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Statistically optimal robust mean and covariance estimation
for anisotropic Gaussians

Arshak Minasyan and Nikita Zhivotovskiy

Abstract. Assume that X1; : : : ; XN is an "-contaminated sample of N independent Gaussian
vectors in Rd with mean � and covariance †. In the strong "-contamination model, we assume
that the adversary replaced an " fraction of the vectors in the original Gaussian sample with
arbitrary vectors. We show that there is an estimator y� of the mean satisfying, with probability
at least 1 � ı, a bound of the form

ky� � �k2 6 c
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r
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N
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where c > 0 is an absolute constant and k†k denotes the operator norm of †. In the same
contaminated Gaussian setup, we construct an estimator y† of the covariance matrix † that
satisfies, with probability at least 1 � ı,
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:

Both results are optimal up to multiplicative constant factors. Several previously known results
were either dimension-dependent and required † to be close to identity or had a sub-optimal
dependence on the contamination level ". As a part of the analysis, we derive sharp concen-
tration inequalities for central order statistics of Gaussian, folded normal, and chi-squared
distributions.

1. Robust multivariate mean estimation

The mean (or location parameter) estimation for contaminated Gaussian distributions
is arguably one of the first questions rigorously studied in robust statistics [33]. A nat-
ural extension of this question is a problem of multivariate Gaussian mean estimation
when the data are contaminated by a malicious adversary. When working with uncon-
taminated data, the celebrated Gaussian concentration inequality [7, 15] implies the
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sharp non-asymptotic bound for the performance of the sample mean: if X1; : : : ; XN
are independent Gaussian random vectors in Rd with mean � and covariance†, then,
with probability at least 1 � ı,
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Our question is to estimate the mean � of a Gaussian random vector when an "-
fraction of all observations is corrupted by a malicious adversary, who knows both
the “clean” sample and our estimator. We focus on the multivariate case and make
no assumptions on corrupted observations. This model, typically referred to as the
strong contamination model [21, 23], originates from studies on replacement break-
down points [25, 29]. For an exact definition of the model, we use [16, Definition 1].
It is also known as the adversarial contamination model and includes various known
contamination models, such as Huber’s "-contamination model [33]. Such a contam-
inated sample of Gaussian vectors will be referred to as the "-contaminated sample.
The sample mean can be compromised even if there is a single outlier, so we will be
aiming to provide an analog of (1.1) for a different estimator. Despite recent progress
in robust statistics (we refer to the surveys where both the statistical [43] and algorith-
mic [21] aspects are discussed in detail), there is still no sharp analog of the Gaussian
bound (1.1) when the "-strong adversarial contamination is allowed. Although the
Gaussian case is historically the starting point in the theory of robust statistics, our
question remains open even from an information-theoretic point of view, without con-
sidering computational aspects. Before stating our first bound, we need an additional
definition. Given a covariance matrix †, its effective rank is defined as

r.†/ D
Tr.†/
k†k

;

where Tr.†/ is the trace of matrix †. Obviously, 1 6 r.†/ 6 d for a d -by-d covari-
ance matrix †, but it can be much smaller if the distribution of the data is anisotropic
and is defined by several principal directions. We are now ready to present our first
bound.

Theorem 1 (Robust mean estimation in the Gaussian case). There are absolute con-
stants c1; c2 > 0 such that the following holds. Assume that X1; : : : ; XN is an "-
contaminated sample of Gaussian random vectors in Rd with mean � and covariance
†. Let " < c1; then, there is an estimator y�D y�ˇ;".X1; : : : ;XN / satisfying, with prob-
ability at least 1 � ı,
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Up to multiplicative constant factors, no estimator of the Gaussian mean can perform
better.

Remark 1. The estimator y� in the above theorem depends on a tuning parameter ˇ,
described below, and the contamination level ". While Theorem 1 does not impose
any assumptions on the sample size, in Section 5, we discuss how one may select an
integer ˇ satisfying r.†/=106 ˇ 6 10r.†/ based solely on the contaminated sample,
under the mild condition that N > c.r.†/C log.1=ı//. Notably, we avoid a sample-
splitting approach when tuning this parameter.

