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Compatible pants decomposition for SL2.C/

representations of surface groups

Renaud Detcherry, Thomas Le Fils, and Ramanujan Santharoubane

Abstract. For any irreducible representation of a surface group into SL2.C/, we show that there
exists a pants decomposition where the restriction to any pair of pants is irreducible and where no
curve of the decomposition is sent to a trace ˙2 element. We prove a similar property for SO3-
representations. We also investigate the type of pants decomposition that can occur in this setting
for a given representation. This result was announced by Detcherry and Santharoubane (2022),
motivated by the study of the Azumaya locus of the skein algebra of surfaces at roots of unity.

1. Introduction
Let † be a compact connected oriented surface (without boundary) of genus at least two.
Let � W �1.†/ ! G D SL2.C/ or SO3 be a group homomorphism. We start with the
following definition.

Definition 1.1. A pants decomposition P of† is called compatible with � if for any curve
c 2 P , the elements ˙�.c/ are not unipotent and for any pants P in P , the restriction
�j�1.P / is irreducible.

The purpose of this paper is to prove that any irreducible representation of �1.†/
into SL2.C/ or SO3 admits a compatible pants decomposition. Remark that in the case
of a SL2.C/ representation, the compatibility condition can be translated into a condition
on the traces of the curves of the pants decomposition. The first condition is equivalent
to Tr.�.c// ¤ ˙2, and the second is x2 C y2 C z2 � xyz � 4 ¤ 0, where x; y; z are
the traces of boundary curves of a pair of pants in the decomposition. One type of pants
decomposition important for us is the sausage type which is a pants decomposition in the
same orbit, under the action of the mapping class group of†, as the one shown in Figure 1.

Theorem 1.2. Let � W �1.†/! G D SL2.C/ or SO3 be an irreducible representation.
Then there is a compatible pants decomposition of † for �. Moreover, if � is a repre-
sentation whose image is not conjugated to the quaternion Q8 � SU2, then there is a
compatible pants decomposition for � of sausage type.

The second part of this theorem was announced in [4, Theorem 1.5] without a proof.
The sausage type pants decomposition is very important in [4] and Theorem 1.2 is key
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Figure 1. A sausage type pants decomposition of †.

result to understand the Azumaya locus of the skein algebra of † at roots of unity. Notice
that the existence of compatible pants decomposition for non-elementary representations
in SL2.C/ is a key step used by Gallo–Kapovich–Marden in [7] to prove that holonomies
of CP1-structures are Zariski dense in the SL2.C/-character variety of a given surface. It
is quite intriguing that the exact same condition appeared in [4] in the context of quantum
topology.

A result of Baba [2] shows that the pants decomposition compatible with a non-
elementary representation � arising from [7] enables us to construct explicitly all the
projective structures with holonomy �. Our result for representations in SO3 might also
be used to describe the branched spherical structures with given holonomy.

The question of finding compatible pants decomposition also emerged in the first
author’s thesis, motivated by Witten’s asymptotic expansion conjecture. This conjecture
expresses the asymptotics of Witten–Reshetikhin–Turaev invariants of a 3-manifold M
as a sum of contributions associated with SU2 representations of �1.M/ and involving
Chern–Simons invariants and Reidemeister torsions. The first author conjectures that the
geometric quantization techniques from [3] may be used to estimate the contribution of
representations that admit a compatible pants decomposition.

The proof of Theorem 1.2 is split in several steps. In Section 2, we deal with rep-
resentations which are non-elementary, representations with dense images in SU2 and
representations with images in a non-compact dihedral group. For the non-elementary
case, the existence of compatible pants decomposition is already proved in [7], and we
adapt these techniques to get the sausage type pants decomposition. For the case of a rep-
resentation with dense image in SU2, Theorem 1.2 is a direct application of Previte–Xia’s
result (see [12]) that proved that any such representation has a dense orbit in the SU2 char-
acter variety under the action of the mapping class group. The last case is dealt by hand. In
Section 3, we treat the remaining cases, namely, representations with finite images. Such
representations are classified; the proof is done by studying the orbits under the mapping
class group and building explicit compatible pants decomposition for each orbit.

2. Reduction to representations with finite image

In this section, we reduce the proof of Theorem 1.2 to the case of representations � with
finite images. More precisely, we show Theorem 1.2 assuming that Proposition 3.1 holds.
This proposition will be proven in Section 3.
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2.1. Mapping class group action

Let us begin with some observations on the mapping class group action on sets of repre-
sentations that will be used throughout the rest of the paper. Recall that the mapping class
group of † is defined by

Mod.†/ D HomeoC.†/=HomeoC0 .†/:

The theorem of Dehn, Nielsen and Baer, see for example [6, Chapter 8], states that its nat-
ural action on the fundamental group induces a group isomorphism Mod.†/! OutC.†/
on the index two subgroup OutC.†/ of Out.†/DAut.†/=Inn.†/ induced by the automor-
phisms preserving orientation. Therefore, Mod.†/ acts by precomposition as OutC.�1.†//
on the space of conjugacy classes of representations Hom.�1.†/;G/=G, for any groupG.

