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Torsion homology growth and cheap rebuilding
of inner-amenable groups

Matthias Uschold

Abstract. We prove that virtually torsion-free, residually finite groups that are inner-amenable and
non-amenable have the cheap 1-rebuilding property, a notion recently introduced by Abért, Ber-
geron, Frączyk and Gaboriau. As a consequence, the first `2-Betti number with arbitrary field
coefficients and log-torsion in degree 1 vanish for these groups. This extends results previously
known for amenable groups to inner-amenable groups. We use a structure theorem of Tucker-Drob
for inner-amenable groups showing the existence of a chain of q-normal subgroups.

1. Introduction

In 1994, Lück proved the approximation theorem about `2-Betti numbers. Its group-
theoretic version asserts that for a residually finite group � with finite type model for
E� , and any residual chain .�i /i2N of � (i.e., a chain of nested, normal, finite-index
subgroups in G whose intersection is trivial), the following holds: for all n 2 N, we have
([18, Theorem 0.1], [15, Theorem 5.3])

b.2/n .�/ D lim
i!1

bn.�i /

Œ� W �i �
:

Here, bn.�/ denotes the (ordinary) n-th Betti number and b.2/n .�/ the `2-Betti number as
defined by Atiyah [2] originally for spaces (for an introduction, see the book by Kam-
meyer [15]).

We obtain a different viewpoint by taking the right-hand side of this equality as a
definition. The main advantage is that we can replace the n-th ordinary Betti number by
different homology-related invariants; e.g., we can consider the invariants

lim sup
i!1

bn.�i ;K/

Œ� W �i �
and lim sup

i!1

log jHn.�i ;Z/torsj

Œ� W �i �
;

where K is any field and tors denotes the torsion subgroup of an abelian group. We call
the resulting invariant the gradient of the invariant that we insert instead of ordinary Betti
numbers. For these gradient invariants, a priori, we do not know whether the lim sup is
actually a proper limit or if its value depends on the chosen residual chain. The Betti
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number gradients do however depend on the field: Avramidi, Okun and Schreve exhibited
an example of a right-angled Artin group where the Q-Betti number gradients (i.e., the
`2-Betti numbers) and the F2-Betti number gradients do not coincide [3, Corollary 2].

An efficient way to show the vanishing of Betti number gradients for all fields and
the vanishing of log-torsion gradients is via the cheap ˛-rebuilding property, recently
introduced by Abért, Bergeron, Frączyk and Gaboriau [1]. Roughly, for a fixed ˛ 2 N,
a group � has the cheap ˛-rebuilding property if for all Farber sequence .�i /i2N , the fol-
lowing holds in a uniform way: Because the �i are finite-index subgroups, we obtain a
tower of finite degree coverings B�i ! B� . If i is large enough, we can find a model of
B�i (i.e., a CW-complex of the homotopy type of B�i ) with few cells up to dimension ˛,
maintaining tame norms on the cellular boundary operators and homotopies. (We will give
a more precise definition of the cheap ˛-rebuilding property in Appendix B.)

In this article, we will prove that certain inner-amenable groups have the cheap 1-
rebuilding property. Inner-amenable groups are defined as follows and generalise the
notion of amenability of groups.

Definition 1.1 (Inner amenability, [23, Definition 0.7]). A group � is inner-amenable if
the conjugation action of � on itself admits an atomless invariant mean, i.e., if there is a
finitely additive probability measure �WP .�/! Œ0; 1� such that for all subsets A � � and
g 2 � , we have

�.g � A � g�1/ D �.A/

and additionally �.¹xº/ D 0 for all x 2 � .

We collect examples of such groups in Section 2. Our results follow from a structure
result of Tucker-Drob [23] for this class of groups (Theorem 3.3) about the existence of q-
normal subgroups, suggesting a strategy for proving properties for inner-amenable groups
(Theorem 3.5).

Main results

Recall that a group is virtually torsion-free if there exists a torsion-free subgroup of finite
index.

Theorem 1.2 (Theorem 6.4). Let � be a finitely generated, virtually torsion-free, resid-
ually finite group that is inner-amenable and non-amenable. Then, � has the cheap 1-
rebuilding property.

In particular, we have the following corollary.

Corollary 1.3. Let � be a finitely presented, virtually torsion-free, residually finite, inner-
amenable group. Then, for every Farber sequence .�i /i2N and every coefficient field K,
we have

lim
i!1

dimK H1.�i ;K/
Œ� W �i �

D 0 and lim
i!1

log
ˇ̌
H1.�i ;Z/tors

ˇ̌
Œ� W �i �

D 0:
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Proof. If � is amenable, the claims are already known: The second claim about torsion
growth was proved by Kar, Kropholler and Nikolov [16, Theorem 1]. To derive the first
claim, we can apply [19, Remark 1.3] and we obtain that it suffices to prove the claim for
K D Q. By Lück’s approximation theorem [18], it suffices to show that `2-Betti numbers
of amenable groups vanish (in degree 1) [7, Theorem 0.2].

