T;j(x,Z,a), for j < m;, such that any (restricted) morphism from L; to F extends to
a morphism from 7; ; to IF, for some j < m;. Moreover, for each T; ;, for i < p, and
J =< my, there exist finitely many towers C; ; ,, for r < ¢; ;, that form a covering closure
of T,', j-

At the end of this second step, we have validated all tuples by in a random group I'y
that have a pre-image that extends to some C; j,, fori < p, j <m;,and r < ¢; ;, and
any such pre-image belongs to DL_,TI, e

The validation process in a nonabelian free group continues with each QLZ’j " which
is a quotient of C; j , that collects “bad tuples”, in parallel. For each such quotient, there
exist finitely many towers (of lower complexity than C; ;,) and for each such tower a
set of towers that form a covering closure and bear formal solutions. At this step, we
validate all by that extend to one of these closures and any of such extensions does not sat-
isfy ¥ (x, y,a) = 1 with the new formal solution corresponding to the particular closure
at the place of y. This process produces a stratification of F*! by finitely many subsets
Stry, Stry, . . ., Stry, such that Str; collects the tuples that work at step i.

We finally fix a V3-sentence, say t, which is true in F. For £ € N, consider a group Iy
that does not satisfy . Suppose by witnesses it. As £ goes to oo, the witnesses by will
have pre-images that vary through the finitely many strata, but, for any stratum, the ratio
of the number of groups for which the sentence will be false over the number of all groups
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goes to 0; hence, since there are only finitely many strata, t is true in a random group with
overwhelming probability.

The general case. In this case, we start with the restricted limit group L (X, @) and a tower
T (x,z,a) that corresponds to a well-separated resolution of L. We apply Theorem 2.24
a set of covering closures C;(X,Zz,5,a), fori < ¢, of T, so that o (X, w;(X,Z,5,a),a) is
trivial in C;, for any i < ¢, and, moreover, there exists a restricted morphism #; : C; — F
with ¥ (h; (X), hi (w;), @) # 1.

We fix some C;, for i < ¢q. Let Sy, ..., Sg be a collection of solid (or rigid) limit
groups that appear in the multi-graded Makanin—Razborov diagrams of different levels of
its resolution (see Definition 2.28).

Recall that any morphism 4 : L — [F extends to some C; as a (taut) shortest form with
respect to some collection of solid limit groups.

We consider the subset Cél S of FI¥! that contains all tuples with the following
properties:

.....

* They extend to taut morphisms that factor through the fixed C;, and factor out, as solid
(or rigid) morphisms, through the fixed S;, fori < k.

* No shortest form, with respect to Mod(S1), ..., Mod(S%), such extension satisfies
v(x,w;(x,z,5,a),a) = 1.
We consider tuples by in the random group I'y with the following properties:

(1) The tuple by has a pre-image ¢y, that admits a (taut) shortest form extension, with
respect to Mod(S1), ..., Mod(Sg), factoring through C;.

(2) Any such pre-image of by belongs to C gl S

Sk

(3) No pre-image of Bg extends to factor through some well-separated resolution
that imposes a more refined pinching than (the well-separated resolution that
corresponds to) C;.

The last point guarantees that any pre-image of by that extends to a morphism from C;
is taut with respect to the fixed resolution.

We will show that such l;[ can be extended to ];g, Z;L}, 5(2 in such a way that
o(bg, Wi(bg, b}, b}). @) =1 and y(bg, Wi (b, b}, b}),a) # 1 with overwhelming prob-
ability.

Indeed, since by has a pre-image c; that extends to a morphism that factors through C;
and does not satisfy ¥ (x, w; (x,Zz,s,a),a) = 1, we consider the image, say 1;4, l;l}, Eg, of
that triple (of tuples). It is obvious that it satisfies ¢, (X,Z,s,a) = 1 with overwhelm-
ing probability. We next consider the conjunction of (X, w; (X, «(2), «(5),a),a) =1
for o in Mod(Sy) - ... Mod(Sk). Since F is equationally Noetherian, the above
(infinite) system of equations is equivalent to a finite subsystem. Denote this finite
subsystem by <I>]l.w°d()?, z,5,a) = 1; we further add to CD?/[OC‘()?, z,s,a) = 1 the equa-
tions Xc,(x,z,5,a) = 1 and the equations for the fixed solid (or rigid) limit groups
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Y5, (x,z,5,a) =1,..., 25, (x,Z,5,a) = 1. We still denote this system of equations
by ®M(x,Z,5,a) = 1.