A key observation to prove Theorem 1.2 is that this action preserves the set of repre-
sentations admitting a compatible pants decomposition. If �W�1.†/! G is a representa-
tion, we denote by Œ�� its conjugacy class.

Lemma 2.1. Suppose that �1 admits a compatible pants decomposition P . If the conju-
gacy class Œ�1� of �1 is in the closure of Mod.†/ � Œ��, then � admits a compatible pants
decomposition of the type of P .

Proof. For a given pants decomposition P of†, let us denote by C.P/ the set of conjugacy
classes of representations

�1.†/! G

compatible with P. It follows from the definition of compatibility that these sets are open.
Therefore, there exists a representation in .Mod.†/ � Œ��/ \ C.P /. Hence, there exists
f 2 Mod.†/ such that f � Œ�� 2 C.P / and therefore Œ�� 2 C.f �1 �P /.

We will thus prove Theorem 1.2 by studying the orbits of representations �1.†/!
SL2.C/. We will use different methods depending on the image of the representation we
wish to study.

2.2. Non-elementary case

Let us begin with the case where � is a non-elementary representation; i.e., the action of
its image on the Riemann sphere CP1 by Möbius transformations has no finite orbit. We
can in that case adapt the strategy of Gallo, Kapovich and Marden in [7, Part A] to find a
compatible pants decomposition.

Proposition 2.2. Let �W�1.†/! PSL2.C/ be a non-elementary representation. For any
trivalent graph � with 3g � 3 edges that has at least one one-edge loop, there is a pants
decomposition of †, with associated graph � which is compatible with �.

Proof. Let us begin by recalling the main steps of the construction by Gallo, Kapovich and
Marden in [7] of a Schottky pants decomposition for �: a pants decomposition such that
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� � 0

Figure 2. Example of a trivalent graph � and � 0.

the restriction of � to each pair of pants is an isomorphism onto a Schottky group. Note
that this construction of Gallo, Kapovich and Marden works for every non-elementary
representation �1.†/! PSL2.C/ except in genus gD 2 for the pentagon representations.
We suppose for now that � is not a pentagon representation.

The first step is to find special handle in †. That is a handle H whose fundamental
group �1.H / is sent by � onto a non-elementary subgroup of SL2.C/. This handle H

allows us to find g � 1 disjoint simple curves away from it, which are sent by � to loxo-
dromic elements. Cutting the surface along those curves leads to a genus one surface with
2g � 2 boundary components. Choosing any two of these components, we find a curve
separating them from the rest of the surface, and such that the restriction of � to the pair
of pants they bound is an isomorphism onto a Schottky group. Cutting along this curve
takes off a pair of pants and gives a genus one surface with 2g � 3 boundary components.
We repeat the same procedure until we get a genus one surface with two boundary com-
ponents where a special cutting process is applied to get a Schottky pants decomposition.
This process finds a curve bounding the two boundary components and cuts the handle.
We now show that choosing wisely the curves at each step allows us to create a decompo-
sition with any trivalent graph with 3g � 3 edges and at least one one-edge loop. We thus
are reduced to the following combinatorial lemma.

Lemma 2.3. Any trivalent graph � with 3g � 3 edges that has at least one one-edge loop
can be created by this procedure.

Proof. We start from a genus one surface † with 2g � 2 boundary components that come
from cutting g � 1 curves from a closed surface. Let us label the boundary components
by integers 1 6 k 6 g � 1 with the same label if they come from cutting the same curve.
Pick a one-edge loop e. Let us consider the graph � 0 that is the graph � with e and all the
edges connected to it removed, as for example in Figure 2.

Let us cut � 0 along g � 1 edges that do not disconnect it. We obtain a new graph � 0

with 2g � 2 boundary components that we label with integers 1 6 k 6 g � 1. We require
that two boundaries have the same label if they come from the same edge; see the left side
of Figure 3.

The graph � 0 has 2g � 2 boundary components and 2g � 3 vertices. Therefore, one
of the vertices has two boundary components; let us choose such a vertex f . Denote by x
and y the labels of the boundary components next to f . Let us cut the last edge joining
f to the rest of the graph and remove f from � 0. We give a new label z to the resulting
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Figure 3. The graph � 0 in two of the steps.

boundary component; see the right side of Figure 3. In the surface †, we pick a curve that
bounds the curves labeled by x and y and take off the pair of pants it defines. We label by
z the new boundary curve.

Repeat this procedure until � 0 has only one vertex, with two boundary components.
Note that at each step, the number of vertices decreases by one, and so does the number
of boundary components of � 0. We are left with † of genus one surface with two bound-
ary components. We then apply the special cutting procedure to finish creating the pants
decomposition. This pants decomposition is isomorphic to � by construction.

We now deal with the special case in genus two where � is a pentagon representation.
By [10, Proposition 5.1], we can make the mapping class group act so that the sausage
type pants decomposition of Figure 6 satisfies the following:

• One of the pair of pants is sent by � isomorphically onto a Schottky group.

• The other pair of pants is sent by � to a non-elementary group and each of its curves
is sent by � to a loxodromic element.