If � is non-amenable, by Theorem 1.2, � has the cheap 1-rebuilding property. Because
� is finitely presented, it is of type F2. Thus, the corollary follows from the work of Abért,
Bergeron, Frączyk and Gaboriau [1, Theorem 10.20].

Note that we prove a stronger assertion for inner-amenable groups that are non-amen-
able. It is unknown if all amenable groups have the cheap 1-rebuilding property [1, Ques-
tion 10.21].

By work of Chifan, Sinclair and Udrea, using ergodic-theoretic methods, it was already
known that for all countable inner-amenable groups, the first `2-Betti number vanishes
[8, Corollary D]. Later, Tucker-Drob proved that the cost of these groups is equal to 1
[23, Theorem 5], thus implying the same result. In this article, we obtain a more restrictive
result, as we require the groups in question to be virtually torsion-free and residually finite.
However, we can present a topological proof without using ergodic theoretic methods.

We point out that the proof of the amenable case in Corollary 1.3 only uses results
that hold in all degrees (instead of just degree 1). It is thus natural to ask the following
question.

Question 1.4. Let ˛ 2 N and let � be a virtually torsion-free, residually finite, inner-
amenable group of type F˛ . Does � have the cheap ˛-rebuilding property?

If the answer should be negative, at least the analogue of Corollary 1.3 could be true.

Question 1.5. If, additionally, � is of type F˛C1, does the following hold? For every
Farber sequence .�i /i2N and every coefficient field K, we have

lim
i!1

dimK Hn.�i ;K/
Œ� W �i �

D 0 and lim
i!1

log
ˇ̌
Hn.�i ;Z/tors

ˇ̌
Œ� W �i �

D 0:

For right-angled Artin groups, we have a positive answer.

Proposition 1.6 (Corollary 7.3). Let � be a right-angled Artin group. If � is inner-
amenable, then � has the cheap ˛-rebuilding property for all ˛ 2 N. In particular, the
conclusions of Question 1.5 hold for � .

Organisation of this article

In Section 2, we collect many examples for inner-amenable groups.
Theorem 1.2 is proved in Section 6, using a strategy by transport through q-normality

outlined in Section 3. For this, we need to construct actions out of q-normality (Section 4).
We explain how to obtain such an action using a more general principle in Section 5.
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We will prove Proposition 1.6 in Section 7, where we also give an outlook on why
these results might not generalise to higher degrees.

In Appendix B, we recall the definition of the cheap ˛-rebuilding property.

2. Inner-amenable groups
Inner-amenable groups were originally defined by Effros [11], who showed that prop-
erty Gamma implies inner amenability. Effros’ question whether the converse holds was
answered negatively by Vaes [24].

We define inner-amenable groups by the existence of an atomless, conjugation-invari-
ant mean (see Definition 1.1). Note that this is the special case H D G of Tucker-Drob’s
relative definition of inner amenability [23, p. 5].

Remark 2.1. The restriction to atomless means (instead of just means � that satisfy
�.¹eº/ D 0, as originally demanded by Effros) has the consequence that fewer groups
are inner-amenable (e.g., finite groups are not inner-amenable in this sense), but also non-
ICC groups [22, Definition 1.2] are not automatically inner-amenable. This is the case,
e.g., in Stalder’s article [22, below Definition 1.2]. For ICC groups (i.e., groups where
every non-trivial conjugation class is infinite), the two notions coincide.

Similar to amenability, there is a characterisation in terms of Følner sequences.

Lemma 2.2 (Inner-Følner sequence [4, Théorème (F)]). A countable group � is inner-
amenable if and only if it admits an inner-Følner sequence, i.e., a sequence .Fn/n2N of
finite, nonempty subsets of � with limn!1 jFnj D 1 such that for all 
 2 � ,

lim
n!1

ˇ̌
.
 � Fn � 


�1/4Fn
ˇ̌

jFnj
D 0:

Note that the condition �.¹eº/D 0 originally translates to the condition e 62 Fn. In our
context, the atomlessness of the mean translates to the property that jFnj ! 1.

Example 2.3. We collect examples of inner-amenable groups given in the literature.

(1) Infinite amenable groups are inner-amenable (because we can choose bi-invariant
means).

(2) Products A � � , where A is inner-amenable, and � is any group, are inner-amen-
able [4, Corollaire 2 (iii)].

(3) Extensions 1! � 0! �! � 00! 1, where � 0 is inner-amenable and � 00 is amen-
able [4, Corollaire 2 (iv)].

(4) The direct limits of inner-amenablegroups are inner-amenable [4, Corollaire2 (v)].

