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A law of iterated logarithm on lamplighter
diagonal products

Gideon Amir and Guy Blachar

Abstract. We prove a law of iterated logarithm for random walks on a family of diagonal products
constructed by Brieussel and Zheng (2021). This provides a wide variety of new examples of law
of iterated logarithm behaviors for random walks on groups. In particular, it follows that for any
1
2 � ˇ � 1 there is a group G and random walk Wn on G with EjWnj ' nˇ such that

0 < lim sup
jWnj

nˇ .log logn/1�ˇ
<1 and 0 < lim inf

jWnj.log logn/1�ˇ

nˇ
<1:

1. Introduction

Let G be some finitely generated group, with a finite symmetric generating set S . Let Wn
be a random walk on G, with finitely supported symmetric step measure such that the
support of W1 generates G. A central object of study in the theory of random walks on
groups is the distribution of the distance jWnj of the random walk from its origin point,
and its connection to other geometric and algebraic properties of G. One is interested in
understanding both the behavior of jWnj for specific families of groups and the set of
possible behaviors of the distance function for random walks on groups in general (often
referred to as the “inverse problem”). Usually, fine understanding of the underlying metric
structure of G is lacking, and beyond some examples of polynomial growth groups and
some non-amenable groups, most works focused on understanding the expected distance
on some families of groups, with few works also looking at some moderate and large
deviation regimes (see Subsections 1.1 and 1.2).

The main contribution of this paper is proving a law of iterated logarithm type result
for random walks on a family of diagonal products studied in [3]. These groups were used
to capture a variety of behaviors of random walks on groups, in particular in terms of the
expected distance. Our result provides a wide variety of law of iterated logarithm type
behaviors for random walks on groups.
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1.1. The expected distance EjWnj

Throughout this paper, we will only consider symmetric finitely supported random walks
Wn on a group G, whose support generates the group G. Much advancement has been
done in the last years regarding the expected value EjWnj, also known as the speed or
rate of escape of the random walk. It is trivial to see that the expected distance is sub-
additive, and in particular that EjWnj . n (where .;' denote (in)equalities up to an
absolute constant that may depend on the choice of group and random walk measure
but not on n). By [20], for any random walk Wn on an infinite finitely generated group,
one has EjWnj &

p
n. For many “small” groups, such as virtually nilpotent groups, the

random walk is always diffusive, that is, EjWnj '
p
n. In contrast, for non-Liouville mea-

sures, the entropy of the random walk is H.Wn/ ' n by works of Avez, Derriennic and
Kaı̆manovich–Vershik [2, 7, 15], which in turn is equivalent to EjWnj ' n by Guivarc’h,
Varopoulos and Karlsson–Ledrappier [10, 16, 26]. For a long time all known examples of
random walks on groups exhibited one of the two extreme behaviors above. We note that
some of the above works extend beyond the case of finitely supported symmetric measure
considered in this paper.

This leads to the following natural question, attributed to Vershik.

Question 1.1. What functions can be realized as the speed function of a random walk on
some group?

The first “non-classical” examples toward this question were given by Erschler [9],
who proved that if a random walk on a group G satisfies EjWnj ' n˛ , then the random
walk on G o Z satisfies EjWnj ' n

1C˛
2 . Starting with G D Z and using this result recur-

sively, one can realize all of the functions f .n/ D n1�2
�k

as speed functions of iterated
wreath product.

The next step was taken by Amir and Virág [1], who constructed groups where
Wn ' n

ˇ for 3
4
� ˇ < 1 (and more generally with EjWnj ' f .n/ for any “nice enough”

function f within that range). Their construction uses permutational wreath product over
the natural action of the mother groups Mm on the boundary of their tree with Z-valued
lamps.

In [3], Brieussel and Zheng constructed random walks on groups that, up to some
regularity condition, capture the whole range of possible behaviors of the expected
distance.

Theorem 1.2 ([3, Theorem 1.1]). Let f W Œ1;1/! Œ1;1/ be a continuous function with
f .1/ D 1 such that f .x/p

x
and x

f .x/
are non-decreasing. Then there exist a group � and a

random walk Wn on � such that EjWnj ' f .n/.

The examples constructed and analyzed in Brieussel and Zheng also gave new behav-
iors of other geometric quantities such as the entropy of the random walk, the return
probabilities and the isoperimetric profile.
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We remark that, in general, it is not known whether the speed of a (symmetric, finitely
supported) random walk on a group depends on the choice of the step distribution (up to
the equivalence '). However, we believe that for the examples discussed in this article,
the speed and the law of iterated logarithm do not depend on the choice. We did not pursue
this direction.

1.2. The law of iterated logarithm

Since the possible behavior of the expected distance is well understood in many cases,
one may try and study further questions regarding the behavior of the distance function of
the random walkWn, for example, moderate and large deviations of the distance function.
One such direction is to study the times in which the random walk is atypically far from
its origin. This can be formulated by the law of iterated logarithm.

The classical law of iterated logarithm for random walks on Z, first established by
Khintchine [18] and Kolmogoroff [19], states that any random walk Wn with zero mean
and unit variance satisfies

lim sup
n!1

jWnj
p
2n log logn

D 1

almost surely.
Unlike the expected distance which was well studied, there are much fewer examples

where the law of iterated logarithm of random walks on groups is understood. There are
several ways to phrase a law of iterated logarithm for a random walk on a general group.
Perhaps the strongest one is finding a function g.n/ such that

lim sup
n!1

jWnj

g.n/
D 1

almost surely. However, finding such a function requires a tight estimation for the distance
jWnj, which is in many cases hard to achieve.

We say that g.n/ is an upper scaling function for Wn, if

0 < lim sup
n!1

jWnj

g.n/
<1

almost surely, and that h.n/ is a lower scaling function for Wn, if

0 < lim inf
n!1

jWnj

h.n/
<1

almost surely. Scaling functions can be thought of as a way of measuring the rate with
which jWnj goes to infinity.

These definitions can also be rephrased in terms of inner and outer radii. We say that a
function R.n/ is an outer radius for Wn if jWnj � R.n/ finitely often with probability 1,
and a function r.n/ is an inner radius for Wn if jWnj � r.n/ finitely often with probabil-
ity 1. It follows that g.n/ is an upper scaling function if Cg.n/ is an outer radius for some
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constant C > 0, but cg.n/ is not an outer radius for some other constant c > 0 (and one
can similarly rephrase lower scaling functions in terms of inner radii).

Let us briefly review previous works in this direction. The classical results for Z and
Zd can be found, for example, in [8], where Dvoretzky and Erdös give a characterization
for the inner and outer radii of a simple random walk on Zd . Hebisch and Saloff-Coste
generalize this theorem for arbitrary groups with polynomial volume growth of order
d � 3 (see [11, Theorem 9.2]).

In [21], Revelle studies groups of the form G o Z, where the random walk on G has
˛-tight degree of escape (which is a form of control over the tail of the distance func-
tion), and proves that G o Z has ˛0 D 1C˛

2
-tight degree of escape; he also shows that

n˛
0

.log logn/1�˛
0

is an upper scaling function for G oZ, whereas n˛
0

=.log logn/1�˛
0

is a
lower scaling function for this group. Revelle studies in addition several Baumslag–Solitar
groups, proving they have an inner radius of order

p
n= log logn and an outer radius of

order
p
n log logn.

Finally, in [24] Thompson proves laws of iterated logarithm for certain polycyclic and
metabelian groups. He shows that these groups are all diffusive, have 1

2
-tight degree of

escape and have an upper scaling function g.n/ D
p
n log logn.

Note that in all previously known cases, there was either a very detailed understanding
of the metric properties of the groups and the behavior of random walks on them (e.g.,
for polynomial growth groups), or some tight form of control over the tail behavior of the
walk is assumed (as in the results of Revelle [21] and Thompson [24]). Such understand-
ing and control is generally lacking for most groups, and is the main reason why there are
only few families of groups for which laws of iterated logarithm (or other moderate and
large deviation estimates) are known.

There is no example of a Liouville group where it is known that no form of the law of
iterated logarithm holds, and we expect a law of iterated logarithm to hold, for instance,
for the Amir–Virág construction mentioned above. However, proving such a law would
require better understanding of the metric structure of automata groups and of rare events
concerning their natural actions than is currently available.

1.3. Main results

In this article, we consider the groups constructed in [3]. These groups are diagonal prod-
ucts of lamplighter groups with finite lamp groups. We focus on the case where the lamp
groups are expanders, and prove a law of iterated logarithm on these groups. Our main
theorem is the following.

Theorem 1.3. Let f W Œ1;1/! Œ1;1/ be a continuous function such that f .1/ D 1 and
such that x

f .x/
and f .x/

p
x

are non-decreasing. Let� be the group from [3] (in the expander
case) for which the speed function is equivalent to f .n/. Write Wn for the random walk
on � with the appropriate generators.
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(i) If f .x/
p
x log log logx

is non-decreasing, then

0 < lim sup
n!1

jWnj

log lognf
�

n
log logn

� <1
almost surely.

(ii) If f .x/
p
x.log logx/1C"

is non-decreasing for some " > 0, then

0 < lim inf
n!1

jWnj
1

log lognf .n log logn/
<1

almost surely.

Example 1.4. Let 1
2
<˛ < 1, and suppose that the speed function we choose is f .n/Dn˛ .

Then the theorem states that

P
�
0 < lim sup

n!1

jWnj

n˛.log logn/1�˛
<1

�
D 1

and

P
�
0 < lim inf

n!1

jWnj.log logn/1�˛

n˛
<1

�
D 1:

Our proof draws ideas from the works of Revelle [21], Brieussel and Zheng [3] and
classical proofs of the law of iterated logarithm, together with a careful analysis of ran-
dom walk excursions and the dependencies between the number of excursions of different
lengths at different positions and times. Let us describe briefly the main sources of diffi-
culty when trying to prove a law of iterated logarithm (or other tail estimates), compared
to estimating the expected distance EjWnj (see also the proof sketch in Section 3).