This decomposition is thus compatible with �.

We have proven Proposition 2.2 for representation with values in PSL2.C/, which is
stronger than the same result for representation in SL2.C/. In particular, the pentagon
representations are not representation �1.†/! SL2.C/: they do not lift to SL2.C/.

2.3. Elementary case

We now turn to the case where �W�1.†/! PSL2.C/ is elementary: the action of its image
on CP1 has finite orbits. It is known, see for example [13, Chapter 5], that � falls in one
of the following three categories:

(1) � is affine: it has a conjugate into the upper trianglar matrices.

(2) � is spherical: it has a conjugate into the group PSU2 D SO3 that preserves the
round metric of CP1 D S2.

(3) � is dihedral: it has a conjugate into the group D of matrices that are either diag-
onal or that have their two diagonal entries vanishing.

Observe that affine representations are reducible. We will therefore only consider
representations that are either spherical or dihedral. We begin with the case where � is
spherical.
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2.3.1. Spherical case. We now show Theorem 1.2 for representation with infinite image
in SO3 D PSU2.

Proposition 2.4. Let �W �1.†/ ! PSU2 be a representation with infinite non-abelian
image. There is a pants decomposition of † of sausage type which is compatible with �.

Let us begin by recalling the description of the closed subgroups of SU2. Let us denote
by K the subgroup of SU2 generated by the diagonal matrices and the matrices with both
diagonal entries vanishing. In other words, K D SU2 \D.

Lemma 2.5. Let H be a subgroup SU2. One of the following holds:

(1) H is finite.

(2) H has a conjugate into the diagonal matrices.

(3) H has a conjugate dense in K.

(4) H is dense in SU2.

Proof. Replacing H by its closure if necessary, we may assume that H is closed and is a
Lie subgroup of SU2. Let us recall that the Lie algebra su.2/ is isomorphic to R3 endowed
with the cross-product. This Lie algebra does not admit any two-dimensional subalgebra.
Hence, the Lie algebra h of H must be of dimension 0, 1 or 3.

• If dim h D 0, then H is a discrete group, and since SU2 is compact, H is finite.

• If dim h D 3, then H is the whole connected group SU2.

• If dim h D 1, then let us conjugate H such that its connected component containing
the identity is

Diag D
²�

eit 0

0 e�it

�
j t 2 R

³
:

Let h 2 H . The group hDiag h�1 is connected and contains the identity and hence
is included in H . Therefore, h must send the eigenvectors of matrices of Diag to
themselves. Let us denote by .e1; e2/ the canonical basis of C2. The vector he1 is an
eigenvector of a matrix in Diag and thus is in either Re1 or Re2. Hence, h is either
diagonal or has the form

�
0 �e�i�

ei� 0

�
.

It follows that the infinite subgroups of SO3.R/ D PSU2 are, after conjugation, either
abelian, dense in O2.R/ or dense in SO3.R/. The abelian representations are reducible.
Therefore, we will only consider the two other cases. To prove Proposition 2.4, it suffices
to show that in the closure of the orbit of such a �, there exists a representation with finite
non-abelian image. Indeed by Lemma 2.1 and Proposition 3.1, the representation � then
admits a compatible pants decomposition of sausage type. Proposition 2.4 follows from
the following lemma.

Lemma 2.6. Every representation �W �1.†/ ! PSU2 with infinite non-abelian image
admits a representation with finite non-abelian image in the closure of its Mod.†/-orbit.
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Figure 4. Part of a sausage type pants decomposition.

We will actually show that for representations in SO3 with dense image, we can obtain
any trivalent graph � .

Lemma 2.7. For every trivalant graph � with 3g � 3 edges and every representation
�W�1.†/! SO3 with dense image, there exists a compatible pants decomposition whose
graph is � .

Proof. The mapping class group orbit of � is dense in its connected component of

Hom
�
�1.†/;SO3.R/

�
=SO3.R/:

This is a consequence of the main result of [12]; see also [9, Lemma 4.4]. Let us recall
that this connected component is the set of all representations �1.†/! PSU2 D SO3.R/
that lift to SU2 if � does (resp. that do not lift if � does not). Each of these components
admits at least one representation with a compatible pants decomposition of graph �; see
[8] and [11, Section 6]. The result follows from Lemma 2.1.

We now prove Lemma 2.6 for the representation �1.†/! SO3 whose image is not
dense in SO3.

Proof. We are left with the case where � has its image dense in O2.R/. Its Mod.†/-orbit is
dense in the representations �1.†/! O2.R/ that are not abelian and lift to SU2 if � does
(resp. do not lift if � does not); see [9, Proposition 4.2]. These sets contain representations
with finite non-abelian image. For example, we can take a representation with image as a
finite dihedral group.

2.3.2. Dihedral case. We now turn to the case where � is dihedral, that is, when it has
image in D. The group D is naturally isomorphic to C? Ì Z2. Let us denote by pWC? Ì
Z2 ! Z2 the projection on the second factor.

Proposition 2.8. Let �W �1.†/! H be an irreducible representation with infinite non-
abelian image. There exists a decomposition of sausage type which is compatible with �.

