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Finding lower bounds on the growth and entropy
of subshifts over countable groups

Matthieu Rosenfeld

Abstract. We provide a lower bound on the growth of a subshift based on a simple condition on
the set of forbidden patterns defining that subshift. Aubrun, Barbieri, and Thomassé showed a simi-
lar result based on the Lovász local lemma for subshifts over any countable group, and Bernshteyn
extended their approach to deduce some lower bound on the exponential growth of the subshift.
Our result has a simpler proof, is easier to use for applications, and provides better bounds on the
applications from their articles (although it is not clear that our result is strictly stronger in general).
In the particular case of subshifts over Z, Miller gave a similar but weaker condition that implied
the non-emptiness of the associated shift. Pavlov used the same approach to provide a condition that
implied exponential growth. We provide a version of our result for this particular setting, and it is
provably strictly stronger than the result of Pavlov and the result of Miller. In practice, it leads to
considerable improvement in the applications. We also apply our two results to a few different prob-
lems including strongly aperiodic subshifts, nonrepetitive subshifts, and Kolmogorov complexity of
subshifts.

1. Introduction

Let A be a finite alphabet and .G; :/ be a group. The elements of A are called letters. A
configuration is an element of the set AG D ¹x WG!Aº (which we can see as a coloring
of the elements of G by A). A support is a non-empty finite set S � G and a pattern with
support S is an element of AS . A pattern p 2 AS appears in a configuration x 2 AG if
there exists g 2 G such that for all s 2 S , x.gs/ D p.s/. We then say that p appears in X
at position g. If p does not appear in x, then x avoids p. For any set of patterns F , XF is
the set of configurations avoiding F , that is,

XF D ¹x 2 AG
W 8f 2 F ; x avoids f º:

A subshift X � AG is a set of configurations defined by a set of forbidden patterns, that
is,X is a subshift if there exists a set of patterns F such thatX DXF (F is not necessarily
unique).

It seems natural that if the set of forbidden patterns is “small” enough, thenXF should
be non-empty regardless of what exactly is in F . Intuitively, it is easier to forbid a few
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patterns than many patterns, and it is easier to forbid large patterns than small patterns.
Aubrun, Barbieri, and Thomassé gave a sufficient condition for a subshift to be non-empty
and this condition only depends on the sizes of the different forbidden patterns [1]. Their
result relies on the Lovász local lemma. Bernshteyn extended on their idea and showed
in a larger but similar context that similar conditions even implied some lower bounds on
the “size” of the subshift [3]. He considered five different notions of “size of a subshift”,
one of them being the so-called topological entropy of a subshift. Intuitively, the topolog-
ical entropy of a subshift describes the growth of the number of orbits in the associated
dynamical system. From a more combinatorial point of view, the complexity of a subshift
is the function that maps n to the number of different patterns that appear in the subshift
by translation of a given support of size n and the entropy is the logarithm of the growth
rate of the complexity.

If instead of any group we restrict our attention to G D Z, we can use the structure
of Z to obtain more precise results. In this setting, Pavlov gave a condition on F that
implies lower bounds on the entropy of XF [15]. His proof was based on an idea intro-
duced by Miller to show that a subshift is non-empty [12]. He then used this condition to
deduce a condition for other interesting properties of subshifts such as the uniqueness of
measures of maximal entropy.

In this article, we give a general lower bound on the entropy of XF that only depends
on the size of the patterns of F . Our condition is hard to compare to the bounds of [1, 3],
but it seems to give better results in general and to be easier to optimize. The authors of [1]
use their criterion to prove the existence of non-empty aperiodic shifts over any countable
group, and we strengthen their result by showing that there exist strongly aperiodic sub-
shifts with entropy arbitrarily close to the entropy of the full shift. We also deduce that
there exist nonrepetitive colorings of the Cayley graph of a group using a much smaller
alphabet (by a factor� 217) than the one given in [1].

We then focus our attention on the special caseG DZ, and we provide a condition that
is strictly better than the one given in [15]. In practice, the improvement on the resulting
bounds seems to be considerable.

There are two main ingredients to our proof. The first one is to show that if the groups
are countable and amenable, then the growth rate of the number of patterns that avoid F

is the same as the growth rate of the number of patterns that appear in a configuration
of XF . It seems to be folklore, but we were not able to find this result in the literature.
Shur showed a version of this result restricted to the case G D Z [20]. His proof relied on
automata and regular languages, while our proof only relies on combinatorics and topol-
ogy. The same result was also proven over Zd , but for the specific case of subshifts of finite
type [8, 9]. We then provide some lower bounds on the number of patterns avoiding F ,
which implies a lower bound on the entropy of the associated subshift.

The argument used for our lower bound is a simple counting technique recently intro-
duced in [17] and already used in a few different settings [4, 10, 18, 21]. In the setting of
combinatorics on words, a similar technique was already known under the name power
series method [2, 5, 14, 16]. The conditions in [12, 15] resemble the conditions obtained
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by the power series methods, but it appears that the link was never established. In fact, if
G D Z, Lemma 18 can also be deduced as a particular case of the conditions from [14].

The article is organized as follows. We first provide a few definitions and notations.
Then we prove in Section 3 that, for countable amenable groups, the growth rate of locally
admissible patterns is the same as the growth rate of globally admissible patterns. We then
give our lower bound on the growth rate in the general case followed by an application
of this bound. We conclude with our bound in the particular setting of G D Z and a
comparison with the bound given by Pavlov.

2. Definitions and notations

For any set S and any integer n,
�
S
n

�
is the set of all subsets of S of size n. For any function

f W A! B and A0 � A, the restriction of f to A0 is the function f jA0 W A0! B such that
for all a 2 A0, f jA0.a/ D f .a/. Given a set of functions C � BA and a subset A0 � A,
we write C jA0 D ¹cjA0 W c 2 C º. For any two sets A and B of elements of a group .G; �/,
we write A � B D ¹a � b W a 2 A; b 2 Bº and A�1 D ¹a�1 W a 2 Aº.

The support of a pattern p is given by supp.p/D S . The size of a pattern is defined to
be equal to the size of its support, that is, jpj D jsupp.p/j. The set of non-empty patterns
over G is

ACG D
[
S�G

0<jS j<1

AS :

For any set of patterns F �ACG , we say that a pattern p is globally admissible if there
exists x 2 XF such that p appears in x. It is locally admissible if p avoids all patterns
f 2 F . For all support S � G and set of forbidden patterns F � ACG , we let G

.S/

F
and

L
.S/

F
be, respectively, the set of globally and locally admissible patterns of support S .

