
Math. Stat. Learn. 8 (2025), 1–31
DOI 10.4171/MSL/50

© 2025 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Testing convex truncation

Anindya De, Shivam Nadimpalli, and Rocco A. Servedio

Abstract. We study the basic statistical problem of testing whether normally distributed n-
dimensional data has been truncated, i.e., altered by only retaining points that lie in some
unknown truncation set S � Rn. As our main algorithmic results,

(1) we give anO.n/-sample algorithm that can distinguish the standard normal distribution
N.0; In/ from N.0; In/ conditioned on an unknown and arbitrary convex set S ;

(2) we give a differentO.n/-sample algorithm that can distinguishN.0; In/ fromN.0; In/

conditioned on an unknown and arbitrary mixture of symmetric convex sets.

Both our algorithms are computationally efficient and run in O.n2/ time, which is linear in
the size of the input. These results stand in sharp contrast with known results for learning or
testing convex bodies with respect to the normal distribution or learning convex-truncated nor-
mal distributions, where state-of-the-art algorithms require essentially nO.

p
n/ samples. An

easy argument shows that no finite number of samples suffices to distinguish N.0; In/ from an
unknown and arbitrary mixture of general (not necessarily symmetric) convex sets, so no com-
mon generalization of results (1) and (2) above is possible. We also prove that any algorithm
(computationally efficient or otherwise) that can distinguish N.0; In/ from N.0; In/ condi-
tioned on an unknown symmetric convex set must use�.n/ samples. This shows that the sample
complexity of each of our algorithms is optimal up to a constant factor.

1. Introduction

Understanding distributions which have been truncated, i.e., subjected to some type of
conditioning, is one of the oldest and most intensively studied questions in probability
and statistics. Research on truncated distributions goes back the work of Bernoulli [5],
Galton [23], Pearson [33], and other pioneers; we refer the reader to the introductions
of [13,29] for historical context, and to [1,11,36] for contemporary book-length stud-
ies of statistical truncation.

In recent years a nascent line of work [13–15,22] has considered various different
learning and inference problems for truncated distributions from a modern theoret-
ical computer science perspective (see Section 1.3 for a more detailed discussion
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of these works and how they relate to the results of this paper). The current paper
studies an arguably more basic statistical problem than learning or inference, namely
distinguishing between a null hypothesis (that there has been no truncation) and an
alternative hypothesis (that some unknown truncation has taken place).

In more detail, we consider a high-dimensional version of the fundamental prob-
lem of determining whether given input data was drawn from a known underlying
probability distribution P , versus from P conditioned on some unknown truncation
set S (we write P jS to denote such a truncated distribution). In our work, the known
high-dimensional distribution P is the n-dimensional standard normal distribution
N.0; In/, and we consider a very broad and natural class of possible truncations,
corresponding to conditioning on an unknown convex set (and variations of this class).

As we discuss in detail in Section 1.3, the sample complexity and running time
of known algorithms for a number of related problems, such as learning convex-
truncated normal distributions [29], learning convex sets under the normal distribu-
tion [26], and testing whether an unknown set is convex under the normal distribu-
tion [10], all scale exponentially in

p
n. In sharp contrast, all of our distinguishing

algorithms have sample complexity linear in n and running time at most poly.n/.
Thus, our results can be seen as an exploration of one of the most fundamental ques-
tions in testing—namely, can we test faster than we can learn? What makes our work
different is that we allow the algorithm only to have access to random samples, which
is weaker than the more powerful query access that is standardly studied in the com-
plexity theoretic literature on property testing. However, from the vantage point of
statistics and machine learning, having only sample access is arguably more natural
than allowing queries. Indeed, motivated by the work of Dicker [21] in statistics, a
number of recent results in computer science [9, 27, 28] have explored the distinction
between testing versus learning from random samples, and our work is another instan-
tiation of this broad theme. To complement our algorithmic upper bounds, we also
give a number of information theoretic lower bounds on sample complexity, which in
some cases nearly match our algorithmic results. We turn to a detailed discussion of
our results below.

1.1. Our results

We give algorithms and lower bounds for a range of problems on distinguishing the
normal distribution from various types of convex truncations.

1.1.1. Efficient algorithms. We first note that an upper bound on the Gaussian mea-
sure or Gaussian volume of the truncation set S is a necessary assumption, since the
limiting case where the Gaussian volume of S equals 1 is the same as having no trun-
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cation. In this case, it is information-theoretically impossible to detect truncation of
the background distribution N.0; In/ with any finite number of samples.

Our most basic algorithmic result is an algorithm for symmetric convex sets.1

Theorem 1 (Symmetric convex truncations, informal statement). There is an algo-
rithm, known as SYMM-CONVEX-DISTINGUISHER, which uses O.n="2/ samples,
runs in O.n2="2/ time, and distinguishes between the standard N.0; In/ distribution
and any distribution D DN.0;In/jS , where S �Rn is any symmetric convex set with
Gaussian volume at most 1 � ".

The algorithm SYMM-CONVEX-DISTINGUISHER is quite simple: it estimates the
expected squared length of a random draw from the distribution and checks whether
this value is significantly smaller than it should be for the N.0; In/ distribution. (See
Section 1.2 for a more thorough discussion of SYMM-CONVEX-DISTINGUISHER and
the techniques underlying its analysis.) By extending its analysis, we are able to show
that the same algorithm in fact succeeds for a broader class of truncations, namely
truncation by any mixture of symmetric convex distributions.

Theorem 2 (Mixtures of symmetric convex truncations, informal statement). The al-
gorithm SYMM-CONVEX-DISTINGUISHER usesO.n="2/ samples, runs inO.n2="2/
time, and distinguishes between the standard N.0; In/ distribution and any distribu-
tion D which is a normal distribution conditioned on a mixture of symmetric convex
sets such that dTV.N.0; In/;D/ � " (where dTV.�; �/ denotes total variation distance).

It is not difficult to see that the algorithm SYMM-CONVEX-DISTINGUISHER,
which only uses the empirical mean of the squared length of samples from the dis-
tribution, cannot succeed in distinguishing N.0; In/ from a truncation of N.0; In/ by
a general (non-symmetric) convex set. To handle truncation by general convex sets,
we develop a different algorithm which uses both the estimator of SYMM-CONVEX-
DISTINGUISHER and also a second estimator corresponding to the squared length of
the empirical mean of its input data points. We show that this algorithm succeeds for
general convex sets.

Theorem 3 (General convex truncations, informal statement). There is an algorithm,
CONVEX-DISTINGUISHER, which usesO.n="2/ samples, runs inO.n2="2/ time, and
distinguishes between the standard N.0; In/ distribution and any distribution D D

N.0; In/jS , where S � Rn is any convex set such that dTV.N.0; In/;N.0; In/jS / � ".

Given Theorems 2 and 3, it is natural to wonder about a common generalization
to mixtures of general convex sets. However, an easy argument (which we sketch in

1A set S � Rn is symmetric if x 2 S whenever �x 2 S .
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Appendix A) shows that no finite sample complexity is sufficient for this distinguish-
ing problem, so no such common generalization is possible.