(5) Letƒ � � be a finite-index subgroup. Then, � is inner-amenable if and only ifƒ
is [10, Proposition 2.7].

(6) All Baumslag-Solitar groups BS.m; n/ (where m;n ¤ 0) are inner-amenable [22,
Exemple 3.2].
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(7) If H D ƒ is abelian, then every HNN-extension HNN.ƒ; H; K; �/ is inner-
amenable [22, Exemple 3.3].

(8) There is a criterion for the inner amenability of non-ascending HNN extensions
[10, Theorem 1.2]. Two specific instances of this phenomenon are given by ex-
amples of Kida and Ozawa, where the associated subgroups are cyclic [17, The-
orems 1.1 and 1.4].

(9) There is a criterion for the inner amenability of wreath products [10, Theorem 1.5].

(10) Groups that are (JS-)stable, McDuff or have property Gamma, are inner-amen-
able [9, Figure 1]. Sufficient conditions for stability can be found in the article by
Tucker-Drob [23, Theorem 18, Corollary 19].

(11) Thompson’s group F is inner-amenable [14]. In fact, it is even stable [23, Corol-
lary 21].

(12) Thompson’s groups T and V are not inner-amenable [13, Theorem 4.4].

(13) Nonabelian free groups are not inner-amenable [4, Corollaire 3 (iii)].

(14) Discrete ICC groups having property (T) are not inner-amenable [4, Corol-
laire 3 (i)].

Another large class of examples was pointed out by Francesco Fournier-Facio.

Example 2.4. Let � be a countable group with commuting conjugates; i.e., for every
finitely generated subgroup H � � , there is f 2 � such that H commutes with fHf �1.
Then, � is inner-amenable.

Proof. We will show that � admits an inner-Følner sequence (Lemma 2.2). Because � is
countable, let � D ¹
0; 
1; : : :º. Since � has commuting conjugates, for all n 2 N, there
is fn 2 � such that ¹
0; : : : ; 
nº commutes with ¹fn
0f �1n ; : : : ; fn
nf

�1
n º. In particular,

this implies that Fn WD ¹fn
0f �1n ; : : : ; fn
nf
�1
n º defines an inner-Følner sequence.

Together with Example 2.3 (3),we obtain that the following groups are inner-amenable.

Example 2.5. Let � be a countable group with commuting conjugates, or a group exten-
sion of the form

1 �! H �! � �! K �! 1;

where H is countable with commuting conjugates and K is amenable. Then, � is inner-
amenable.

In particular, this includes countable groups of piecewise linear or piecewise projective
homomorphisms of the real line [12, Proof of Theorem 1.3] such as Thompson’s group F .
More examples of this type can be found in the work of Fournier-Facio and Lodha [12].

A natural question to ask is whether the result of Fournier-Facio and Lodha that second
bounded cohomology vanishes for group extensions as in Example 2.5 [12, Theorem 1.2]
extends to all inner-amenable groups. Already the group Z � F2 shows that this is not the
case, as the second bounded cohomology H 2

b
.Z � F2/ retracts onto H 2

b
.F2/ 6Š 0.
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3. Transport through q-normality

In a recent article, Tucker-Drob proved a structure theorem for inner-amenable groups,
which suggests a strategy for proving results about inner-amenable groups. The theorem
guarantees the existence of q-normal subgroups. Before stating the strategy (Theorem 3.5),
we recall the definition of q-normality, which was originally introduced by Popa [21,
Definition 2.3].

Definition 3.1 (q-normal, q�-normal [23, p. 2]). A subgroup H � � is q-normal (resp.
q�-normal) if there is a generating set S of � , such that for all s 2 S , the subgroup
sHs�1 \H is infinite (resp. non-amenable).

In this case, we write H �q � (resp. H �q� �).

Example 3.2. Infinite, normal subgroups are q-normal. Indeed, if H E � , then we have
sHs�1 \H D H for all s 2 � , so we can take any generating set as witness.

The converse is not true. For example, in the Lamplighter group .
L

Z Z/ Ì Z, the
subgroup

L
N Z, indexed only over the natural numbers, is q-normal but not normal.

We can now state a variant of Tucker-Drob’s structure theorem.

Theorem 3.3 (The structure of inner-amenable groups). Let � be a finitely generated, vir-
tually torsion-free, inner-amenable and non-amenable group. Then, there exist g 2 �n¹eº
and finitely generated non-amenable subgroups L � K � � such that

Z Š hgi � Z.L/ E L �q K �q �:

Here, Z.L/ denotes the centre of L.

Proof. We show how to deduce this result from the work of Tucker-Drob [23] (where we
always choose H D � and F D ¹�º). The main effort goes into proving that a chain of
length 3 suffices and that L and K can be assumed to be finitely generated. Moreover, we
have to show that we can choose g to be of infinite order.

