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Kontsevich–Zorich monodromy groups of translation
covers of some platonic solids

Rodolfo Gutiérrez-Romo, Dami Lee, and Anthony Sanchez

Abstract. We compute the Zariski closure of the Kontsevich–Zorich monodromy groups arising
from certain square-tiled surfaces that are geometrically motivated. Specifically we consider three
surfaces that emerge as translation covers of platonic solids and quotients of infinite polyhedra
and show that the Zariski closure of the monodromy group arising from each surface is equal to a
power of SL.2;R/. We prove our results by finding generators for the monodromy groups, using
a theorem of Matheus–Yoccoz–Zmiaikou (2014) that provides constraints on the Zariski closure
of the groups (to obtain an “upper bound”), and analyzing the dimension of the Lie algebra of
the Zariski closure of the group (to obtain a “lower bound”). Moreover, combining our analysis
with the Eskin–Kontsevich–Zorich formula (2014), we also compute the Lyapunov spectrum of the
Kontsevich–Zorich cocycle for said square-tiled surfaces.

1. Introduction and main results

A translation surface is a Riemann surface X endowed with a nonzero holomorphic
1-form !. These surfaces form a moduli space with a natural SL.2;R/-action by post-
composition with coordinate charts, and the central subaction by the diagonal subgroup of
SL.2;R/ is known as the Teichmüller flow. An orbit closure is a closed SL.2;R/-invariant
subset of the moduli space.

Given an orbit closure M with underlying topological surface S , the Hodge bundle
is defined as an (orbifold) vector bundle induced by H 1.S IR/. The Kontsevich–Zorich
cocycle is the dynamical cocycle over the Hodge bundle induced by the action of a suit-
able group. Different versions of this cocycle can be found in the literature, depending on
whether all orbits, SL.2;R/-orbits, or only Teichmüller flow orbits are considered. More-
over, Avila–Eskin–Möller [5] prove that the cocycle admits a semisimple decomposition,
meaning that it can be split into SL.2;R/-invariant complementary subbundles.

The Kontsevich–Zorich monodromy groups encode the homological data of transla-
tion surfaces along SL.2;R/-orbits, that is, how the Kontsevich–Zorich cocycle acts on
the Hodge bundle, and have been studied extensively. General questions concern the alge-
braic nature of Kontsevich–Zorich monodromy groups. For example, Filip [15] provided
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constraints for the Zariski closure of the Kontsevich–Zorich monodromy groups of trans-
lation surfaces corresponding to strongly irreducible subbundles and showed that, at the
level of real Lie algebra representations, they must belong to a finite list of matrix families.
On the other hand, Matheus–Yoccoz–Zmiaikou [28] proved constraints for these groups
in the case of square-tiled surfaces, that is, covers of a square-torus branched over a single
point. Realizability of the matrix families has been studied by several authors [6, 16, 21].
Other algebraic questions concern whether the Kontsevich–Zorich monodromy groups are
arithmetic (see Hubert–Matheus Santos [25] for the existence of an arithmetic monodromy
group) and how frequently this is the case (see Bonnafoux et al. [10]).

Lyapunov exponents of the Kontsevich–Zorich cocycle measure the growth rate of
homological data along the Teichmüller flow. Since the Kontsevich–Zorich cocycle is
symplectic in each piece E of the semisimple decomposition, the Lyapunov spectrum
corresponding to E is of the form �1 � �2 � � � � � �d � 0 � ��d � � � � � ��2 � ��1,
where 2d is the (real) dimension of E. An important particular case is when E is the
subbundle whose fiber at .X; !/ is hRe.!/; Im.!/i, which is known as the tautological
plane and always carries a Lyapunov spectrum of ¹˙1º. Moreover, the modulus of every
other Lyapunov exponent (coming from any piece E) is strictly smaller than 1, as shown
by Forni [17, Theorem 0.2].

There exists a relation between the Lyapunov spectrum of an orbit closure and the
algebraic nature of its Kontsevich–Zorich monodromy group which is not yet fully under-
stood. For example, Filip’s classification can be refined in the presence of zero Lyapunov
exponents, and, if the Lyapunov spectrum corresponding to a strongly irreducible subbun-
dle is simple (i.e., if all Lyapunov exponents are distinct), then the Zariski closure of the
group is known to be Sp.2d;R/, where 2d is the (real) dimension of the subbundle.

For square-tiled surfaces, an algebraic criterion for simplicity was found in Matheus–
Möller–Yoccoz [27], and a coding-free criterion was provided in Eskin–Matheus [14].
Furthermore, it was shown in Eskin–Kontsevich–Zorich [12] that there exist square-tiled
surfaces where coincidences of Lyapunov exponents occur across distinct, symplectically
orthogonal, irreducible subbundles. This fact is interesting because there are no known
reasons why simplicity should occur or not when considering the joint Lyapunov spec-
trum corresponding to the direct sum of such subbundles. Indeed, simplicity criteria
(including the previous ones for square-tiled surfaces and also the general criterion due
to Avila–Viana [7, 8]) concern a single strongly irreducible subbundle, and to our knowl-
edge there are no general results relating exponents in different pieces of the semisimple
decomposition of the Kontsevich–Zorich cocycle.

While individual Lyapunov exponents are expected to be impossible to compute (since
they are conjectured to be transcendental), Eskin–Kontsevich–Zorich [13] found a formula
for the sum of all positive Lyapunov exponents of an orbit closure. In particular, the result-
ing sum is always rational and, for the case of square-tiled surfaces, this rational number
can be computationally found.
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In this article, we consider the Kontsevich–Zorich monodromy groups of square-tiled
surfaces that arise as the translation cover of platonic solids and quotients of infinite poly-
hedra. Translation covers of platonic solids and polyhedral surfaces are useful because the
extra structure of the cover has been used to shed light on the underlying solid or surface
(see, for example, Athreya–Aulicino [1] where they used the translation cover to find a
closed path between the vertices on the dodecahedron).

Our main result identifies the Zariski closure of the Kontsevich–Zorich monodromy
group of the translation cover of some platonic and polyhedral surfaces.

Theorem. The Zariski closure of the Kontsevich–Zorich monodromy group (restricted to
the zero-holonomy subspace) of the translation cover of

(1) the octahedron is SL.2;R/;

(2) the cube is SL.2;R/3; and

(3) the mutetrahedron is SL.2;R/4.

Remark 1.1. [3, Theorem 1.1] tells us that the translation covers of the octahedron (cube,
respectively) and the translation cover of the compact quotient of Octa-8 (Mucube, respec-
tively) are isometric with their intrinsic metrics. (See Section 2.4 for the definition of these
surfaces.) Hence, our results naturally apply to translation covers of the quotient of Octa-8
and Mucube.

Remark 1.2. In all cases but the translation cover of the octahedron, the zero-holonomy
subspace of the first homology group can be further decomposed into irreducible pieces,
and our methods allow us to compute the monodromy group restricted to any such com-
ponent. Nevertheless, in all cases but the translation cover of the mutetrahedron, such
decompositions do not yield strongly irreducible subbundles.

It is worth highlighting that in all of our examples, the Kontsevich–Zorich monodromy
groups are never Zariski dense in the ambient symplectic group. It would be interesting
to see if this is true for all platonic solids and to understand how this is related to the
symmetries of the underlying platonic solid.

In addition, we compute the Lyapunov spectrum of the translation covers we consider
and show they are not simple. Furthermore, we even observe coincidences in exponents
corresponding to distinct, symplectically orthogonal subbundles for the cover of the cube
and mutetrahedron. As was previously mentioned, there are no general results relating
Lyapunov exponents across such distinct subbundles, so our work adds up to the literature
of known examples where such coincidences between Lyapunov exponents exist. To the
best of our knowledge, this phenomenon was first observed by Eskin–Kontsevich–Zorich
as they studied cyclic covers of square-tiled surfaces [12].

More precisely, the following holds true.

Proposition 1.3. Counting multiplicities, the positive Lyapunov spectrum of the transla-
tion cover of
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(1) the octahedron is ¹1º [ ¹1=2; 1=2; 1=2º;

(2) the cube is ¹1º [ ¹2=3; 2=3; 2=3º [ ¹1=3; 1=3; 1=3º [ ¹1=3; 1=3º; and

(3) the mutetrahedron is ¹1º [ ¹1=2º [ ¹1=2º [ ¹1=2º [ ¹1=2º;

where the unions indicate the exponents corresponding to distinct, symplectically orthog-
onal, irreducible pieces of the Hodge bundle.