1.1.2. An information-theoretic lower bound. Next we show that the sample com-
plexity of both of our algorithms CONVEX-DISTINGUISHER and SYMM-CONVEX-
DISTINGUISHER are essentially the best possible, by giving an�.n="/-sample lower
bound for any algorithm that successfully distinguishes N.0; In/ from N.0; In/jK

where K is an unknown symmetric convex set of volume 1 � ".

Theorem 4 (Lower bound, informal statement). For "2 .0;1=2�, ifA is any algorithm
which, given access to samples from an unknown distribution D , successfully distin-
guishes the case that D D N.0; In/ from the case that D D N.0; In/jK , where K is
an unknown symmetric convex set of volume 1� ", then A must draw�.n="/ samples
from D .

1.2. Techniques

In this section, we give a technical overview of our upper and lower bounds, starting
with the former.

Upper bounds. To build intuition, let us first consider the case of a single symmetric
convex body K. It can be shown, using symmetry and convexity of K, that draws
from N.0; In/jK will on average lie closer to the origin than draws from N.0; In/,
so it is natural to use this as the basis for a distinguisher. The proof of this relies on
the background distribution being N.0; In/ in a crucial manner. We thus are led to
consider our first estimator,

M WD
1

T

TX
iD1

kx.i/k2; (1.1)

where x.1/; : : : ;x.T / are independent draws from the unknown distribution (which is
either N.0; In/ or N.0; In/jK). We analyze this estimator using the notion of convex
influence from the recent work [18]. In particular, we use a version of a Poincaré
inequality for convex influence to relate the mean of M to the Gaussian volume
Vol.K/ of the truncation set K, and combine this with the fact that the statistical dis-
tance betweenN.0;In/ andN.0;In/jK is precisely 1�Vol.K/. With some additional
technical work in the analysis, this same tester turns out to work even for conditioning
on a mixture of symmetric convex sets rather than a single symmetric convex set.

The estimator described above will not succeed for general (non-symmetric) con-
vex sets; e.g., ifK is a convex set that is “far from the origin”, then Ex�N.0;In/jK Œkxk�

can be larger than Ex�N.0;In/Œkxk�. However, if K is “far from the origin,” then the
center of mass of a sample of draws from N.0; In/jK should be “far from the origin,”
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whereas the center of mass of a sample of draws from the standard normal distribution
should be “close to the origin”; this suggests that a distinguisher based on estimating
the center of mass should work for convex sets K that are far from the origin. The
intuition behind our distinguisher for general convex sets is to trade off between the
two cases that K is “far from the origin” versus “close to the origin”. This is made
precise via a case analysis based on whether or not the set K contains a “reasonably
large” origin-centered ball.2

Lower bound. Our lower bound is proved by considering a randomly rotated “sym-
metric slab” (that is, a set of the form ¹x 2 Rn W jhx; vij � c"º for some unit vector
v 2 Sn�1 and threshold c" 2 R) of Gaussian volume 1 � ". Using this distribution
for our lower bound construction makes it tractable to give a precise analysis of the
chi-squared divergence (see Fact 6 and equation (2.2)) between a sample of T draws
from the standard n-dimensional Gaussian conditioned on such a slab, versus a sam-
ple of T draws from N.0; In/. The analysis then reduces to getting good estimates
on the Hermite spectrum (cf. Appendix B) of the one-dimensional symmetric interval
functions 1¹�c" � x � c"º.

1.3. Related work

As noted earlier in the introduction, this paper can be viewed in the context of a recent
body of work [13–15, 22, 29] studying a range of statistical problems for truncated
distributions from the perspective of theoretical computer science. In particular, [15]
gives algorithms for non-parametric density estimation of sufficiently smooth multi-
dimensional distributions in low dimension, while [22] gives algorithms for parameter
estimation of truncated product distributions over discrete domains, and [14] gives
algorithms for truncated linear regression.

The results in this line of research that are closest to our paper are those of [13]
and [29], both of which deal with truncated normal distributions (as does our work).
In [13], the authors consider the problem of inferring the parameters of an unknown
high-dimensional normal distribution given access to samples from a known trun-
cation set S , which is provided via access to an oracle for membership in S . Note
that in contrast, in our work the high-dimensional normal distribution is known to be
N.0; In/ but the truncation set is unknown, and we are interested only in detecting

2Splitting into these two cases is reminiscent of the case split in the analysis of a weak
learning algorithm for convex sets in [19], though the technical details of the analysis are quite
different in our work versus [19]. In particular, [19] relies on a “density increment” result for
sets with large inradius, whereas we do not use a density increment argument but instead make
crucial use of an extension of the Brascamp–Lieb inequality due to Vempala [37].



A. De, S. Nadimpalli, and R. A. Servedio 6

whether or not truncation has occurred rather than performing any kind of estimation
or learning. Like [13], the subsequent work of [29] considered the problem of estimat-
ing the parameters of an unknown high-dimensional normal distribution, but allowed
for the truncation set S to also be unknown. They gave an estimation algorithm whose
performance depends on the Gaussian surface area �.S/ of the truncation set S ;
when the set S is an unknown convex set in n dimensions, the sample complexity and
running time of their algorithm is nO.

p
n/. In contrast, our algorithm for the distin-

guishing problem requires onlyO.n/ samples and poly.n/ running time when S is an
unknown n-dimensional convex set.

Other prior works which are related to ours are [26] and [10], which dealt with
Boolean function learning and property testing, respectively, of convex sets under
the normal distribution. [26] gave an nO.

p
n/-time and sample algorithm for (agnos-

tically) learning an unknown convex set in Rn given access to labeled examples
drawn from the standard normal distribution, and proved an essentially matching
lower bound on sample complexity. [10] studied algorithms for testing whether an
unknown set S � Rn is convex versus far from every convex set with respect to
the normal distribution, given access to random labeled samples drawn from the
standard normal distribution. [10] gave an nO.

p
n/-sample algorithm and proved a

near-matching 2�.
p
n/ lower bound on sample-based testing algorithms.

We note that our techniques are very different from those of [13, 29] and [10, 26].
The paper [26] is based on analyzing the Gaussian surface area and noise sensitivity of
convex sets using Hermite analysis, while [10] uses a well-known connection between
testing and learning [24] to leverage the [26] learning algorithm result for its testing
algorithm, and analyzes a construction due to Nazarov [31] for its lower bound. [13]
uses a projected stochastic gradient descent algorithm on the negative log-likelihood
function of the samples together with other tools from convex optimization, while
(roughly speaking) [29] combines elements from both [26] and [13] together with
moment-based methods. In contrast, our approach mainly uses ingredients from the
geometry of Gaussian space, such as the Brascamp–Lieb inequality and its extensions
due to Vempala [37], and the already-mentioned “convex influence” notion of [18].