First, expectation is additive, regardless of the dependency structure between different
parts, which allows for the simplification of many of the estimates. For instance, if one
wants (as in the analysis of Brieussel and Zheng) to estimate the expected total number of
length k excursions completed by some random walk on Z, it is enough to estimate the
probability that the random walk completes a length k excursion from a given point x at
time n, and then sum up these probabilities. However, to understand the tail behavior of
the total number of length k excursions completed by the walk, one must understand the
dependency between completing excursions at different times and positions.

Second, it is harder to handle rare events than typical events. The expected distance is
governed by the typical behavior of the random walk, while the law of iterated logarithm,
and in greater generality the tail behavior of jWnj, is governed by rare events (but not those
that are too rare). The groups we analyze are constructed as diagonal products of lamp-
lighter groups over Z (see Section 2). To get distance estimates on the diagonal product,
one must use distance estimates on the different layers. Typical behavior happens in all
layers at once. However, rare events do not a priori happen simultaneously in all layers;
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thus, one must analyze the dependency between the different layers more carefully. A key
step in the proof is showing that these rare events boil down to rare events of the projection
of the random walk to Z, and then bounding the contribution of the different layers under
these events.

Revelle’s approach [21] plays a key role in analyzing these rare events, but new ideas
are required to deal with the difficulties arising from the Brieussel–Zheng construction.
Revelle studies lamplighter groups over Z, while the Brieussel–Zheng construction is
an infinite diagonal product of such lamplighters. Furthermore, the local times used by
Revelle in his analysis are here replaced by the number of long excursions, and so we
need to estimate the number of long excursions starting from any point and of many scales
together. For this reason our analysis requires a more refined understanding of excursions
especially at extremal times of the random walk.

Let us also remark that one could try to construct examples of groups satisfying a law
of iterated logarithm as in the example above by considering the wreath products G o Z,
whereG is taken to be a group with speed nˇ , and then using Revelle’s results [21]. How-
ever, there are two caveats to this approach. First, the wreath product G o Z will have a
rate of escape n.ˇC1/=2; thus, it could only provide examples with ˛ � 3

4
. Second, in order

to apply Revelle’s theorems, one must know that the random walk on G satisfies a tight
degree of escape which amounts to proving tail bounds on the distance of the random walk
on G, which requires the same kind of analysis done in our paper.

Remark 1.5. Throughout this article, we did not optimize the constants. Any unnumbered
constant is some universal constant, but its value may change between claims. However,
numbered constants keep their values for the rest of the paper.

2. Realizing speed functions with diagonal products

In this section, we describe the groups from [3], and give an outline of the technique used
in this article to estimate the speed of the random walk on these groups, proving Theo-
rem 1.2. These groups are diagonal products of a sequence of lamplighter groups with
finite lamp groups, where the lamp groups are chosen to be expanders or diffusive groups.
In this article, we focus on the expander case, although we first give the general description
for the groups.

2.1. Diagonal product

Definition 2.1. LetX D ¹x1; : : : ; xjX jº be a set, and let ¹�sºs�0 be a sequence of groups.
Suppose that each �s is generated by a set X.s/ which we identify as a copy of X in
�s , that is, X.s/ D ¹x1.s/; : : : ; xjX j.s/º. The diagonal product of ¹�sºs�0 with respect
to ¹X.s/ºs�0, which will be denoted �, is the subgroup of the direct product

Q
s�0 �s

generated by the diagonal elements .xi .s//s�0.
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Alternatively, we can construct � as follows: Let F.X/ be the free group gen-
erated by X , and let �s W F.X/ ! �s denote the natural projections. Then � D

F.X/=
T
s�0 ker�s .

Note that � has a natural generating set, given by the diagonal elements.

Remark 2.2. IfX has a natural algebraic structure, for example a union of several groups,
it is natural to require that the above construction will be compatible with that structure.
This can be done by requiring that the identifications ofX.s/withX respect that structure.

2.2. The lamp groups

Let A D ¹a1; : : : ; ajAjº and B D ¹b1; : : : ; bjBjº be two groups. Let ¹�sºs�0 be a sequence
of groups, where each �s is generated by a set of the form A.s/ [ B.s/, where A.s/ and
B.s/ are subgroups of �s isomorphic to A and B , respectively.

Fix a sequence of strictly increasing integers ¹ksº. For each s let �s D �s o Z, with
a generating set given by �.s/ D .e;C1/, ˛i .s/ D .ai .s/ı0; 0/ for all 1 � i � jAj, and
ǰ .s/ D .bj .s/ıks ; 0/ for all 1 � j � jBj.

Finally, we take � to be the diagonal product of the groups �s with respect to the
above generating sets, marked with the generating set T D .�; ˛1; : : : ; ˛jAj; ˇ1; : : : ; ˇjBj/.
If U˛ and Uˇ are the uniform measures on the subgroups A D ¹˛1; : : : ; ˛jAjº and B D

¹ˇ1; : : : ;ˇjBjº, and� is the uniform measure on ¹�;��1º, we use the “switch-walk-switch”
measure for our random walk on �, that is

q D .U˛ � Uˇ / � � � .U˛ � Uˇ /:

Denote by Wn the random walk on � with step distribution q. By the choice of q, we
may write Wn D .f

Wn
s ; Sn/, where Sn is a simple random walk on Z, and f Wns denotes

the lamp configuration at the layer �s at time n.
Following [3], we make the following assumptions on the groups �s .

Assumption 2.3. We assume the following about the groups ¹�sº and the sequences ¹ksº
and ¹lsº:

(i) k0 D 0 and �0 D A.0/ � B.0/ Š A � B .

(ii) Let ŒA.s/; B.s/��s denote the normal closure of the subgroup generated by
commutators Œai .s/; bj .s/�. Then we assume

�s=ŒA.s/; B.s/�
�s Š A.s/ � B.s/ Š A � B:

(iii) Letting ls D diam.�s/, we assume that ks and ls grow at least exponentially.

In [3], the authors treat two cases of families of groups �s: one of them is when the
random walks on �s are diffusive, and the other one is when the groups ¹�sº satisfy the
following linear speed assumption.
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Definition 2.4 ([3, Definition 3.1]). Let ¹�sº be a sequence of finite groups where each
�s is marked with a generating set A.s/ [ B.s/. Let �s D UA.s/ � UB.s/ � UA.s/, where
UA.s/;UB.s/ are uniform distribution onA.s/;B.s/. We say ¹�sº satisfies the .�;Ts/-linear
speed assumption if in each �s ,

L�s .t/ D EjX .s/t j�s � �t for all t � Ts;

where X .s/t has distribution ��ts .
Note that for the definition to be meaningful, we must have � � 1.

In this paper, we focus only on the case where the groups satisfy the linear
speed assumption. Such groups can be constructed, for instance, using Lafforgue super
expanders or with lamplighter groups over a d -dimensional infinite dihedral group (see [3,
Examples 3.2 and 3.3]).

2.3. Excursions and the speed in a single layer

In a single layer �s D �s o Z, the lamp value at x 2 Z can only be changed when the
random walk reaches x or x � ks . As A.s/ is a subgroup and the measure chosen on it is
uniform, a product of random elements from A.s/ is again a uniform element from A.s/

(and the same holds for B.s/). Therefore, conditioning on the trajectory of the simple ran-
dom walk St , the distribution of the lamp value at x 2 Z depends only on the number of
ks-excursions.

Definition 2.5. Let St be a random walk on Z, and let k > 0. We say that the random walk
begins a k-excursion in time j , if it visits Sj � k before its next visit in Sj . We denote
by T .k; x; n/ the number of k-excursions the random walk St performs before time n
starting at x.

To estimate the speed of the random walk on�s , Brieussel and Zheng give bounds on
the speed in terms of the number of ks-excursions and the diameter ls D diam.�s/. By
dividing the range into intervals of length ks and working in each one separately one after
the other, one can show that for some universal constant C > 0,

jWnj�s �
Cks

2

X
j2Z

T
�ks
2
;
ks

2
j; n

�
C C jrange.Sn/j; (1)

which has an expected value of C
0n
ks
CC 0

p
n. n

ks
if ks �

p
n. Also, since ls D diam.�s/,

we also have the bound
jWnj�s � jrange.Sn/jls;

which has an expected value .
p
n ls . Together we get

EjWnj�s .
p
n ls C

n

ks
:
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Brieussel and Zheng show that this also gives a matching lower bound because of the
linear speed assumption, so one gets the asymptotic behavior of the speed of the random
walk on �s .

2.4. Estimating the speed of the random walk

The random walk on� can be thought of as parallel random walks on each�s , so in order
to estimate the speed in � one needs to use the estimates for the speed in each layer �s .
In [3], Brieussel and Zheng show that there is some universal constant C > 0 such that

jWnj�s � jWnj� � C
X

sWks�jrange.Sn/j

jWnj�s : (2)

As the speed in each layer�s is of order
p
n lsC

n
ks

and the sequences ¹ksº and ls grow at
least exponentially, it follows that for each n there is a layer s1.n/D max¹s j ksls �

p
nº

that determines the speed of the random walk, that is, EŒjWnj�� is equivalent to
EŒjWnj�s1.n/ � up to universal constants. This proves the following.

Proposition 2.6 ([3, Proposition 3.6]).

EŒjWnj�� ' EŒjWnj�s1.n/ � '
p
n ls1.n/ C

n

ks1.n/C1
:

This proposition allows one to realize various functions as the speed functions of such
groups. To do so, given a function f WN ! N one must choose appropriate sequences
¹ksº and ¹lsº. This is done in the following way.