Let � be an atomless, conjugation-invariant mean on � . Let � 0 � � be a finite-index,
torsion-free subgroup. We can assume�.� 0/D 1 [10, Proposition 2.3]. By a strengthening
of a classical theorem, called Rosenblatt’s theorem [13, Proposition 4.2], the following
holds: The centraliser C�.g/ is non-amenable for �-almost all g 2 � [23, Lemma 4.2].
In particular, we find such an element g 2 � 0n¹eº. Because � 0 is torsion-free, we have
hgi Š Z. Since C�.g/ is non-amenable, there is a finitely generated subgroup L � C�.g/
that is non-amenable. We can suppose that g 2 L. In particular, hgi is central in L.

Since L is a non-amenable subgroup of an inner-amenable group, we have that [23,
Theorem 4.3 (i)]

L �q� hL [ SLi �q �; where SL WD
®
g 2 � j L \ C�.g/ is non-amenable

¯
:

Note that, in particular, q�-normality implies q-normality. We will show how to pick
a suitable finitely generated subgroup K � hL [ SLi: Since hL [ SLi �q � and � is
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finitely generated, we can pick a finite generating set g1; : : : ; gn of � such that for all
i 2 ¹1; : : : ; nº, we have that

gi � hL [ SLi � g
�1
i \ hL [ SLi

is infinite. In particular, its intersection with the finite-index subgroup � 0 is still infinite
and we can pick a non-trivial element in this intersection and write

gi � wi � g
�1
i D w

0
i ; (1)

where wi and w0i are words in L [ SL [ S�1L . Let zSL be the (finite) set of letters in SL
that occur in any of the wordsw1;w01; : : : ;wn;w

0
n. We setK WD hL[ zSLi. As L is finitely

generated and zSL is finite, K is finitely generated. The relation in equation (1) witnesses
that for all i 2 ¹1; : : : ; nº, the intersection gi � K � g�1i \ K is non-trivial. Because the
words w0i were chosen in � 0, which is torsion-free, this intersection is infinite. This shows
that K �q � . Moreover, the generating set L [ zSL witnesses that L �q K.

We illustrate this result with an example of a non-trivial chain of q-normal subgroups.

Example 3.4. Consider the inner-amenable and non-amenable group

� WD F2 � F2 � Z D
˝
a; b; c; d; e j Œa; c�; Œa; d �; Œb; c�; Œb; d �; Œa; e�; Œb; e�; Œc; e�; Œd; e�

˛
:

Let g WD a and L WD ha; c; d i; K WD ha; b2; c; d i. Then,

Z Š hgi � Z.L/ E L �q K �q �:

Note that L is not normal in K and K is not normal in � .

Theorem 3.3 suggests the following strategy for proving results about virtually torsion-
free inner-amenable groups, which Tucker-Drob used to prove that inner-amenable groups
are cheap and of fixed price [23, Theorem 5].

Theorem 3.5. Let C be a class of finitely generated, torsion-free groups that is closed
under taking finitely generated subgroups and contains the integers Z. Let P be an (iso-
morphism) invariant defined for groups in C . Suppose that the following two conditions
hold:

(1) The integers Z satisfy P .

(2) Let L;G 2 C such that L �q G (see Definition 3.1). Then, if L satisfies P , then
so does G.

Then, P holds for all groups in C that are inner-amenable but non-amenable .

Proof. Let � be a virtually torsion-free, finitely generated group in C that is inner-amen-
able and non-amenable. By Theorem 3.3, there exist g 2 �n¹eº and finitely generated
subgroups L � K � � such that

Z Š hgi � Z.L/ E L �q K �q �:
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Note that hgi Š Z satisfies P by assumption (1). Moreover, hgi is central in L, thus
normal in L. In particular, it is also q-normal in L (Example 3.2). Thus, we have that
hgi �q L �q K �q � . As L and K are finitely generated, L;K 2 C . Hence, we obtain
that � satisfies P by applying assumption (2) three times.

4. An action induced by q-normality

In this section, we will explain how to construct an action out of q-normality. If L �q G
is a q-normal subgroup, we want to construct an action of G on a graph whose vertex
stabilisers are (isomorphic to) L.

Recall that G=L WD ¹gL j g 2 Gº is a transitive G-set, and an action G Õ G=L is
given by the left-translation of the cosets.

Lemma 4.1 (Blow up-action out of q-normality). LetG be a finitely generated group and
let L �q G be a q-normal subgroup. There is a cocompact action G Õ .G=L; E/ on a
connected graph whose edge stabilisers are all infinite.

Proof. We choose a generating set S of G as in Definition 3.1. Because G is finitely
generated, we can assume S to be finite. We define

E WD
®
¹gL; gsLº j g 2 G; s 2 S

¯
:

Then, E is closed underG-orbits (where the action is by left-translation) and by construc-
tion, the action is cocompact (the quotient has one 0-cell and jS jmany 1-cells). Moreover,
because S is a generating set of G, the graph .G=L;E/ is connected. Finally, fix an edge
¹gL; gsLº. Its stabiliser contains

gLg�1 \ .gs/L.gs/�1 D g � .L \ sLs�1/ � g�1;

which is infinite by choice of S .