Finally, we note that the basic distinguishing problem we consider is similar in
spirit to a number of questions that have been studied in the field of property test-
ing of probability distributions [7]. These are questions of the general form: “given
access to samples drawn from a distribution that is promised to satisfy thus-and-such
property, is it the uniform distribution or far in variation distance from uniform?”
Examples of works of this flavor include the work of Batu et al. [4] on testing whether
an unknown monotone or unimodal univariate distribution is uniform; the work of
Daskalakis et al. [12] on testing whether an unknown k-modal distribution is uniform;
the work of Rubinfeld and Servedio [35] on testing whether an unknown monotone
high-dimensional distribution is uniform; and others. The problems we consider are
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roughly analogous to these, but where the unknown distribution is now promised to
be normal conditioned on (say) a convex set, and the testing problem is whether it is
actually the normal distribution (analogous to being actually the uniform distribution,
in the works mentioned above) versus far from normal.

2. Preliminaries

In Section 2.1, we set up basic notation and background. We recall preliminaries from
convex and log-concave geometry in Sections 2.2 and 2.3, and formally describe the
classes of distributions we consider in Section 2.4.

2.1. Basic notation and background

Notation. We use boldfaced letters such as x; f ;A, etc. to denote random vari-
ables (which may be real-valued, vector-valued, function-valued, set-valued, etc.; the
intended type will be clear from the context). We write “x � D” to indicate that the
random variable x is distributed according to probability distribution D . For i 2 Œn�,
we will write ei 2 Rn to denote the i th standard basis vector.

Geometry. For r > 0, we write Sn�1.r/ to denote the origin-centered sphere of
radius r in Rn and Ball.r/ to denote the origin-centered ball of radius r in Rn, i.e.,

Sn�1.r/ D ¹x 2 Rn W kxk D rº and Ball.r/ D ¹x 2 Rn W kxk � rº;

where kxk denotes the `2-norm k � k2 of x 2 Rn. We also write Sn�1 for the unit
sphere Sn�1.1/.

Recall that a set C � Rn is convex if x; y 2 C implies ˛x C .1 � ˛/y 2 C for
all ˛ 2 Œ0; 1�. Recall that convex sets are Lebesgue measurable.

For sets A;B � Rn, we write AC B to denote the Minkowski sum

¹aC b W a 2 A; b 2 Bº:

For a set A � Rn and r > 0 we write rA to denote the set ¹ra W a 2 Aº. Given a point
a 2 Rn and a set B � Rn, we use aCB and B � a to denote ¹aº CB and B C ¹�aº
for convenience.

Gaussians distributions. We write N.0; In/ to denote the n-dimensional standard
Gaussian distribution, and denote its density function by 'n, i.e.,

'n.x/ D .2�/
�n=2e�kxk

2=2:
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When the dimension is clear from context, we may simply write ' instead of 'n. We
write ˆWR! Œ0; 1� to denote the cumulative density function of the one-dimensional
standard Gaussian distribution, i.e.,

ˆ.x/ WD

Z x

�1

'.y/ dy:

We write Vol.K/ to denote the Gaussian volume of a (Lebesgue measurable) set
K � Rn, that is

Vol.K/ WD Prx�N.0;In/Œx 2 K�:

For a Lebesgue measurable set K � Rn, we write N.0; In/jK to denote the standard
Normal distribution conditioned on K, so the density function of N.0; In/jK is

1

Vol.K/
� 'n.x/ �K.x/;

where we identify K with its 0=1-valued indicator function. Note that the total varia-
tion distance between N.0; In/ and N.0; In/jK is

dTV
�
N.0; In/jK ; N.0; In/

�
D 1 � Vol.K/; (2.1)

and so the total variation distance between N.0; In/ and N.0; In/jK is at least " if and
only if Vol.K/ � 1 � ".

Gaussian mean testing. We will require the following result due to Diakonikolas,
Kane, and Pensia [20], which builds on prior work by Canonne et al. [8].

Proposition 5 ([20, Theorem 1.1 and Remark 1.2]). Let D be a log-concave distri-
bution over Rn and " > 0. There exists an algorithm, GAUSSIAN-MEAN-TESTING

.D ; "/, which, given i.i.d. sample access to D , draws ‚.max¹1;
p
n="2º/ samples

from D , does an O.n3=2="2/-time computation, and has the following performance
guarantee:

• if D D N.0; In/, then it outputs “accept” with probability 99=100; and

• if kEŒx�k � " for x � D , then it will output “reject” with probability 99=100.

Distinguishing distributions. We recall the basic fact that variation distance pro-
vides a lower bound on the sample complexity needed to distinguish two distributions
from each other.

Fact 6 (Variation distance distinguishing lower bound). Let P;Q be two distributions
over Rn and let A be any algorithm which is given access to independent samples that
are either from P or fromQ. IfA determines correctly (with probability at least 9=10)
whether its samples are from P or fromQ, then A must use at least�.1=dTV.P;Q//

many samples.
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In order to prove our lower bound we will instead rely on the �2-divergence:
Given two probability measures P and Q on Rn, where P is absolutely continuous
with respect toQ (i.e., for S �Rn,P.S/D 0wheneverQ.S/D 0), the �2-divergence
between P and Q is given by

d�2.P kQ/ D Ex�Q

��
dP.x/

dQ

�2
� 1

�
:

The following relationship between the �2-divergence and the total variation distance
is standard:

dTV.P;Q/
2
� d�2.P kQ/: (2.2)

2.2. Convex influences

In what follows, we will identify a setK � Rn with its 0=1-valued indicator function.
The following notion of convex influence was introduced in [17, 18] as an analog
of the well-studied notion of influence of a variable on a Boolean function (cf. [32,
Chapter 2]). In [17, 18], we defined this notion only for symmetric convex sets; we
define it below more generally for arbitrary (Lebesgue measurable) subsets of Rn.

Definition 7 (Convex influence). Given a Lebesgue measurable set K � Rn and a
unit vector v 2 Sn�1, we define the convex influence of v on K, written InfvŒK�, as

InfvŒK� WD Ex�N.0;In/

�
K.x/

�
1 � hv;xi2
p
2

��
:

Furthermore, we define the total convex influence of K, written IŒK�, as

IŒK� WD
nX
iD1

Infei
ŒK� D Ex�N.0;In/

�
K.x/

�
n � kxk2
p
2

��
:

In [18, Proposition 20], it is shown that the influence of a direction v captures the
rate of change of the Gaussian measure of the set K under a dilation along v. Also
note that the total convex influence of a set is invariant under rotations. The following
is immediate from Definition 7.

Fact 8. For Lebesgue measurable K � Rn, we have

Ex�N.0;In/jK Œx
2
i � D 1 �

p
2 � Infei

ŒK�

Vol.K/
:

We also have that

Ex�N.0;In/jK Œkxk
2� D n �

p
2 � IŒK�

Vol.K/
: (2.3)
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The following Poincaré-type inequality for convex influences was obtained in the
full version of [18, Proposition 23] (see [16]).

Proposition 9 (Poincaré for convex influences for symmetric convex sets). For sym-
metric convex K � Rn, we have

IŒK�
Vol.K/

� �.1 � Vol.K//:

The following variant of Proposition 9 for arbitrary convex sets (not necessarily
symmetric) is implicit in the proof of [18, Theorem 22] (see [18, equation (16)]).
Given a convex set K � Rn, we denote its inradius by rin.K/, i.e.,

rin.K/ WD max¹r W Ball.r/ � Kº:

When K is clear from context, we will simply write rin instead.