Although the generality of our result is its main strength, we focus for a moment
on the isotropic case, that is, † D Id . In this case, if the adversary corrupts at most
O.
p
dN/ elements of the sample, we still get the optimal performance (1.1) of the

sample mean in the setup where the data is not contaminated. This dependence stands
in contrast with the more usual

p
"-dependence on the contamination level that is

known to be achievable under the two moments assumption [23, 45]. In particular,
the latter results only allow O.d/ outliers to maintain the optimal performance. We
also note that dependence on the contamination level can further be improved to
"
p

log.1="/ under the sub-Gaussian assumption (see [45] and the discussion in what
follows), but this still would not imply the desired bound even in the isotropic Gaus-
sian case.

Another interesting aspect of our analysis is that we do not make any assumptions
about the sample size. In comparison, the existing estimators that recover the optimal
bound in the isotropic case [13, 21] require N > c.d C log.1=ı//, or N > cd"�2

as in [19], where c > 0 is some absolute constant. We will encounter some weaker
assumptions in Section 5, but only when tuning a single real-valued parameter for our
estimator.

In the context of mean estimation of anisotropic sub-Gaussian distributions, the
sharpest known bound is due to Lugosi and Mendelson [45]. These authors proposed
a multivariate version of a trimmed mean estimator that achieves the following error
rate:
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The same rate has also been provided by Dalalyan and the first author of this paper
[16] for a different estimator under an additional assumption that† is known, through
using a computationally efficient algorithm. One may think that the presence of an
additional

p
log.1="/ term is an artifact of the analysis in [16, 45]. This is in fact not

true, and the presence of this term is known to be necessary for sub-Gaussian distri-
butions [14, 45]. By trimming the observations as in [45], one can lose some of the
specific properties of the Gaussian distribution. We provide an additional discussion
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in Section 6, focusing on the fact that
p

log.1="/ is inherent to the trimmed mean esti-
mator, even in the favorable Gaussian case. Thus, our result asks for both a different
estimator and a different analysis. The presence of an additional

p
log.1="/ term is

also interesting from the computational perspective. In particular, the authors of [24]
argue that for any polynomial time Statistical Query algorithm the factor

p
log.1="/

is unavoidable in the error bound (see also [32]). We note that, in the rich literature on
robust statistics, a number of polynomial running time estimators were proposed with
"
p

log.1="/ dependence on the contamination level [5, 16, 20, 21, 40].
It is worth mentioning that there are several results showing that the linear depen-

dence on " can be achieved in the isotropic case, where † is identity (or close to
it). We refer to the analysis of the Tukey median, the direction-dependent median as
well as the Stahel–Donoho median of means in, respectively, [13, 19, 21]. Apart from
the fact that the isotropic assumption is quite restrictive, the presence of VC-type or
sphere covering arguments is inherent to the analysis of existing dimension-dependent
estimators. Unfortunately, these arguments cannot help us to prove the dimension-free
bound of Theorem 1. It is well understood that the bound on the Gaussian complexity
of ellipsoids, which corresponds to the

p
k†kr.†/ term in our result, follows nei-

ther from the Dudley integral nor from VC-type arguments. This feature is especially
pronounced in the Gaussian covariance estimation problem analyzed in Section 2.

The starting point of our analysis is the folklore property of the sample median of
the Gaussian distribution in the one-dimensional case. We denote the sample median
by Med.�/ in what follows. IfX1; : : : ;XN is an "-contaminated sample of independent
standard Gaussians with mean � and variance �2, then, with probability at least 1� ı,

jMed.X1; : : : ; XN / � �j 6 c�

 r
log.1=ı/
N

C "

!
;

whenever N > c log.1=ı/ and " is smaller than some absolute constant. When going
to higher dimensions, instead of working with Tukey’s median, whose sharp analysis
is only known in the isotropic case [13], or Stahel–Donoho-type estimators as in [19],
we base our solution on what we call the smoothed median estimator.