5. A different approach to actions induced by q-normality
In this section, we present an alternative proof of Lemma 4.1. We show how to get an
appropriate action out of a “blow up” constructing, combining two actions. This exhibits
an interesting technique and shows a more conceptual way how to obtain the desired
action. We postpone all technical proofs to Appendix A.

If we have a q-normal subgroup, we can define the following action on a graph.

Lemma 5.1 (Action out of q-normality). LetL�q G be a q-normal subgroup (see Defin-
ition 3.1). Then, we define a graph � WD .V;E/ where

V D ¹gLg�1 j g 2 Gº;

E D

²
¹g1Lg

�1
1 ; g2Lg

�1
2 º

ˇ̌̌̌
g1; g2 2 G; g1Lg

�1
1 \ g2Lg

�1
2 is infinite;

g1Lg
�1
1 ¤ g2Lg

�1
2

³
:
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Then,G acts on� by conjugation. The vertex set contains exactly one orbit. The stabiliser
of these vertices is given by the normaliser NG.L/ of L in G.

Moreover, the graph � is connected and for each ¹g1Lg�11 ; g2Lg
�1
2 º 2 E, we have

by construction that g1Lg�11 \ g2Lg
�1
2 is infinite.

The vertex set consists of exactly one G-orbit, and the stabilisers of the vertices are
conjugates of the normaliserNG.L/ of L. Thus, as aG-set, V is isomorphic toG=NG.L/
(where G acts by left-translation). Thus, we will view � as a graph with G-action and
vertex set G=NG.L/ in the following.

On the other hand, the normaliser NG.L/ acts on the classifying space of the quotient
NG.L/=L.

Lemma 5.2 (Action on the quotient). LetLEH be an infinite, normal subgroup. Then,H
acts onE.H=L/.1/, i.e., the 1-skeleton of a classifying space of the quotientH=L. Explicit
constructions show that we can assume the 0-skeleton to be given by H=L. Moreover,
E.H=L/.1/ is connected and stabilisers are given by L, which is infinite by assumption.

We can use these two actions to obtain the statement in Lemma 4.1 using the following
method.

Lemma 5.3 (Blowing up actions). Let G be a group and let L � H � G be subgroups.
Let H Õ .H=L;EH=L/ and G Õ .G=H;EG=H / be actions on connected graphs, where
the action on the vertex sets is given by left-translation. We suppose the following:

• In .H=L;EH=L/, all edge stabilisers are infinite.

• In EG=H , for each G-orbit, we pick a representative f 2 EG=H incident to eH . We
denote by F the set containing the representatives we pick. For each f 2F , we choose
g.f / 2 G such that f D ¹eH; g.f /H º and we demand that L \ g.f /Lg.f /�1 is
infinite.

Then, there is an action G Õ � WD .G=L;E/, given by left-translation on the vertex
set G=L, where � is a connected graph and each stabiliser of an edge is infinite.

Concretely, we note that G=L is isomorphic (as a G-set) to G �H .H=L/ via the
isomorphism

G=L �! G �H H=L

gL 7�!
�
.g; eL/

�
and we can thus define E as follows:

E WD
®®�
.g; h1L/

�
;
�
.g; h2L/

�¯
j g 2 G; ¹h1L; h2Lº 2 EH=L

¯
[
®®�
.g; eL/

�
;
��
g � g.f /; eL

��¯
j g 2 G; f 2 F

¯
:

To explain the notation, we would like to recall the following. If H Õ X is an action
of H , we can induce an action of G as follows: We consider the quotient

G �H X WD .G �X/=
�
8g2G;x2X;h2H .gh; x/ � .g; hx/

�
;
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which inherits aG-action by left-translation on the first component. We call this construc-
tion the induction of H Õ X by G.

We would like to point out that the resulting action might not be cocompact. Because
G is finitely generated, we can fix this issue easily. The idea was pointed out by Gaboriau.

Lemma 5.4 (Cocompactness). Let G be finitely generated, L�G be a subgroup and let
G Õ .G=L; E/ be an action on a connected graph induced by left-translation on G=L.
Then, there is aG-invariant subsetE 0 �E such that the actionG Õ .G=L;E 0/ is cocom-
pact and .G=L;E 0/ is connected.

It is worth mentioning that in Lemma 5.3, we could also be more indifferent about the
choice of edges of the seond type; more precisely, we could define the edge set E to be

E WD
®®�
.g; h1L/

�
;
�
.g; h2L/

�¯
j g 2 G; ¹h1L; h2Lº 2 EH=L

¯
[
®®�
.g1; eL/

�
;
�
.g2; eL/

�¯
j g1; g2 2 G; ¹g1H;g2H º 2 EG=H

¯
:

However, with the choice as in Lemma 5.3, the resulting graph coincides with the
following construction.