Proposition 10 (Poincaré for convex influences for general convex sets). For convex
K � Rn with rin > 0 (and hence Vol.K/ > 0), we have

IŒK�
Vol.K/

� rin ��.1 � Vol.K//:

2.3. The Brascamp–Lieb inequality

The following result of Brascamp and Lieb [6] generalizes the Gaussian Poincaré
inequality to measures which are more log-concave than the Gaussian distribution.

Proposition 11 (Brascamp–Lieb inequality). Suppose D is a probability distribution
on Rn with density e�V.x/ � 'n.x/ for a convex function V WRn ! R. Then for any
differentiable function f WRn ! R, we have

Varx�D Œf .x/� � Ex�D Œkrf .x/k
2�:

Vempala [37] obtained a quantitative version of Proposition 11 in one dimen-
sion, which we state next. Note in particular that the following holds for non-centered
Gaussians.

Proposition 12 ([37, Lemma 4.7]). Fix � 2 R and let f WR! R�0 be a log-concave
function such that

Ex�N.�;1/Œxf .x/� D 0:

Then EŒx2f .x/� � EŒf .x/� for x � N.�; 1/, with equality if and only if f is a con-
stant function. Furthermore, if supp.f / � .�1; "�, then

Ex�N.�;1/Œx
2f .x/� �

�
1 �

1

2�
e�"

2
�

Ex�N.�;1/Œf .x/�:
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2.4. The classes of distributions we consider

We say that a distribution over Rn with density ' is symmetric if '.x/ D '.�x/ for
all x, and that a set K � Rn is symmetric if �x 2 K whenever x 2 K.

We let Psymm denote the class of all distributions N.0; In/jK , whereK � Rn may
be any symmetric convex set, Pconv denote the class of all such distributions, whereK
may be any convex set (not necessarily symmetric), and PLTF denote the class of all
such distributions, whereK may be any linear threshold function sign.v � x � �/. We
let Mix.Psymm/ denote the class of all convex combinations (mixtures) of distribu-
tions from Psymm, and we remark that a distribution in Mix.Psymm/ can be viewed as
N.0; In/ conditioned on a mixture of symmetric convex sets.

The following alternative characterization of Mix.Psymm/may be of some interest.
Let Pslcg denote the class of all symmetric distributions that are log-concave relative
to the standard normal distribution, i.e., all distributions that have a density of the
form e��.x/'n.x/, where �.�/ is a symmetric convex function. Let Mix.Pslcg/ denote
the class of all mixtures of distributions in Pslcg.

Claim 13. Mix.Pslcg/ D Mix.Psymm/.

Proof. We will argue below that Pslcg � Mix.Psymm/. Given this, it follows that any
mixture of distributions in Pslcg is a mixture of distributions in Mix.Psymm/, but since
a mixture of distributions in Mix.Psymm/ is itself a distribution in Mix.Psymm/, this
means that Mix.Pslcg/ � Mix.Psymm/. For the other direction, we observe that any
distribution in Psymm belongs to Pslcg,3 and hence Mix.Psymm/ � Mix.Pslcg/.

Fix any distribution D in Pslcg and let e��.x/'n.x/ be its density. We have that

e��.x/'n.x/ D EŒAt.x/� � 'n.x/; (2.4)

where At .x/D 1Œe��.x/ � t � and the expectation in (2.4) is over a uniform t � Œ0; 1�.
Since � is a symmetric convex function, we have that the level set ¹x 2Rn W e��.x/� tº

is a symmetric convex set, so D is a mixture of distributions in Psymm, as claimed
above.

3. An O.n="2/-sample algorithm for symmetric convex sets and
mixtures of symmetric convex sets

In this section, we give an algorithm (cf. Algorithm 1) to distinguish Gaussians from
(mixtures of) Gaussians truncated to a symmetric convex set.

3Recall that a distribution in Psymm has a density which is Vol.K/�1 � K.x/ � 'n.x/ for
some symmetric convex K.
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3.1. Useful structural results

We record a few important lemmas, which are going to be useful for the analysis in
this section.

Lemma 14. Let K � Rn be a centrally symmetric convex set. If Vol.K/ � 1 � ",
then,

Ex�N.0;In/jK Œkxk
2� � n � c"

for some absolute constant c > 0.

Proof. We have

Ex�N.0;In/jK Œkxk
2� D n �

p
2 � IŒK�

Vol.K/
� n �

p
2 � c0.1 � Vol.K// � n �

p
2 � c0";

where the equality is equation (2.3), the first inequality is Proposition 9 (Poincaré
for convex influences for symmetric convex sets), and the second inequality holds
because Vol.K/ � 1 � ".

Lemma 15. Let K � Rn be a convex set (not necessarily symmetric) and let D D

N.0; In/jK . Then for any unit vector v, we have

Varx�D Œv � x� � 1:

Proof. Given c > 0, we define Vc WRn ! ¹c;C1º to be

Vc.x/ D

´
c if x 2 K;

C1 if x … K:

We note that Vc.�/ is a convex function for any choice of c > 0, and that for a suitable
choice of c, the density function of D is e�Vc.x/ � 
n.x/. Thus, we can apply the
Brascamp–Lieb inequality to get, for any differentiable f WRn ! R, that

Varx�D Œf .x/� � Ex�D Œkrf .x/k
2�: (3.1)

Now, we may assume without loss of generality that v D e1. Taking f .x/ D x1 in
equation (3.1), we get that

Varx�D Œx1� � 1;

which finishes the proof.

Now we can bound the variance of kxk2 when x � N.0; In/jK for a symmetric
convex set K.

Lemma 16. Let D D N.0; In/jK for a symmetric convex set K. Then, we have that
Varx�D Œkxk

2� � 4n.
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Proof. Taking f .x/ WD kxk2 in equation (3.1), we have that

Varx�D Œkxk
2� � 4 � Ex�D Œx

2
1 C � � � C x2n�:

Since K is symmetric, for each i 2 Œn� we have Ex�D Œxi � D 0, and hence

Ex�D Œx
2
i � D VarŒei � x�;

which is at most 1 by Lemma 15.

3.2. An O.n="2/-sample algorithm for symmetric convex sets

We recall Theorem 1.

Theorem 17 (Restatement of Theorem 1). For a sufficiently large constantC > 0, the
algorithm SYMM-CONVEX-DISTINGUISHER (Algorithm 1) has the following per-
formance guarantee: given any " > 0 and access to independent samples from any
unknown distribution D 2 Psymm, the algorithm uses Cn="2 samples, and

(1) If D D N.0; In/, then with probability at least 9=10 the algorithm outputs
“un-truncated”;

(2) If dTV.D ; N.0; In// � ", then with probability at least 9=10 the algorithm
outputs “truncated.”

As alluded to in Section 1.2, SYMM-CONVEX-DISTINGUISHER uses the estima-
tor from equation (1.1).