Fix a1; : : : ; bg a standard generating set for �1.†/. Let us observe that the curves
freely homotopic to ai for 1 6 i 6 g and the ones freely homotopic to

Qg

iDk
Œai ; bi � can

be completed in a sausage type pants decomposition; see Figure 4.
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Proof. We have proven this result when � takes its values in SU2. Therefore, we now
assume that � does not admit a conjugate in SU2.

It suffices to prove that we can assume that the two following conditions are met, after
precomposing � with an automorphism of �1.†/:

(1) p ı �.ai / D 1 for all 1 6 i 6 g;

(2) �
�Qg

iDk
Œai ; bi �

�
is loxodromic for 1 < k 6 g.

Indeed we have seen that the curve freely homotopic to these loops forms part of a
pants decomposition of sausage type. If � satisfies these two conditions, then the restric-
tion of � to each pair of pants is not reducible: the curve homotopic to

Qg

iDk
Œai ; bi �

preserves only the lines generated by the vectors of the standard basis of C2, while the
one homotopic to ai does not preserve any of them. Moreover, two of the curves of each
pair of pants have zero entries on the diagonal and hence are not central. The third one is
non-central as well because it is loxodromic.

We now prove that we may assume that those two conditions are met, with an action
of the mapping class group.

The mapping class group acts transitively on the set of epimorphisms �1.†/! Z2;
therefore as before we may assume that p ı �.
/ D 0 for all 
 2 ¹a1; b1; : : : ; bgº n ¹b1º
and p ı �.
/ D 1 for 
 D b1. As before we can conjute � by a diagonal matrix so that

�.b1/ D

�
0 1

�1 0

�
:

The matrices �.a1/ and �.b1/ must commute. Hence,

�.a1/ 2

²�
1 0

0 1

�
;�

�
1 0

0 1

�³
:

Note that the restriction �j†g�1 of � to the subsurface obtained by removing the handle
containing a1 and b1 takes its values in kerp ' C?. Let f D log j�†g�1 jW�1.†/! R.
This homomorphism is not trivial since � does not take its values in SU2. We may act by
the mapping class group of †g�1 to make f .ag/ non-zero: we may exchange the handles
so that either f .ag/ or f .bg/ does not vanish. Then applying a Dehn twist along bg if
necessary, we may assume that f .ag/ ¤ 0. Applying a power Dehn twist along ag , we
may assume that f .bg/C

Pg�1
iD1 f .bi / > 1.

Let 
 D b1 : : : bg�1bg . Let us apply a Dehn twist along a curve freely homotopic to 
 .
It leaves unchanged each bi and changes each ai so that p ı �.ai / D 1. Moreover,

gY
iDk

�
�.ai /; �.bi /

�
D

gY
iDk

��
0 �i
���1i 0

�
;

�
�i 0

0 ��1i

��
D

gY
iDk

��
��2i 0

0 �2i

��
:

Therefore, we have

�

� gY
iDk

Œai ; bi �

�
D

 Q
i>k �

�2
i 0

0
Q
i>k �

2
i

!
that is loxodromic for every 1 < k 6 g.
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Figure 5. The top half of a cellular decomposition of †g associated with the square chain dual
graph, and an associated cocycle c. The cocycle c has value 1 on all edges of the lower copy of the
dual graph.

3. Representations onto finite subgroups of SU2 or SO3

We recall that pants decomposition of sausage was introduced in Figure 1. We will also
consider pants decomposition of square type, to be the ones whose dual graph is repre-
sented in Figure 5. This section is devoted to the proof of the following proposition.

Proposition 3.1. Let † be a closed compact oriented surface.

• Let G be a nonabelian finite subgroup of SO3 and � W �1.†/! G an epimorphism.
Then there is a pants decomposition of † of sausage type, and there is one of square
type, which are compatible with �.

• Let � W �1.†/!Q8 be an epimorphism. Then there is a pants decomposition of † of
square type, which is compatible with �.

To exhibit such appropriate epimorphisms into finite groups, we will define them using
cocycles on a cellular decomposition of the surface, which we define in Section 3.1.

3.1. Representations as holonomy of cocycles

For X a CW-complex, we write C i .X/ for the set of its oriented i -dimensional cells.

Definition 3.2. Let X be a CW-complex and G a group. A G-cocycle on X is a map
c W C1.X/! G that satisfies the following properties:

• For any oriented edge e 2 C1.X/, we have c. Ne/ D c.e/�1 where Ne is the edge e with
opposite orientation.

• For any 2-cell w 2 C2.X/ with boundary e1e2 : : : ek , we have

c.e1/c.e2/ : : : c.ek/ D 1G :

For G a group, G-cocycles on a CW complex X correspond to the “local” version of
representations of �1.X/ into G. Indeed, one recovers representations of �1.X/ taking
the holonomy.
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Lemma 3.3. For c a G-cocycle on a CW-complex X , for x0 2 C0.X/ and 
 D e1 : : : en
a loop on the 1-skeleton of X based at x0, let us write

holc.
/ D c.e1/ : : : c.en/:

Then, the following hold:

• For c a G-cocycle, the map 
 7! holc.
/ is a morphism �1.X; x0/! G.