The case of the translation cover of mutetrahedron is particularly interesting because
it exhibits an exponent � > 0 with maximal possible multiplicity (i.e., with multiplicity
.g � 1/, where g is the genus of the surface). We say that a translation surface has a highly
nonsimple spectrum if it has this property. To our knowledge, this is the first example of a
surface in genus 5 with a highly nonsimple spectrum.

While there is a substantial amount of previous work concerning zero Lyapunov expo-
nents, not much is known about surfaces with a highly nonsimple spectrum. In particular,
surfaces with zero Lyapunov exponent occurring with maximal multiplicity (i.e., with
multiplicity 2.g � 1/, where g is the genus of the surface) are said to have a completely
degenerate spectrum, and are completely classified. Indeed, a first remark is that, by the
Eskin–Kontsevich–Zorich formula, any genus-g surface with a completely degenerate
spectrum must satisfy g < 7. Using this and other tools, Aulicino–Norton [4] showed that
the only surfaces possessing a completely degenerate spectrum are those in the SL.2;R/-
orbit of the Eierlegende Wollmilchsau (with genus 3, and originally studied by Forni [18]
and Herrlich–Schmithüsen [24]), or the Ornithorynque (with genus 4, and originally stud-
ied by Forni–Matheus [19]). It is worth noting that Aulicino–Norton’s work builds on
Möller’s previous work [29], which classifies surfaces with a completely degenerate spec-
trum in all genera but 5, and does not use the Eskin–Kontsevich–Zorich formula as it had
not been found at the time.

The case of surfaces with a highly nonsimple spectrum is very different, as the restric-
tions imposed by the Eskin–Kontsevich–Zorich formula on surfaces with a highly nonsim-
ple spectrum are much weaker. Indeed, the only immediate restriction is that � > g�7

6g�6
for

g > 7 (see Section 2.6). Hence, we think it is interesting to study this class of surfaces and
to determine if they can exist for arbitrarily large genus. We state this as an open problem.

Open Problem 1.4. Do there exist surfaces of arbitrarily large genus with a highly
nonsimple spectrum?

In Section 2, we summarize the key objects and key tools that appear in this paper.
In Sections 3, 4, and 5, we compute the Kontsevich–Zorich monodromy group of the
translation cover of the octahedron, cube, and mutetrahedron, respectively.

1.1. Strategy

Our strategy to compute the Zariski closures is as follows. First, we analyze the
representation-theoretic properties of the automorphism group of each surface and use
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the constraints found by Matheus–Yoccoz–Zmiaikou [28] to obtain an “upper bound”
on such Zariski closures. This amounts to studying the irreducible representations of the
automorphism group that arise by the homological action of the automorphism group and
determining its nature, that is, whether it is real, complex, or quaternionic, by examin-
ing the centralizer of the representation inside all endomorphisms of the vector space
on which it acts. Then, we compute the so-called isotypical components of each irre-
ducible representation, that is, the direct sum of subspaces where the automorphism group
acts as said irreducible representation. When this is done, we can apply the results by
Matheus–Yoccoz–Zmiaikou [28] directly.

To obtain a “lower bound,” we use generators for the Veech group of each surface to
obtain enough linearly independent elements inside the Lie algebra of the Zariski closure
of each monodromy group. This produces a lower bound on the dimension of said Zariski
closure, and we see that this lower bound is equal to the dimension of our upper bound,
concluding the proof.

To compute the Lyapunov spectrum of the surfaces, we make use of the Eskin–
Kontsevich–Zorich formula multiple times to find the sum of the positive Lyapunov
exponents corresponding to different subbundles coming from quotients of the original
surface by subgroups of the automorphism group. These subbundles are sometimes not
SL.2;R/-invariant, but the resulting Lyapunov exponents get carried over to other pieces
of the SL.2;R/-invariant subbundle containing them. In this way, we are able to obtain
enough linear equations to solve for each individual Lyapunov exponent.

2. Preliminaries

2.1. Translation surface and moduli space

A translation surface is a polygon in C with sides identified, in pairs, by translation in
such a way that the resulting topological surface is orientable. A necessary condition for
the existence of a translation structure is that all cone angles are integer multiples of 2� .
This naturally gives rise to a holomorphic 1-form; an order-ki zero of ! corresponds to a
cone point of cone angle 2�.ki C 1/. In other words, a translation surface is a Riemann
surface with a nonzero holomorphic 1-form, which we denote .X; !/. The genus of the
surface can be recovered from the order of the zeros by

P
ki D 2g � 2.

Given a genus g, consider the set of pairs .X; !/ and denote this set by Lg . This
set is equivalent to the set of abelian differentials on compact Riemann surfaces of
genus g. The moduli space of abelian differentials is defined by Hg WD Lg=�g , where
�g WD DiffC.S/=DiffC0 .S/ is the mapping class group of genus g surfaces S . If the orders
of the zeros k1; : : : ; ks are prescribed, we obtain a stratum H .k1; : : : ; ks/ � Hg .

The identification between the set of abelian differentials and translation structures
allows us to consider GLC.2;R/-actions on Lg . The GLC.2;R/-action on Hg preserves
the zeros and their orders, and furthermore the SL.2;R/-action preserves the area of each
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translation surface. We define H
.1/
g as the moduli space of abelian differentials with unit

area.
SL.2;R/-actions on .X; !/ yield an orbit in the moduli space. If this orbit is closed,

we say that .X;!/ is a Veech surface and define the Veech group of .X;!/ as the stabilizer
in SL.2;R/. We denote the Veech group of .X; !/ by SL.X; !/ or SL.X/.

2.2. Square-tiled surfaces

A square-tiled surface (or origami) is a translation surface defined by a finite number
of unit squares where identification of edges can be viewed by two permutations �h; �v
on the set of squares. Namely, the right side of square i is identified with the left side
of square �h.i/ and the top side of square i is identified with the bottom side of square
�v.i/. The surface is defined uniquely up to simultaneous conjugation. That is, .�h; �v/
and .'�h'�1; '�v'�1/ define the same origami for any ' 2 SN . Since a square-tiled
surface can be defined completely combinatorically, its Veech group can be computed by
SageMath and surface_dynamics [11]. One indication of how this is done is through
the use of the matrices

T D

�
1 1

0 1

�
and S D

�
1 0

1 1

�
:

For a square-tiled surface, the Veech group is necessarily contained in SL.2;Z/. Since
SL.2;Z/ is generated by T and S , understanding the Veech group amounts to understand-
ing the action of T and S . The action of T and S on a square-tiled surface X D .�h; �v/
can be defined in a purely combinatorial manner via the formulae T .X/ D .�h; �v��1h /

and S.X/ D .�h��1v ; �v/.
Another way of defining a square-tiled surface .X; !/ is as a branched covering

pW .X; !/ ! T2 branched only at 0 2 T2 and ! D p�.dz/. Then the automorphism
group of a square-tiled surface is the group of homeomorphisms f on X which satisfy
p ı f D p.

2.3. Actions on homology and the Kontsevich–Zorich monodromy group

As a square-tiled surface may have nontrivial automorphisms, the Hodge bundle over its
SL.2;R/-orbit (and hence the corresponding Kontsevich–Zorich cocycle) is orbifoldic.
However, by considering a finite cover of SL.X/ given by the affine diffeomorphisms
Aff.X/, we can destroy the orbifoldic nature and obtain a genuine cocycle. While the
Hodge bundle is usually defined as having H 1.X IR/ as a fiber, by Poincaré duality we
will equivalently consider H1.X IR/ as the fiber.

Let z̨WAff.X; !/! Sp.H1.X IR// denote the representation arising from the action
of Aff.X; !/ on the absolute homology group H1.X;R/.

The homology group has a natural splitting

H1.X IR/ D H
st
1 .X/˚H

.0/
1 .X/;
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whereH st
1 .X/ is a two-dimensional subspace known as the tautological plane spanned by

the real and imaginary parts of the implicit abelian differential ! and the spaceH .0/
1 .X/ is

the .2g � 2/-dimensional orthogonal complement (with respect to the intersection form)
given by the zero-holonomy subspace. That is,

H
.0/
1 .X/ D

°

 2 H1.X IR/ W

Z



! D 0
±
:

The image z̨.Aff.X// respects this decomposition. Moreover, z̨jH st
1 .X/

can be identified
with the Veech group SL.X/ (see, e.g., page 171 of [16]) and as such is well under-
stood. Thus, understanding z̨ amounts to understanding how the zero-holonomy subspace
decomposes under the action of Aff.X/. We will refer to the restriction of the image
˛ D z̨j

H
.0/
1 .X/

as the Kontsevich–Zorich monodromy group.

2.4. Unfolding of platonic surfaces

A polyhedral surface in R3 is a surface tiled by polygons so that the polygons (faces)
are either disjoint or share an edge or a vertex. Hence, a polyhedral surface is naturally
equipped with a cone metric. A point at the interior of a face or an edge is a trivial cone
point as the cone angle is 2� . Nontrivial cone points occur possibly at the vertices of the
surface.