Let x1; : : : ; xN be a set of vectors in Rd , and let � D .�1; : : : ; �N / be a zero
mean Gaussian random vector in RN whose covariance matrix H is given by
Hi;j D ˇ

�1hxi ; xj i for i; j D 1; : : : ; N . That is, H is proportional to the Gram
matrix of the original data. Here, ˇ > 0 is any positive integer (chosen by the
statistician) satisfying r.†/=10 6 ˇ 6 10r.†/. For any direction v 2 Sd�1, we
are interested in the following quantity that we call the smoothed median:

SmoothMedv.x1; : : : ; xN / D E� Med.hx1; vi C �1; : : : ; hxN ; vi C �N /:
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Observe that SmoothMedv.x1; : : : ; xN / is a function of x1; : : : ; xN and v. The
estimator of Theorem 1 has a simple form. Given an "-contaminated sample
X1; : : : ; XN , we set

y� D arg min
�2Rd

sup
v2Sd�1

jSmoothMedv.X1; : : : ; XN / � h�; vij: (1.2)

From the practical perspective, our estimator has complexity exponential in di-
mension. This is a typical limitation for all existing estimators that have a linear
dependence on the contamination level " in the Gaussian case1. However, in the case
when the dimension d is small enough, one can replace the computation over the
sphere Sd�1 by an appropriate "-net and approximate the smoothing integration uni-
formly over all the elements of this net using a Monte Carlo sampling technique.

The appearance of the smoothed median follows from the proof technique that
guarantees a dimension-free nature of our bound. Our approach uses the so-called
PAC-Bayesian lemma, whose applications were pioneered by O. Catoni and co-authors
[3,11,12] in the context of mean/covariance estimation/linear regression in the heavy-
tailed setup. Our application further develops these techniques but in the context
of adversarial contamination, demonstrating their connections with the new class of
smoothed empirical processes, wherein sample quantiles replace sample means. An
additional discussion appears in Section 3.

Notation. Throughout the text, c;c1; c2; : : : denote absolute constants that may change
from line to line. For two positive semi-definite matrices A and B we write A � B
if B � A is positive semi-definite. The symbol k � k denotes the operator norm of a
matrix or the Euclidean norm of a vector depending on the context. Let SdC denote
the set of d � d positive semi-definite matrices. The symbol Id denotes the identity
d � d matrix. We denote the indicator of the event A by 1.A/. For any integerN , ŒN �
is the shortened notation of the set ¹1; : : : ;N º. For a random variable Y and ˛ 2 Œ1; 2�,
its  ˛ Orlicz norm is defined as follows:

kY k ˛ D inf¹c > 0 W E exp.jY j˛=c˛/ 6 2º:

Using the standard convention, we say that k � k 2 is the sub-Gaussian norm and
k � k 1 is the sub-exponential norm. Let

KL.�; 
/ D

Z
log.

d�

d

/ d�

1Recall that existing estimators of this kind lead to dimension-dependent bounds.
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denote the Kullback–Leibler divergence between the two measures � and 
 such that
�� 
 . The notation �� 
 means that the measure � is absolutely continuous with
respect to the measure 
 . We define the order statistics. Given a set of real numbers
x1; : : : ; xn, let x.1/; : : : ; x.n/ denote their non-decreasing rearrangement. That is,

x.1/ 6 x.2/ 6 � � � 6 x.n/:

For ˛ 2 Œ0; 1�, assuming that ˛n is an integer, we set

Quant˛.x1; : : : ; xn/ D x.˛n/:

In particular, assuming for simplicity that n is odd, the sample median is given by

Med.x1; : : : ; xn/ D x..nC1/=2/:

Related literature. Robust statistics is a well-developed topic with several explana-
tory texts published recently. In our context, the most relevant are the surveys of
Lugosi and Mendelson [43], and those of Diakonikolas and Kane [21]. Some classi-
cal references on robust statistics include the textbooks [30, 34, 51]. When discussing
covariance estimation, we refer to the survey [35], where the focus is on heavy-tailed
distributions. We also mention several recent papers on covariance estimation [1, 13,
48, 50], where the focus is on adversarial contamination.

Instead of working with the Euclidean norm as in Theorem 1, some authors focus
on the Mahalanobis norm. That is, one aims to construct an estimator y� such that .y��
�/T†�1.y���/ is small with high probability. It appears that the bounds with respect
to this norm are necessarily dimension-dependent, and a simple VC-type/sphere cov-
ering argument is sufficient to obtain the optimal rates of convergence [19]. Similar
observations are also valid for the covariance estimation problem. We focus on the
operator norm, where the analysis allows for dimension-free bounds. This is also not
the case for the (weighted) Frobenius norm commonly analyzed in the literature.