• For any morphism ' W �1.X; x0/! G, there is a G-cocycle on X such that ' D holc .

Proof. Any loop in X can be homotoped to lie in the 1-skeleton of X , and any homotopy
between loops in the 1-skeleton can be homotoped to lie in the 2-skeleton. Moreover, the
second condition of Definition 3.2 ensures that the holonomy of a loop depends only on
its homotopy class.

For the second point, let us consider a covering tree T in the 1-skeleton and let zX D
X=hT i be the CW-complex obtained by contracting T to a point. Then since zX has only
one 0-cell, a choice of G-cocycle on zX is equivalent to a choice of representation

� W �1. zX/! G:

Note that zX has the same �1 as X , and extending a G-cocycle on zX by setting c.e/D 1G
for any e 2 T , one gets a G-cocycle whose holonomy is �.

G-cocycles with the same holonomy can be related thanks to the following proposi-
tion.

Lemma 3.4. Let X be a CW-complex, G a group, x0 2 C0.X/ and let c and c0 be two
G-cocycle with the same holonomy. Then there exists a map d W C 0.X/! G such that
d.x0/ D 1G and for any oriented edge e with @e D x [ Ny, we have

c0.e/ D d.x/c.e/d.y/�1:

Proof. Choose a maximal covering tree out of the 1-skeleton of X . We can pick the value
of d one vertex ofC 0.X/ at a time, so that the relation c0.e/D d.x/c.e/d.y/�1 is satisfied
for any edge e belonging to T . One can further assume that d.x0/D 1G , by picking x0 as
the first vertex.

Now define c00 by c00.e/ D d.x/c.e/d.y/�1 for any edge e of C 1.X/. It is clear that
c00 is also a 1-cocycle, which has the same holonomy as c or c0, and c00 coincides with
c0 on T . We claim that it coincides with c0 on the remaining edges. Indeed, for any edge
e not in T , there is a loop on C 1.X/ based at x0 whose only edge not in T is e. Then the
fact that c0 and c00 have the same holonomy and coincide on edges in T implies that they
coincide on e too.

Now let X D †g with some fixed cellular decomposition. We will need a criterion for
when a representation � D holc of �1.†g/ into SO3 lifts to a representation z� W �1.X/!
SU2. Since any representation of �1.†g/ into SU2 is represented by a SU2-cocycle, �
will admit a lift if and only if c lifts to a SU2-cocycle Qc.
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For any oriented edge e of the 1-skeleton of †g , choose a lift Qc.e/ 2 SU2 of c.e/ 2
SO3. The lifts can be chosen so that Qc. Ne/D Qc.e/�1 are unique up to multiplication by˙I2.
Let us fix a choice of lift of the SO3-cocycle c to a map Qc W C1.†g/ ! SU2, and an
orientation of†g . For f 2 C2;C.†g/, the set of oriented 2-cells whose orientations agree
with that of †g , let @f D e1 : : : ek be the oriented boundary. We define

".c/ D
Y

f 2C2;C.†g /

holQc.@f / 2 SU2:

Note that since c is a SO3-cocycle, we have that holc.@f /D 1SO3 for any f 2 C2;C.†g/;
hence, ".c/ 2 ¹˙I2º. Moreover, since each edge appears twice in the product, and the
choices of lifts Qc.e/ are unique up to ˙I2, the quantity ".c/ is independent of the choice
of lift Qc.

Lemma 3.5. Let � D holc be a representation of �1.†g ; x0/ into SO3. Then � lifts to a
SU2 representation of �1.†g ; x0/ if and only if ".c/ D I2.

Proof. Note that if c lifts to a SU2 cocycle Qc, then ".c/ D I2; since ".c/ does not depend
on the choice of a lift Qc W C1.†g/! SU2, we must have ".c/ D I2. Moreover, we claim
that if the representation � D holc lifts, then so does the cocycle c. Indeed, the lift z� will
be the holonomy of a SU2 cocycle c0. We may not have that r.c0/ D c; however, r.c0/
and c have the same holonomy, and hence they are related by a map d W C0.†g/! SO3,
so that r.c0/.e/ D d.a/c.e/d.b/�1 if @e D a [ Nb. Since there is no obstruction to lift the
map d to SU2, after correcting c0 by a lift d 0 of d , we get a lift of the cocycle c to SU2.

3.2. Compatible pants for representations with finite image

We now want to produce for an irreducible representation of �1.†g/ in SO3 or SU2 with
finite image a compatible pants decomposition. We note that for the groups SO3 and
SU2 being irreducible is equivalent to having nonabelian image. Let us write r W SU2 !
SO3 ' SU2=¹˙I2º for the projection map. When � W �1.†g/! SU2 is irreducible, it
can happen that the composition r ı � is also irreducible; in that case, a compatible pants
decomposition for r ı � will also be one for �. This will allow us to focus on the case of
representations into SO3, with the exception of representations with image the quaternion
group Q8, as the following lemma shows.