A necessary condition for the existence of a translation structure is that all cone angles
are integer multiples of 2� . If the cone angles at cone points are 2�

�
ki
q
C 1

�
for some

integer q > 1, then one can consider its q-fold cover, the unfolding (translation cover or
spectral curve), branched at the vertices. Table 1 shows the genus of the unfoldings studied
in [2] and [3].

The surfaces on the right half of Table 1 are quotients of the triply periodic polyhedral
surfaces shown in Figures 1 and 2. We denote a polyhedral surface by Schläfli symbols
¹p; qº if it is tiled by regular Euclidean p-gons and all vertices are q-valent. Triply peri-
odic polyhedral surfaces are infinite surfaces that are invariant under a rank 3 lattice in
R3. Their quotients under the lattice are compact Riemann surfaces with natural poly-
hedral cone metric. In this paper, we refer to the compact quotients by the name of the
original infinite surfaces.

Polyhedron Genus of the
translation cover

Quotient of the
infinite polyhedron

Genus of the
translation cover

Tetrahedron 1 Octa-8 ¹3; 12º 4
Octahedron 4 Mutetrahedron ¹6; 6º 5
Cube 9 Mucube ¹4; 6º 9
Icosahedron 25 Octa-4 ¹3; 8º 19
Dodecahedron 81 Muoctahedron ¹6; 4º 19

Truncated Octa-8 ¹4; 5º 49

Table 1. Genus of translation covers of polyhedral surfaces.
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Figure 1. A subset of the infinite polyhedra Mucube, Muoctahedron, and Mutetrahedron. Adapted
from [26].

Figure 2. A subset of the infnite polyhedra Octa-4, Octa-8, and Truncated Octa-8. Adapted from
[26].

As done in [2] and [3], the translation covers of all these surfaces (except the dodeca-
hedron) can be studied under the same tools that are used in the study of square-tiled sur-
faces. To a triangle- or hexagon-tiled surface, we apply appropriate shear maps (Figure 3)
that map it to a square-tiled surface. By [23], these surfaces have Veech groups which are
finite index subgroups of SL.2;Z/, the Veech group of the square torus. The Veech group
of the triangle-tiled or hexagon-tiled surface is conjugate to the Veech group of the asso-
ciated square-tiled surface. We will again abuse notation and call the translation covers by
their underlying quotient surface.

In this paper, we compute the Kontsevich–Zorich monodromy group for three trans-
lation surfaces: the translation cover (3-cover) of the octahedron, the 4-cover of the cube,
and the 2-cover of the mutetrahedron. As noted in Remark 1.1, the octahedron and Octa-8

Figure 3. Shear maps on the doubled triangle and hexagon.
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have common translation covers, and so do the cube and Mucube. The translation cover
of the tetrahedron is (conjugate to) a square torus. In particular, for the tetrahedron, the
absolute homology is the same as the tautological plane and hence the Kontsevich–Zorich
monodromy group is trivial.

We choose these examples because the genus of the unfoldings are relatively low
.<10/. The computation can be carried out on the unfolding of other surfaces (except the
dodecahedron) in Table 1. However, in this paper we do not carry them out for practical
reasons.

2.5. Monodromy constraints

Let G D Aut.X/ denote the automorphism group. By Hurwitz’s theorem on the order
of automorphism groups, G is a finite group. The vector space H1.X IR/ has the struc-
ture of a G-module induced by a representation �WAut.X/! Sp.H1.X IR// arising from
the homological action of G on H1.X IR/. Since G is finite, we now are able to utilize
the well-understood theory of finite-dimensional groups (see, e.g., Fulton and Harris [20]
or Serre [30]). In particular, we have finitely many irreducible representations which we
denote IrrR.G/. We decompose H1.X IR/ into irreducible pieces,

H1.X IR/ D
M

�2IrrR.G/

V n�� ;

where each V� is an irreducible subspace of H1.X IR/ on which G acts as the represen-
tation � . The subspaces W� WD V

n�
� of the same G-irreducible representations are called

isotypical components. That is, W� is n� copies of the vector space V� corresponding to
the irreducible representation � WG ! Sp.V� / which is equal to �jV� .

It is worth noting that Aff.X/ may not respect the decomposition of H1.X IR/ into
a direct sum of isotypical components, since isotypical components are not, in general,
Aff.X/-invariant. Nevertheless, it is possible to pass from Aff.X/ to a finite-index sub-
group which does respect this decomposition. Observe that ifR 2Aff.X/ and � 2G, then
R�R�1 2 G. Thus, we obtain a group homomorphism Aff.X/! Sym.G/. The index of
the kernel fAff.X/ of this homomorphism is finite inside Aff.X/, since Sym.G/ is finite.
Since fAff.X/ consists exactly of the elements of Aff.X/ that commute with each element
ofG, if V� is an irreducible subspace ofH1.X IR/ on whichG acts as the representation � ,
andR 2 fAff.X/, thenRV� is also a subspace whereG acts as the representation � . Hence,
the action of fAff.X/ may permute the different pieces that make up the isotypical com-
ponentW� , but it preservesW� . Since we are mainly interested in computations regarding
Zariski closures and since finite-index subgroups do not change the Zariski closure, we
will ignore the need to pass from Aff.X/ to a finite-index subgroup.

For each irreducible representation � of G, we consider the associative division alg-
ebra, D� , given by the centralizer of �.G/, the image of � , inside of EndR.V� /. That
is,

D� D
®
X 2MdimR V� .R/ W �.G/X D X�.G/

¯
:
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Matheus–Yoccoz–Zmiaikou [28] show that the type of division algebra constrains the
Zariski closure of the monodromy group.

Proposition 2.1 ([28, Proposition 3.16]). Let W� WD V
n�
� be an isotypical component of

the action of Aut.X/ on H1.X IR/. If D� ' R, then

z̨.Aff.X//jW�
Zariski

� Sp.n� ;R/:

In fact, [28, Proposition 3.16] says much more depending on the type of division alge-
bra, but in this article we only obtain real division algebras. This result allows us to give
an “upper bound” on the Kontsevich–Zorich monodromy groups.

Additionally, we use the following result that allows us to gain information about the
Lyapunov exponents from the isotypical components.

Proposition 2.2 ([28, Theorem 1.4 (1)]). LetW� D V
n�
� be an isotypical component. The

multiplicity in W� of each Lyapunov exponent is a multiple of the dimension (over R) of
V� .

The following is a simple corollary.

Corollary 2.3. In the context of the previous proposition, if n� is 2 and there is at least
one positive Lyapunov exponent � > 0, then the multiplicity of � in W� is dim.V� /.

Proof. Let d D dim.V� /; we have dim.W� / D n�d D 2d . Let m > 0 be the multiplicity
of � in W� .

The Lyapunov exponents in W� are of the form

�1 � �2 � � � � � �d � 0 � ��d � � � � � ��2 � ��1:

Finally, observe that all occurrences of � belong (counting multiplicity) to the multiset
¹�1; : : : ; �d º, som 2 ¹1; : : : ; dº. On the other hand, by Proposition 2.2,mD kd for some
integer k > 0. Hence, m D kd 2 ¹1; : : : ; dº, so k D 1 and m D d .

The previous result may be informally explained as follows. As we previously dis-
cussed, an isotypical component W� is preserved by a finite-index subgroup fAff.X/ of
Aff.X/, but the different subspaces that make upW� may be permuted by this action. This
means that isotypical components are, in general, not strongly irreducible. Nevertheless,
since fAff.X/ permutes the irreducible representations inside W� , the Lyapunov spectrum
gets carried from one irreducible representation insideW� to another. Thus, the Lyapunov
spectrum insideW� ends up consisting of copies of the same Lyapunov spectrum multiple
times.



Kontsevich–Zorich monodromy groups of translation covers of some platonic solids 1139

2.6. Computing Lyapunov exponents

Recall that Forni showed that Lyapunov exponents coming from pieces other than the
tautological plane have moduli strictly smaller than 1 [17, Theorem 0.2].

A translation surfaceX in genus 2 possesses two positive Lyapunov exponents �1 D 1
and 1 > �2 > 0. Bainbridge [9, Theorem 15.1] showed that �2 is an explicit number
depending only on the stratum in which X lies.

Theorem 2.4. Let X be a translation surface in genus 2. Then, its second-largest
Lyapunov exponent �2 is equal to

�2 D

´
1=3 if X 2 H .2/;

1=2 if X 2 H .1; 1/:

For genus g > 2, computing individual Lyapunov exponents is, in general, extremely
hard. However, it is known that the sum of positive Lyapunov exponents is a somewhat
explicit rational number [13, Theorem 1].