By definition, every globally admissible pattern is necessarily locally admissible, that is,
G
.S/

F
�L

.S/

F
for all S . For any set of forbidden patterns F �ACG and integer n, we define

the global complexity of XF as

G.n/

F
D min
S2.Gn/

jG
.S/

F
j;

and the local complexity as
L.n/

F
D min
S2.Gn/

jL
.S/

F
j:

The global growth of XF is given by

˛.F / D lim
n!1

.G.n/

F
/1=n;

and the local growth is
z̨.F / D lim

n!1
.L.n/

F
/1=n:

Let us justify that the local and the global growth are well defined.



M. Rosenfeld 992

Lemma 1. For any F � ACG , the quantities ˛.F / and z̨.F / are well defined. Moreover,
for all n � 0,

.G.n/

F
/1=n � ˛.F / and .L.n/

F
/1=n � z̨.F /:

Proof. Let i; j 2 N and consider Si 2
�
G
i

�
and Sj 2

�
G
j

�
such that G.i/

F
D jG

.Si /

F
j and

G.j /

F
D jG

.Sj /

F
j. We can assume that Si \ Sj D ; since these two sets are finite and for

all S the value of G
.S/

F
is invariant by translation of S . We have

jG
.Sj[Si /

F
j � jG

.Si /

F
j � jG

.Sj /

F
j D G.i/

F
�G.j /

F

which implies
G.iCj /

F
� G.i/

F
�G.j /

F
:

The sequence .G.n/

F
/n�0 is submultiplicative. Our result is then a direct consequence of

Fekete’s lemma. The same argument holds for .L.n/
F
/n�0.

For any subshift X , we let the growth of the subshift X be ˛.X/ D ˛.XF / for any F

such that X D XF . By definition, the global complexity does not depend on the choice
of F . On the other hand, by definition, the local complexity depends on the choice of F

(and given a subshift X , the F such that X D XF is not necessarily unique). However, in
the next section, we show that ifG is amenable, for any set F , the two associated growths
are identical, that is, ˛.F / D z̨.F /. Thus, for any subshift X , we can choose the most
convenient F such that X D XF and compute ˛.X/ D ˛.F / D z̨.F /. We will provide
in Section 4 a way to lower bound z̨.F / under some conditions on F .

2.1. Amenable groups and topological entropy

We say that a sequence .Fn/i2N is a symmetric Følner sequence of G if

(1) for all i , Fi is a finite subset of G,

(2) for all g 2 G, limi!1
j.g �Fi /�Fi j
jFi j

D 0,

(3) for all i , Fi D F �1i .

Remember that a countable group is amenable if and only if it admits a symmetric Følner
sequence. Conditions (1) and (2) define a Følner sequence, and the existence of a Følner
sequence is equivalent to G being amenable. The fact that this is still equivalent when
adding condition (3) is proven in [13, Corollary 5.3], and it will be more convenient for
us. One easily deduces from conditions (2) and (3) that for all finite set S ,

lim
i!1

j.S � Fi /�Fi j

jFi j
D 0 D lim

i!1

j.Fi � S/�Fi j

jFi j
:

If G is a countable amenable group, and .Sn/n�0 is a Følner sequence, then the
so-called topological entropy of XF is given by

h.XF / D lim
n!1

log G
.Sn/

F

jSnj
:
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As a direct consequence of the definition, for any subshift XF ,

h.XF / � log˛.XF /:

This lower bound is sufficient for our applications, since we only provide lower bounds
on ˛.XF / from which we deduce lower bounds h.XF /. Let us, however, recall that the
equality holds between these quantities, that is,

h.XF / D log˛.XF /:

This can be deduced from [6, Proposition 3.3] and from the fact that

˛.XF / D inf
S�G;S finite

jG
.S/

F
j
1=jS j

which is itself a consequence of Fekete’s lemma applied to the submultiplicativity of
.G.n/

F
/n�0.

2.2. A combinatorial version of Shearer’s inequality

We provide here a combinatorial version of Shearer’s inequality. This lemma will be cru-
cial in proving that the local growth and the global growth are equal over an amenable
countable group. This is heavily inspired by [6].

Given a set S and a collection of subsets S1; : : : ; Sn � S , we say that S1; : : : ; Sn
is an r-cover of S if for all s 2 S , s appears in at least r of the subsets, that is,
8s 2 S; j¹i 2 ¹1; : : : ; nº W s 2 Siºj � r (some of the Si could be pairwise identical in
which case they are counted with their multiplicity).

Theorem 2. Let C �AS be a set of colorings of a finite set S by a finite alphabet A. Let
S1; : : : ; St be an r-cover of S , then

jC j �

� tY
iD1

ˇ̌
C jSi

ˇ̌�1=r
:

The proof is a direct application of Shearer’s inequality for entropy. Remember that
the entropy of a discrete random variable X taking value over a set X and is distributed
according to p W X ! Œ0; 1� is given by

HŒX� D �
X
x2X

p.x/ logp.x/:

Theorem 3 (Shearer’s inequality). If X1; : : : ;Xd are random variables and S1; : : : ; Sn is
an r-cover of ¹1; 2; : : : ; dº, then

HŒ.X1; : : : ; Xd /� �
1

r

nX
iD1

HŒ.Xj /j2Si �:



M. Rosenfeld 994

The following fact is a direct consequence of Jensen’s inequality.

Fact 4. Let X be a discrete random variable taking value over a set X distributed
according to p W X ! Œ0; 1�, then

HŒX� � logjXj

with equality if the distribution is uniform.

We are now ready to prove our combinatorial version of Shearer’s inequality.

Proof of Theorem 2. Let C be a random variable taking value over C uniformly at ran-
dom. For all � 2 S , let X� be the random variable such that X� D C.�/. Shearer’s
inequality implies

HŒC� �
1

r

tX
iD1

HŒ.X� /�2Si �:

Since for all i , .X� /�2Si takes value over C jSi , we can apply Fact 4 to deduce

HŒ.X� /�2Si � � log
ˇ̌
C jSi

ˇ̌
:

By Fact 4, we also have logjC j D HŒC�. These three equations imply

logjC j �
1

r

tX
iD1

log
ˇ̌
C jSi

ˇ̌
;

which, by removing the log, implies the desired inequality.