2. Covariance estimation

We now move to a more challenging problem of covariance estimation. For simplicity,
we assume that our uncontaminated distribution is zero mean. We first need to present
a sharp analog of inequality (1.1) in the case where no contamination is allowed.
Such a result has been shown only recently by Koltchinskii and Lounici [39]. Their
analysis is based on the generic chaining for quadratic processes. This non-trivial
approach is motivated by the difficulty of replacing d with the effective rank r.†/.
Let us formulate their result. Assume that Y1; : : : ; YN are independent zero mean
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Gaussian vectors in Rd with covariance †. There are absolute constants c1; c2 > 0

such that, with probability at least 1 � ı,
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provided that N > c2.r.†/C log.1=ı//. When adversarial contamination is allowed,
the sharpest known dimension-free result is implied by the bound of Abdalla and the
second author of this paper [1]. See also the work of Oliveira and Rico [50]. These
works suggest trimmed-mean-based estimators that achieve the rate

ky† �†k 6 c1k†k
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whenever N > c2.r.†/C log.1=ı//. The above bound is valid for any sub-Gaussian
distribution and cannot be improved in general. Moreover, as discussed in Section
6, the estimators in [1, 50] do not account for the Gaussianity of the data, and the
term " log.1="/ is inherent to these estimators even in the favorable Gaussian case.
However, similarly to the case of mean estimation, we expect a better dependence
on the contamination parameter " in the Gaussian case. We also note that simpler
versions of the bound (2.2) based on the median-of-means estimators [46] only lead
to a
p
"-dependence on the contamination level.

Remark 2. As a side note, when aiming for a sharp leading constant in (2.1) in the
uncontaminated setup, an almost-optimal performance follows from the recent result
of Han [31] combined with the second-order concentration inequality derived in [37].
A similar bound in the sub-Gaussian case with explicit constants can be found in [55].

In our analysis, we first make some additional assumptions. Our estimator depends
on some parameters that could be pre-estimated based only on the observed "-contam-
inated sample. A careful analysis of pre-estimation procedures is deferred to Sec-
tion 5. For the rest of this section, we assume that we have access to the following
quantities.

(1) There is an integer ˇ and a real number ! satisfying, respectively,

1

10
r.†/ 6 ˇ 6 10r.†/ and

1

10
k†k 6 ! 6 10k†k:

(2) Let H be a known positive semi-definite matrix. Assume that we know a real
number ˛ D ˛.H/ satisfying

j˛ � Tr.†H/j 6 c Tr.†H/

 r
r.†/C log.1=ı/

N
C "

!
(2.3)

for some absolute constant c > 0.
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(3) We have access to a positive semi-definite matrix G satisfying

1

10
† � G and Tr.G/ 6 10Tr.†/: (2.4)

Except for the matrix G, we only need to tune real-valued parameters. This can be
usually done under the minimal assumption N > c.r.†/C log.1=ı// for some abso-
lute constant c > 0. Observe that the assumption † � 10G does not imply that †
is close to G in the operator norm. At the same time, this assumption requires some
control over the smallest singular value of †. We show, in particular, that whenever
N > c.d C log.1=ı//, we can always efficiently construct such a matrix G based
on contaminated data, while still maintaining the dimension-free nature of our upper
bound. Moreover, it appears that our guarantees are uniform with respect to the choice
of the matrix G. One can rerun our estimator on the same data multiple times with
any admissible G satisfying (2.4) without affecting the performance of our estimator.
We discuss this formally in Section 5.

Theorem 2 (Robust covariance estimation in the Gaussian case). There are absolute
constants c1; c2 > 0 such that the following holds. Assume that X1; : : : ; XN is an
"-contaminated sample of zero mean Gaussian vectors in Rd with covariance †. Let
" < c1. There is an estimator

y† D y†˛;ˇ;!;G;".X1; : : : ; XN /

satisfying, with probability at least 1 � ı,

ky† �†k 6 c2k†k
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r.†/
N
C

r
log.1=ı/
N

C "

!
:

Up to multiplicative constant factors, no estimator of the Gaussian covariance matrix
performs better.

We are now ready to define our estimator.

We first construct the following distribution. For any v 2 Sd�1—slightly
abusing the notation—let �v be a distribution in Rd whose density fv is given by

fv.x/ D
1

p.2�ˇ�1/d=2
exp

�
�
ˇkx � vk2

2

�
1
�
kG1=2.x � v/k 6 100

p
!
�
:

Here, p > 0 is a normalization factor. Assume that � is a random vector dis-
tributed according to �v . Let H D E�v .� � v/.� � v/T be a covariance matrix
of �v . (By the symmetry of �v around v, the matrix H does not depend on v.)
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For some specifically chosen absolute constant c > 0 and ˛ D ˛.H/, define the
set

H D

´
� 2 SdC W jTr.�H/ � ˛j 6 c Tr.�H/

 r
r.G/C log.1=ı/

N
C "

!
I

� � 10GI k�k 6 10!