Algorithm 1: Distinguisher for (mixtures of) symmetric convex sets
Input: D 2 Pconv, " > 0

Output: “Un-truncated” or “truncated”

SYMM-CONVEX-DISTINGUISHER .D ; "/:
(1) For T D C � n="2, sample points x.1/; : : : ;x.T / � D .

(2) Let M WD 1
T

PT
iD1 kx

.i/k2.

(3) If M � n � c"=2, output “un-truncated”, else output “truncated”.

Proof of Theorem 17. Let DG WDN.0; In/ and DT WDN.0; In/jK . Then, for x�DG ,
the random variable kxk2 follows the �2 distribution with n degrees of freedom, and
thus we have

Ex�DG
Œkxk2� D n; Varx�DG

Œkxk2� D 3n:
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On the other hand, if dTV.D ;N.0; In//� " (equivalently, Vol.K/� 1� "), then using
Lemma 14 and Lemma 16, it follows that

Ex�DT
Œkxk2� � n � c"; Varx�DT

Œkxk2� � 4n:

Since in Algorithm 1 the samples x.1/; : : : ; x.T / are independent, we have the foll-
owing:

EŒM� D n; VarŒM� D
3n

T
when D D DG ;

EŒM� D n � c"; VarŒM� �
4n

T
when D D DT :

By choosing T D Cn="2 (for a sufficiently large constant C ), it follows that when
D D DG (resp. D D DT ), with probability at least 9=10 we have M � n � c"=2
(resp. M < n � c"=2). This finishes the proof.

3.3. An O.n="2/-sample algorithm for mixtures of symmetric convex sets

By extending the above analysis, we can show that Algorithm 1 succeeds for mixtures
of (an arbitrary number of) symmetric convex sets as well. In particular, we have the
following result.

Theorem 18. For a sufficiently large constant C > 0, SYMM-CONVEX-DISTIN-
GUISHER (Algorithm 1) has the following performance guarantee: given any " > 0
and access to independent samples from any unknown distribution D 2Mix.Psymm/,
the algorithm uses Cn="2 samples, and

(1) if D D N.0; In/, then with probability at least 9=10 the algorithm outputs
“un-truncated”;

(2) if dTV.D ; N.0; In// � ", then with probability at least 9=10 the algorithm
outputs “truncated”.

The following lemma, which characterizes the mean and variance of a distribution
in Mix.Psymm/ in terms of the components of the mixture, will be crucial to the proof
of Theorem 18.

Lemma 19. Let X denote a distribution over Gaussians truncated by symmetric
convex sets. Suppose DX 2 Mix.Psymm/ is the mixture of N.0; In/jK for K � X.
Let aK denote the random variable

aK D Ex�N.0;In/jK Œkxk
2�; where K � X:
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Then

Ex�DX
Œkxk2� D EK�X ŒaK�; (3.2)

Varx�DX
Œkxk2� � 4nC VarK�X ŒaK�: (3.3)

Proof. Note that equation (3.2) follows from linearity of expectation and the defini-
tion of aK. For equation (3.3), note that for any symmetric convex setK, by definition
of variance we have

Ex�N.0;In/jK Œkxk
4� D

�
Ex�N.0;In/jK Œkxk

2�
�2
C Varx�N.0;In/jK Œkxk

2�

� a2K C 4n;

where the inequality is by Lemma 16. By linearity of expectation, it now follows that

Ex�DX
Œkxk4� � 4nC EK�X Œa

2
K�:

Combining with equation (3.2), we get equation (3.3).

We are now ready to prove Theorem 18.

Proof of Theorem 18. Let X denote a distribution over symmetric convex sets. Define
DX 2 Mix.Psymm/ to be the mixture of N.0; In/jK for K � X and define DG WD

N.0; In/. Using the fact that the samples x.1/; : : : ; x.T / are independent, as in the
proof of Theorem 17, we have that

EŒM� D n; VarŒM� D
3n

T
when D D DG :

As T D Cn="2 (for a sufficiently large constant C ), it follows that when D D DG ,
with probability at least 9=10 we have that M � n � "=2.

Now we analyze the case that D D DX has dTV.D ; N.0; In// � ". From Lem-
ma 19, it follows that in this case

EŒM� D EK�X ŒaK�; (3.4)

VarŒM� D
Varx�DX

Œkxk2�

T
�
4n

T
C

VarK�X ŒaK�

T
: (3.5)

Next, observe that

EK�X Œ.n � aK/� � c � EK�X Œ1 � Vol.K/� � c � dTV.D ; N.0; In// � c"; (3.6)

where the first inequality uses Lemma 14 and the second inequality follows from the
definition of TV distance.
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Now, observing that variance of a random variable is invariant under negation and
translation and that T D Cn="2, it follows from equation (3.5) that

VarŒM� �
4n

T
C

VarK�X ŒaK�

T

�
4"2

C
C
"2 � VarK�X Œn � aK�

Cn

�
4"2

C
C
"2 � EK�X Œ.n � aK/

2�

Cn
:

By equation (2.3) and Proposition 9, we have that 0 � aK � n for any symmetric
convex K. Thus, we can further upper bound the right-hand side to obtain

VarŒM� �
4"2

C
C
"2 � EK�X Œn � aK�

C
:

Recalling from equation (3.6) that EK�X Œn� aK� � c", a routine computation shows
that for a sufficiently large constant C , we have

VarŒM� �
4"2

C
C
"2 � EK�X Œn � aK�

C
�

EK�X Œn � c"=2 � aK�
2

100
:

Equation (3.4) and Chebyshev’s inequality now give that when D D DX , with prob-
ability at least 9=10 we have M � n � c"=2; completing the proof.

4. An O.n="2/-sample algorithm for general convex sets

In this section we present aO.n="2/-sample algorithm for distinguishing the standard
normal distribution from the standard normal distribution restricted to an arbitrary
convex set. More precisely, we prove the following theorem.

Theorem 20. There is an algorithm, CONVEX-DISTINGUISHER (Algorithm 2), with
the following performance guarantee: Given any " > 0 and access to independent
samples from any unknown distribution D 2 Pconv, the algorithm uses O.n="2/ sam-
ples, runs in O.n2="2/ time, and

(1) if D D N.0; In/, then with probability at least 9=10 the algorithm outputs
“un-truncated”;

(2) if dTV.D ; N.0; In// � ", then with probability at least 9=10 the algorithm
outputs “truncated”.

Note that the estimator M in Algorithm 2 is identical to the estimator M in Algo-
rithm 1 to distinguish Gaussians restricted to (mixtures of) symmetric convex sets.
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Algorithm 2: Distinguisher for general convex sets
Input: D 2 Pconv, " > 0

Output: “un-truncated” or “truncated”

CONVEX-DISTINGUISHER.D ; "/:
(1) If GAUSSIAN-MEAN-TESTING .D ; 0:01/ returns “reject,” then halt and

output “truncated.”

(2) For T D C � n="2, sample points x.1/; : : : ;x.T / � D .

(3) Set M WD 1
T

PT
jD1 kx

.j /k2. Output “truncated” if M � n � c"=2 and
“un-truncated” otherwise.