3. Growth of locally admissible and globally admissible patterns
in amenable groups

This section is devoted to the proof of the following “folklore” result.

Theorem 5. For any countable amenable group G and F � ACG , we have

˛.F / D z̨.F /:

For this proof, we use a notion of t -extendable pattern. Let .gi /i>0 be any enumer-
ation of G, that is, the gi are pairwise distinct and G D ¹gi W i > 0º. For all i > 0, we
let Gi D ¹g1; g2; : : : ; giº. For any integer t > 0, we say that a locally admissible pattern
p 2 L

.S/

F
is t -extendable if there exists a pattern p0 2 L

.S[S �Gt /

F
such that p0jS D p. In

other words, p is t -extendable if whenever we add supp.p/ � Gt to the support of p, we
can extend p into a larger locally admissible pattern with this new support. For any inte-
ger t > 0 and finite set S � G, we let E.S/t be the set of patterns with support S that are
t -extendable.
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This notion of t -extendability has two interesting properties for us. First, by compact-
ness, if a pattern is t -extendable for all t , then it is globally admissible which will be useful
to relate the growth of t -extendable patterns to the growth of globally admissible patterns.
Second, t -extendability is “preserved by translation”, as illustrated by the following claim,
which will be useful to relate the growth of t -extendable patterns to the growth of locally
admissible patterns.

Fact 6. For all S � G, g 2 G, and t > 0, we have the following equality:

jE
.S/
t j D jE

.g �S/
t j:

Proof. Fix t > 0. It is enough to prove jE.S/t j � jE
.g �S/
t j for all S � G and g 2 G. The

other direction is a direct consequence of the same inequality applied to g � S and g�1.
Consider a t -extendable coloring c 2E.S/t that can be extended to a locally admissible

coloring c0 of S [ S � Gt . Let d W g � S ! A and d 0 W .g � S/ [ .g � S � Gt /! A be the
colorings such that:

• for all x 2 g � S , d.x/ D c.g�1x/,

• for all x 2 .g � S/ [ .g � S �Gt /, d 0.x/ D c0.g�1x/.

For all x 2 g � S , we have by construction d 0.x/ D c0.g�1x/ D c.g�1x/ D d.x/, that
is, d D d 0jg �S . For the sake of contradiction, suppose that d 0 is not locally admissible.
Then there exists a forbidden pattern p that appears in d 0. That is, there exists f 2 G
such that f � supp.p/ � .g � S/ [ .g � S � Gt / and for all x 2 supp.p/, d 0.f x/ D p.x/.
This implies that g�1f � supp.p/ � S [ .S �Gt / and for all x 2 supp.p/, c0.g�1f x/ D
d 0.f x/ D p.x/. That is, c0 contains an occurrence of the forbidden pattern p which is a
contradiction. Hence, d is a t -extendable coloring of g � S , that is, d 2 E.g �S/t . Moreover,
each coloring c 2 E.S/t corresponds to a different d 2 E.g �S/t which implies

jE
.S/
t j � jE

.g �S/
t j

as desired.

We are now ready to prove the main lemma behind Theorem 5.

Lemma 7. For any finite set S � G and t 2 N,

jE
.S/
t j � .z̨.F //

jS j:

Proof. We first prove that an asymptotic version of this statement holds when we
replace S by limits over a symmetric Følner sequence. We will then use the combinatorial
version of Shearer’s lemma to extend the result to any set S .

Since G is a countable amenable group, it admits a symmetric Følner sequence
.Fi /i�0. By definition, for any i , the restriction to Fi of a locally admissible colorings
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of Fi [ .Fi �Gt / yields a t -extendable coloring of Fi . Moreover, any t -extendable color-
ing of Fi can be extended in at most jAjj.Fi �Gt /nFi j different locally admissible colorings
of Fi [ .Fi �Gt /. We get

jE
.Fi /
t j �

jL.Fi[.Fi �Gt //j

jAjj.Fi �Gt /nFi j
�

jL.Fi /j

jAjj.Fi �Gt /�Fi j
:

Since Gt is a finite set and .Fi /i�0 is a symmetric Følner sequence, for all t > 0,

lim
i!1

j.Fi �Gt /�Fi j

jFi j
D 0:

This implies
lim
i!1
jE
.Fi /
t j

1=jFi j � lim
i!1
jL.Fi /j

1=jFi j D z̨.F /: (3.1)

We are now ready to prove our lemma by contradiction. For the sake of contradiction,
suppose that there exists t > 0, S � G, and " > 0 such that

jE
.S/
t j � ..1 � "/z̨.F //

jS j: (3.2)

Let t 0 be such that S�1 � S � .¹1Gº [ Gt / � Gt 0 (the set on the left-hand part is finite, so
there exists such a t 0). Let .Xg/g2FnS�1 be the family such that for all g 2 FnS�1,

Xg D .g � S/ \ Fn:

The family .Xg/g2FnS�1 is an r-cover of Fn with r D jS j. Indeed, for f 2 Fn, the con-
dition f 2 g � S is equivalent to g 2 f � S�1 which is fulfilled by exactly jS j elements of
FnS

�1. Theorem 2 implies

jE
.Fn/
t 0 j �

� Y
g2FnS�1

jE
.Fn/
t 0 jXg j

�1=jS j
: (3.3)

Let c 2 E.Fn/t 0 and g 2 FnS�1. By definition, c is a locally admissible coloring of Fn
that can be extended to a locally admissible coloring of Fn [FnGt 0 . The restriction cjXg is
also a restriction of the same locally admissible coloring of Fn [FnGt 0 . Since g 2FnS�1,

FnGt 0 � FnS
�1
� S � .¹1Gº [Gt / � g � S � .¹1Gº [Gt / D gS [ gSGt :

So cjXg can be extended to a locally admissible coloring of gS [ gSGt . In other words,
every c 2 E.Fn/t 0 jXg can be extended to a coloring of gS that can itself be extended into a
coloring of gS [ gSGt . Hence,

jE
.Fn/
t 0 jXg j � jE

.g �S/
t j D jE

.S/
t j � ..1 � "/z̨.F //

jS j;

where the two last inequalities are, respectively, consequences of Fact 6 and of equa-
tion (3.2). Plugging this inequality in (3.3), we obtain

jE
.Fn/
t 0 j �

� Y
g2FnS�1

..1 � "/z̨.F //jS j
�1=jS j

� ..1 � "/z̨.F //jFnS
�1j: (3.4)
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If .1 � "/z̨.F / < 1, then jE.Fn/t 0 j D 0 which implies z̨.F / D 0 and concludes the proof.
We can assume in the following that .1 � "/z̨.F / � 1. Moreover, since .Fn/n2N is a
Følner sequence,

lim
n!1

jFn � S
�1j

jFnj
� 1C lim

n!1

j.Fn � S
�1/�Fnj

jFnj
D 1:

Fix some 0 < "0 < ", then 1�"0

1�"
> 1, and there exists "00 > 0 such that z̨.F /"

00

< 1�"0

1�"
.