Proposition 2.7 ([3, Corollary B.3]). Let f WN ! N be a function such that f .n/p
n

and
n

f .n/
are non-decreasing, and let m0 > 1. Then one can find sequences ¹ksº and ¹lsº of

positive integers such that ksC1 � m0ks , lsC1 � m0ls , and also such that

f .n/ ' xf .n/;

where
xf .x/ D

p
x ls C

x

ksC1
if .ksls/2 � x < .ksC1lsC1/2:

This concludes the proof of Theorem 1.2.

3. Sketch of the proof

As mentioned in the introduction, in order to show that

0 < lim sup
n!1

jWnj�

an
<1
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almost surely, we need to prove that there are constants C; c > 0 such that Can is an outer
radius but can is not an outer radius. For the analogous claim

0 < lim inf
n!1

jWnj�

bn
<1;

we need to prove that there are constants C 0; c0 > 0 such that c0bn is an inner radius for
jWnj�, but C 0bn is not an inner radius.

Our overall framework (as in [3]) is to first study the distance of the random walk on a
single layer �s , and then deduce a bound for the distance of the random walk on �. For a
single layer, Brieussel and Zheng provide an upper bound for the distance of the random
walk in terms of k-excursions (1), and a lower bound on the speed of the random walk

EŒjWnj�s � � c E

�X
x2Z

min¹T .ks; x; n/; lsº
�
: (3)

To estimate the fluctuations of the distance of the random walk, we use the same upper
bound (1), but one needs to prove a version of (3) that holds for the distance almost surely
and not only for expectation, that is, for large enough n

jWnj�s � c
X
x2Z

min¹T .ks; x; n/; lsº: (4)

Proving (4) requires modifying ideas from Revelle [21] (with the role of local times being
replaced by the number of long excursions), together with concentration bounds on the
number of long excursions. This, in turn, requires understanding the tail behavior of
T .k; n/ D k

P
x2Z T .k; kx; n/ and of

P
x2Z min¹T .k; x; n/; lº for all k; l . Finer under-

standing of these tail behaviors is also required to get a good lower bound on the RHS
of (4). This part takes the bulk of the work, and the dependencies between excursions in
the same layer and between different layers come into play.

The above steps provide upper and lower bounds on the distance in a single layer in
terms of ks; ls , which we then add up by (2) to bound the distance of the random walk
on �.

Because of the law of iterated logarithm on Z, we know that there are times in which
the range is small or large compared to its expected value. We show that in these times,
the distance reaches its lim inf and lim sup values, respectively. As in the case of the speed
of the random walk, we prove that there is one layer �s that is equivalent to the distance
in �; however, since we consider the times in which the range is extremal, this layer is
different from the critical layer used to estimate the speed of the random walk.

The article is constructed as follows. In Section 4, we associate another random walk
to St , so that the numbers of k-excursions of St at all points correspond to the local times
of the new random walk. To do so, we use the results in Appendix A, which study the
induced random walk of St on kZ. In Section 5, we study the tail behavior of T .k; n/,
showing that under appropriate assumptions it is highly concentrated around its mean n

2k
.
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In Sections 6 and 7, we study the tail behavior of
P
x2Z min¹T .k; x; n/; lº, for the two

critical layers. These results rely on the tail behavior of the maximal local time of a random
walk, which we study in Appendix B.

We then return to the random walk on �. In Section 8, we prove the lower bound
for the distance of the random walk in terms of the k-excursions. Section 9 is devoted to
deduce the bounds for the distance in a single layer, and in Section 10 we use the bounds
for a single layer to bound the distance of the random walk on�. Finally, in Section 11, we
express our results in terms of the speed function, and conclude the proof of Theorem 1.3.

Remark 3.1. In Theorem 1.3, we demand that the random walks are slightly super-
diffusive. These conditions stem from the fact that the more diffusive the random walk
is, the harder it is to get strong concentration inequalities for the number of k-excursions.

For the lim sup statement (Theorem 1.3 (i)), this manifests in not having a precise
enough bound for the contribution of the layers near the lim sup critical layer. It may be
that by having a better understanding of the joint behavior of the distance in those layers,
one could improve the bounds.

For the lim inf statement (Theorem 1.3 (ii)), the difficulty arises from the sequence of
parameters ks; ls used in the approximation of the speed function. When f is almost dif-
fusive, these sequences may grow extremely fast. One can still write an explicit formula
for the lim inf in terms of ks; ls (see Proposition 10.2); however, this may not coincide
with the expression in the theorem.

4. The k-induced random walk

Let St be a simple random walk on Z. Recall that T .k; x; n/ denotes the number of k-
excursions starting from x that are completed until time n. To study the distribution of
T .k; x; n/ for each k; x; n, we associate a new simple random walk on Z with St , so that
k-excursions in St can be approximated by the local times of the new random walk.

Definition 4.1. Let St be a simple random walk on Z, and let k � 0. The k-induced ran-
dom walk of St is the simple random walk Y .k/n on Z defined in the following manner.
We first set n.k/0 D 0, and for any j � 1 define inductively

n
.k/
j D min

°
t > n

.k/
j�1

ˇ̌̌ ˇ̌
St � Sn.k/j�1

ˇ̌
D k

±
:

The random walk Y
.k/
t is then given by Y

.k/
t D S

n
.k/
t
=k. We also write Nk.n/ D

max¹j jn.k/j � nº for the number of steps Y .k/n made until time n.

It is easy to see that Y .k/n is indeed a simple random walk on Z. In addition, as the
expected time to reach˙k starting from 0 is k2, we have EŒNk.n/� D

n
k2

.



G. Amir and G. Blachar 1052

Proposition 4.2. There are universal constants d1; c; C > 0 such that for all n and for
all k � d1

p
n

p
log logn

,

P
�
Nk.n/ …

hcn
k2
;
Cn

k2

i�
�

2

log3 n
:

Proof. By choosing appropriate c; c0 > 0, Appendix A shows that

P
�
Nk.n/ …

hcn
k2
;
Cn

k2

i�
� 2 exp

�
�

n

20k2

�
:

Note that if k �
p
n

8
p

log logn
, we have n

k2
� 64 log logn, so

exp
�
�

n

20k2

�
� exp

�
�3 log logn

�
D

1

log3 n

completing the proof.

We turn to give bounds on the k-excursions of St by means of the induced random
walks. Denote the local time of Y .k/n at x by

L.k/.x; n/ D j¹0 � t � n jY
.k/
t D xºj;

and let
`.k/.x; n/ D j¹0 � t < n jY

.k/
t D x; Y

.k/
tC1 D x � 1ºj:

Proposition 4.3. For any x 2 Z,

`.2k/
�l x
2k

m
; n
�
� 1 � T .k; x; n/ � L.k=2/

�j x

k=2

k
; n
�
:

We remark that when k
2

is not an integer, it can be replaced with
�
k
2

˘
and the

proposition still holds. However, we treat k
2

as an integer for convenience.

Proof. For the upper bound, we write x D k
2
j C r with 0 � r < k

2
. Any k-excursion

starting at x must include at least one k
2

-excursion starting at k
2
j , so T .k; x; n/ �

T
�
k
2
; k
2
j; n

�
� L.k=2/.j; n/.

For the lower bound, write x D 2kj 0C r 0 with 0� r 0 < 2k. A similar argument shows
that T .2k; 2k.j 0C 1/; n/� T .k;x;n/. We note that `.2k/.2k.j 0C 1/; n/ counts the num-
ber of 2k-excursions starting at 2k.j 0 C 1/ which are completed before time n, with the
possibility that we do not finish the last 2k-excursion before time n. This proves the lower
bound.
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5. The total number of k-excursions

We turn to give upper and lower bounds for

T .k; n/ D
X
x2Z

kT .k; kx; n/:

Note that this also provides bounds on the total number of k-excursions, by the following
proposition.

Proposition 5.1. For any n; k,

1

2
T .2k; n/ �

X
x2Z

T .k; x; n/ � T
�k
2
; n
�
:

Proof. For the lower bound, note that any 2k-excursion starting at 2kx must contain at
least one k-excursion from each of 2kx � k; : : : ; 2kx. Therefore,

T .2k; 2kx; n/ �
1

k

k�1X
jD0

T .k; 2kx � j; n/;

and we have
T .2k; n/ D 2k

X
x2Z

T .2k; 2kx; n/ � 2
X
x2Z

T .k; x; n/:

For the upper bound, notice that any k-excursion from k
2
x C j for some 0 � j < k

2

contains at least one k
2

-excursion from k
2
x. Therefore,

X
x2Z

T .k; x; n/ D
X
x2Z

k=2�1X
jD0

T
�
k;
k

2
x C j; n

�
�
k

2

X
x2Z

T
�k
2
;
k

2
x; n

�
D T

�k
2
; n
�
:

Before studying the asymptotic behavior of T .k; n/, we prove an (almost) monotonic-
ity result for T .k; n/.

Lemma 5.2. Suppose 2k � k0. Then T .k0; n/ � 3T .k; n/.

Proof. For any x 2 Z, each k0-excursion from k0x contains at least
�
k0

k

˘
� 1 many

k-excursions from points kZ. Therefore,

T 0.k0; n/ D k0
X
x2Z

T .k0; k0x; n/ � k0
1�

k0

k

˘
� 1

X
x2Z

T .k; kx; n/

D

k0

k�
k0

k

˘
� 1

T .k; n/ � 3T .k; n/:
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For specific values of n and k of order at most
p
n

p
log logn

, we use the k-induced random
walks defined in Section 4 to get a concentration result.