Remark 5.5. The graph �G=H WD .G=H; EG=H / is a G-CW complex of dimension 1,
i.e., a pushout of the following type:`

I1
G=H � S0 G=H

`
I1
G=H �D1 �G=H

for some index set I1. The complex � is then obtained by replacing G=H with the induc-
tion of

�H=L WD .H=L;EH=L/I

i.e., � is (the 1-skeleton of) a pushout as follows:`
I1
.G �H �H=L/ � S

0 G �H �H=L

`
I1
.G �H �H=L/ �D

1 z�:

In Lemma 5.3, we just give an explicit description of the resulting edge set.
This construction was inspired by a similar construction to build classifying spaces: If

N E G is a normal subgroup, and the G-CW complex E.G=N/ is given, we can blow up
by G �N EN (where EN is a model for the classifying space of N ) to obtain a model
of EG. An instance of this method in a slightly different setting is elaborated in an article
by Lück and Weiermann [20, Proof of Proposition 5.1].
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6. Application to the cheap 1-rebuilding property

In this section, we will prove Theorem 1.2. For completeness, we provide the definition
of the cheap 1-rebuilding property, which is a property of groups, in Appendix B. How-
ever, for the following proof, it suffices to understand the following two properties of this
notion.

Proposition 6.1 ([1, Lemma 10.10]). The group Z has the cheap ˛-rebuilding property
for all ˛ 2 N.

Proposition 6.2 ([1, Example 10.12]). Let � be a residually finite group that acts cocom-
pactly on a graph � such that

• vertex stabilisers have the cheap 1-rebuilding property, and

• edge stabilisers are infinite.

Then, � has the cheap 1-rebuilding property.

We can now prove the following generalisation of an inheritance property for normal
subgroups [1, Corollary 10.13 (2)].

Lemma 6.3 (Transport through q-normality). Let � be a finitely generated, residually
finite group and L �q � a q-normal subgroup. If L has the cheap 1-rebuilding property,
then so does � .

Proof. It suffices to show the hypotheses of Proposition 6.2. By Lemma 4.1, � acts
cocompactly on a connected graph � WD .�=L;E/ such that all edge stabilisers are infin-
ite. All vertex stabilisers are conjugates of L and thus by assumption have the cheap
1-rebuilding property.

Theorem 6.4. Let � be a finitely generated, virtually torsion-free, residually finite group
that is inner-amenable and non-amenable. Then, � has the cheap 1-rebuilding property.

Proof. We apply Theorem 3.5 to the class of finitely generated, virtually torsion-free,
residually finite groups and the property P “has the cheap 1-rebuilding property”. It suf-
fices therefore to show that the two hypotheses are satisfied.

The group Z has the cheap 1-rebuilding property by Proposition 6.1. The second con-
dition is satisfied by Lemma 6.3.

Remark 6.5. Lemma 6.3 shows the cheap 1-rebuilding property for a larger class of
groups. If � is a finitely generated, residually finite group and there exist finitely gen-
erated subgroups G0; : : : ; Gn such that

Z Š G0 �q � � � �q Gn D �;

then � has the cheap 1-rebuilding property.

Question 6.6. Which groups can be obtained via a sequence of q-normal subgroups as in
the above remark?



M. Uschold 1100

This class contains all virtually torsion-free, inner-amenable and non-amenable groups
by Theorem 3.3. This inclusion is strict, as e.g. Example 7.1 shows. Moreover, the follow-
ing groups satisfy this condition, recovering a result of Abért, Bergeron, Frączyk and
Gaboriau [1, Proposition 10.15] where an additional hypothesis of finite generation for
some normalisers was necessary.

Corollary 6.7. Let � be a residually finite group that is chain-commuting; i.e., there is
a finite generating set ¹
1; : : : ; 
mº of elements of infinite order such that for all i 2
¹1; : : : ; m � 1º, we have Œ
i ; 
iC1� D e. Then, � has the cheap 1-rebuilding property.

Proof. We have that

Z Š h
1i �q h
1; 
2i �q � � � �q h
1; : : : ; 
mi D �:

Here, q-normality is witnessed by the given generating sets and the fact that because 
i
and 
iC1 commute, we have

Z Š h
i i � 
iC1 � h
1; : : : ; 
i i � 

�1
iC1 \ h
1; : : : ; 
i i:

Thus, Proposition 6.1 and repeated application of Lemma 6.3 imply that � has the cheap
1-rebuilding property.