Moreover, for n large enough, jFnS�1j � jFnj.1C "00/. Together with equation (3.4), this
implies that, for n large enough,

jE
.Fn/
t 0 j

1=jFnj � ..1 � "/z̨.F //.1C"
00/ < z̨.F /..1 � "/z̨.F /"

00

/ < z̨.F /.1 � "0/:

That is,

lim
n!1
jE
.Fn/
t 0 j

1=jFnj � z̨.F /.1 � "0/ < z̨.F /

which contradicts (3.1) and finishes our proof.

We are now ready to prove our theorem.

Proof of Theorem 5. For all t , any globally admissible pattern is t -extendable and any
.t C 1/-extendable pattern is t -extendable, thus for all S � G,

G
.S/

F
� � � � � E

.S/
tC1 � E

.S/
t � � � � � E

.S/
1 � L

.S/

F
: (3.5)

Moreover, by compactness G
.S/

F
D
T
t�0E

.S/
t . Since all theE.S/t are finite, it implies that

for all S 2 G, there exists tS such that

G
.S/

F
D � � � D E

.S/
tS
� � � � � E

.S/
1 � L

.S/

F
:

From Lemma 7, for all S , jG .S/
F
j D jE

.S/
tS
j � z̨.F /jS j. Hence, for all n,

G.n/

F
� z̨.F /n;

which finally implies
˛.F / D lim

n!1
.G.n/

F
/1=n � z̨.F /

as desired.

The amenability condition in Theorem 5 is necessary. Indeed, we prove in Theo-
rem 8 that for every countable non-amenable group there exists a set of forbidden patterns
such that z̨.F / > ˛.F /. This gives an alternative characterization of amenable countable
groups: a countable group is amenable if and only if for any set of forbidden patterns F ,
we have ˛.F / D z̨.F /. The lower bounds on z̨.F / that we provide in the remainder of
this article are still meaningful for non-amenable group since, by compactness, z̨.F / � 1
implies ˛.F / � 1.
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Theorem 8. Let G be a countable non-amenable group. Then there exists a set of
forbidden patterns F such that

z̨.F / > ˛.F /:

Proof. The negation of the existence of a Følner sequence of G implies that there exists a
finite subset S of G and " > 0 such that for all F , there exists s 2 S , jsF�F j

jF j
> ", which

implies j.sF / n F j > "
2
jF j. Let S 0 D S [ ¹1Gº where 1G is the neutral element of .G; �/,

then for all F ,
j.S 0 � F / n F j D jS � F n F j >

"

2
jF j:

Since S 0 is finite, we have for all F ,

j¹f 2 F W S 0 � f 6� F ºj >
"

2jS 0j
jF j: (3.6)

We are now ready to construct our set of forbidden patterns. Consider the alphabet
A D ¹0; 1º and the set of forbidden patterns

F D ¹p 2 AS 0
W p.1G/ D 0º:

The only configuration in the shift XF is the constant configuration where every ele-
ment receives 1. Thus, ˛.F / D 1. On the other hand, for every finite subset F � G, let
B WD ¹f 2 F W S 0 � f � F º. Any coloring c of F such that for all x 2 B, c.x/ D 1

are locally admissible, so there are at least 2jF�Bj > 2jF j"=.2jS
0j/ locally admissible col-

oring of F (where the inequality is a direct consequence of equation (3.6)). This implies
L.n/

F
> 2n"=.2jS

0j/, that is,

z̨.F / > 2"=.2jS
0j/ > 1 D ˛.F /;

as desired.

4. Lower bound on the growth rate in the general case

Now that we have shown that the local growth is identical to the global growth, we can
provide our main result to lower bound the local growth.

Lemma 9. Let F � ACG and ˇ be a positive real number such that

jAj �
X
f 2F

jf jˇ1�jf j � ˇ: (4.1)

Then for all finite sets S 2 G and s 2 G n S ,

jL
.S[¹sº/

F
j � ˇjL

.S/

F
j:
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Proof. We proceed by induction on S . Let S be such that for all X � S and for all
x 2 S nX ,

jL
.X[¹xº/

F
j � ˇjL

.X/

F
j:

For all R � S , we can use our hypothesis inductively, and we obtain

jL
.SnR/

F
j �
jL
.S/

F
j

ˇjRj
: (4.2)

An extension of a pattern p 2L
.S/

F
is a pattern p0 2AS[¹sº, such that p0jS D p. The num-

ber of extensions of p is jAj � jL.S/

F
j. Let B be the set of extensions that are not locally

admissible, then
jL
.S[¹sº/

F
j � jAj � jL

.S/

F
j � jBj: (4.3)

For all f 2 F , let Bf be the set of extensions p such that f appears in p. Then
B D

S
f 2F Bf and

jBj �
X
f 2F

jBf j: (4.4)

For any f 2 F and any p 2 Bf , the pattern f appears in p. For any g 2 G, we let Bf;g
be the set of extensions such that f appears at position g.

Fix g 2 G and let T D ¹gx W x 2 supp.f /º. Since pjS 2L
.S/

F
, we know that s 2 T . If

f occurs at position g in a pattern p, then pjT is uniquely determined by f and g. More-
over, for all p 2 Bf;g , we have pj.S[¹sº/nT 2L

..S[¹sº/nT /

F
, hence jBf;g j � jL

..S[¹sº/nT /

F
j.