Lemma 5.3. There are universal constants d2; c; C > 0 such that the following holds:
For large enough n, if k � d2

p
n

p
log logn

,

P
�
T .k; n/ …

hcn
k
;
Cn

k

i�
�

6

log3 n
:

Proof. Using Proposition 4.2, let d1; c; C > 0 be the constants such that

P
�
Nk.n/ …

hcn
k2
;
Cn

k2

i�
�

2

log3 n

for all k � d1
p
n

p
log logn

. Then for any k � d1
p
n

p
log logn

, by Proposition 4.3,

P
�
T .k; n/ >

4Cn

k

�
� P

�
k
X
x2Z

L.k=2/.x; n/ >
4Cn

k

�
D P

�
Nk=2.n/ >

Cn

.k=2/2

�
�

2

log3 n
:

For the lower bound, we use again Proposition 4.3:

P
�
T .k; n/ <

k

8
N2k.n/

ˇ̌̌
N2k.n/

�
� P

�
k
X
x2Z

.`.2k/.x; n/ � 1/ <
k

8
N2k.n/

ˇ̌̌
N2k.n/

�
� P

�X
x2Z

.`.2k/.x; n/ � 1/ <
1

8
N2k.n/

ˇ̌̌
N2k.n/

�
:

Let Z D j¹x W L.2k/.x; n/ > 0ºj. This is the range of a simple random walk on Z after
N2k.n/ steps. We thus have

P
�
Z �

1

8
N2k.n/

ˇ̌̌
N2k.n/

�
� exp

�
�
.N2k.n/=8/

2

2N2k.n/

�
D exp

�
�
N2k.n/

128

�
;

so

P
�
T .k; n/ <

k

8
N2k.n/

ˇ̌̌
N2k.n/

�
� P

�X
x2Z

`.2k/.x; n/ <
1

8
N2k.n/CZ

ˇ̌̌
N2k.n/

�
� P

�X
x2Z

`.2k/.x; n/ <
1

4
N2k.n/

ˇ̌̌
N2k.n/

�
C exp

�
�
N2k.n/

128

�
:
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Conditioning on N2k.n/,
P
x2Z `

.2k/.x; n/ is a binomial random variable, with
parameters N2k.n/ and 1

2
. Therefore, by Chernoff’s inequality,

P
�X
x2Z

`.2k/.x; n/ <
1

4
N2k.n/

ˇ̌̌
N2k.n/

�
� exp

�
�
1

16
N2k.n/

�
:

We therefore have

P
�
T .k; n/ <

k

8
N2k.n/

ˇ̌̌
N2k.n/

�
� 2 exp

�
�
1

128
N2k.n/

�
;

so

P
�
T .k; n/ <

cn

16k

�
� P

�
N2k.n/ <

cn

2k2

�
C P

�
T .k; n/ <

cn

16k

ˇ̌̌
N2k.n/ �

cn

2k2

�
�

2

log3 n
C P

�
T .k; n/ <

k

8
N2k.n/

ˇ̌̌
N2k.n/ �

cn

2k2

�
�

2

log3 n
C 2 exp

�
�

cn

256k2

�
:

Let d2 > 0 be a constant such that d22 �
p
c=768. For any k � d2

p
n

p
log logn

,

n

k2
�

1

d22
log logn �

768

c
log logn;

and thus
P
�
T .k; n/ <

cn

16k

�
�

4

log3 n

concluding the proof.

We are now ready to get a concentration result for all values of n; k simultaneously.

Proposition 5.4. There are universal constants d2; c1; C1 > 0 such that the following
holds almost surely: For all but finitely many n and for all k � d2

p
n

2
p

log logn
,

c1n

k
� T .k; n/ �

C1n

k
:

Proof. We choose an exponential sequence of times tm D 2m, and for eachm an exponen-
tial sequence km;i D 2i defined for all i such that km;i �

d2
p
tmp

log log tm
. Note that for each m

there are at most K log tm such indices for some constant K.
By Lemma 5.3, there are constants c; C > 0 such that for each m; i ,

P
�
T .km;i ; tm/ …

h ctm
km;i

;
C tm

km;i

i�
�

6

log3 tm
:
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Taking a union bound over i , we have

P
�
9i W T .km;i ; tm/ …

h ctm
km;i

;
C tm

km;i

i�
�

6K

log2 tm
D

6K

m2 log2 2
:

As the latter expression is summable over m, by the Borel–Cantelli lemma we have that
for all but finitely many m, for all i

ctm

km;i
� T .km;i ; tm/ �

Ctm

km;i
: (5)

We extend this result to general n; k in two steps.
First, let m be such that (5) holds for all i , and let k � d2

p
tm

2
p

log log tm
. Take i such that

km;i � k < km;iC1. By Lemma 5.2,

T .k; tm/ � 3T .km;i�1; tm/ �
3C tm

km;i�1
�
6C tm

k

and
T .k; tm/ �

1

3
T .km;iC1; tm/ �

ctm

3km;iC1
�
ctm

6k
:

Finally, take any n, and let m be such that tm � n < tmC1. Suppose n is large enough
so that (5) holds. Then,

T .k; n/ � T .k; tmC1/ �
6C tmC1

k
�
12Cn

k

and
T .k; n/ � T .k; tm/ �

ctm

6k
�

cn

12k

as required.

6. The truncated sum of k-excursions, lower layer

We turn to study the sum
P
x2Z min¹T .k; x; n/; lº for k; l > 0. Our two cases of

interest are when kl �
p
n log logn (which will turn out to be the lim inf layer) and

when kl �
p
n

p
log logn

(which will be the lim sup layer). We begin with the lim inf layer;
for this we study the maximal number of k-excursions from a given point, that is,
maxx2Z T .k; x; n/.

6.1. The maximal number of k-excursions

Similarly to the way we estimated T .k; n/, we get tail bounds on the maximal number of
k-excursions in two steps. We first use the induced random walks to get a tail bound for
given values of n and k, and then use exponential scales to combine these bounds into a
bound for the maximal number of k-excursions.
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Lemma 6.1. There is a universal constant c > 0 such that for all large enough n and for
all k � d1

p
n

p
log logn

,

P
�

max
x2Z

T .k; x; n/ �
c
p
n log logn
k

�
�

3

log3 n
:

Proof. We use the induced random walks from Section 4. By Proposition 4.3,

P
�

max
x2Z

T .k; x; n/ �
c
p
n log logn
k

�
� P

�
max
x2Z

L.k=2/.x; n/ �
c
p
n log logn
k

�
:

From Appendix B,

P
�

max
x2Z

L.x; n/ � mn1=2
�
� Cm2 exp.�C 0m2/

for large enough n;m. Let c0 > 0 be a constant such that for k � d1
p
n

p
log logn

P
�
Nk=2.n/ �

c0n

k2

�
�

2

log3 n
:

Using Proposition 4.2,

P
�

max
x2Z

L.k=2/.x; n/ �
c
p
n log logn
k

�
� P

�
Nk=2.n/ �

c0n

k2

�
C P

�
max
x2Z

L
�
x;
c0n

k2

�
�
c
p
n log logn
k

�
�

2

log3 n
C
c2

c0
log logn exp

�
�
c2

c0
log logn

�
:

Finally, choosing c D 2
p
c0, we have

c2

c0
log logn exp

�
�
c2

c0
log logn

�
D
2 log logn

log4 n
�

1

log3 n

for large enough n, as required.

Proposition 6.2. There are universal constants d1; C > 0 such that the following holds
almost surely: For all but finitely many n and for all k � d1

p
n

2
p

log logn
,

max
x2Z

T .k; x; n/ �
C
p
n log logn
k

:

Proof. We choose an exponential sequence of times tm D 2m, and for eachm an exponen-
tial sequence km;i D 2i defined for all i such that km;i �

p
tm

2
p

log log tm
. Note that for eachm

there are at most log tm such indices.
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By Lemma 6.1, there is a constant c > 0 such that for all m; i we have

P
�

max
x2Z

T .km;i ; x; tm/ �
c
p
tm log log tm
km;i

�
�

3

log3 tm
:

Taking a union bound,

P
�
9i W max

x2Z
T .km;i ; x; tm/ �

c
p
tm log log tm
km;i

�
�

3

log2 tm
D

3

m2 log2 2
:

The latter expression is summable over m, so by Borel–Cantelli lemma we have that for
all but finitely many m, for all i we have

max
x2Z

T .km;i ; x; tm/ �
c
p
tm log log tm
km;i

: (6)

Let n; k be such that k � d1
p
n

2
p

log logn
. Take m such that tm � n < tmC1, and suppose n

is large enough so that (6) holds. Take i such that km;i � k < km;iC1. Then

max
x2Z

T .k; x; n/ � max
x2Z

T .km;i ; x; tmC1/

�
c
p
tmC1 log log tmC1

km;i

�
4c
p
n log logn
k

as required.

6.2. The truncated sum

We are now ready to get an asymptotic bound for the truncated sum of k-excursions.

Proposition 6.3. There are universal constants d2; c2 > 0 such that the following holds
almost surely: For all but finitely many n, for all k � d2

p
n

2
p

log logn
and for all l ,

X
x2Z

min¹T .k; x; n/; lº � c2 min
°n
k
;

p
n

p
log logn

l
±
:

Proof. We first assume that l �
p
n log logn
k

. By Proposition 6.2, there is a constant C > 0

such that for large enough n we have

max
x2Z

T .k; x; n/ �
C
p
n log logn
k

� Cl;

so by Proposition 5.4X
x2Z

min¹T .k; x; n/; lº �
1

C

X
x2Z

T .k; x; n/ �
1

2C
T .2k; n/ �

c0n

k
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for large enough n and a universal constant c0.
Now suppose l <

p
n log logn
k

. Let

A1 D ¹x 2 Z jT .k; x; n/ < lº; A2 D ¹x 2 Z jT .k; x; n/ � lº:

Note that by Propositions 5.1 and 5.4, for large enough n we have

c1n

4k
�
1

2
T .2k; n/ �

X
x2Z

T .k; x; n/

D

X
x2A1

T .k; x; n/C
X
x2A2

T .k; x; n/:

We split into two cases:

(i) If
P
x2A1

T .k; x; n/ � c1n
8k

, then clearlyX
x2Z

min¹T .k; x; n/; lº �
X
x2A1

T .k; x; n/ �
c1n

8k
�

c1
p
n

8
p

log logn
l:

(ii) Otherwise, we must have
P
x2A2

T .k; x; n/ � c1n
8k

. By Proposition 6.2,

c1n

8k
�

X
x2A2

T .k; x; n/ �
c
p
n log logn
k

� jA2j;

so jA2j �
c1
p
n

8c
p

log logn
, showing

X
x2Z

min¹T .k; x; n/; lº � l � jA2j �
c1
p
n

8c
p

log logn
l:

The proposition is thus proved.