Theorem 2.5. IfX is any translation surface belonging to the stratum H .k1; : : : ; ks/ and
1 D �1 > �2 � � � � � �g are its positive Lyapunov exponents, then

�1 C � � � C �g D
1

12

sX
iD1

ki .ki C 2/

ki C 1
C
�2

3
carea.SL.2;R/ �X/;

where carea.SL.2;R/ �X/ is a positive constant known as the area Siegel–Veech constant
of the SL.2;R/ orbit closure of X .

In particular, this immediately implies that

�1 C � � � C �g >
1

12

sX
iD1

ki D
2g � 2

12
D
g � 1

6
:

Thus, if X is a surface with a completely degenerate spectrum, we obtain that 1 > g�1
6

which shows that g < 7. On the other hand, ifX is a surface with a highly nonsimple spec-
trum, we only obtain that 1C .g � 1/� > g�1

6
, which shows that � > g�7

6g�6
for g > 7.

Unlike the case of a completely degenerate spectrum, this does not immediately rule out
the existence of surfaces with a highly nonsimple spectrum for large g. Hence, we state
this as Open Problem 1.4.

For the case of square-tiled surfaces, the Siegel–Veech constant can be explicitly
found. Indeed, it is possible to compute it in terms of widths and heights of the hori-
zontal cylinders that make up the square-tiled surface X and the elements of SL.2;Z/ �X
[13, Theorem 4]. Hence, it is possible to explicitly compute the sum of positive Lya-
punov exponents of a square-tiled surface [13, Corollary 8]. While we will not explic-
itly state the formula here, we stress that this number can be quickly computed using
surface_dynamics.
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2.7. Notations

In order to compute the Zariski closure of the Kontsevich–Zorich monodromy groups, we
will need the automorphism group and the affine diffeomorphism group of a square-tiled
surface. We will denote the generators of the automorphism groups by �i and the genera-
tors of the affine diffeomorphism group by products of T D

�
1 1
0 1

�
and S D

�
1 0
1 1

�
. We will

denote the representation of the automorphism group on the homology by � and affine dif-
feomorphism by z̨, the representation of the affine diffeomorphisms on the zero-holonomy
subspace by ˛.

3. On the 3-cover of the octahedron

In this section, we study the three-fold translation cover of the octahedron as a square-tiled
surface and compute the Kontsevich–Zorich monodromy group of the translation surface.

3.1. Unfolding of the octahedron as a square-tiled surface

The regular octahedron has cone angle 4�
3

at each vertex. Its unfolding three fold cover is a
translation surface of genus four. We apply appropriate shear and dilation maps (Figure 3)
and consider its associated square-tiled surface along with a basis of homology. The
squares are indexed by numbers from 1 to 12, and the squares above and to the right
of square i are denoted by �v.i/ and �h.i/, respectively.

In this section, we study the surface O, which is the image under T 2 of the translation
cover from [2]. The monodromy group is the same for any surface in the orbit. By the
surface_dynamics package, we get

SL.O/ D hT 3; S�1T i < SL.2;Z/:

We will use these generators to compute the Kontsevich–Zorich monodromy group of the
translation cover of the octahedron.

3.2. Basis of homology and zero-holonomy

The absolute homology of O is eight-dimensional and an explicit basis can be given by
the horizontal curves of O that we denote as �i , where i D 1; 4; 7; 10, which begin on
the left side of square i along with the vertical curves of O that we denote as �j , where
j D 1; 2; 3; 6, which begin on the bottom side of square j (Figure 4). The holonomy
vectors of �i and �j on O are

�
3
0

�
and

�
0
3

�
, respectively.

With†i WD �i � �10 andZj WD �1 � �j , we define ¹†i ;Zj ºiD1;4;7; jD2;3;6 as the basis
of the zero-holonomy subspace of the homology.

3.3. Intersection form

We record the intersection matrix encoding the algebraic intersection form of O with
respect to the basis given above. The intersection matrix of O, which we denote by � is
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1 6 11

797 8

25 8

1010 11 12

4 9 10

11 2 3

7 12

44 5 6

Figure 4. O along with a basis of homology.

given by

� D

0BBBBBBBBBBBB@

0

1 1 1 0

1 0 1 1

1 1 0 1

0 1 1 1

�1 �1 �1 0

�1 0 �1 �1

�1 �1 0 �1

0 �1 �1 �1

0

1CCCCCCCCCCCCA
:

3.4. Action of the automorphism group on homology

By surface_dynamics, we get Aut.O/ ' A4, the alternating group on four elements,
that is generated by the permutations

�1 D .1; 3; 2/.4; 10; 9/.5; 11; 7/.6; 12; 8/;

�2 D .1; 6; 11/.2; 4; 12/.3; 5; 10/.7; 8; 9/:

Figure 5 describes the action of �1 on O.
By observation, see Figure 5, we have

�1 7! �1; �1 7! �3;

�4 7! �10; �2 7! �1;

3

1 6

2

10

11

12 7

4

5

9

8

3

10

5

9

4

9 7

5 6

8

3 1 2

4 9

1 2

10 11 12

1

2 85

3

4 9

7

10

116

12

1

4

7

10

9

10 11

7 8

12

1 2 3

4 5 6

10

3 1

3 12

5 6

7

4

11

9

1 6

7 8

2 85

1010 11 12

4

7

=

Figure 5. O (left), action of �1 on O (center), �1.O/ after cut-and-paste (right).
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�7 7! �4; �3 7! �2;

�10 7! �7; �6 7! �6:

A similar computation allows us to deduce the action of �2.
We will denote by � the representation arising from the action of Aut.O/ on

H1.OI R/. Then the action of �1 on H1.OI R/ with respect to the ordered basis
¹�1; �4; �7; �10; �1; �2; �3; �6º is given by

�.�1/ D

0BBBBBBBBBBBB@

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

0

0

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

1CCCCCCCCCCCCA
and

�.�2/ D

0BBBBBBBBBBBB@

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

0

0

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

1CCCCCCCCCCCCA
:

3.5. Action of the affine group on homology and monodromy of the 3-cover of the
octahedron

In this section, we compute the action of Aff.O/ on the absolute homology of O.
As a corollary of our computations, we obtain generators for the Kontesevich–Zorich
monodromy group of O.

Recall z̨WAff.O/! Sp.8;R/ denotes the representation arising from the action of the
affine diffeomorphisms on O. In what follows, we actually compute the action of the Veech
group and note that all the calculations and matrices only make sense up to the action of
Aut.O/. Let ˛WAff.O/! Sp.6;R/ denote the action on the zero-holonomy subspace.

The following is the main result in this section.
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Theorem 3.1. The Kontsevich–Zorich monodromy group of O is generated by the
following two matrices

˛.T 3/ D

0BBBB@
Id3

0 0 1

1 0 0

0 1 0

0 Id3

1CCCCA
and

˛.S�1T / D

0BBBBBBBB@

�1 �1 �1

0 0 1

1 0 0

1 0 1

0 �1 0

0 0 �1

0 0 1

1 0 0

�1 �1 �1

0

1CCCCCCCCA
:

Proof. It suffices to compute the representation z̨WAff.O/! Sp.8;R/ and restrict to a
basis of the zero-holonomy subspace. We begin by computing the generators z̨.T 3/ and
z̨.S�1T / because T 3 and S�1T generate the Veech group of O.

Figure 6 describes the action of T 3 on O. Since T 3 is a horizontal shear map, all
horizontal curves are mapped to themselves.

To compute the image of the vertical curves under T 3, we take advantage of the inter-
section matrix�. For example, write 
 WD z̨.T 3/.�1/ as a linear combination of the basis
vectors. That is, 
 D

P
ai�i C bj �j for some ai and bj . Then, h
; �1i D

P
j h�j ; �1i D

�b1 � b2 � b3. Thus, by counting the intersection number h
; �1i, we obtain equation
on ai ; bj that determine 
 . By counting the intersection number between 
 and all other

1

2

3

4

5

6

9

7

8

10

11

12

1

4

7

10

9

10 11

7 8

12

1 2 3

4 5 6

1

2

3

4

5

6

9

7

8

10

11

12

1

4

7

10

9

10 11

7 8

12

1 2 3

4 5 6

Figure 6. O (left) and T 3.O/ (right).
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curves, we obtain the following system of equations:

�1 D h
; �1i D �b1 � b2 � b3

�1 D h
; �4i D �b1 � b3 � b6

�1 D h
; �7i D �b1 � b2 � b6

0 D h
; �10i D �b2 � b3 � b6

3 D h
; �1i D a1 C a4 C a7

2 D h
; �2i D a1 C a7 C a10

2 D h
; �3i D a1 C a4 C a10

2 D h
; �6i D a4 C a7 C a10:

Solving this system yields z̨.T 3/.�1/ D �1 C �4 C �7 C �1.
We repeat this for the rest of the curves and obtain the following:

z̨.T 3/.�i / D �i ; i D 1; 4; 7; 10;

z̨.T 3/.�1/ D �1 C �4 C �7 C �1;

z̨.T 3/.�2/ D �1 C �7 C �10 C �2;

z̨.T 3/.�3/ D �1 C �4 C �10 C �3;

z̨.T 3/.�6/ D �4 C �7 C �10 C �6:

We use the above to compute ˛WAff.O/! Sp.6;R/, the action of the affine group on
the zero-holonomy subspace. We define the basis of the subspace by †i WD �i � �10 for
i D 1; 4; 7 and Zj WD �1 � �j for j D 2; 3; 6.