Examples of chain-commuting groups are right-angled Artin groups with connected
nerve. As Damien Gaboriau pointed out to us, in fact all Artin groups with connected nerve
are chain-commuting. They thus have the cheap 1-rebuilding property, provided that they
are residually finite, recovering a special case of a result by Abért, Bergeron, Frączyk and
Gaboriau [1, Theorem 10.17].

Corollary 6.8. Let� be an Artin group with connected nerve. Then,� is chain-commuting.
In particular, if � is residually finite, it has the cheap 1-rebuilding property.

Proof. Since the nerve of � is connected, we can find a finite sequence of standard gen-
erators of � such that for all two subsequent generators s; t , the corresponding vertices
in the nerve vs; vt are connected by an edge. Recall that this means that the Artin group
hs; ti� generated by s and t is spherical. This implies that the centre of hs; ti� is infin-
ite cyclic [5, Satz 7.2]. In particular, we can choose a generator 
s;t in this centre. Then,
the sequence .s; 
s;t ; t / is chain-commuting. Choosing a generator of the centre for every
two subsequent standard generators, we obtain a set of generators of � that is chain-
commuting.

We obtain that � has the cheap 1-rebuilding property by Corollary 6.7.

7. Generalisations and outlook
In Question 1.4, we asked if the result of Theorem 1.2 generalises to higher degrees. We
do not expect this to be the case. If it does, it would require new insights about inner-
amenable groups. By Tucker-Drob’s strategy (Theorem 3.5), a natural approach would be
to prove an analogue of Lemma 6.3 in higher degrees. However, already in degree 2, this
fails.



Torsion homology growth and cheap rebuilding of inner-amenable groups 1101

Example 7.1. We have that Z E Z � F2 �q F2 � F2, and Z as well as Z � F2 have
the cheap ˛-rebuilding property for all ˛ 2 N [1, Lemma 10.10, Corollary 10.13 (2)].
The group F2 � F2 does not have the cheap 2-rebuilding property because its second `2-
Betti number is positive [1, Theorem 10.20]. Note that F2 � F2 is not inner-amenable
[4, Théorème 5] (alternatively, by Theorem 7.2).

However, the desired generalisation holds for right-angled Artin groups. For an intro-
duction to these groups, we refer to a survey by Charney [6]. The following is known
about the inner amenability of right-angled Artin groups.

Theorem 7.2 ([10, Corollary 4.21]). A right-angled Artin group is inner-amenable if and
only if it splits as a direct product with Z.

We obtain the following corollary.

Corollary 7.3. Let � be a right-angled Artin group. If � is inner-amenable, then � has
the cheap ˛-rebuilding property for all ˛ 2N. In particular, also the conclusions of Ques-
tion 1.5 hold for � .

Proof. As � is inner-amenable, it splits as a direct product with Z by Theorem 7.2. We
can then conclude by two lemmas of Abért, Bergeron, Frączyk and Gaboriau [1, Corol-
lary 10.13 (2) and Lemma 10.10].

A. Proofs of Section 5

We present the missing proofs of Section 5.

Proof of Lemma 5.1. The only non-obvious claim is the connectedness of the graph. It
suffices to show that for g 2 G, there is a path from eLe�1 to gLg�1. Because of q-
normality (Definition 3.1), there is a generating set S of G such that for all s 2 S , the
set sLs�1 \ L is infinite. We pick s1; : : : ; sn 2 S and "1; : : : ; "n 2 ¹˙1º such that g D
s
"1
1 � � � s

"n
n . Using that cardinalities are conjugation-invariant, i.e., if sLs�1 \ L is infinite,

then also for all g0 2 G, we have that g0sLs�1g0�1 \ g0Lg0�1 is infinite, and we obtain
that

eLe�1; s
"1
1 Ls

�"1
1 ; : : : ; s

"1
1 � � � s

"n
n Ls

�"n
n � � � s

�"1
1 D gLg�1

is a path in �.

Proof of Lemma 5.3. By construction, we obtain an action G Õ � WD .G �H H=L;E/

by left-translation on the vertex set. This graph is connected: Let Œ.g; eL/� 2 G �H H=L.
Note that for all f 2 F , we obtain the edges ¹Œ.g; eL/�; Œ.g � g.f /; eL/�º for all g 2 G. In
particular, since .G=H;EG=H / is connected, we obtain a path from Œ.g; eL/� to Œ.h; eL/�
for some h 2 H . Now, because .H=L; EH=L/ is connected, we can find a path from
Œ.h; eL/� D Œ.e; hL/� to Œ.e; eL/�. Concatenating these two paths shows that the graph �
is connected.
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It remains to prove that edge stabilisers are infinite:

• Let ¹Œ.g;h1L/�; Œ.g;h2L/�º 2E with g 2G, ¹h1L;h2Lº 2EH=L. Because edge stabil-
isers in .H=L;EH=L/ are infinite, there are infinitely many h 2H that fix ¹h1L;h2Lº.
For all these h 2 H , its conjugate g � h � g�1 fixes ¹Œ.g; h1L/�; Œ.g; h2L/�º. Thus, the
stabiliser of this edge is infinite.