As we will see, the analysis of Algorithm 1 via the Poincaré inequality for convex
influences (cf. Proposition 9) extends to arbitrary convex sets with “large inradius”.
For the “small inradius” case, we further consider sub-cases depending on how close
the center of mass of D , denoted �, is to the origin (see Figure 1):

Case 1. When k�k � 0, we detect truncation via GAUSSIAN-MEAN-TESTING in
Step 2 of Algorithm 2.

Case 2. When k�k � 0, we show that we can detect truncation via M. This is our
most technically-involved case and relies crucially on (small extensions of) Vempala’s
quantitative Brascamp–Lieb inequality (Proposition 12).

4.1. Useful preliminaries

We note below two useful consequences of Vempala’s quantitative one-dimensional
Brascamp–Lieb inequality (Proposition 12) which will be useful in our analysis of
Algorithm 2.

The following proposition says that if the center of mass of a convex body (with
respect to the standard normal distribution) along a direction v 2 Sn�1 is the origin,
then the convex influence of v on the body is non-negative.

Proposition 21. Given a convex set K � Rn and v 2 Sn�1, if

Ex�N.0;In/ŒK.x/hv;xi� D 0;

then InfvŒK� � 0.

Proof. We may assume without loss of generality that v D e1. Note that the function
f WR! R�0 defined by

f .x/ WD Ey�N.0;In�1/ŒK.x;y/�;



A. De, S. Nadimpalli, and R. A. Servedio 18

is a log-concave function (this is immediate from the Prékopa–Leindler inequality;
see [30, 34]). Furthermore, note that by Fact 8,

p
2 � InfvŒK� D Ex�N.0;1/Œf .x/.1 � x2/�;

and so the result follows by Proposition 12.

We also require a version of Proposition 12 for log-concave functions whose
center of mass with respect to the standard normal distribution is not at the origin.
Looking ahead, Proposition 22 will come in handy when analyzing Algorithm 2 for
Gaussians restricted to convex sets with small inradius and with center of mass close
to the origin.

Proposition 22. Let f WR! R�0 be a one-dimensional log-concave function with

Ex�N.0;1/Œxf .x/� D Ex�N.0;1/Œ� � f .x/�

for some � 2 R. Then

Ex�N.0;1/Œx
2f .x/� � .1C �2/ � Ex�N.0;1/Œf .x/�:

Furthermore, if supp.f / � .�1; "�, then

Ex�N.0;1/Œx
2f .x/� �

�
1C �2 �

1

2�
e�."��/

2
�
� Ex�N.0;1/Œf .x/�: (4.1)

We prove Proposition 22 by translating the log-concave function f so that its
center of mass (with respect to a shifted Gaussian) is the origin, and then appealing to
Proposition 12.

Proof. Note that it suffices to prove equation (4.1). Consider the one-dimensional
log-concave function zf WR! R�0 given by

zf .x/ WD f .x C �/:

It is clear that supp. zf / � .�1; " � �� if supp.f / � .�1; "�. Note that

Ex�N.��;1/Œ zf .x/� D

Z
R
f .x C �/'.x C �/ dx D Ex�N.0;1/Œf .x/�: (4.2)

We also have that

Ex�N.��;1/Œx zf .x/� D

Z
R
xf .x C �/'.x C �/ dx

D

Z
R
.y � �/f .y/'.y/ dy

D Ey�N.0;1/Œyf .y/� � Ey�N.0;1/Œ� � f .y/�

D 0;
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where we made the substitution y D x � �. Therefore, by Proposition 12, we have
that

Ex�N.��;1/Œx
2 zf .x/� �

�
1 �

1

2�
e�."��/

2
�
� Ex�N.��;1/Œ zf .x/�: (4.3)

However, we have

Ex�N.��;1/Œx
2 zf .x/� D

Z
R
x2f .x C �/'.x C �/ dx

D

Z
R
.y � �/2f .y/'.y/ dy

D Ey�N.0;1/Œy
2f .y/� � Ey�N.0;1/Œ�

2
� f .y/�: (4.4)

Equation (4.1) now follows from equations (4.2), (4.3) and (4.4).

4.2. Proof of Theorem 20

We can now turn to the proof of Theorem 20.

Proof of Theorem 20. Suppose first that D D N.0; In/. In this case,

EŒM� D
1

T

TX
jD1

EŒkx.j /k2� D
1

T

TX
jD1

n D n: (4.5)

We also have that

VarŒM� D
1

T 2

TX
jD1

VarŒkx.j /k2� D
1

T

�
Varx�N.0;In/Œkxk

2�
�

D
1

T

nX
iD1

Varxi�N.0;1/Œx
2
i � D

2n

T
; (4.6)

where we used the fact that Varx�N.0;1/Œx
2�D 2. Looking ahead, we also note that in

this case, by Proposition 5 we have the algorithm outputs “truncated” in Step 2 with
probability at most 0:01.

Next, suppose that DDN.0;In/jK for convexK�Rn with dTV.D ; N.0; In//�".
Let us write rin for the in-radius of K. Suppose first that rin � 0:1. In this case, we
have that

EŒM� D Ex�D Œkxk
2� � n ��."/ (4.7)

by equation (2.1), Fact 8, and Proposition 10. By independence of the x.j /’s, we also
have that

VarŒM� D
1

T 2

TX
jD1

Varx.j /�D Œkx
.j /
k
2�:
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Note, however, that by Proposition 11 we have

Varx�D Œkxk
2� � 4Ex�D Œkxk

2�; and so VarŒM� �
4n

T
; (4.8)

where the second inequality follows from (4.7). From equations (4.5) and (4.7), we
have that the means of M under N.0; In/ versus N.0; In/jK differ by �."/, and from
equations (4.6) and (4.8) we have that the standard deviations in both settings are on
the order of O.

p
n=T /. This shows that CONVEX-DISTINGUISHER indeed succeeds

in distinguishing D D N.0; In/ from D D N.0; In/jK with O.n="2/ samples in the
case that rin � 0:1.

For the rest of the proof we can therefore assume that rin < 0:1. It follows from
the hyperplane separation theorem that there exists x� 2 Sn�1.0:1/ such that K lies
entirely on one side of the hyperplane that is tangent to Sn�1.0:1/ at x�. Recalling that
the standard normal distribution is invariant under rotation, we can suppose without
generality that x� is the point .0:1; 0n�1/, so we have that either

K � ¹x 2 Rn W x1 < 0:1º or K � ¹x 2 Rn W x1 � 0:1º;

corresponding to (a) and (b) respectively in Figure 1. Writing � for the center of mass
of D , i.e.,

� WD Ex�D Œx�;

we can apply another rotation to obtain � D .�1; �2; 0
n�2/ while maintaining that

x� D .0:1; 0n�1/. Now we consider two cases based on the norm of �:

Case 1. If k�k2� 0:06, then we claim that Step 1 of Algorithm 2 will correctly output
“truncated” with probability at least 99/100. Indeed, it is readily verified that D is log-
concave, and so this follows immediately from Proposition 5.