Then, by definition of †i and the action of T 3 on �i , we have

˛.T 3/.†i / D z̨.T
3/.�i � �10/ D z̨.T

3/.�i / � z̨.T
3/.�10/ D �i � �10 D †i :

For Zj , j D 2; 3; 6, take Z2 for example, we obtain

˛.T 3/.Z2/ D z̨.T
3/.�1 � �2/

D z̨.T 3/.�1/ � z̨.T
3/.�2/

D .�1 C �1 C �4 C �7/ � .�2 C �1 C �7 C �10/

D �4 � �10 C �1 � �2

D †4 CZ2:

Similarly, ˛.T 3/.Z3/ D †7 CZ3 and ˛.T 3/.Z6/ D †1 CZ6.
Hence, with respect to the ordered basis ¹†1;†4;†7;Z2;Z3;Z6º we have the matrix

˛.T 3/ as stated in the theorem.
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A similar idea shows the action of S�1T acts on the basis of homology as

z̨.S�1T /.�1/ D �7 � �3;

z̨.S�1T /.�4/ D �10 � �1;

z̨.S�1T /.�7/ D �4 � �2;

z̨.S�1T /.�10/ D �1 � �6;

z̨.S�1T /.�1/ D �1;

z̨.S�1T /.�2/ D �10;

z̨.S�1T /.�3/ D �4;

z̨.S�1T /.�6/ D �7:

Using the above, we compute the action of S�1T on the zero-holonomy subspace as
we do for T 3.

3.6. Identification of the Kontsevich–Zorich monodromy group

In this section, we use the representations arising from the automorphisms � and affine
diffeomorphisms ˛ to identify the Kontsevich–Zorich monodromy group.

Theorem 3.2. The Zariski closure of the monodromy group of the translation cover of the
octahedron is

˛.Aff.O//
Zariski

' Sp.2;R/:

Proof. We begin by computing the isotypical components of H1.OIR/. Let

V1 D spanR¹�iºiD1;4;7;10 and V2 D spanR¹�j ºjD1;2;3;6:

Notice that �.Aut.O// preserves each Vi , i D 1; 2. We focus on decomposing V1 and
note that analogous statements hold for V2.

One can see that
P
i �i is a simultaneous eigenvector for �.Aut.O// with eigenvalue

1 because it is an eigenvector for the generators of �.Aut.O// with eigenvalue 1. Let E1
denote the span of this eigenvector. Then the orthogonal complement of E1 inside of V1
is a three-dimensional �.Aut.O//-invariant subspace of V1 that we denote by Z1. A basis
is given by Z1 D spanR¹�i � �10ºiD1;4;7. Thus, V1 D E1 ˚Z1.

Similarly, V2 D E2 ˚Z2, where E2 is the one-dimensional simultaneous eigenspace
given by the span of

P
j �j and Z2 is the orthogonal complement of E2 in V2. Note that

the direct sum of the one-dimensional subspaces is simply the tautological plane and so
the orthogonal complement is given by the zero-holonomy subspace. Hence, the isotypical
components of H1.OIR/ are given by H st

1 .O/ D E1 ˚E2 and H .0/
1 .O/ D Z1 ˚Z2.

Since H st
1 .O/ is the tautological subspace, the action of the monodromy group here is

given by Sp.2;R/. It remains to compute z̨.Aff.O//j
H
.0/
1 .O/ D ˛.Aff.O//.
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To use the results of [28], we need to compute the centralizer of �.Aut.O//jZ1 . Recall
the matrices from Section 3.4 and we get

�.�1/jZ1 D

0@ 1 0 0

0 0 1

�1 �1 �1

1A and �.�2/jZ1 D

0@ �1 �1 �1

1 0 0

0 0 1

1A :
Solving the system

�.�1/jZ1X D X�.�1/jZ1

�.�2/jZ1X D X�.�2/jZ1

yields that X is of the form aId3 .a 2 R/ and so the centralizer of �.Aut.O//jZ1 is
¹aId3 W a 2 Rº ' R. Thus, this representation is real and by Proposition 2.1 we have
˛.Aff.O//

Zariski
< Sp.2;R/. This gives an “upper bound” for the monodromy group.

Now we compute a “lower bound.” Since ˛.T 3/ is parabolic, the logarithm t D

log.˛.T 3// is in the Lie algebra of the algebraic group ˛.Aff.O//
Zariski

.
Let �X denote the conjugation map �X .g/ D XgX�1. A direct computation shows

that the following three elements are linearly independent inside of the Lie algebra of
˛.Aff.O//

Zariski
:

t; �˛.S�1T /.t/; �.˛.S�1T /2/.t/:

Since ˛.Aff.O//
Zariski

sits inside the three-dimensional group Sp.2;R/ and the dimen-
sion has a lower bound of 3, we conclude the Zariski closure of the monodromy group of
the translation cover of the octahedron is

˛.Aff.O//
Zariski

' Sp.2;R/:

3.7. Lyapunov exponents of the 3-cover of the octahedron

We compute the Lyapunov spectrum of the 3-cover of the octahedron O.

Proposition 3.3. Counting multiplicities, the positive Lyapunov spectrum of the transla-
tion cover of the octahedron is

¹1º [ ¹1=2; 1=2; 1=2º;

where the union indicates the exponents corresponding to distinct, symplectically orthog-
onal, irreducible pieces of the Hodge bundle.

Proof. Recall we have the following decomposition of the homology of O into isotypical
components

.E1 ˚E2/˚ .Z1 ˚Z2/:

The space E1 ˚ E2 is the tautological plane and carries a Lyapunov exponent of 1. The
Eskin–Kontsevich–Zorich formula [13] and the surface_dynamics package yield that
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the sum of the Lyapunov exponents on O must be 5/2. On the other hand, Corollary 2.3
tells us that the multiplicity of the Lyapunov exponent in the remaining isotypical compo-
nent Z1 ˚Z2 is 3. Putting these together yields that the remaining Lyapunov exponent is
1/2 with a multiplicity of 3.

4. On the 4-cover of the cube

4.1. Unfolding of the cube

The two permutations on 1 through 24 that define the 4-cover of the cube are given by

h1 D .1; 2; 3; 4/.5; 6; 7; 8/.9; 10; 11; 12/.13; 14; 15; 16/.17; 18; 19; 20/.21; 22; 23; 24/

v1 D .1; 9; 14; 22/.2; 20; 13; 7/.3; 24; 16; 11/.4; 5; 15; 18/.6; 10; 17; 21/.8; 23; 19; 12/

We call this genus-nine surface C1, whose Veech group is an index 9 subgroup of
SL.2;Z/.

In this section, we study C WD TS2C1 (see Figure 7).
By the surface_dynamics package, we have

SL.C/ D
��
1 2

0 1

�
;

�
5 �2

3 �1

�
;

�
3 �2

5 �3

��
< SL.2;Z/:

We let g1 D
�
1 2
0 1

�
, g2 D

�
5 �2
3 �1

�
, and g3 D

�
3 �2
5 �3

�
.