Lemma 3.6. Let G be a nonabelian finite subgroup of SU2 such that r.G/ < SO3 is
abelian. Then G is conjugated in SU2 to Q8.

Proof. First we claim that�I2 must be inG; otherwiseG and r.G/would be isomorphic.
Then r.G/ ' G=¹˙I2º is the quotient of G by a subgroup of its center. The subgroup
r.G/ < SO3 being abelian, it is either cyclic or (up to conjugation) the subgroupD < SO3
of diagonal matrices with ˙1 diagonal coefficients and determinant 1. However, if r.G/
was cyclic, this would imply that G itself is abelian. Hence, we are in the second case
which proves the claim since r�1.D/ D Q8.
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The next lemma is standard; a proof may be for example found in [1].

Lemma 3.7. Nonabelian finite subgroups of SO3 are isomorphic to either a dihedral
group Dn with n � 3, to the symmetric group S4, or the alternating group A4 or A5.

Proposition 3.8 ([9, Proposition 1.8]). Letg�2, and letGDDnwith n�3 orS4,A4 orA5.
For " 2 ¹C;�º, let Homs;".�1.†g/;G/ be the set surjective morphisms �1.†g/!G that
lift (resp. do not lift) to SU2 if " D C (resp. " D �). Then Mod.†g/ acts transitively on
Homs;".�1.†g/; G/.

We note that for G D Dn with n odd, any surjective morphism lifts to SU2. We need
to complement this proposition with the case of surjective morphisms onto the quaternion
group.

Proposition 3.9. Let g � 2. The mapping class group Mod.†g/ acts transitively on
Homs.�1.†g/;Q8/.

Proof. Let a1; b1; : : : ; ag ; bg be standard generators of �1.†g/. We recall that the quater-
nion group has generators and relations:

Q8 D
˝
I; J;K;�1 j I 2 D J 2 D K2 D �1; .�1/2 D 1; IJ D K;KI D J; JK D I

˛
:

Following the strategy of the proof of Proposition 3.8, we will deduce the proposition
from the fact that Mod.†g/ acts transitively on surjective morphisms onto a cyclic group
[5] (see also [9, Theorem 3.3] for a short proof). Let � W �1.†g/! Q8 be a surjective
morphism. Then the quotient morphism onto Q8=¹J º ' Z=2Z is surjective. Up to map-
ping class group action, we can assume that �.a1/ 2 I hJ i and that �.b1/; �.ai /; �.bi / 2
¹J º for i � 2. We claim that actually �.b1/ D ˙1; indeed, otherwise, one would have
Œ�.a1/; �.b1/�D�1, while Œ�.ai /; �.bi /�D 1 for i � 2. Therefore, � would not satisfy the
surface group relation.

Moreover, up to applying t2a1 where ta1 is the Dehn twist along a1, one may assume
that �.b1/ D 1 (as t2a1.b1/ D b1a

2
1).

Now since �.a1/ 2 I hJ i �.b1/ D 1 and � is surjective onto Q8, one must have that
�jha2;b2;:::;ag ;bg i is surjective onto hJ i ' Z=4Z. Without loss of generality, assume that a2
is mapped to a generator of hJ i. The loop b1a2 is representated by a simple closed curve
disjoint from b1, and one has tk

b1a2
.a1/ D a1.b1a2/

k . Hence, up to applying a power of
this Dehn twist, one may assume that �.a1/ D I . Finally, up to mapping class group
action of the subsurface with fundamental group ha2; b2; : : : ; ag ; bgi, one may assume
that �.a1/ D I , �.b1/ D 1, �.a2/ D J , �.b2/ D 1 and �.ai / D �.bi / D 1 for i � 3.

We recall that the orbits of the action of Mod.†g/ on pants decomposition of †g cor-
respond to the isomorphism classes of the dual trivalent graphs of pants decompositions.
Thanks to Propositions 3.8 and 3.9, to show that every surjective morphism of �1.†g/
onto a finite nonabelian groupG of SU2 or SO3 admits a compatible pants decomposition
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Figure 6. The top half of a cellular decomposition of †g associated with the sausage dual graph,
and an associated cocycle c. The cocycle c has value 1 on all remaining edges of the lower copy of
the dual graph.

of some fixed type, we only need to exhibit one such surjective morphism which is com-
patible to a fixed pants decomposition of the same type. In addition, for G D Dn with n
even, S4, A4 or A5, we need to find one such surjective morphism that lifts to SU2 and
one that does not.

We will exhibit such surjective morphism for two types of pants decomposition: one
with a sausage dual graph, and one with “the square chain” dual graph. They are repre-
sented in Figures 5 and 6. Note that the pants in the pants decomposition can be further
cut by three arcs into a pair of hexagons, so that†g is obtained by gluing two copies of (a
banded version of) its dual graph, and so that we get a cellular decomposition of †g , with
2-cells that are hexagons. This is represented in Figures 5 and 6.

We define a G-cocycle for these cellular decompositions by specifying the holonomy
of each arc, and checking that the holonomy around each hexagon is 1.