By equation (4.2),

jBf;g j �
jL
.S/

F
j

ˇjT n¹sºj
�
jL
.S/

F
j

ˇjf j�1
:

There are at most jT j D jf j possible values of g such that s 2 T . It implies that

jBf j � jf j
jL
.S/

F
j

ˇjf j�1
: (4.5)

We can finally use this together with equations (4.3) and (4.4) to obtain

jL
.S[¹sº/

F
j � jAj � jL

.S/

F
j �

X
f 2F

jBf j � jL
.S/

F
j

�
jAj �

X
f 2F

jf jˇ1�jf j
�
:

We can finally apply our theorem hypothesis (4.1) to deduce jL.S[¹sº/

F
j � ˇjL

.S/

F
j as

desired.

We showed that adding an element to the support multiplies the number of locally
admissible patterns by ˇ. Moreover, the empty pattern is always locally admissible, so we
deduce the following corollary.
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Corollary 10. Let F � ACG and ˇ be a positive real number such that

jAj �
X
f 2F

jf jˇ1�jf j � ˇ:

Then for all finite sets S 2 G,
L.S/

F
� ˇjS j:

In particular, the previous corollary implies that, for any finite support, there exists at
least one locally admissible configuration. The usual compactness argument immediately
implies the following corollary.

Corollary 11. Let G be a countable group, F � ACG , and ˇ be a positive real number
such that

jAj �
X
f 2F

jf jˇ1�jf j � ˇ:

Then
XF 6D ;:

If, instead of a simple compactness argument, we apply Theorem 5, we obtain a lower
bound on the global complexity of the subshift. Recall that the entropy of any subshift X
over a countable amenable group G is given by h.X/ D log˛.X/.

Theorem 12. Let G be a countable amenable group, F � ACG , and ˇ be a positive real
number such that

jAj �
X
f 2F

jf jˇ1�jf j � ˇ:

Then
˛.XF / � ˇ and h.XF / � logˇ:

Proof. Corollary 10 implies that L.n/
F
� ˇn for all n� 0. Hence, z̨.F /� ˇ and Theorem 5

implies ˛.F / � ˇ.

5. Applications

It is hard to compare our conditions to the conditions given in [1, 3]. It seems that in the
most general context, none of them is weaker than the other one. However, in applications,
our condition seems to be more general and is easier to optimize. In particular, we obtain
better bounds on all of their applications. Lemma 2.2 of [1] is asymmetric in the sense
that they associate a different value x.g/ to each vertex. It does not seem to be helpful
because of the symmetries of groups. Although it seems possible to prove an asymmetric
version of Theorem 12 where a different value ˇ.v/ is associated to each vertex v, it is not
necessary for our applications.
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5.1. Strongly aperiodic shift

A configuration X 2 AG has period g, if for all x 2 G, X.x/ D X.gx/. A configuration
is strongly aperiodic if its only period is 1G and a subshift is strongly aperiodic if all of
its configurations are strongly aperiodic. We refer the reader to [1] for more context about
strongly aperiodic shifts.

LetG be an infinite countable group and let .si /i�0 be an enumeration of the elements
ofG such that s0D 1G . Let .Ti /i�1 be a sequence of finite subsets ofG such that for every
i � 1, Ti \ ¹si � x W x 2 Tiº D ; and jTi j D C � i , where C is a constant to be defined
later. We can always find such a sequence, since G is infinite. For all i � 1, we let Pi be
the set of patterns of support Ti [ ¹si � x W x 2 Tiº such that for all f 2 Pi , and all t 2 Ti ,
f .t/ D f .si � t /. Finally, we let P D

S
i�1 Pi .

A configuration x W G ! A that avoids P is strongly aperiodic. Indeed, if x has
period p, then x contains an occurrence of at least a pattern from Pi with i such that
si D p which contradicts the definition of x. In [1, Theorem 2.4], they deduce from their
criterion that if C � 17, then XP is non-empty. It implies the existence of a strongly
aperiodic subshift over any countable group.

It is easy to see that for all i � 1, jPi j � 2Ci and for all f 2 Pi , jf j D 2C i . If we can
find ˇ such that

2 �
X
i�1

2C i � 2Ci � ˇ1�2Ci � ˇ; (5.1)

then we can apply Theorem 12. If ˇ >
p
2, it is equivalent to

2 �
21CCˇ1C2CC

.ˇ2C � 2C /2
� ˇ

which holds for C D 11 and ˇ D 1:9. A more careful analysis implies that there exists
such a ˇ for all C � 11. In fact, we can show the following stronger result.

Theorem 13. Let G be a countable group, F � ACG , and ˇ be a positive real number
such that

jAj �
X
f 2F

jf jˇ1�jf j > ˇ:

Then there exists a strongly aperiodic subshiftX avoiding F . Moreover, ifG is amenable,
we have a strongly aperiodic subshift X avoiding F and such that

˛.X/ � ˇ:

The condition is similar to the condition given in Theorem 12, the main difference
being that we require a strict inequality. It means that if we remove some small enough
quantity to the left-hand side of the inequality, the inequality still holds.

We defined the set P of patterns in such a way that any configuration that avoids P is
strongly aperiodic. So we only need to forbid F [P . In particular, if we add P to the set
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of forbidden patterns and if ˇ >
p
2, we can choose C large enough such that the inequal-

ity remains strict and in this case, this theorem is a direct corollary of Theorem 12. The
case ˇ �

p
2 is slightly more complicated, but it is a direct consequence of the following

lemma.

Lemma 14. Let F � ACG and ˇ > 1 be a real number such that

jAj �
X
f 2F

jf jˇ1�jf j > ˇ: (5.2)

If C is large enough, then for all finite set S 2 G and s 2 G n S ,

jL
.S[¹sº/

F[P
j � ˇjL

.S/

F[P
j:

The proof is almost identical to the proof of Lemma 9, except that we also need to
forbid P and we use an extra trick to forbid P “more efficiently”. For any set S � G and
g 2 G, we let g � S D ¹g � s W s 2 Sº.