4.2. Basis of homology and zero-holonomy

For C, we use the homology basis with horizontal curves 
i that begin on the left side of
square i , vertical curves �j that begin on the bottom side of square j , and slope 1 curves
�k that begin on the left side of square k (see Figure 7)®

�1; �2; �3; �5; �8; �9; �1; �2; �3; �4; �5; �8; �1; �2; �3; �4; �6; �8
¯
:

The holonomy of �i are
�
2
0

�
, �j are

�
0
3

�
, and �k are

�
4
4

�
. For the zero-holonomy

subspace, we will use the following basis:

†i WD �i � �9; i D 1; 2; 3; 5; 8I

Zj WD �j � �8; j D 1; 2; 3; 4; 5I

Hk WD �k � 2�9 �
4

3
�8; k D 1; 2; 3; 4; 6; 8:

4.3. Intersection form

We record the intersection matrix encoding the algebraic intersection form of C with
respect to the basis given above. The intersection matrix of C is given by0@ 0 �A �B

AT 0 �C

BT C T 0

1A ;
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where A;B , and C are the respective matrices0BBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

1CCCCCCCA;
0BBBBBBB@

1 0 0 1 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 1

0 1 0 0 0 1

1 0 0 0 0 1

1CCCCCCCA;
0BBBBBBB@

�1 0 0 �1 �1 0

�1 �1 0 0 �1 0

0 �1 �1 0 �1 0

0 0 �1 �1 �1 0

0 0 �1 �1 0 �1

0 �1 �1 0 0 �1

1CCCCCCCA:

4.4. Action on homology and monodromy of the 4-cover of the cube

The aim of this section is to compute generators for the action arising from the
automorphism group.

Using surface_dynamics we find that the automorphism group of C is the subgroup
of S24 generated by

�1 D .1;13/.2;14/.3;15/.4;16/.5;11/.6;12/.7;9/.8;10/.17;23/.18;24/.19;21/.20;22/;

�2 D .1;14/.2;15/.3;16/.4;13/.5;7/.6;8/.9;22/.10;23/.11;24/.12;21/.17;19/.18;20/;

�3 D .1;23;5/.2;24;6/.3;21;7/.4;22;8/.9;19;15/.10;20;16/.11;17;13/.12;18;14/:

In fact, Aut.C/ is isomorphic to S4.
Figure 7 shows C and the action of �1 on C (opposite vertical sides are identified). By

observation, we see

�1 7! �3; �2 7! �2; �3 7! �1; �1 7! �8; �4 7! �5; �5 7! �4; �8 7! �1;

�1 7! �2; �2 7! �1; �3 7! �4; �4 7! �3; �6 7! �8; �8 7! �6:

Using the intersection form for the remaining curves, the action of �1 on H1.CIR/.
Let � denote the representation arising from the action of Aut.C/ on H1.CIR/ '

Sp.18;R/. Then a similar computation yields �.�2/ and �.�3/. We refer to the supple-
mentary material in [22] for their explicit matrices.

4.5. Actions of the affine group on homology and monodromy of the 4-cover of the
cube

In this section, we compute the action of Aff.C/ on the absolute homology of the trans-
lation cover of the cube. As a corollary of our computations, we obtain generators for the
Kontsevich–Zorich monodromy group of C.

Recall, z̨WAff.C/! Sp.18;R/ denotes the representation arising from the action of
the affine diffeomorphisms on C. In what follows, we actually compute the action of the
Veech group and note that all the calculations and matrices only make sense up to the
action of Aut.C/. We let ˛WAff.C/! Sp.16;R/ denote the action on the zero-holonomy
subspace. The following is the main result in this section.
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Theorem 4.1. The Kontsevich–Zorich monodromy group of C is generated by three
matrices ˛.g1/; ˛.g2/; ˛.g3/.

See link1 for explicit matrices.

Proof. We apply the same computation as in the previous example. Here, we show figures
that describe the action of g1 on C (Figure 8). Since g1 is a horizontal shear map, the
horizontal curves are preserved, and all other curves’ slopes decrease. We leave g2 and g3
as an exercise for the reader.

4.6. Identification of the monodromy group

In this section, we use the representations arising from the automorphisms � and affine
diffeomorphisms ˛ to identify the monodromy group.

Theorem 4.2. The Zariski closure of the monodromy group of the translation cover of the
cube is

˛.Aff.C//
Zariski

' Sp.2;R/3 ' SL.2;R/3:

Proof. The interested reader should refer to the Mathematica file for the matrices that
appear in this proof.

We begin by computing the isotypical components of the homology group H1.CIR/.
Recall that Aut.C/ ' S4 and note that all representations are one-, two-, or three-
dimensional (see, e.g., Fulton and Harris [20]).
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Figure 8. C (left) and g1.C/ (right).

1https://www.dim.uchile.cl/�rgutierrez/ visited on 23 May 2024

https://www.dim.uchile.cl/~rgutierrez/
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Case 1. One-dimensional representations.
These are simultaneous eigenvectors for the action of Aut.C/. The eigenvalues of

�.�1/ and �.�2/ are either ˙1, and the eigenvalues of �.�3/ are the sixth roots of unity.
The common eigenvectors arise as vectors corresponding to eigenvalue 1. Let

V.�1; �2; �3/ D ¹v 2 H1.CIR/ W �.�i /v D �iv; i D 1; 2; 3º

denote the simultaneous eigenspace corresponding to the ordered eigenvalues �1; �2; �3.
Consider

E1 WD spanR

®
2�1 � 2�3 C �1 � �2 � �3 � �4 � 2�8 C 2�2 C 2�3 C �6 C �8

¯
;

E2 WD spanR

°
�

X
�i

±
:

Then, V.1; 1; 1/ D E1 ˚E2.

Case 2. Two-dimensional irreducible representations.
We pick a vector that is an eigenvector for both �.�1/ and �.�2/, but not �.�3/:

v1 D 8�1 � 2�2 � 10�3 � 4�5 � 4�8 C 7�1 � 3�2 � 2�3 � 2�4 C �5 � 9�8

C 3�2 C 8�3 � 7�4 � �6 C 3�8

satisfies �.�1/v1 D �v1 and �.�2/v1 D v1. Under �.�3/, it yields

�.�3/v1 D �2�1 � 2�2 C 2�5 C 2�8 � �1 � �2 C �5 C �8 � 2�1 � 4�3 C 4�6 C 2�8:

One can check that the rank of ¹v1; �.�3/v1; �.�1/�.�3/v1; �.�2/�.�3/v1º is 2. We call
L1 D spanR¹v1; �.�3/v1º.

Similarly, v2 D �1 � �2 C �3 � �4 also satisfies �.�1/v2 D �v2 and �.�2/v2 D v2,
and L2 D spanR¹�1 � �2 C �3 � �4;��1 � �3 C �6 C �8º is preserved under Aut.C/.
The latter is obtained by �.�3/v2.

We show that the action of Aut.C/ restricted to L1 and L2 is conjugate to each other.
On L1 with respect to the basis ¹v1; �.�3/v1º, we have

�.�1/jL1 D

�
�1 1

0 1

�
; �.�2/jL1 D

�
1 0

0 1

�
; �.�3/jL1 D

�
0 �1

1 �1

�
:

In fact, we get �.�i /jL1 D �.�i /jL2 , hence the two representations are equivalent. Further-
more, the centralizer of �.Aut.C//jLi is ¹aId2 W a 2 Rº ' R, hence, the representation is
real.

Case 3. Three-dimensional irreducible representations.
Finally, we decompose the rest into four three-dimensional representations and show

that they are two pairs of equivalent representations but not all four are equivalent.
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Let

H1 D spanR¹�1 � �2 � �3 C �4 � �6 C �8; �1 C �2 � �3 � �4 C �6 � �8;

� �1 C �2 C �3 � �4 � �6 C �8º;

H2 D spanR¹�1 � �3; �1 � �3 C �1 � �2 C �5 � �8 C �2 � �4;

4�1 � 4�3 C 3�1 � �2 C �5 � 3�8 � �1 C 2�2 C �3 � 2�4 � �6 C �8º:

Then the restrictions of �.�1/, �.�2/ and �.�3/ to H1 take the respective forms0@�1 1 0

0 1 0

0 1 �1

1A; 0@0 1 �1

1 0 �1

0 0 �1

1A; 0@1 0 �1

0 0 �1

0 1 �1

1A;
and their restrictions to H2 come out as0@�1 0 0

0 1 0

0 0 �1

1A; 0@0 1 0

1 0 0

0 0 �1

1A;
0BB@
1
2
�
1
2

2

1
2
�
1
2
�2

1
4

1
4

0

1CCA:
Again, the centralizer of �.Aut.C//jH1 is ¹aId3 W a 2 Rº ' R, hence the representa-

tions are real and we have

�.�i /jH1

0@1 0 �1

1 2 1

2 0 2

1A D 0@1 0 �1

1 2 1

2 0 2

1A �.�i /jH2 ;
for all i D 1; 2; 3, hence the two representations �.Aut.C1//jHi are equivalent up to
conjugation.