7. The truncated sum of k-excursions, upper layer

For the remaining case, we switch strategy. We first need the exact distribution of
T .k; 0; n/, which can be found, for example, in [5]. The main idea is the following: We
use the reflection principle successively, reflecting the random walk whenever we first
visit any jk for any j < 0. In this manner, the number of k-excursions starting from 0 has
the same distribution (up to a factor of 2k) as the minimum (or maximum) of the random
walk. This proves the following.

Lemma 7.1 ([5]). For any a 2 N,

P.T .k; 0; n/ � a/ D P
�

min
0�t�n

St � �2ka
�

D P
�

max
0�t�n

St � 2ka
�
:
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Lemma 7.2. There are universal constants c; c0 > 0 such that for large enough n and for
all k � c

p
n

p
log logn

,

P
�
T .k; 0; n/ �

c
p
n

k
p

log logn

�
�

c0

log3 n
:

Proof. By the reflection principle (see Lemma 7.1),

P
�
T .k; 0; n/ �

c
p
n

k
p

log logn

�
� P

�
T .k; 0; n/ �

l c
p
n

k
p

log logn

m�
D P

�
max
0�t�n

St � 2k
l c

p
n

k
p

log logn

m�
� P

�
max
0�t�n

St �
2c
p
n

p
log logn

C 2k
�

� P
�

max
0�t�n

St �
4c
p
n

p
log logn

�
;

where the last inequality follows from k �
c
p
n

p
log logn

. To bound the latter probability, we
use [12, Lemma 2]. Following their proof, one can choose c D �

4
and get

P
�

max
0�t�n

St �
�
p
n

4
p

log logn

�
�

c0

log3 n

for large enough n, concluding our proof.

Proposition 7.3. There exists a universal constant c > 0 such that the following holds
almost surely: For all but finitely many values of n and for all k � c

p
n

2
p

log logn
,

X
x2Z

min
²
T .k; x; n/;

c
p
n

k
p

log logn

³
�

c
p
n

k
p

log logn
� jrange.Sn=4/j:

Proof. For convenience, write l D c
p
n

k
p

log logn
. We first note thatX

x2Z

min¹T .k; x; n/; lº �
X

x2range.Sn=2/

min¹T .k; x; n/; lº:

Writing
Zn;k D

X
x2range.Sn=2/

max¹l � T .k; x; n/; 0º;

we have X
x2range.Sn=2/

min¹T .k; x; n/; lº D l � jrange.Sn=2/j �Zn;k ; (7)

so we turn to upper bound Zn;k .
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Note that for any x 2 range.Sn=2/, by Lemma 7.2

P.T .k; x; n/ � l/ � P.T .k; 0; n=2/ � l/ �
c0

log3 n

for large enough n. Therefore, for any x 2 range.Sn=2/,

EŒmax¹l � T .k; x; n/; 0º� � l � P.T .k; x; n/ � l/ �
c0

log3 n
l;

and thus

EŒZn;k � �
c0

log3 n
l � EŒrange.Sn=2/� �

c00
p
n

log3 n
l:

By Markov’s inequality,

P
�
Zn;k �

p
n

4
p

log logn
l

�
�

c00
p
n

log3 n
l

p
n

4
p

log logn
l
�

4c00

log2:5 n

for large enough n.
Let tm D 2m and let km;i D

c
p
tm

2i
p

log log tm
(so lm;i D

c
p
tm

km;i
p

log log tm
D 2i ) for all i such

that km;i � 1. As there are at most log tm such indices, we have

P
�
9i W Ztm;km;i �

p
tm

4
p

log log tm
lm;i

�
�

4c00

log1:5 tm
D

4c00

m1:5 log1:5 2
:

The latter expression is summable over m, so by Borel–Cantelli lemma we have that for
all but finitely many m and for all i as above,

Ztm;km;i �

p
tm

4
p

log log tm
lm;i :

From the lim inf law of iterated logarithm (see [4, 12]), we know that for large enough m,
jrange.Stm=2/j >

p
tm

2
p

log log tm
, and thus (7) yieldsX

x2Z

min¹T .km;i ; x; tm/; lm;iº �
lm;i

4
� jrange.Stm=2/j (8)

for all but finitely many m and for all i as above.
Now, let n, let k � c

p
n

2
p

log logn
, and write l D c

p
n

k
p

log logn
. Letm such that tm � n < tmC1,

and let i such that km;i � k < km;iC1. Assume n is large enough so that (8) holds. ThenX
x2Z

min¹T .k; x; n/; lº �
X
x2Z

min¹T .km;iC1; x; tm/; lm;iC1º

�
lm;iC1

4
� jrange.Stm=2/j

�
l

8
� jrange.Sn=4/j

D
c
p
n

8k
p

log logn
� jrange.Sn=4/j:
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Corollary 7.4. There are universal constants d3; c3 > 0 such that the following holds
almost surely: For infinitely many n and for all k; l with k � d3

p
n

2
p

log logn
,X

x2Z

min¹T .k; x; n/; lº � c3 min
°n
k
;
p
n log logn l

±
:

Proof. By the usual law of iterated logarithm, there are infinitely many n such that
jrange.Sn=4/j � 1

4

p
n log logn. Using Proposition 7.3, we have two cases:

(i) If l �
p
n

k
p

log logn
, thenX

x2Z

min¹T .k; x; n/; lº �
X
x2Z

min
°
T .k; x; n/;

p
n

k
p

log logn

±
�

c
p
n

4k
p

log logn

p
n log logn D

cn

4k
:

(ii) If l <
p
n

k
p

log logn
, let k0 D

p
n

l
p

log logn
> k. ThenX

x2Z

min¹T .k; x; n/; lº �
X
x2Z

min¹T .k0; x; n/; lº

�
c
p
n

4k0
p

log logn

p
n log logn

D
c

4

p
n log logn l:

This concludes the proof.

8. Bounds on the distance in �

We return to the construction of [3]. Recall that our group� is a diagonal product of lamp-
lighter groups �s D �s oZ, where each �s is generated by a set of the form A.s/[B.s/,
and the diagonal product is taken with respect to the generating set ˛i .s/ D .ai .s/ı0; 0/,
ˇi .s/ D .bi .s/ıks ; 0/ and �.s/ D .e;C1/.

As explained in Subsection 2.3, for any given layer s, the number of �s-steps the ran-
dom walk makes at x in �s depends only on whether we reached x and on the number
of ks-excursions from x. In this section, we provide bounds for the distance of a simple
random walk on � and on �s in terms of the ks-excursions.

For the upper bound on the distance, we use the bound found in [3, Proposition 2.14
and proof of Lemma 3.4].

Proposition 8.1. For all s � 0,

jWnj�s � 11min
²X
j2Z

ksT
�ks
2
; j
ks

2
; n
�
C jrange.Sn/j; jrange.Sn/j ls

³
:



A law of iterated logarithm on lamplighter diagonal products 1063

In addition, writing s0.n/ D max¹s � 0 j ks � jrange.Sn/jº, we have

jWnj� � 500
X

s�s0.n/

jWnj�s :

We now turn to the lower bound. For all s � 0, we have

jWnj� � jWnj�s �
X
x2Z

jfn.x/j�s :

To get a lower bound for the RHS, we use the following lemma.

Lemma 8.2. Let ¹�sº be a sequence of finite groups, let ls D diam.�s/, and suppose that
¹�sº satisfies .�; c0ls/-linear speed assumption for some constants 0 < �; c0 < 1 with
�c0ls � 4. Then for all t � 0,

P
�ˇ̌
X
.s/
t

ˇ̌
�s
�
�

8
min¹t; c0lsº

�
�
�c0

8
:

Proof. Assume first that t � c0ls . Let p D P.jX .s/t j�s �
�
2
t /. Then

�t � EjX .s/t j�s � .1 � p/
�

2
t C pt �

�

2
t C pt;

so p � �
2

, and the assertion follows.
Now, let t � c0ls . By [20, Lemma 4.1], we have

EjX .s/t j�s �
1

2
E
ˇ̌
X
.s/

c0ls

ˇ̌
�s
� 1 �

�

2
c0ls � 1:

If �c0ls � 4, we therefore have

EjX .s/t j �
�c0ls

4
:

Let p D P
�
jX

.s/
t j �

�c0ls
8

�
. Then

�c0ls

4
� EjX .s/t j � .1 � p/

�c0ls

8
C pls �

�c0ls

8
C pls :

We therefore have p � �c0
8

, as required.

We are now ready to prove our lower bound on the metric in a single layer.

Proposition 8.3. Let ¹�sº be a sequence of finite groups, let ls D diam.�s/, and suppose
that ¹�sº satisfies .�; c0ls/-linear speed assumption for some constants �; c0 > 0. Also
suppose there is m0 > 1 such that

ksC1 > 2ks and lsC1 � m0ls

for all s. Then, almost surely, for large enough n, for all s such that ks �
d2
p
n

p
log logn

we have

jWnj�s �
�c0

16

X
x2Z

min¹T .ks; x; n/; c0lsº:
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Proof. We use a similar approach to Revelle [21]. It is trivial that for all n; s,

jWnj�s �
1

2

X
x2Z

jfn.x/j�s :

Let Ix;n denote the indicator of whether the random walk on Z visited x before time n.
Conditioning on T .ks; x; n/ and Ix;n for all x, the random variables jfn.x/j�s are
independent.