• Let g 2G;f 2F and consider the edge ¹Œ.g;eL/�; Œ.g � g.f /;eL/�º. This edge is fixed
by g � .L \ g.f / � L � g.f /�1/ � g�1 which, by the second hypothesis, is an infinite
set.

Proof of Lemma 5.4. Because G is finitely generated, we can pick a finite generating set
g1; : : : ; gn of G. Because .G=L;E/ is connected, we can pick paths from eL to giL for
all i 2 ¹1; : : : ; nº. We then define E 0 to be the union of the G-orbits of all edges occuring
in one of these paths.

B. Cheap ˛-rebuilding property
For completeness, we include the definition of the cheap ˛-rebuilding property, quality of
rebuildings and Farber neighbourhoods. We refer to the work of Abért, Bergeron, Frączyk
and Gaboriau [1] for more details and examples.

Definition B.1 (Rebuilding [1, Definition 1]). Let ˛ 2 N and let Y be a CW-complex
with finite ˛-skeleton. An ˛-rebuilding of Y is a tuple .Y; Y 0; g; h; P/, consisting of the
following data:

(1) Y 0 is a CW-complex with finite ˛-skeleton,

(2) gWY .˛/! Y 0.˛/ and hWY 0.˛/! Y .˛/ are cellular maps that are homotopy inverse
to each other up to dimension ˛ � 1, i.e., h ı g�Y .˛�1/ ' id�Y .˛�1/ within Y .˛/ and
g ı h�Y 0.˛�1/ ' id�Y 0.˛�1/ within Y 0.˛/, and

(3) a cellular homotopy PW Œ0; 1�� Y .˛�1/! Y .˛/ between the identity and h ı g, i.e.,
P.0; �/ D id�Y .˛�1/ and P.1; �/ D h ı g�Y .˛�1/ .

Definition B.2 (Quality of a rebuilding [1, Definition 2]). Given real numbers T; � � 1,
we say that an ˛-rebuilding .Y; Y 0; g;h;P/ is of quality .T; �/ if we have for all j � ˛

jX 0.j /j � �T �1jX .j /j; (cells bound)

log kgj k; log khj k; log k�j�1k; log k@0j k � �.1C logT /; (norms bound)

where j � j denotes the number of cells and @0 is the cellular boundary map on Y 0, g and
h are the chain maps respectively associated with g and h, �WC�.Y /! C�C1.Y / is the
chain homotopy induced by P in the cellular chain complexes:

C˛.Y / � � � � � � C1.Y / C0.Y /

C˛.Y
0/ � � � � � � C1.Y

0/ C0.Y
0/;

@˛

g˛
�˛�1

@1

g1
�1 g0�0

@0˛

h˛

@01

h1 h0
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and the norms k � k are the canonical `2-norms on the cellular chain complexes given by
the basis of open cells.

Definition B.3 ([1, Section 10.1]). Let � be a countable group and let Subfi
� denote the

space of finite-index subgroups of � with the topology induced from the topology of
pointwise convergence on ¹0; 1º� . For 
 2 � , we consider the following function:

fx�;
 W Subfi
� �! Œ0; 1�; � 0 7�!

ˇ̌
¹g� 0 j 
g� 0 D g� 0º

ˇ̌
Œ� W � 0�

:

We also recall the definition of a Farber sequence.

Definition B.4 (Farber sequence [1, Definition 10.1]). A sequence .�n/n2N of subgroups
of � is a Farber sequence if it consists of finite-index subgroups and for every 
 2 �n¹eº,
we have limn!1 fx�;
 .�n/ D 0.

Note that Farber sequences exist if and only if � is residually finite. The most com-
mon example of Farber sequences is residual chains, i.e., nested sequences of finite-index
normal subgroups whose intersection is trivial.

Definition B.5 (Farber neighbourhood [1, Definition 10.2]). Let � be a residually finite
group. An open subset U � Subfi

� is a �-Farber neighbourhood if it is invariant by the
conjugation action of � on Subfi

� and every Farber sequence in Subfi
� eventually belongs

to U .

Finally, we can define the cheap ˛-rebuilding property.

Definition B.6 (Cheap ˛-rebuilding property [1, Definition 10.5]). Let � be a countable
group and ˛ 2 N. Then, � has the cheap ˛-rebuilding property if it is residually finite
and there is a K.�; 1/-space X with finite ˛-skeleton and a constant �X � 1 such that
the following holds: For every real number T � 1, there exists a Farber neighbourhood
U D U.X; T / � Subfi

� such that for every finite covering Y ! X with �1.Y / 2 U , there
is an ˛-rebuilding .Y; Y 0/ of quality .T; �X /.
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