Case 2. If k�k2 < 0:06, then we will show that Algorithm 2 will output “truncated”
with probability at least 9=10 in Step 3. We will do this by proceeding analogously to
the “large inradius” (rin � 0:1) setting considered earlier. Recall that

EŒM� D

nX
iD1

Ex�D Œx
2
i �: (4.9)

For i 2 ¹3; : : : ; nº, as �i D 0, we have by Proposition 21 that Infi ŒK� � 0, and so

Ex�D Œx
2
i � � 1 for i 2 ¹3; : : : ; nº (4.10)

by Fact 8.



Testing convex truncation 21

.0; 0/ .0:1; 0/
x

y

(a)

K

.0; 0/ .0:1; 0/

.�1; �2/

x

y

(b)

K

Figure 1. The “small inradius” (rin � 0:1) setting in the analysis of Algorithm 2, with� denoting
the center of mass of K. Our estimator for (a) is Avg.kx.j /k2/, whereas for (b) we simply
estimate �.

We now consider coordinates 1 and 2. Consider the one-dimensional log-concave
functions f1; f2WR! R�0 defined by

f1.x/ WD Ey�N.0;In�1/ŒK.x;y/�;

f2.x/ WD Ey�N.0;In�1/ŒK.y1; x;y2; : : : ;yn�1/�:

Note that EŒf1� D EŒf2� D Vol.K/. It is also immediate that

Ex�D Œx
2
i � D

Ex�N.0;1/Œx
2fi .x/�

Vol.K/
: (4.11)

Since we have

Ex�N.0;1/Œxf1.x/� D �1 � Vol.K/; Ex�N.0;1/Œxf2.x/� D �2 � Vol.K/;

it follows from Proposition 22 that

Ex�N.0;1/Œx
2f1.x/�

Vol.K/
� 1C �21 �

e�.0:1��1/
2

2�
;

Ex�N.0;1/Œx
2f2.x/�

Vol.K/
� 1C �22

(4.12)

(note that we used the fact that supp.f1/ � .�1; 0:1� in the first inequality above).
Combining equations (4.11) and (4.12) and recalling that k�k2 < 0:06, we get that

Ex�D Œx
2
1 C x22� � 2C k�k

2
�

1

2�
e�.0:1��1/

2

< 2:06 �
1

2�
e�.0:1C

p
0:06/2 < 1:95: (4.13)
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Combining equations (4.9), (4.10) and (4.13), we get that

EŒM� D EŒkxk2� � n � 0:05: (4.14)

As in equation (4.8), by the Brascamp–Lieb inequality (Proposition 11) we have that

VarŒM� �
4n

T
; (4.15)

and so by equation (4.14), equation (4.15) and Chebyshev’s inequality, for a suit-
able choice of C algorithm CONVEX-DISTINGUISHER will output “truncated” in
Step 3 (a) with probability at least 0:9.

5. Lower bound for testing convex truncation

In this section, we present our lower bound for testing convex truncation. Our lower
bound is information-theoretic and applies to all algorithms, computationally efficient
or otherwise. Formally, we prove the following theorem.

Theorem 23. Let " 2 .0; 1=2�. Let A be any algorithm which is given access to sam-
ples from an unknown distribution D and has the following performance guarantee:

(1) if D D N.0; In/, then with probability at least 9=10 the algorithm outputs
“un-truncated”;

(2) if D 2 Psymm and has dTV.D ; N.0; In// � ", then with probability at least
9=10 the algorithm outputs “truncated”.

Then, A must draw T D �.n="/ samples from D .

As Psymm � Pconv and Psymm � Mix.Psymm/, it is immediate from Theorem 23
that CONVEX-DISTINGUISHER and SYMM-CONVEX-DISTINGUISHER are essen-
tially optimal in terms of sample complexity for testing convex truncation and trunca-
tion by a mixture of symmetric convex sets respectively.

5.1. Useful preliminaries

We refer the reader to Appendix B for background on Hermite analysis.

Claim 24. Suppose jıj � 1, and let .X ;Y / be ı-correlated mean-0 Gaussians, i.e.,

.X ;Y / � N

 "
0

0

#
;

"
1 ı

ı 1

#!
:

Let
� WD ˆ�1

�
1 �

"

2

�
; so Prg�N.0;1/Œjgj � �� D 1 � ": (5.1)
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For all " 2 .0; 1/, we have

PrŒjX j � � and jY j � �� � .1 � "/2 C ı2 � ":

Proof. LetK�R be the symmetric intervalK WDŒ��;��; we also writeKWR!¹0; 1º
to denote the indicator function of this interval. We have

PrŒjX j � � and jY j � �� D Eg�N.0;1/ŒK.g/ � UıK.g/�

D

X
˛2N

ıj˛jWj˛jŒK�

D .1 � "/2 C

1X
iD1

ıiWDi ŒK�

D .1 � "/2 C ı2
� 1X
iD1

ı2.i�1/WD2i ŒK�
�
; (5.2)

where equation (5.2) uses the fact that K is an even (i.e., symmetric) function, and
hence has no Hermite weight on odd levels.

To conclude, note that

1X
iD1

ı2.i�1/WD2i ŒK� �
1X
iD1

WD2i ŒK�

D

1X
iD1

WDi ŒK�

D VarŒK� D " � .1 � "/ < ";

where the first equality again uses that K is an even function.

An equivalent rephrasing of Claim 24 is as follows.

Corollary 25. Let v; w 2 Sn�1 and let �; " be as above. Then for all " 2 .0; 1/, we
have

Prg�N.0;1/n Œjv � gj � � and jw � gj � �� � .1 � "/2 C " � hv;wi2:

We will also require the following standard concentration bound.

Fact 26 ([2, Lemma 2.2]). Fix v 2 Sn�1. For 0 � " < 1, we have

Prw�Sn�1 Œhw; vi � "� � exp
�
�n"2

2

�
:
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5.2. Proof of Theorem 23

We start by defining the family of truncations of N.0; In/ by symmetric convex sets
that we will employ in our lower bound.

Definition 27. For v 2 Sn�1, define Kv as the set

Kv WD ¹x 2 Rn W jx � vj � �º;

where � D �."/ is as in equation (5.1), and let Dv WD N.0; In/jKv
.

For notational convenience, let P be the distribution on RnT induced by first
drawing a Haar-random vector v � Sn�1 and then drawing T i.i.d. samples from Dv.
Similarly, let Q be the distribution on RnT induced by drawing T i.i.d. samples
from N.0; In/.