Proposition 3.10. Let †g be a compact oriented genus g � 2 surface with a cellular
decomposition as in Figure 5. LetG DDn, n� 3 orA4;S4;A5 orQ8. Then, the following
hold:

• There exist x; y; z 2 G non-central elements such that xyz D 1G , and G D hx; yi.

• If x; y; z 2 G satisfies those conditions, then the holonomy � D holc of the cocycle c
described in Figure 5 is compatible with the pants decomposition shown in the same
figure.

• If moreoverG¤Q8, then �may be interpreted as a representation � W�1.†g/! SO3,
and as such, it lifts to SU2.

Proof. It follows from the definition of c that the value of its holonomy � D holc on
any curve of the pants decomposition is x; y or z, up to conjugation and possibly inver-
sion. Hence, any curve of the pants decomposition is mapped to a non-central element.
Moreover, the restriction of � to any pants of the decomposition is conjugated to the map
F2 ! G which maps the two generators of the free group F2 to x and y. This and the
hypothesis G D hx; yi imply that the restriction of � to each pair of pants of the decom-
position is surjective onto G, hence non-abelian. This of course also implies that � itself
is surjective.
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If G is a subgroup of SO3, then the SO3-cocycle c may be lifted to SU2. Indeed, the
top hexagons of the decomposition are all identical; to lift c it suffices to choose lifts Qx; Qy
and Qz so that Qx Qy Qz D 1SU2 . On the edges that belong to the bottom hexagons, we simply
lift I3 2 SO3 to I2 2 SU2. This defines indeed a SU2 cocycle Qc that lifts c.

Finally, we prove that in each case G D Dn; n � 3 or A4; S4; A5 or Q8, a triple
x; y; z 2 G of non-central elements such that xyz D 1G and G D hx; yi exists.

• For G D Dn D hr; s j s2 D 1; rs D sr�1i, one can take x D s, y D r and z D sr .
These elements are non-central when n � 3.

• For G D A4, one can take x D .12/.34/, y D .123/ and z D .234/. Then x and y do
not commute (in particular, x; y and z are non-central), and one can see that hx; yi
contains both the subgroup of all double transpositions and a 3-cycle; hence, its order
is divisible by 3 and 4; hence, hx; yi D A4.

• For G D S4, one can take x D .12/, y D .1234/ and z D .324/. Again, x; y and z are
non-central and S4 D hx;yi since it contains all transpositions .i i C 1/D yi�1xy1�i

with 1 � i � 4.

• ForG D A5, one can take x D .12/.34/, y D .12345/, z D .254/. These elements are
obviously non-central. We claim that A5 D hx; yi. Indeed, since x; y; z have orders
2; 5 and 3, the subgroup hx; yi has order a multiple of 30, and index at most 2. But A5
is simple, and a subgroup of index 2 is always normal, since the index must be 1.

• For G D Q8 D hI; J;K;�1 j I 2 D J 2 D K2 D �1; .�1/2 D 1; IJ D Ki, we can
take xD I , y D J and zD�K, as these elements are non-central andQ8 is generated
by I and J .

Proposition 3.10, together with Propositions 3.8 and 3.9, shows that any finite non-
abelian image SO3 representation of �1.†g/ that lift to SU2 has a compatible pants
decomposition. It remains to treat the case of representations that do not lift to SU2. We
will use the following lemma.

Lemma 3.11. Let x; y 2 SO3 be commuting order 2 elements such that x ¤ y˙1, and let
Qx; Qy be any lifts of x; y in SU2. Then Œ Qx; Qy� D �I2.

Proof. Elements of order 2 in SO3 lift to order 4 elements in SU2 since the only order 2
elements in SU2 are˙I2. Moreover, two order 4 elements in SU2 must be co-diagonaliz-
able with eigenvalues ˙i ; hence, they must be equal or inverse of one another. Since
x ¤ y˙1, one also has that Qx ¤ Qy�1. So Qx and Qy are non-commuting, and therefore
Œ Qx; Qy� D �I2 since their projections to SO3 are commuting.

Proposition 3.12. For G D Dn, n � 3 even, or A4; S4 or A5, there is a surjective repre-
sentation � W �1.†g/! SO3 with image isomorphic to G, compatible with a square type
pants decomposition and such that � does not lift to SU2.

Proof. Let c be the cocycle defined in the proof of Proposition 3.10. We will modify c
on the edges of a single hexagon of the cellular decomposition of Figure 5 and obtain
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another cocycle c0 whose holonomy is still surjective onto G and compatible with the
pants decomposition, but so that ".c0/ D �I2.

By Proposition 3.5, this shows that �0 D holc0 does not lift. Take a top hexagon of the
cellular decomposition, and replace the holonomy of edges: 1, x, 1, y, 1, z by a, x, a�1,
y, 1, z where a ¤ x˙1 has order 2 and commutes with x. The holonomy of this hexagon
is still 1. The corresponding bottom hexagon also still has holonomy 1, so this defines a
G-cocycle c0. We have not changed the holonomy of the pants decomposition curves, so
they are still non-central, the restriction to any pair of pants is still non-abelian since y and
z did not commute, and �0 is still surjective since its restriction to at least 1 pair of pants
of the decomposition coincides with the restriction of �, which was surjective.