Proof. We proceed by induction on S . Let S be such that for all X � S and for all
x 2 G nX ,

jL
.X[¹xº/

F[P
j � ˇjL

.X/

F[P
j:

For any R � S , we can use our hypothesis inductively, and we obtain

jL
.SnR/

F[P
j �
jL
.S/

F[P
j

ˇjRj
: (5.3)

An extension of a pattern p 2 L
.S/

F[P
is a pattern p0 2 AS[¹sº, such that p0jS D p. The

number of extensions of p is jAj � jL.S/

F[P
j. Let B be the set of extensions that are not

locally admissible, then

jL
.S[¹sº/

F[P
j � jAj � jL

.S/

F[P
j � jBj: (5.4)

For all f 2 F , let Bf be the set of extension p such that f appears in p. For all i � 1,
let B 0i be the set of extensions p such that there exists f 2 Pi and f appears in p. Then
B D

S
f 2F Bf [

S
i�1 B

0
i and

jBj �
X
f 2F

jBf j C
X
i�1

jB 0i j: (5.5)

With the exact same argument as in Lemma 9, we can show that for all f 2 F ,

jBf j � jf j
jL
.S/

F[P
j

ˇjf j�1
:

For all c 2 B 0i , there exists g 2 G such that for all t 2 Ti , c.g � t / D c.g � si � t / and
s 2 g � Ti or s 2 g � si � Ti . If s 2 g � Ti (resp., g � si � Ti ), then c is uniquely determined
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by g and cjg �si �Ti (resp., cjsi �Ti ) which belongs to L
.S[¹sºn.g �si �Ti //

F[P
(resp., L

.S[¹sºn.si �Ti //

F[P
).

Since there are 2 � jTi j D 2iC possible choices for g, we can use equation (5.3) to obtain

jB 0i j � 2iC
jL
.S/

F[P
j

ˇjTi j�1
� 2iC

jL
.S/

F[P
j

ˇiC�1
:

We can use the two previous bounds together with equations (5.4) and (5.5) to obtain

jL
.S[¹sº/

F[P
j � jAj � jL

.S/

F[P
j �

X
f 2F

jBf j �
X
i�1

jB 0i j

� jL
.S/

F[P
j

�
jAj �

X
f 2F

jf jˇ1�jf j �
X
i�1

2iC

ˇiC�1

�
:

Since ˇ > 1,
P
i�1

2iC
ˇ iC�1

D
2ˇCC1C

.ˇC�1/2
and limC!1

2ˇCC1C

.ˇC�1/2
D 0, so we can make 2ˇCC1C

.ˇC�1/2

arbitrarily small by choosingC large enough (C only depends on jAj, F , and ˇ). Together
with hypothesis (5.2), this implies that there exists C such that jAj �

P
f 2F jf jˇ

1�jf j �P
i�1

2iC
ˇ iC�1

> ˇ. Using this in the previous equation yields

jL
.S[¹sº/

F[P
j � jL

.S/

F[P
jˇ

as desired.

Applying Theorem 13 to F D ; yields the following corollary.

Corollary 15. For all infinite countable amenable group G and all " > 0, there exists a
subshiftX � ¹0; 1ºG such thatX is strongly aperiodic and ˛.X/ � 2� " (or equivalently
h.X/ � log.2 � "/).

This result is optimal, in the sense that we cannot find such an X with ˛.X/ D 2.
Indeed, for any subshift X � ¹0; 1ºG , if ˛.X/ D 2, then X is the full shift, that is,
X D ¹0; 1ºG and X is not strongly aperiodic.

5.2. Nonrepetitive subshift

For any graph G D .V; E/ and coloring c W V ! A of the vertices of G with the color
set A, we say that a path p D v1v2 � � � v2n is repetitively colored if c.vi / D c.vnCi / for
all i 2 ¹1; : : : ; nº. If there is no such repetitively colored path, then we say that c is a non-
repetitive coloring ofG. In [1], they show that for any groupG generated by a finite set S ,
the undirected right Cayley graph can be nonrepetitively colored with 219jS j2 colors. A
direct application of Theorem 12 yields a better bound on the number of colors required.

Lemma 16. For any countable group G generated by a finite set S , the undirected right
Cayley graph can be nonrepetitively colored with 4jS j2C 16jS j5=3 colors. Moreover, ifG
is amenable and X is the subshift of nonrepetitive colorings of G, then

˛.X/ � 4jS j2 C 12jS j5=3:
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Proof. Let A be an alphabet of size 4jS j2 C 16jS j5=3. We let F be the set of repetitively
colored paths starting from 1G . The number of paths starting from 1G with 2n vertices
is at most .2jS j/2n�1. For each support, the number of corresponding forbidden patterns
is jAjn, since the colors of the first half of the path impose the colors of the second half.
Thus, for every n, there are .2jS j/2n�1jAjn forbidden patterns of size 2n. We only need
to find ˇ such that

jAj �
X
n�1

2n
.2jS j/2n�1jAjn

ˇ2n�1
� ˇ

holds, and we can apply Theorem 12 to conclude. In particular, with ˇ D 4jS j2 C

12jS j5=3, using the fact that jS j > 1X
n�1

2n
.2jS j/2n�1jAjn

ˇ2n�1
D

2ˇ

2jS j

X
n�1

n

�
.2jS j/2jAj

ˇ2

�n
� 4jS j

X
n�1

n

�
1C 4jS j�1=3

.1C 3jS j�1=3/2

�n
D 4jS j

.1C 3jS j�1=3/2.1C 4jS j�1=3/

jS j�2=3.2C 9jS j�1=3/2
� 4jS j5=3

which concludes our proof.

In fact, it is known that for any graph of degree at most �, the �2 C 3

2�2=3
�5=3 C

O.�4=3/ color suffices to obtain a nonrepetitive coloring [22]. Since our Cayley graph has
maximum degree at most 2jS j, it implies a slightly better bound than the one in Lemma 16.
The best bound is obtained by the same counting argument that we used in Lemma 9, with
one more extra trick specific to nonrepetitive colorings.

5.3. Some sets of sizes of forbidden patterns that imply non-empty subshift

With his conditions, Miller showed among other things that over G D Z if there is in F

at most one connected pattern of each size in ¹5; 6; 7; : : :º and no other pattern, then XF

is non-empty [12, Corollary 2.2]. We will improve this result in Theorem 22 by pro-
viding a positive lower bound on the entropy of the subshifts instead of simply stating
non-emptiness. Here, we provide a generalized version of these results that hold for any
countable group.