It is clear from Definition 27 that Vol.Kv/D 1� " for all v 2 Sn�1. Consequently,
we get�dP

dQ
.x.1/; : : : ; x.T //

�2
D

� 1

1 � "

�2T
Ev;w�Sn�1

� TY
iD1

Kv.x
.i//

TY
iD1

Kw.x
.i//

�
;

and so

d�2.P kQ/

D Ex.i/�N.0;In/

�� 1

1 � "

�2T
Ev;w�Sn�1

� TY
iD1

Kv.x
.i//

TY
iD1

Kw.x
.i//

��
� 1

D Ev;w�Sn�1

�� 1

1 � "

�2T
Ex.i/�N.0;In/

� TY
iD1

Kv.x
.i//

TY
iD1

Kw.x
.i//

��
� 1

D Ev;w�Sn�1

h� 1

1 � "

�2T
Ex�N.0;In/ŒKv.x/Kw.x/�

T
i
� 1 (5.3)

D Ev;w�Sn�1 Œ�.v;w/T � � 1;

where �.v;w/ is defined as

�.v;w/ WD
� 1

1 � "

�2
Ex�N.0;In/ŒKv.x/Kw.x/�:

Note that equation (5.3) relied on the independence of x.i/ � N.0; In/.
Let T be as in Theorem 23. It follows from Corollary 25 and the above that

�.v;w/ � 1C
" � hv;wi2

.1 � "/2
;
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and so

d�2.P kQ/ � Ev;w�Sn�1

��
1C

" � hv;wi2

.1 � "/2

�T
� 1

�
D

Z 1
tD0

Prv;w�Sn�1

��
1C

" � hv;wi2

.1 � "/2

�T
� 1 � t

�
dt

D 0:1C

Z 1
tD0:1

Prv;w�Sn�1

��
1C

" � hv;wi2

.1 � "/2

�T
� 1 � t

�
dt

� 0:1C

Z 1
tD0:1

Prv;w�Sn�1

�
exp

�
T � " � hv;wi2

.1 � "/2

�
� 1 � t

�
dt (5.4)

D 0:1C

Z 1
tD0:1

Prv;w�Sn�1

�
hv;wi2 �

.1 � "/2 ln.1C t /
T � "

�
dt

� 0:1C

Z 1
tD0:1

2 exp
�
�n.1 � "/2 ln.1C t /

2T "

�
dt (5.5)

D 0:1C

Z 1
tD0:1

2.1C t /�n.1�"/
2=2T" dt

� 0:11;

where equation (5.4) relies on the inequality 1 C x � exp.x/, equation (5.5) relies
on Fact 26, and the final inequality relies on T D �.n="/. Theorem 23 now follows
from the above with T D T1, thanks to equation (2.2) and Fact 6.

A. Hardness for mixtures of general convex sets

Theorem 2 gives an efficient (O.n/-sample) algorithm that distinguishes N.0; In/
from N.0; In/ conditioned on a mixture of (any number of) symmetric convex sets,
and Theorem 3 gives an efficient (O.n/-sample) algorithm that distinguishesN.0; In/
from N.0; In/ conditioned on any single convex set (which may not be symmetric).
We observe here that no common generalization of these results, to mixtures of arbi-
trary convex sets, is possible with any finite sample complexity, no matter how large.

Theorem 28. Let Mix.Pconv/ denote the class of all convex combinations (mixtures)
of distributions from Pconv, and let N be an arbitrarily large integer (N may depend
on n, e.g., we may have N D 22

n
). For any 0 < " < 1, no N -sample algorithm can

successfully distinguish between the standard N.0; In/ distribution and an unknown
distribution D 2 Mix.Pconv/ which is such that dTV.N.0; In/;D/ � ".

Sketch of the proof. The argument essentially follows that of the well-known�.
p
L/-

sample lower bound for testing whether an unknown distribution over the discrete set
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¹1; : : : ; Lº is uniform or �.1/-far from uniform [3, 25]. Let M D !.N 2=.1 � "//,
and consider a(n extremely fine) gridding of Rn into disjoint hyper-rectangles R each
of which has Vol.R/ D 1=M . (For convenience we may think of M as being an n-
th power of some integer, and of " as being of the form 1=k for k an integer that
divides M .) We note that for any set S that is a union of such hyper-rectangles, the
distribution N.0; In/jS is an element of Mix.Pconv/.

Let S be the union of a random collection of exactly .1� "/M many of the hyper-
rectangles R. We have Vol.S / D .1 � "/M , so dTV.N.0; In/; N.0; In/jS / D ", and
consequently a successful N -sample distinguishing algorithm as described in the the-
orem must be able to distinguish N.0; In/ from the distribution D D N.0; In/jS .
But it is easy to see that any o.

p
.1 � "/M/-sample algorithm will, with 1 � o.1/

probability, receive a sample of points that all come from distinct hyper-rectangles; if
this occurs, then the sample will be distributed precisely as a sample of the same size
drawn from N.0; In/.

B. Hermite analysis over N.0; In/

Our notation and terminology follow [32, Chapter 11]. We say that an n-dimensional
multi-index is a tuple ˛ 2 Nn, and we define

j˛j WD

nX
iD1

˛i :

For n 2 N>0, we write L2.Rn/ to denote the space of functions f WRn ! R that
have finite second moment under the Gaussian distribution, i.e., f 2 L2.Rn/ if

kf k2 D Ex�N.0;In/Œf .x/
2� <1:

We view L2.Rn/ as an inner product space with

hf; gi WD Ex�N.0;In/Œf .x/g.x/�:

We recall the Hermite basis for L2.R; 
/.

Definition 29 (Hermite basis). The Hermite polynomials .hj /j2N are the univariate
polynomials defined as

hj .x/ D
.�1/jp
j Š

exp
�x2
2

�
�
d j

dxj
exp

�
�
x2

2

�
:
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The following fact is standard.

Fact 30 ([32, Proposition 11.33]). The Hermite polynomials .hj /j2N form a com-
plete, orthonormal basis forL2.R/. For n > 1, the collection of n-variate polynomials
given by .h˛/˛2Nn where

h˛.x/ WD

nY
iD1

h˛i
.x/

forms a complete, orthonormal basis for L2.Rn/.

Given a function f 2 L2.Rn/ and ˛ 2 Nn, we define its Hermite coefficient on ˛
as yf .˛/ D hf; h˛i. It follows that f WRn ! R can be uniquely expressed as

f D
X
˛2Nn

yf .˛/h˛

with the equality holding in L2.Rn; 
/; we will refer to this expansion as the Hermite
expansion of f . One can check that Parseval’s and Plancharel’s identities hold in this
setting:

hf; f i D
X
˛2Nn

yf .˛/2 and hf; gi D
X
˛2Nn

yf .˛/yg.˛/:

It is also readily verified that EŒf .x/� D yf .0n/ and VarŒf .x/� D
P
˛¤0n

yf .˛/2,
where x � N.0; In/. We will write WDkŒf � for the Hermite weight of f at level-k,
i.e.,

WDkŒf � WD
X
j˛jDk

yf .˛/2;

with W�kŒf � defined similarly.

Definition 31 (Ornstein–Uhlenbeck semigroup). Let � 2 Œ0; 1�. We can define the
Ornstein–Uhlenbeck operator U� by its action on f 2 L2.Rn/ as follows:

U�f .x/ WD Eg�N.0;In/

�
f .�x C

p
1 � �g/

�
:

The Ornstein–Uhlenbeck semigroup is sometimes referred to as the family of
Gaussian noise operators or Mehler transforms. The Ornstein–Uhlenbeck semigroup
acts on the Hermite expansion as follows.

Fact 32 ([32, Proposition 11.33]). For f 2L2.Rn; 
/, the function U�f has Hermite
expansion

U�f D
X
˛2Nn

�j˛j yf .˛/h˛:
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