Let �x D �
8

min¹T .ks; x; n/; c0lsº, and write Zx D jfn.x/j�s�
�1
x . By Lemma 8.2,

P.Zx � 1/ � �c0
8

, so we may apply [21, Lemma 2] to get

P
�X
x2Z

jfn.x/j�s <
�c0

16

X
x2Z

�x

ˇ̌̌̌
T .ks; x; n/; Ix;n

�
D P

�X
x2Z

jfn.x/j�s
�x

�x

maxx �x
<
�c0

16

X
x2Z

�x

maxx �x

ˇ̌̌̌
T .ks; x; n/; Ix;n

�
� exp

�
�

�c0

96maxx �x

X
x2Z

�x

ˇ̌̌̌
T .ks; x; n/; Ix;n

�
: (9)

Let d2; c; c2 > 0 be constants such that Propositions 6.2 and 6.3 hold. For each m,
let Am denote the event that for all n � m and for all s with ks �

d2
p
n

2
p

log logn
,

max
x2Z

�x � min
°cpn log logn

ks
; ls

±
and X

x2Z

�x � c2 min
° n
ks
;

p
n

p
log logn

ls

±
�

c0
p
n

p
log logn

max
x2Z

�x :

We have P
�S1

mD1Am
�
D 1. Also, let Bn denote the event that for all s with ks �

d2
p
n

2
p

log logn
, X

x2Z

jfn.x/j�s <
�

4

X
x2Z

�x :

Conditioning on Am, (9) shows that

P
�X
x2Z

jfn.x/j�s <
�

4

X
x2Z

�x

ˇ̌̌
Am

�
� exp

�
�

c0
p
n

p
log logn

�
for all n � m. As ¹ksº increases exponentially, we may take a union bound to see

P.Bn jAm/ � c00 logn exp
�
�

c0
p
n

p
log logn

�
for all n � m and a constant c00. The latter expression is summable, so the Borel–Cantelli
lemma shows that for each m, conditioning on Am we have that P.lim infBcn jAm/ D 1.
But as P

�S1
mD1Am

�
D 1, we must have P.lim infBcn/ D 1, as required.
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9. Bounds on the distance in a single layer

We use the results obtained in the previous section to bound the distance of the random
walk in each layer separately. As explained before, for a given s, the number of steps that
the random walk on �s D �s o Z makes in the copy of the lamp group �s at any given
point x 2Z until time n is T .ks; x;n/, and the distance in each copy of �s is also bounded
from above by ls .

When s is small, we expect to reach saturation in �s relatively fast, so the effective
bound should be ls . However, when s is big, the number of excursions can be small com-
pared to ls , so the bound should depend on T .ks; x; n/. We are therefore looking for the
layers which will separate these two cases.

To do this, let d1; d2; d3 be the constants from Propositions 5.4 and 6.3 and
Corollary 7.4. Take a constant r � 1

2
min¹d1; d2; d3º, and consider the following layers:

s00.n/D max
°
s � 0

ˇ̌̌
ks �

r
p
n

p
log logn

±
;

s000.n/D max
°
s � 0

ˇ̌̌
ks �

2
p
n

p
log logn

±
;

s2.n/D max
°
s � 0

ˇ̌̌
ksls �

r
p
n

p
log logn

±
;

s3.n/D max
°
s � 0

ˇ̌
ksls �

p
n log logn

±
;

zs3.n/ D min¹s00.n/; s3.n/º:

We will prove that the dominating layer for the lim sup is s2.n/, whereas the dominating
layer for the lim inf is zs3.n/.

9.1. Upper bounds

Proposition 9.1. There is a universal constant C > 0 such that almost surely, for large
enough n and all s � 0,

jWnj�s �

8̂̂̂<̂
ˆ̂:
C
p
n log logn ls; s � s2.n/;

Cn

ks
; s2.n/ < s � s

0
0.n/;

C
p
n log logn; s > s00.n/:

Proof. By Proposition 8.1, we have

jWnj�s � 11min
°
T
�ks
2
; n
�
C jrange.Sn/j; jrange.Sn/j ls

±
for all s � 0. Also, by the classical law of iterated logarithm, for large enough n we have

jrange.Sn/j � 2
p
n log logn: (10)
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The case s � s2.n/ follows from jWnj�s � 11 � jrange.Sn/j ls and (10).
We move to the case where s2.n/ < s � s00.n/. By Proposition 5.4, almost surely for

large enough n and for all s � s00.n/,

T
�ks
2
; n
�
�
C1n

ks=2
D
2C1n

ks
:

Also, by (10), for large enough n we have

jrange.Sn/j � 2
p
n log logn �

2rn

ks
;

proving the second case.
For the case where s > s00.n/, as ks >

r
p
n

p
log logn

, we may apply Lemma 5.2 and
Proposition 5.4:

T .ks; n/ � 3T
� r

p
n

2
p

log logn
; n
�
�

3C1n

r
p
n

2
p

log logn

D
6C1

r

p
n log logn:

Now the bound on jWnj�s follows from (10).

Proposition 9.2. There is a universal constant C > 0 such that almost surely, for all large
enough n for which jrange.Sn/j �

2
p
n

p
log logn

and all s � 0,

jWnj�s �

8̂̂<̂
:̂

C
p
n

p
log logn

ls; s � zs3.n/;

Cn

ks
; zs3.n/ < s � s

00
0.n/:

Proof. By Proposition 8.1, we have

jWnj�s � 11min
°
T
�ks
2
; n
�
C jrange.Sn/j; jrange.Sn/j ls

±
for all s � 0. Also, by our assumption on n, jrange.Sn/j �

2
p
n

p
log logn

, so the case s � zs3.n/
follows automatically.

We move to the case where zs3.n/ < s � s00.n/. By Proposition 5.4, almost surely for
large enough n and for all s � s00.n/,

T
�ks
2
; n
�
�
C1n

ks=2
D
2C1n

ks
:

In addition,

jrange.Sn/j �
2
p
n

p
log logn

�
2rn

ks
;

proving part of the second case.
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For the case where s00.n/ < s � s000.n/, as r
p
n

p
log logn

< ks �
2
p
n

p
log logn

, we may apply
Lemma 5.2 and Proposition 5.4:

T .ks; n/ � 3T
� r

p
n

2
p

log logn
; n
�
�

C1n

r
p
n

2
p

log logn

D
2C1

r

p
n log logn <

2rn

ks
:

The conclusion follows.

9.2. Lower bounds

Proposition 9.3. There is a universal constant c > 0 such that almost surely, for all but
finitely many n,

jWnj�s �

8̂̂<̂
:̂

c
p
n

p
log logn

ls; s � zs3.n/;

cn

ks
; zs3.n/ < s � s

0
0.n/:

Proof. Using Proposition 8.3, for large enough n we have

jWnj�s � c
X
x2Z

min¹T .ks; x; n/; lsº

for all s � s00.n/. The result follows from Proposition 6.3.

Proposition 9.4. There is a universal constant c > 0 such that almost surely, for infinitely
many n,

jWnj�s �

8<:c
p
n log logn ls; s � s2.n/;

cn

ks
; s2.n/ < s � s

0
0.n/:

Proof. Using Proposition 8.3, for large enough n we have

jWnj�s � c
X
x2Z

min¹T .ks; x; n/; lsº

for all s � s00.n/. The result follows from Corollary 7.4.

10. Bounds on the total distance

We now use the bounds on each layer achieved in the previous section to find a bound on
the distance of the random walk on � in terms of the sequences ¹ksº and ¹lsº. Recall the
following bounds from [3]:

jWnj� � C
X

s�s0.n/

jWnj�s ; (11)
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where s0.n/ D min¹s � 0 j ks � jrange.Sn/jº, and

jWnj� � jWnj�s (12)

for any s � 0.
For the lim sup, recall the critical layer

s2.n/ D max
°
s � 0

ˇ̌̌
ksls �

r
p
n

p
log logn

±
;

and that

s00.n/ D max
°
s � 0

ˇ̌̌
ks �

r
p
n

p
log logn

±
;

where r > 0 is some universal constant.

Proposition 10.1. Suppose that ¹�sº satisfy the .�; c0ls/-linear speed assumption and
diam.�s/ � C0ls . Suppose there exists a constant m0 > 1 such that

ksC1 > 2ks; lsC1 � m0ls

for all s. Let
g.n/ D

n

ks2.n/C1
C
p
n log lognls2.n/:

Then almost surely,

0 < lim sup
n!1

jWnj�

g.n/
and lim sup

n!1

jWnj�

g.n/C
p
n log logn log log logn

<1:

Proof. For the lower bound, we use (12) and Proposition 9.4, showing that for infinitely
many n we have

jWnj� �
1

2

�
jWnj�s2.n/ C jWnj�s2.n/C1

�
�
c

2

�p
n log lognls2.n/ C

n

ks2.n/C1

�
D
c

2
g.n/;

so lim supn!1
jWnj�
g.n/

> 0 almost surely.
For the upper bound, we use (11). We divide the interval 0� s � s0.n/ into three parts,

and use Proposition 9.1 to analyze the contribution of each of them:

• For 0 � s � s2.n/,X
s�s2.n/

jWnj�s �
X

s�s2.n/

C1
p
n log logn ls

�
C1

1 � 1=m0

p
n log logn ls2.n/

where the last inequality follows from lsC1 � m0ls .
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• For s2.n/C 1 � s � s00.n/,X
s2.n/C1�s�s

0
0.n/

jWnj�s �
X

s2.n/C1�s�s
0
0.n/

C1n

ks
�

2C1n

ks2.n/C1
;

where the last inequality follows from ksC1 > 2ks .