Theorem 17. Let G be a countable group. Assume that F � ACG is a set of patterns that
contains at most one pattern of each size and let L D ¹jpj W p 2 F º. If

(1) jAj D 2 and L � ¹10; 11; 12; : : :º, then XF is non-empty and if moreover G
is amenable, then h.XF / � log ˛0, where ˛0 � 1:94 is the largest root of the
polynomial x11 � 4x10 C 5x9 � 2x8 C 10x � 9,
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(2) jAj D 3 and L � ¹4; 5; 6; : : :º, then XF is non-empty and if moreover G is
amenable, then h.XF / � log ˛1, where ˛1 � 2:51 is the largest root of x5 �
5x4 C 7x3 � 3x2 C 4x � 3,

(3) jAj D 4 and L � ¹3; 4; 5; : : :º, then XF is non-empty and if moreover G is
amenable, then h.XF / � log ˛2, where ˛2 � 3:65 is the largest root of x3 �
4x2 C x C 1,

(4) jAj D 5 and L � ¹2; 3; 4; : : :º, then XF is non-empty and if moreover G is
amenable, then h.XF / � log 5C

p
13

2
� log 4:30,

(5) jAj D 6 and L � ¹1; 2; 3; : : :º, then XF is non-empty and if moreover G is
amenable, then h.XF / � log 5C

p
13

2
� log 4:30.

Proof. For each of these cases, we apply directly Theorem 12. For instance, for case (1),
we only need to verify that 2 �

P
i�10 i˛

1�i
0 � ˛0. Since ˛0 > 1, it is equivalent to

2 �
10˛0 � 9

˛80.˛0 � 1/
2
� ˛0

which is equivalent to 0 � ˛110 � 4˛
10
0 C 5˛90 � 2˛

8
0 C 10˛0 � 9 which holds by

hypothesis.
The other cases are all similar.

5.4. Nonapplicability to subshifts of subexponential complexity

Let

gW

R>0 ! R

x 7! x C
X
f 2F

jf jx1�jf j:

If F contains at least one pattern of size at least 2, then there exists some " > 0 such that g
is decreasing over �0;1C "� (since the derivative g0 is<0 over �0;1�). Hence, if there exists
a ˇ solution of (4.1), then there exists a ˇ > 1 solution of (4.1). Thus, whenever we can
apply Theorem 12, it implies that the complexity is exponential (equivalently the subshift
has positive entropy). Similarly, Theorem 12 is useless for subshifts of subexponential
complexity (or equivalently, for subshifts of entropy 0).

6. Connected support over Z

Over Z, we say that a pattern p is connected if its support is connected, that is, there exist
integers i < j such that supp.p/ D ¹i; i C 1; i C 2; : : : ; j � 1; j º. In this context, con-
nected patterns are usually called words or factors, but we use “pattern” for consistency
with the rest of the article. If the set of forbidden patterns is a set of connected patterns,
then we have a slightly stronger version of Lemma 9.
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Lemma 18. Let F � ACZ be a set of connected patterns and ˇ be a positive real number
such that

jAj �
X
f 2F

ˇ1�jf j � ˇ:

Then for all integers i < j and s 2 ¹i � 1; j C 1º,

jL
.¹i;iC1;:::;j º[¹sº/

F
j � ˇjL

.¹i;iC1;:::;j º/

F
j:

Proof. The proof is almost identical to the proof of Lemma 9, so we only explain how to
adapt it. The main difference is when we bound the size ofBf . In this case, we know that f
contains s, but since s is the left end (or the right end) of ¹i; i C 1; : : : ; j º [ ¹sº, there is
only one possible position for the occurrence of f . Moreover, since f is connected, so is
¹i; i C 1; : : : ; j º [ ¹sº n supp.f /. Then equation (4.5) becomes

jBf j �
jL
.S/

F
j

ˇjf j�1
:

The rest of the proof is identical and leads to the desired result.

We could use a similar idea in higher dimensions, but the gain is much smaller. The
idea is that the induction can be done over the sets S such that Zd n S is connected, so
whenever we add an element to S we now have some restrictions on where a forbidden
pattern can appear. For instance, in dimension 2 if all the forbidden patterns are rectangles,
then the condition on ˇ becomes

jAj �
X
f 2F

max.height.f /;width.f //ˇ1�jf j � ˇ:

Using Theorem 5, we obtain the following simple corollary of Lemma 18.

Corollary 19. Let F �ACZ be a set of connected patterns and ˇ be a positive real number
such that

jAj �
X
f 2F

ˇ1�jf j � ˇ: (6.1)

Then ˛.XF / � ˇ and h.XF / � logˇ.

Since the conditions given in [14] are more general than the ones given in Lemma 18,
we could also deduce a more general version of Corollary 19. Let us also mention that the
result of Miller has identical conditions, but the conclusion only implies the non-emptiness
of the subshift [12]. The ideas behind our proof and the proof from [12, 15] share some
similarities, which explains the similarities of the conditions. The main difference lies in
the fact that they consider the number of possible extensions of a word instead of looking
at the suffixes of the words (intuitively, they look ahead at what could go wrong when one
tries to extend the word further, while we look at the past to see what could have gone
wrong when building the current word).
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7. Applications of Corollary 19

7.1. Comparison with [15, Theorem 4.1]

In [15], Pavlov gave a similar but weaker result that can be restated as follows (by making
the replacement c D ˇ�1 in his result).

Theorem ([15, Theorem 4.1]). Let F � ACZ be a set of connected patterns and ˇ be a
positive real number and k � 1 and integer such that

jAj �
X
f 2F

ˇ1�jf j > ˇ C k � 1: (7.1)

Then h.XF / � log k.

In order to apply Corollary 19 optimally, one needs to find the largest ˇ such that (6.1)
holds. Optimal use of Pavlov’s result implies finding the largest integer k such that there
exists ˇ such that equation (7.1) holds. The first is usually slightly easier to optimize than
the second.

More importantly, his result implies strictly weaker bounds than what can be achieved
by Corollary 19. We say that a set F � ACZ is non-trivial if it contains at least one pattern
of support of size at least 2. If F is trivial, then the entropy of XF is log.jAj � jF j/,
but in every other case, Corollary 19 always provides a strictly larger lower bound on the
topological entropy than [15, Theorem 4.1].

Lemma 20. For any non-trivial set of connected patterns F , if .k; ˇ/ is a solution of
equation (7.1), then there exists ˇ0 > k, that is, solution of equation (6.1).

Proof. Let g W x 7! x C
P
f 2F x

1�jf j. The pair .k; ˇ/ is solution of equation (7.1) if and
only if jAj � g.ˇ/C k � 1 and ˇ0 is solution of equation (6.1) if and only if jAj � g.ˇ0/.