Let

P1 D spanR

®
�1 � �2 � �5 C �8;

� �1 C �2 � �5 C �8 � �1 C �2 � �5 C �8 � �2 C �4;

12�1 � 4�2 � 12�3 � 2�5 � 2�8 � 4�9 C 9�1 � 5�2 � 2�3 � 2�4

C 3�5 � 11�8 � 3�1 C 8�2 C 5�3 � 6�4 � �6 C 3�8
¯
;

P2 D spanR

®
��1 C �2 � �3 C �4;

2�1 � 2�3 C 2�1 � �3 � �4 C �5 � �8 � �1 C �2 C �3 � �4;

��3 C �4 � �5 C �8
¯
:

Then we obtain that the restrictions of �.�1/, �.�2/ and �.�3/ to P1 take the respective
forms 0@0 �1 2

0 1 0
1
2

1
2

0

1A ;
0B@0 1 0

1 0 0

0 0 �1

1CA ;
0@ 0 �1 2

0 1 0

�
1
2

1
2
�1

1A ;
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and their restrictions to P2 come out as0@1 0 0

0 0 1

0 1 0

1A ; 0@�1 0 0

0 �1 0

0 0 1

1A ; 0@0 0 1

1 0 0

0 1 0

1A :
With the same argument as above, the representations are real, and the two represen-

tations are equivalent. However,

�.�i /jP1

0@ 1 1 2

0 2 0

�1 1 2

1A D 0@ 1 1 2

0 2 0

�1 1 2

1A �.�i /jP2 ;
but neither �.Aut.C//jP1 nor �.Aut.C//jP2 is equivalent to �.Aut.C//jHi .

Thus, we have decomposed H1.CIR/ into its irreducible pieces

H1.CIR/ D .E1 ˚E2/˚ .L1 ˚ L2/˚ .H1 ˚H2/˚ .P1 ˚ P2/:

The isotypical components are those inside the same pair of parentheses. Notice that, for
dimensional considerations, E1 ˚E2 corresponds to the tautological plane.

By the results of Matheus–Yoccoz–Zmiaikou [28], we have the Zariski closure of the
monodromy group

• z̨.Aff.C//jL1˚L2 is contained in Sp.2;R/,

• z̨.Aff.C//jH1˚H2 is contained in Sp.2;R/, and

• z̨.Aff.C//jP1˚P2 is contained in Sp.2;R/.

Thus, the upper bound for the dimension of the Zariski closure of the full monodromy
group is 3C 3C 3 D 9.

On the other hand, we find a list of nine elements in the Lie algebra of ˛.Aff.C//
Zariski

.
We denote A D ˛.g1/; B D ˛.g2/, and C D ˛.g3/. Since A is parabolic, we take

a D log.A/ and denote by �X the conjugation map �X .a/ D XaX�1. Then

a; �B.a/; �B2.a/; �B3.a/; �C .a/; �BC .a/; �B2C .a/; �AC .a/; �A2C .a/

form a linearly independent set inside the Lie algebra of ˛.Aff.C//
Zariski

.

4.7. Lyapunov exponents of the 4-cover of the cube

In this section we compute the Lyapunov spectrum of the 4-cover of the cube C.

Proposition 4.3. Counting multiplicities, the positive Lyapunov spectrum of the transla-
tion cover of the cube is

¹1º [ ¹2=3; 2=3; 2=3º [ ¹1=3; 1=3; 1=3º [ ¹1=3; 1=3º;

where the unions indicate the exponents corresponding to distinct, symplectically orthog-
onal, irreducible pieces of the Hodge bundle.
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Proof. Recall the following decomposition of the homology of C into isotypical compo-
nents from the proof of Theorem 4.2:

H1.CIR/ D .E1 ˚E2/˚ .L1 ˚ L2/˚ .H1 ˚H2/˚ .P1 ˚ P2/:

The subspace E1 ˚E2 is the tautological plane and carries a Lyapunov exponent of 1.
Let Ci;j D C=h�i ; �j i for i; j 2 ¹1; 2; 3º. In case i D j , we denote Ci;j simply by

Ci . We note that C1;2 and C1;3 are genus 2 surfaces in H .2/. Hence, Theorem 2.4 allows
us to obtain a Lyapunov exponent 1=3 on H1.C1;2IR/ and H1.C2;3IR/.

We now try to understand how the homology group of the quotients sit inside the
homology group of C. In particular, we find in which isotypical components the homology
of the quotients lie in. Once we have one Lyapunov exponent in an isotypical component,
we use Corollary 2.3 to argue that we have all of them in the isotypical component.

Since the deck group of the covering C! C1;2 is exactly the h�1;�2i, we can identify

H1.C1;2IR/ D ¹v 2 H1.CIR/ W �1v D v; �2v D vº:

Notice that the intersection of H1.C1;2IR/ and L1 ˚ L2 is nonempty. (It is spanned
by �1 C �2 C �3 C �4 � 2�6 � 2�8 and �4�1 C 6�2 C 10�3 � 5�1 C 5�2 C 2�3 C �4 �
3�5 C 7�8 C 4�1 � 3�2 C 7�4 � 7�6 � 7�8.)

By Corollary 2.3, the multiplicity of 1/3 in L1 ˚ L2 is 2.
A similar computation shows that the intersection of H1.C1;3IR/ and P1 ˚ P2 is

nonempty. (It is spanned by �2�1 C 2�3 � �1 � �2 C 3�3 � �4 C �1 � �2 � �3 C �4 and
�8�1 C 12�3 C 4�5 C 4�9 � 6�1 C 2�2 C 2�3 C 2�4 C 8�8 C 3�1 � 5�2 � 5�3 C 3�4 C

�6 � 3�8.)
By Corollary 2.3, the multiplicity of 1/3 in P1 ˚ P2 is 3.
Lastly, the Eskin–Kontsevich–Zorich formula [13] and the surface_dynamics pack-

age yield that the sum of the Lyapunov exponents on C must be 14/3. On the other hand,
by Corollary 2.3, the multiplicity of the Lyapunov exponent in the remaining isotypical
component H1 ˚H2 is 3. Combining these results along with the Lyapunov exponents
we previously obtained proves that the isotypical componentH1˚H2 carries a Lyapunov
exponent of 2/3 with multiplicity 3.

5. On the 2-cover of the mutetrahedron

5.1. Unfolding of the mutetrahedron as a square-tiled surface

The mutetrahedron is an infinite polyhedral surface tiled by hexagons that is invariant
under a rank 3 lattice in R3. Its quotient under the lattice is a genus 3 Riemann surface
tiled by four hexagons. The mutetrahedron is a half-translation surface and its transla-
tion cover of genus 5 is studied in [3]. We note that the Veech group of the translation
cover of the mutetrahedron is the same as the Veech group of the translation cover of the
octahedron.
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We will denote by M the image under T 2 of the translation cover from [3].
The generators of the Veech group are

SL.M/ D hS�1T; TST �1i < SL.2;Z/:

Figure 9 describes M with its homology basis.

5.2. Basis of homology and zero-holonomy

The absolute homology of the translation cover M is eight-dimensional and an explicit
basis can be given by the curves �i that start on the bottom of square i with holonomy

�
2
2

�
and �i that start on the bottom of square i with holonomy

�
�4
2

�
, where i D 1; 3; 4; 6; 8

(see Figure 9).
We define the basis on the zero-holonomy subspace by †i WD �i � �8 and Zi WD

�i � �8 for i D 1; 3; 4; 6.

5.3. Intersection form

We record the intersection matrix encoding the algebraic intersection form of M with
respect to the basis given above

� D

0BBBBBBBBBBBBBBBBB@

0

�1 0 �1 �1 0

�1 �1 0 �1 0

�1 �1 �1 0 0

0 �1 �1 �1 �1

0 0 0 �1 �1

1 1 1 0 0

0 1 1 1 0

1 0 1 1 0

1 1 0 1 1

0 0 0 1 1

0

1CCCCCCCCCCCCCCCCCA
:

5.4. Action of the automorphism group on homology

Using surface_dynamics, we get Aut.M/' .Z=2Z/3, the elementary abelian group of
order 8 and that it is generated by the permutations

�1 D .1;4/.2;5/.3;6/.7;10/.8;11/.9;12/.13;16/.14;17/.15;18/.19;22/.20;23/.21;24/

�2 D .1;8/.2;9/.3;10/.4;11/.5;12/.6;7/.13;24/.14;19/.15;20/.16;21/.17;22/.18;23/

�3 D .1;18/.2;13/.3;14/.4;15/.5;16/.6;17/.7;22/.8;23/.9;24/.10;19/.11;20/.12;21/:

Following a similar computation from the previous sections, we let � denote the rep-
resentation arising from the action of Aut.M/ on H1.MIR/. See Figure 9 for the action
of �1 on H1.MIR/.