By Theorem 2.4, either the probability that CID?/IOd (Bg , b l} , l;l?, a) = 1is zero or 1;4 , b l} , l;g
is the image of ¢y, Eel, El? such that CD?/[Od(E, ¢1,C,a)=1inF. o

We first consider the c_ase_whizre the probability that CI>]iV[°d (be, b l} , bg, a) = 1 is zero,
t_herh e(iuivalently, CDIiV["d(bg, bl},bf, a) # 1 with overwhelming probability. Thus, since
bg,bl},bg satisfies ¥¢, (¥,Z.5,a) = 1, X5,(x,Z,5,a) = 1,..., X5, (X, Z,5,a) = 1, we
get that ¥ (bg, w; (bg,a(bl}),ot(bg),_c_l),ﬁ)jé 1 for some « € Mod(Sy) ... -Mod(gk) with
overwhelming probability and w; (by, a(bl}), a(b@, c_zl validates the sentence for by.

We now consider the case that the tuple by, bl}, bg is the image of a solution
C, C1, C2 such that CD;V["d(E, c1.¢2)=1inF, then, ¢, ¢, ¢ satisfies X¢,(X,Z,5,a) =1,
and Xg,(x,z,5,a)=1,..., X5, (¥,Z,5,a) =1 in addition, we may change ci, ¢
using an automorphism o to make them the shortest form, given that they satisfy
®; (x, w; (¥, 2(2), a(s),a),a) = 1 for any « in Mod(Sy) - ... - Mod(Sy). Therefore, we
assume that ¢, ¢, ¢3 is the shortest form. Hence, this solution, by the choice of l;l, must
belong to C él ..... S, and, in particular, it factors out as solid morphisms from S, ..., Sk
and does not satisfy ¥ (x, w; (¥, z,s,a),a) = 1, a contradiction.

Those tuples b that have pre-images that extend to ¢, ¢, satisfying equations of
S1, ..., S that are not in Cg, s, either correspond to morphisms that factor out
from a different set of solid (or rigid) limit groups, Sj,, ..., Sj,, in the multi-graded
Makanin—Razborov diagrams of the different levels of the completed resolution, or
have pre-images ¢ that extend to ¢, ¢, which are the shortest form with respect to
Mod(S7) --- Mod(S;) and also satisfy ¥ (¥, w; (X, Z,s,a),a) = 1. In the first case, we
tackle the finitely many cases in parallel at the same step. In the second case, we define
quotients of each C; with which we will proceed to the next step and will repeat similar
constructions.

Let Q’i (x,z,s,q),..., Q;,l_ (x,z,5,a) be the quotient groups of C; (X, Z, s, a) obtained
by all (taut) shortest form morphisms, with respect to Mod(SS;), . .., Mod(Sk), that factor
through the fixed resolution and in addition satisfy ¥ (X, w; (X, z,5,a),a) = 1. We assume
that the natural image of L(X, a) in Q; (x,z,5,a), for j < p;, is not a proper quotient
of L; otherwise, we repeat this step with the image of L. Each C; and every set of solid
(or rigid) limit groups in the multi-graded Makanin—Razborov diagrams from the different
levels of the completed resolution are considered independently. At this step, we verified
the sentence simultaneously for all tuples by satisfying the three conditions for some i < g
and some set, Sy, ..., Sk, of solid (or rigid) limit groups.

Remaining tuples by either have pre-images ¢y that extend to ¢y, ¢, that factor through
one of Q’1 (x,z,5,a),..., Q;{(f, Z,s,a) or have pre-images ¢y that extend to c3, ¢4 that
factor through another C; that imposes more refined pinching than C;. In other words,
these by have pre-images ¢y that belong to a different stratum in the process for F.

We now give the final argument of the proof. Suppose t is a V3-sentence, which is
true for a nonabelian free group. The main point is that the validating process decom-
poses F*! in finitely many different strata. For £ € N, consider a group I'; that does not
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satisfy t. Suppose by witnesses it. As £ goes to 0o, the witnesses by will have pre-images
that vary through the finitely many strata, but, for any stratum, the ratio of the number of
groups for which the sentence will be false over the number of all groups goes to 0; hence,
since there are only finitely many strata, t is true in a random group with overwhelming
probability. |

Theorem 3.2. Let d < 1/16. Every 3V-sentence that is true in a nonabelian free group is
true in the random group.

Proof. Let Q(X,y) be a quantifier-free formula such that
F = 3xVyQ(x.y)

for a nonabelian free group [F. By [9], the sentence is true in the nonabelian free group I,
of rank n. Hence, for some b in F,, we have VyQ(b, 7) is true in F,. Thus, by The-
orem 2.3, it is true with overwhelming probability in a random group of density d.
Therefore, 3xVy Q(x, ¥) is true with overwhelming probability in a random group of
density d. |

The last two theorems imply Theorem 1.

Remark 3.3. In Theorem I, one can obtain the optimal result, that is, replace d < 1/16
by d < 1/2, if, instead of Theorems 2.3 and 2.4, they use the same statements for d < 1/2
proven in the recent paper [8, Theorem 1.2]. That paper follows the same strategy as [6]
and improves the density parameter by using a couple of clever tricks from hyperbolic
geometry.

Funding. O. Kharlampovich is supported by the Dolciani Foundation. R. Sklinos is
supported by the grant no. 12350610234 from NSFC.
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