Since F is non-trivial, one easily verifies that g is decreasing over �0; 1Œ (because the
derivative g0.x/� 1� x�2 over �0; 1Œ). Hence, if .k;ˇ/ is solution of jAj � g.ˇ/C k � 1,
there exists ˇ00 � 1 such that jAj � g.ˇ00/C k � 1.

For all x; y � 1,

g.x C y/ D x C y C
X
f 2F

.x C y/1�jf j < x C y C
X
f 2F

x1�jf j D g.x/C y:

Applying this to jAj � g.ˇ00/ C k � 1 implies jAj > g.ˇ00 C k � 1/. Since this last
inequality is strict and g is continuous, there exists " > 0 such that jAj > g.ˇ00 C k �

1C "/. Let ˇ0 D ˇ00 C k � 1C " � k C ", then, by the previous equation, ˇ0 is a solution
of (6.1) as desired.

Whenever [15, Theorem 4.1] can be used to provide a lower bound on the entropy
of a shift, Corollary 19 provides a strictly larger lower bound (and experimentally the
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gain is often not negligible). Since [15, Theorem 4.1] is used multiple times in [15], we
could improve the conditions of a few other results of [15] by simply using our condition.
We give one example with [15, Theorem 7.1]. For any set of forbidden pattern F , let
Fn D ¹f 2 F W jf j D nº.

Theorem ([15, Theorem 7.1]). Assume F � ACZ is a set of connected patterns. IfP
n�1jFnj

�
3
jAj

�n
< 1

5
, then

h.XF / > log
�3jAj
4

�
:

A simple application of Corollary 19 improves this Theorem considerably.

Theorem 21. Let F � ACZ be a set of connected patterns.

(1) If
P
n�1jFnj

�
3
jAj

�n
< 1

5
, then h.XF / � log

�
14jAj
15

�
.

(2) If
P
n�1jFnj

�
6
5jAj

�n
< 1

5
, then h.XF / � log

�
5jAj
6

�
.

(3) If
P
n�1jFnj

�
3
jAj

�n
< 3

4
, then h.XF / � log

�
3jAj
4

�
.

Proof. We apply Corollary 19. We only detail the computations of the first case since the
remaining two cases are similar.

For (1), we use ˇ D 14jAj
15

and use the fact that since ˇ�1 < 3
jAj

,

X
f 2F

ˇ1�jf j D
X
n�1

jFnjˇ
1�n
�

X
n�1

jFnj

�
3

jAj

�n�1
D
jAj

3

X
n�1

jFnj

�
3

jAj

�n
�
jAj

15
:

We have jAj �
P
f 2F ˇ1�jf j D ˇ, so we can apply Corollary 19.

For (2), we use ˇ D 5jAj
6

.
For (3), we use ˇ D 3jAj

4
.

Statements (1) and (2) have stronger conclusions and statements (2) and (3) have
weaker conditions than [15, Theorem 7.1].

7.2. Improving the conclusions of [12]

As already stated, Miller showed that under the conditions of Corollary 19, the subshift is
non-empty [12]. He then gave a few applications. We can apply Corollary 19 to each of
these results to obtain a lower bound on the entropy of the subshift.

Theorem 22. Assume that F � ACZ is a set of connected patterns that contains at most
one pattern of each length and let L D ¹jpj W p 2 F º. If

(1) jAj D 2 and L � ¹5; 6; 7; : : :º, then h.XF / � log ˛1, where ˛1 � 1:755 is the
largest root of x3 � 2x2 C x � 1,

(2) jAj D 2 and L � ¹4; 6; 8; : : :º, then h.XF / � log 1C
p
5

2
� log 1:618,
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(3) jAj D 3 and L � ¹2; 3; 4; : : :º, then h.XF / � log 2,

(4) jAj D 4 and L � ¹1; 2; 3; : : :º, then h.XF / � log 2.

The proof is a direct application of Corollary 19. The result from [12] only implied
the non-emptiness of these subshifts with no lower bound on the entropy other than
h.XF / � 0.

7.3. Kolmogorov complexity

Roughly speaking, the Kolmogorov complexity C.x/ of a string x is the size of the short-
est program that outputs this string. We will not provide a presentation of Kolmogorov
complexity, and we redirect the reader to the literature [11, 19]. The only fact that we
will use is that for any integer n, there are less than 2n strings x such that C.x/ < n

(see [19, Theorem 5] for instance, although it is a direct consequence of the fact that there
are less than 2n programs of length less than n).

In [12], Miller obtained a new simpler proof of the following result due to Durand
et al. [7].

Theorem ([7, 12]). Let d < 1. There is an X 2 ¹0; 1ºZ such that if � 2 ¹0; 1ºCZ appears
in X , then K.�/ > d j� j �O.1/.

Once again, instead of simply obtaining the existence of X , we can show that there
exists a subshift X with this property that has entropy arbitrarily close to the entropy of
the full shift.

Theorem 23. Let d < 1 and ˇ such that 2d < ˇ < 2. Then there exists a constant C > 0

and a subshift X 2 ¹0; 1ºZ such that h.X/ � log.ˇ/ and for all connected pattern � that
appears in X , K.�/ > d j� j � C .

Proof. We letC D 1C d C log
�

ˇ

.2�ˇ/.ˇ�2d /

�
. We let F be the set of connected patterns f

such that K.f / � d jf j � C . Then for all n,

j¹f 2 F W jf j D nºj � 21Cdn�C :

It implies

2 �
X
f 2F

ˇ1�jf j � 2 �
X
i�1

21Cdn�Cˇ1�n D 2 �
21�CCdˇ

ˇ � 2d
D ˇ:

We apply Corollary 19 to deduce that h.XF / � logˇ which concludes our proof.

This result is optimal in the sense that the only subshift X with h.X/ D log 2 is the
full shift, so we cannot hope to do better than having h.X/ arbitrarily close to log 2.
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It is also optimal in the sense that there is no constant C such that we can avoid all the
connected patterns � such that K.�/ � j� j � C .1 Indeed, suppose that there is at least one
pattern u avoided, then we find an encodingK 0 of the remaining patterns such that for all v
avoiding u, K.v/ DK 0.v/ D log O

�
.2juj � 1/

jvj
juj
�
D o.jvj/. This result is generalizable

to any countable group instead of Z by applying Theorem 12 instead of Corollary 19.
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