Notice that in each case covered in the proof of Proposition 3.10, the element x was
chosen of order 2. Lemma 3.11 implies that ".c/ D �".c0/; hence, �0 does not lift to SU2.

To conclude, it remains to show in each case that there is a choice of an element a of
order 2 such that a ¤ x˙1 and Œa; x� D 1. We list again the cases:

• If G D Dn, n � 3 even, the element a D rn=2 commutes with x D s.

• If G D A4, the element a D .13/.24/ commutes with x D .12/.34/.

• If G D S4, the element a D .34/ commutes with x D .12/.

• If G D A5, the element a D .13/.24/ commutes with x D .12/.34/.

Proposition 3.13. Let †g be a compact oriented genus g � 2 surface with a cellular
decomposition as in Figure 6. LetGDDn, n�3 orA4;S4 orA5. Then, the following hold:

• There exists x; y; a 2 G, with x; y non-commuting elements and such that Œx; a�y D
1G , and G D hx; ai.

• If x; y; a 2 G satisfies those conditions, then the holonomy � D holc of the cocycle c
described in Figure 6 is compatible with the pants decomposition shown in the same
figure.

• The representation � interpreted as a representation � W �1.†g/! SO3 lifts to SU2.

Proof. We again start by proving the last two points, which are easier: notice that the
holonomy of the top hexagons of the cellular decomposition are all Œx; a�y, while the
holonomy of the bottom hexagons are all aa�1 D 1G . Thus, c defines a G-cocycle if and
only if Œx; a�y D 1G . The representation � D holc is surjective since G D ha; xi and the
image of � contains a and x, and it is irreducible in restriction to each pair of pants since
x and y do not commute.

For the lifting property, notice that one can choose lifts Qx; Qa; Qy 2 SU2 of x; y; a 2 SO3
so that Œ Qx; Qa� Qy D I2 since Qy appears with odd power in the product Œ Qx; Qa� Qy. Then using
the same lifts for each hexagon, it is clear that we get SU2-cocycle Qc that is a lift of c.

We now produce elements x;a; y for each choice of finite groupG listed in the propo-
sition:

• If G D Dn, n � 3 odd, take x D s, a D r .nC1/=2 and y D Œa; x� D rnC1 D r . Then
x and y are non-commuting and generate G (thus a and x also generate G).
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• If G D Dn; n � 3 even, take x D s, a D r and y D Œa; x� D r2. Since n � 3, x and
y are non-commuting and moreover G D ha; xi.

• IfG D A4, take x D .123/, aD .234/ and y D Œa; x�D .14/.23/. The elements x and
y are non-commuting. We claim that ha;xi DG: indeed, ha;xi contains the 3-cycle x
and contains a double transposition y. It actually contains the subgroup generated
by double transpositions since it also contains xyx�1 D .13/.24/. Thus, its order is
divisible both by 3 and 4; therefore, it is A4.

• If G D S4, take x D .1234/, a D .23/ and y D Œa; x� D .234/. It is again clear that
x and y are non-commuting. The subgroup ha; xi contains a 3 and a 4 cycle; hence,
its index is 1 or 2. But the only index 2 subgroup of any Sn is An, and ha; xi is not
included in A4 since x … A4, so we must have S4 D hx; ai.

• If G D A5, take x D .13/.24/, a D .345/ and y D Œa; x� D .13452/. Then x and y
are non-commuting, and ha; xi has order divisible by 2; 3 and 5. Thus, it has index at
most 2 in A5, and therefore by simplicity of A5 one has A5 D ha; xi.

Again we complement the previous proposition with a proposition which deals with
non-abelian finite image SO3 representations that do not lift to SU2.

Proposition 3.14. For G D Dn, n � 3 even, or A4; S4 or A5, there is a surjective rep-
resentation � W �1.†g/! SO3 with image isomorphic to G, compatible with a sausage
type pants decomposition and such that � does not lift to SU2.

Proof. We follow the same strategy as for Proposition 3.12, modifying the cocycle c of
Proposition 3.13 on the edges of a single top hexagon. This time the top hexagon will
be the leftmost hexagon in Figure 6. The new holonomy will still be surjective as the
restriction to the one-holed torus on the right side of the decomposition will not have
changed, and furthermore it will be clear that it is still compatible with the pants decompo-
sition. The sequence of holonomy of edges for the distinguished top hexagon was initially:
x; a; x�1; a�1; y; 1, and we change it to the following:

• if G D Dn, n � 3 even, to x; ab; x�1; b�1a�1; y; 1 where b D rn=2 commutes with
x D s;

• ifGDA4, to x;a;x�1;a�1b;y;b�1 where bD.12/.34/ commutes with yD.14/.23/;

• if G D S4, to xb; a; b�1x�1; a�1; y; 1 where b D .14/ commutes with a D .23/;

• if G D A5, to x; ab; x�1; b�1a�1; y; 1 where b D .12/.34/ commutes with x D
.13/.24/.

Lemma 3.11 then implies in each case that ".c0/ D �".c/, and hence the new holonomy
does not lift.
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