• For s00.n/ C 1 � s � s0.n/, recall that for large enough n we have jrange.Sn/j �
2
p
n log logn. As ksC1 > 2ks , the number of layers s00.n/C 1 � s � s0.n/ is at most

c log log logn for some constant c > 0, soX
s00.n/C1�s�s0.n/

jWnj�s � C1
p
n log logn log log logn:

Summing the above yields

jWnj� � Cg.n/C C
p
n log logn log log logn;

proving the second lim sup is finite.

For the lim inf, recall that

s000.n/ D max
°
s � 0

ˇ̌̌
ks �

2
p
n

p
log logn

±
;

s3.n/ D max
°
s � 0

ˇ̌̌
ksls �

p
n log logn

±
;

and that zs3.n/ D min¹s00.n/; s3.n/º.

Proposition 10.2. Suppose that ¹�sº satisfy the .�; c0ls/-linear speed assumption and
diam.�s/ � C0ls . Suppose there exists a constant m0 > 1 such that

ksC1 > 2ks; lsC1 � m0ls

for all s. Let

h.n/ D

8̂̂̂<̂
ˆ̂:

n

ks3.n/C1
C

p
n

p
log logn

ls3.n/; s3.n/ < s
0
0.n/;

p
n

p
log logn

ls00.n/; otherwise:

Then almost surely

0 < lim inf
n!1

jWnj�

h.n/
<1:

Proof. For the upper bound we use again (11). Take n such that jrange.Sn/j �
2
p
n

p
log logn

,
and assume n is large enough such that Proposition 9.2 holds. We divide the interval
0 � s � s000.n/ into several parts and analyze the contribution of each of them:
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• For 0 � s � zs3.n/,X
s�zs3.n/

jWnj�s �
X

s�zs3.n/

C
p
n

p
log logn

ls �
C

1 � 1=m0

p
n

p
log logn

lzs3.n/;

where the last inequality follows from lsC1 � m0ls .

• For zs3.n/ < s � s000.n/, we haveX
zs3.n/C1�s�s

00
0 .n/

jWnj�s �
X

zs3.n/C1�s�s
00
0 .n/

Cn

ks
�

2Cn

kzs3.n/C1
;

where the last inequality follows from ksC1 > 2ks .

Summing the above, we have

jWnj� �

8̂̂̂<̂
ˆ̂:

C
p
n

p
log logn

ls3.n/ C
Cn

ks3.n/C1
; s3.n/ < s

0
0.n/;

C
p
n

p
log logn

ls00.n/ C
Cn

ks00.n/
; otherwise:

In the second case, s00.n/� s3.n/, so ks00.n/ls00.n/ �
p
n log logn, and thus the latter term is

inessential. We therefore get jWnj� � 2Ch.n/ for each such n, proving the above lim inf
is finite.

To prove that the lim inf is positive, we use (12). Take n large enough so that
Proposition 9.3 holds. If s3.n/ < s00.n/, we have

jWnj� �
1

2

�
jWnj�s3.n/ C jWnj�s3.n/C1

�
�
c

2

� p
n

p
log logn

ls3.n/ C
n

ks3.n/C1

�
D
c

2
h.n/:

Finally, if s00.n/ � s3.n/, we have

jWnj� � jWnj�s00.n/
�

c
p
n

p
log logn

ls00.n/ D c h.n/:

This concludes the proof.

11. Proof of the main theorem

We return to the idea of [3] for approximating a given function. Let f W N ! N be a
function such that f .n/p

n
and n

f .n/
are non-decreasing. Choose sequences ¹ksº and ¹lsº as

in Proposition 2.7, and let � be the corresponding diagonal product. Denote by Wn the
random walk on � with respect to the “switch-walk-switch” measure.
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Theorem 11.1. If f .n/
p
n log log logn

is non-decreasing, then almost surely

0 < lim sup
n!1

jWnj�

log logn � f . n
log logn /

<1:

Proof. We first note that, by Proposition 2.7,

f
� rn

log logn

�
'

r
rn

log logn
ls2.n/ C

rn
log logn

ks2.n/C1

'
1

log logn

�p
n log logn ls2.n/ C

n

ks2.n/C1

�
:

Therefore, Proposition 10.1 shows that almost surely,

0 < lim sup
n!1

jWnj�

log logn
�
f
�

n
log logn

�
C

p
n

p
log logn

log log logn
� <1:

As f .n/
p
n log log logn

is non-decreasing,

p
n

p
log logn

log log logn . f
� n

log logn

�
;

and the conclusion follows.

Theorem 11.2. If f .n/
p
n.log logn/1C"

is non-decreasing for some " > 0, and the sequences ¹ksº
and ¹lsº are chosen so that log log ks � ls (as in Lemma C.1), then almost surely

0 < lim inf
n!1

jWnj�
1

log logn � f .n log logn/
<1:

Proof. We first note that, by Proposition 2.7,

f .c1n log logn/ '
p
c1n log logn ls3.n/ C

c1n log logn
ks3.n/C1

' log logn
� p

n
p

log logn
ls3.n/ C

n

ks3.n/C1

�
:

Also, the assumption that log log ks � ls is non-decreasing shows that s3.n/ � s00.n/ for
large enough n. Therefore, Proposition 10.2 shows that almost surely

0 < lim inf
n!1

jWnj�
1

log lognf .n log logn/
<1:
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A. k-jumps of a simple random walk on Z

Let St be a simple random walk on Z, and fix k > 0. Recall from Definition 4.1 the
sequence ¹n.k/j º

1
jD0: We set n.k/0 D 0, and

n
.k/
j D inf¹t > n.k/j�1 j St 2 ¹Sn.k/j�1

˙ kºº:

Recall also Nk.n/ D max¹j j n.k/j � nº. Let Xj D n
.k/
j � n

.k/
j�1. Our goal is to estimate

Nk.n/.

Proposition A.1. Let 0 < r < 1
2

. There exists c > 0 such that for any n; k � 1,

P
�
Nk.n/ >

cn

k2

�
� exp

�
�
rn

k2

�
:

Proof. For k D 1, we may choose c D 1 and the inequality will hold; so we assume k > 1.
Note that

P
�
Xj > k

2
�
D P

�
max

nj�1�t�nj�1Ck2
jSt � Snj�1 j < k

�
D P

�
max
0�t�k2

jSt j < k
�
D 1 � P

�
max
0�t�k2

jSt j � k
�

� 1 �
EjSk2 j

k
;

where the last step follows from Doob’s maximal inequality. Since EjSnj �
q

2
�
n, there is

a constant p0>0 such that P.Xj >k2/�p0 for all k. As the random variablesX1;X2; : : :,
are i.i.d., for all c > 1 we have

P
�
Nk.n/ >

cn

p0k2

�
D P

 
cn=p0k

2X
jD1

Xj � n

!

� P

 
cn=p0k

2X
jD1

k2 � 1¹Xj>k2º � n

!
� P

�
Bin

� cn

p0k2
; p0

�
�
n

k2

�
:

Chernoff’s inequality shows that

P
�

Bin
� cn

p0k2
; p0

�
�
n

k2

�
� exp

�
�

�
1 �

1

c

�2 n

2k2

�
:

Now, let 0 < r < 1. Choosing a large enough c so that r � .1 � 1
c
/2, we have

P
�
Nk.n/ >

cn

p0k2

�
� exp

�
�
rn

k2

�
as required.
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Proposition A.2. Let 0 < r < 1
10

. Then there exists c0 > 0 such that for all n; k � 1,

P
�
Nk.n/ <

c0n

k2

�
� exp

�
�
rn

k2

�
:

Proof. First, for k D 1 we may take c0 D 1
2

, and the desired probability is 0; so we assume
k > 1. Note that

P
�
Xi � k

2
�
� P

�
jSk2 j � k

�
;

and the latter converges from below to P.�1 � N.0; 1/ � 1/� 0:683. One can check that
by taking p1 D 0:9 we have P.Xi � k2/ � p1 for all k � 2.

Our next step is to show by induction that 1
k2
Xj is stochastically dominated by a geo-

metric random variable Gj � Geo.1 � p1/. To this end, we use that for simple random
walk ¹Ytº on the interval Œ�k; k�, the hitting time of ¹�k; kº when starting at j is stochas-
tically dominated by the same hitting time when starting at 0. To see this, simply let the
walker starting at 0walk until the first time it hits˙j . The remaining time until the walker
hits˙k has the same distribution as for a walker starting at j .

Using this fact, we deduce

P
�
Xj � ik

2
j .i � 1/k2

�
D

X
�k<a<k

P.Xj � ik2 j Xj � .i � 1/k2; S.i�1/k2 D a/P.S.i�1/k2 D a/

� P.Xj � ik2 j Xj � .i � 1/k2; S.i�1/k2 D 0/ D P.Xj � k2/;

so for any m � 1,

P.Xj � mk2/ D
mY
iD1

P.Xj � ik2 j Xj � .i � 1/k2/

�

mY
iD1

P.Xj � k2/ D P.Xj � k2/m:

This proves that 1
k2
Xj is stochastically dominated by Gj . Therefore, for any c0 � 1� p1,

P
�
Nk.n/ <

c0n

k2

�
D P

 
c0n=k2X
jD1

Xj > n

!
� P

 
c0n=k2X
jD1

Gj >
n

k2

!
:

By [14, Theorem 2.1],

P

 
c0n=k2X
jD1

Gj >
n

k2

!
� exp

�
�
c0n

k2
.� � 1 � ln�/

�
for � D 1�p1

c0
.