R. Gutiérrez-Romo, D. Lee, and A. Sanchez 1156

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

1
2

3

4
5

6

7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

71
3

1
9

1
4

5
6

1
2

3

1
0

1
1

1
2

7
8

9

1
6

1
7

1
8

1
3

1
4

1
5

2
2

2
3

2
4

1
9

2
0

2
1

4
5

6

1
2

3

1
0

1
1

1
2

7

8
9

1
6

1
7

1
8

1
3

1
4

1
5

2
2

2
3

2
4

1
9

2
0

2
1

1
0

1
6

2
2

4
4

5
6

1
2

3

1
0

1
1

1
2

7
8

9

1
6

1
7

1
8

1
3

1
4

1
5

2
2

2
3

2
4

1
9

2
0

2
1

4
5

6

1
2

3

1
0

1
1

1
2

7

8
9

1
6

1
7

1
8

1
3

1
4

1
5

2
2

2
3

2
4

1
9

2
0

2
1

=

Fi
gu

re
9.

M
(l

ef
t)

,a
ct

io
n

of
�
1

on
M

(c
en

te
r)

,�
1
.M
/

af
te

rc
ut

-a
nd

-p
as

te
(r

ig
ht

).



Kontsevich–Zorich monodromy groups of translation covers of some platonic solids 1157

5.5. Action of the affine group on homology and monodromy of the 2-cover of the
mutetrahedron

In this section, we compute the action of Aff.M/ on the absolute homology of the transla-
tion cover of the mutetrahedron. As a corollary of our computations, we obtain generators
for the Kontsevich–Zorich monodromy group of M.

Recall, z̨WAff.M/! Sp.10;R/ denotes the representation arising from the action of
the affine diffeomorphisms on M. In what follows, we actually compute the action of the
Veech group and note that all the calculations and matrices only make sense up to the
action of Aut.M/. We let ˛WAff.M/! Sp.8;R/ denote the action on the zero-holonomy
subspace. The following is the main result in this section.

Theorem 5.1. The Kontsevich–Zorich monodromy group of M is generated by two
matrices ˛.g1/; ˛.g2/.

See Mathematica file for the explicit matrices.

Proof. We compute the action of Aff.M/ on the homology of M. Recall that our gene-
rators are S�1T and TST �1. Thus, it suffices to find ˛.S�1T / and ˛.TST �1/. We only
write the computation for ˛.TST �1/. The computation for ˛.S�1T / is similar, and we
leave it as an exercise for the reader.

The following shows the action of TST �1 on the homology (Figure 10).
By observation, we see

z̨.TST �1/.�1/ D �1;

z̨.TST �1/.�3/ D �3;

z̨.TST �1/.�6/ D �6;

z̨.TST �1/.�8/ D �8:

By utilizing the intersection form, we obtain the action of TST �1 on the basis of
homology.

Using the above we find the action on the zero-holonomy subspace to complete the
proof.

5.6. Identification of the monodromy group

Theorem 5.2. The Zariski closure of the monodromy group of the translation cover of the
mutetrahedron is

˛.Aff.M//
Zariski

' Sp.2;R/4:

Proof. We begin by finding the isotypical components. Notice that the generators of
Aut.M/ are matrices of order 2 and commute with each other. This follows since
Aut.M/ ' .Z=2Z/3 is abelian. It is easy to check that the eigenvalues of each are either
˙1. Since they commute, there exists a basis of H1.MIR/ of simultaneous eigenvectors.
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Let
V.�1; �2; �3/ D ¹v 2 H1.MIR/ W �.�i /v D �iv; i D 1; 2; 3º

denote the simultaneous eigenspace corresponding to the ordered eigenvalues �1; �2; �3.
Below we describe only the nontrivial spaces along with their bases

V.1; 1; 1/ D spanR¹��1 � �8;��4 � �8º;

V .1; 1;�1/ D spanR¹��1 C �3 C �6 � �8; �3 � �4 C �6 � �8º;

V .1;�1;�1/ D spanR¹��4 C �8;��1 C �8º;

V .�1; 1; 1/ D spanR¹��3 C �6;��1 C �4º;

V .�1;�1; 1/ D spanR¹��1 C �4;��3 C �6º:

The listed two-dimensional subspaces correspond to the isotypical components of
H1.MIR/. Since the isoypical components are two-dimensional, the Zariski closure of
the monodromy group z̨.Aff.M// preserves each of these two-dimensional spaces and
is no larger than Sp.2; R/. Since there are five such spaces, the monodromy group
has dimension �15. Removing the contribution of the tautological subspace (which is
always isomorphic to Sp.2;R/) implies that the Zariski closure of the monodromy group
˛.Aff.M// is contained in the 12-dimensional Lie group Sp.2;R/4.

On the other hand, we can find 12 elements in the Lie algebra of ˛.Aff.M//
Zariski

which are linearly independent. Denote the generators of the Kontesevich–Zorich mono-
dromy group of M by A D ˛.S�1T / and B D ˛.TST �1/.

Since B2 is parabolic, we consider g D log.B2/ of the Lie algebra ˛.Aff.M//
Zariski

.
Let �X denote the conjugation map �X .g/ D XgX�1. The following 12 elements form a
linearly independent set inside of the Lie algebra of ˛.Aff.M//

Zariski
:

g; �A.g/; �A2.g/; �BA2.g/; �ABA2.g/; �A2BA2.g/; �.BA2/2.g/; �A.BA2/2.g/;

�A2.BA2/2.g/; �.BA2/3.BA/2.g/; �.BA2/2A.g/; �A2.BA/2.g/:

This shows that the Zariski closure of the monodromy group ˛.Aff.M// has dimension
�12. Thus,

˛.Aff.M//
Zariski

' Sp.2;R/4 ' SL.2;R/4:

5.7. Lyapunov exponents of the 2-cover of the mutetrahedron

We compute the Lyapunov spectrum of the 2-cover of the mutetrahedron M.

Proposition 5.3. Counting multiplicities, the positive Lyapunov spectrum of the transla-
tion cover of the mutetrahedron is

¹1º [ ¹1=2º [ ¹1=2º [ ¹1=2º [ ¹1=2º;

where the unions indicate the exponents corresponding to distinct, symplectically orthog-
onal, irreducible pieces of the Hodge bundle.
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Proof. Recall we have the following decomposition of the homology of M into isotypical
components

H1.MIR/ D V.1; 1; 1/˚ V.1; 1;�1/˚ V.1;�1;�1/˚ V.�1; 1; 1/˚ V.�1;�1; 1/:

The subspace V.1; 1; 1/ is the tautological plane and carries a Lyapunov exponent of 1.
Let Mi;j D M=h�i ; �j i for i; j 2 ¹1; 2; 3º. In case i D j , we denote Mi;j simply

by Mi . We note that M1;2 and M2;3 are genus 2 surfaces in H .1; 1/. Thus, Theorem 2.4
allows us to obtain a Lyapunov exponent 1=2 on H1.M1;2IR/ and H1.M2;3IR/.

It remains to identify how these subspaces sit inside of H1.MIR/. Let us consider
M1;2 first. The deck group of the covering M!M1;2 is precisely h�1;�2i, and the desired
subspace of H1.MIR/ is the one fixed by this deck group action. That is,

H1.M1;2IR/ D ¹v 2 H1.MIR/ W �1v D v; �2v D vº:

However, since Aut.M/ D h�1; �2; �3i is abelian, any simultaneous eigenvector
of �1; �2 is an eigenvector of �3. Since we computed all simultaneous eigenspaces
previously, we know

H1.M1;2IR/ D V.1; 1; 1/˚ V.1; 1;�1/:

Since the tautological plane V.1; 1; 1/ carries a Lyapunov exponent of 1, V.1; 1;�1/ will
carry a Lyapunov exponent of 1=2. By considering the quotient M2;3, we obtain that a
Lyapunov exponent of 1/2 corresponds to V.�1; 1; 1/.

It remains to show which Lyapunov exponents correspond to V.�1; �1; 1/ and
V.1;�1;�1/. We begin by finding the latter. Consider M1 and note that this is a genus 3
surface. As before, we have

H1.M1IR/ D ¹v 2 H1.MIR/ W �1v D vº:

Since Aut.M/ is abelian, we have

H1.M1IR/ D V.1; 1; 1/˚ V.1; 1;�1/˚ V.1;�1;�1/:

From our calculation onM1;2 we know that V.1; 1;�1/ corresponds to a Lyapunov expo-
nent 1=2 and the tautological plane corresponds to 1. By applying the Eskin–Kontsevich–
Zorich formula [13] and the surface_dynamics package, we conclude that V.1;�1;�1/
also corresponds to 1/2. Lastly, by applying the Eskin–Kontsevich–Zorich formula [13]
and the surface_dynamics package to M, the Lyapunov exponent 1/2 corresponds to
V.�1;�1; 1/.
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