Finally, let 0 < r < 1
10

. As c0.� � 1 � ln�/ D 1 � p1 � c0 � c0 ln 1�p1
c0
! 1 � p1 as

c0 ! 0, by choosing small enough c0 we have c0.� � 1 � ln�/ > r , and thus

P
�
Nk.n/ >

c0n

k2

�
� exp

�
�
rn

k2

�
:
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B. On the maximal local time of a simple random walk

For a simple random walk St on Z, recall that

L.x; n/ D j¹0 � k � n j Sk D xºj

denotes the local time of St at x until time n. We are interested in the tail behavior of
L.n/ D maxx2Z L.x; n/. The main aim of this section is to prove an upper tail bound on
the maximal local time of a simple random walk on Z (Corollary B.4). This seems like a
classical result; however, we could not find the exact statement we needed in the literature,
and therefore provide the statement with proof and background for completeness.

For the local time of a simple random walk St on Z at a given point, we have the
following bound.

Lemma B.1. For any n � 1, any x 2 Z and any u � 1,

P.L.x; n/ � u/ � exp
�
�
u2

2n

�
:

Proof. First, for any x 2 Z we have

P.L.x; n/ � u/ � P.L.0; n/ � u/;

so we may assume that x D 0. A standard use of the reflection principle shows that

P.L.0; n/ � u/ D P
�

max
0�t�n�u

St � u
�
� P

�
max
0�t�n

St � u
�

(see, for instance, [23, Theorem 9.3]). Then, by the maximal Azuma–Hoeffding inequality,

P
�

max
0�t�n

St � u
�
� exp

�
�
u2

2n

�
as required.

B.1. Brownian motion and the Skorokhod embedding

Let Bt be a Brownian motion on R starting at 0. Define a sequence of stopping times by
�0 D 0 and, inductively,

�k D inf¹t > �k�1 j jBt � B�k�1 j D 1º:

Then Sk D B�k is a simple random walk on Z, and �k � �k�1 are i.i.d.r.v. with EŒ�k �
�k�1� D 1 and �2 D EŒ.�k � �k�1/

2� <1. We therefore have

P.j�n � nj �
p
nu/ � 2 exp

�
�
u2

2�2

�
: (13)
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B.2. Brownian local time

Given a Brownian motion Bt on R, a theorem of Trotter [25] shows that almost surely
there exists a function �.x; t/, jointly continuous in x and t , such that

�.x; t/ D
d

dx

Z t

0

1.�1;x/.Bs/ ds;

where �.x; t/ is called the local time of Bt at x. The distribution of �.0; t/ is well known:
For all u > 0,

P
�
�.0; t/
p
t
� u

�
D 2ˆ.u/ � 1 (14)

(see, for example, [17]).
Let �.t/ D supx2R �.x; t/. By the scaling property of Brownian motion, �.t/p

t
has the

same distribution as �.1/, which, by [17], satisfies

P.�.t/ �
p
tu/ D P.�.1/ � u/ � exp

�
�
u2

4

�
(15)

for large enough u.

B.3. Strong approximation for the local time

We give a strong approximation theorem for the maximal local time of a random walk and
a Brownian motion, using the Skorokhod embedding. This is similar to other results (such
as in [6, 13, 22]), but with a more quantitative flavor.

We use the notations of [22]. Fix x 2 Z. Define

�1 D inf¹k � 0 j B�k D Sk D xº

and, inductively,
�j D inf¹k > �j�1 j B�k D Sk D xº:

For each j , let
aj .x/ D �.x; ��jC1/ � �.x; ��j�1/:

From [22], a1.x/; a2.x/; : : :, are i.i.d.r.v. with

P.aj .x/ � u/ D P.�.0; �1/ � u/ � C exp
�
�
�

4
u
�

(16)

(for some universal constant C > 0), and EŒaj .x/� D 1. In addition, the random matrices
L D .L.x; n//x2Z;n�0 and A D .aj .x//x2Z;j�1 are independent.

Lemma B.2. There is a universal constant c1 > 0 such that for any x 2 Z and u � 1,

P.ja1.x/C � � � C aL.x;n/.x/ � L.x; n/j �
p
nu/ � 3 exp

�
�
n1=3u4=3

2

�
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Proof. By the above, we have

P.ja1.x/C � � � C aL.x;n/.x/ � L.x; n/j �
p
nu/

D

nX
kD0

P.ja1.x/C � � � C ak.x/ � kj �
p
nu/ P.L.x; n/ D k/

D

nX
kD0

P
�ˇ̌̌a1.x/C � � � C ak.x/ � k

p
k

ˇ̌̌
�

p
nu
p
k

�
P.L.x; n/ D k/

�

.nu/2=3X
kD0

P
�ˇ̌̌a1.x/C � � � C ak.x/ � k

p
k

ˇ̌̌
�

p
nu
p
k

�
P.L.x; n/ D k/

C P
�
L.x; n/ > .nu/2=3

�
�

.nu/2=3X
kD0

P
�ˇ̌̌a1.x/C � � � C ak.x/ � k

p
k

ˇ̌̌
� n1=6u2=3

�
P.L.x; n/ D k/

C exp
�
�
n1=3u4=3

2

�
� 2 exp

�
�
n1=3u4=3

2

�
C exp

�
�
n1=3u4=3

2

�
� 3 exp

�
�
n1=3u4=3

2

�
:

Note that we used Lemma B.1 during the proof to show that

P.L.x; n/ > .nu/2=3/ � exp
�
�
n1=3u4=3

2

�
:

Lemma B.3. There is a universal constant C1 > 0 such that for any x 2 Z and u � 1,

P.ja1.x/C � � � C aL.x;n/.x/ � �.x; �n/j �
p
nu/ � C1 exp

�
�
�
p
nu

4

�
:

Proof. By [22, equation (2.6)],

ja1.x/C � � � C aL.x;n/.x/ � �.x; �n/j � 
 C aL.x;n/.x/

for some constant 
 � 0. Therefore, by (16),

P.ja1.x/C � � � C aL.x;n/.x/ � �.x; �n/j �
p
nu/

� P.
 C aL.x;n/.x/ �
p
nu/ � C exp

�
�
�

4
.
p
nu � 
/

�
as required.

Corollary B.4. There are universal constants C;C 0 > 0 such that for all n; u � 1,

P.L.n/ �
p
nu/ � Cu2 exp.�C 0u2/:
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Proof. If u�
p
n, the claim is trivial. So we assume u <

p
n. By combining Lemmas B.2

and B.3, for any x 2 Z we have

P.jL.x; n/ � �.x; �n/j � 2
p
nu/

� 3 exp
�
�
n1=3u4=3

2

�
C C1 exp

�
�
�
p
nu

4

�
:

Taking a union bound, we have

P
�

sup
jxj�n

jL.x; n/ � �.x; �n/j � 2
p
nu
�

� Cn

�
3 exp

�
�
n1=3u4=3

2

�
C C1 exp

�
�
�
p
nu

4

��
:

The function n 7! n exp.�n˛uˇ / for fixed u; ˛; ˇ � 1 is decreasing for n � 1, so we may
use n > u2 and get

P
�

sup
jxj�n

jL.x; n/ � �.x; �n/j � 2
p
nu
�
� Cu2 exp

�
�
u2

2

�
for an appropriate constant C > 0. The claim now follows from (13) and (15).

C. Approximation of functions

In [3, Appendix B], Brieussel and Zheng show how to approximate a function f W Œ1;1/!
Œ1;1/ such that f .x/p

x
and x

f .x/
are non-decreasing by a function of the form

xf .x/ D
x

ksC1
C
p
xls; .ksls/

2
� x < .ksC1lsC1/

2

for appropriate sequences of nonnegative integers ¹ksº and ¹lsº. Here, we prove the
following lemma.

Lemma C.1. Let f W Œ1;1/! Œ1;1/ be a continuous function such that f .1/ D 1 and
x

f .x/
and f .x/

p
x.log logx/1C"

are non-decreasing for some " > 0, and letm0 > 1. Then one can
find sequences ¹ksº and ¹lsº, possibly finite with last value infinity in one of them, such
that:

• ksC1 � m0ks and lsC1 � m0ls for all s;

• f .x/ '2m0
xf .x/; and

• log log ks � ls for large enough s.

Proof. Writing g.x/ D f .x2/
x

, we have g.x/

.log logx/1C" and x
g.x/

are non-decreasing. We can
now use [3, Lemma B.1] to find sequences ¹ksº and ¹lsº so that the first two conditions of
the lemma are satisfied.
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To prove the last assertion, we recall the construction of ¹ksº and ¹lsº. They are defined
inductively, according to the following procedure: Define first k0 D l0 D 1. Assuming that
ks and ls were defined and that g.ksls/ D ls , we have ls � g.x/ � x

ks
for all x � ksls .

Take the minimal y � m20ksls such that m0ls � g.y/ �
y

m0ks
. If such y exists, we have

two cases:

(i) g.y/ D y
m0ks

– in which case we take ksC1 D m0ks and lsC1 D
y

m0ks
� m0ls;

(ii) g.y/ D m0ls – in which case we take lsC1 D m0ls and ksC1 D
y
m0ls
� m0ks .

If such y does not exist, the assumption on g.x/

.log logx/1C" shows that we have g.x/ � x
m0ks

for all x � ksls , in which case we take ksC1 D m0ks and lsC1 D1.
To ensure the last condition, note that by our assumption on g, for any x > 1 we have

1 �
g.x exp exp x/

.log log.x exp exp x//1C"
D
g.x exp exp x/

x
�

x

.x C log.1C logx
expx //

1C"
:

The right term tends to 0 as x tends to 1, hence for large enough x we have
g.x exp exp x/ � x. In particular, for large enough s we have

g.m0ls exp.exp.m0ls/// � m0ls : (17)

Now, if (17) holds for some s, then in the second case we have y � m0ls exp exp.m0ls/,
so ksC1 � exp exp.m0ls/ D exp exp.lsC1/ as required.
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