µ
: (2.5)

For an "-contaminated sample X1; : : : ; XN , our estimator is defined as follows:

y†D arg min
�2H

sup
v2Sd�1

E�v
ˇ̌
Med.jhX1; �ij; : : : ; jhXN ; �ij/�ˆ�1.3=4/

p
�T��

ˇ̌
:

This estimator is a more complex version of our smoothed median estimator. First,
instead of working with the Gaussian smoothing measure, we restrict this distribution
to an elliptic set ¹x 2Rd W kG1=2.x � v/k6 100

p
!º. Second, we need to restrict the

eigenvalues of the output matrix and introduce the set H . Our estimator is related to
minimizing the so-called median absolute deviation (see [26] for related definitions).
The proof of Theorem 2 exploits the fact that quantiles of jhX; �ij are tightly con-
nected with corresponding variances. This is reflected in the termˆ�1.3=4/ appearing
in the definition of our estimator.

3. Auxiliary results

The following section contains several technical results used throughout the paper.
We start with a bound usually referred to as the PAC-Bayesian lemma, which is a
direct consequence of the Donsker–Varadhan’s variational formula for the relative
entropy [27]. The proof of the next lemma and some of its applications can be found
in [12, 55].

Lemma 1. Assume that X is a random variable defined on some measurable space
X. Assume also that ‚ (called the parameter space) is a subset of Rd . Let 
 be a
distribution (called prior) on ‚, and let � be any distribution (called posterior) on ‚
such that �� 
 . Let f WX �‚!R be such that EX exp.f .X; �// is finite 
 -almost
surely. Then, we have

Pr
X
. for all �� 
 W E�f .X; �/ 6 E� log.EX exp.f .X; �///CKL.�; 
/C t /

> 1 � e�t :
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One of the key arguments, used in several recent papers on mean and covariance
estimation of heavy-tailed distributions [1,12,28,50], is an application of this lemma,
allowing to bypass the sphere covering and VC-type arguments. Lemma 1 will play
the same key role in our analysis. However, previous applications of this lemma were
based on sums of (truncated) random variables in place of f .X; �/ (in this case, X
is essentially a vector of independent random variables X1; : : : ; XN ), while we are
exploiting the interplay between Lemma 1 and sample quantiles of particular univari-
ate distributions.

3.1. Analysis of the posterior distribution

Another technical aspect of our analysis is the introduction of truncated posterior
distributions in the context of robust estimation. For a given positive semi-definite
matrix G and r > 0, we truncate the multivariate Gaussian distribution with mean
v 2 Sd�1 and covariance ˇ�1Id as follows. Define the density function

fv.x/ D
1

p.2�ˇ�1/d=2
exp

�
�
ˇkx � vk2

2

�
1.kG1=2.x � v/k 6 r/; (3.1)

where p > 0 is a normalization factor. We proceed with the following result.

Lemma 2 (Properties of the truncated posterior). Let r; ˇ > 0, and let G denote a
positive semi-definite matrix in the definition (3.1). Let † be a covariance matrix of a
zero mean random vector X in Rd satisfying

1

10
† � G and Tr.G/ 6 10Tr.†/:

Let 
 be a Gaussian measure in Rd with mean zero and covariance ˇ�1Id . If, addi-
tionally,

r >
p
20ˇ�1 Tr.†/;

then we have
KL.�v; 
/ 6 log.2/C ˇ=2;

where, slightly abusing the notation, �v is the distribution corresponding to the density
function defined in (3.1). Furthermore, let � be distributed according to �v . Then,
E�v� D v, and almost surely with respect to the realization of � , we have

�T†� 6 2k†k C 20r2:

Proof. We use that for � distributed according to �v it holds that E�v� D v. This fol-
lows from the symmetry of the density around v. Let g denote the density of a Gaus-
sian random vector with mean zero and covariance ˇ�1Id . To control KL.�v; 
/, we
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write Z
log

�
fv.x/

g.x/

�
fv.x/dx D E�v log

�
1

p
exp

�
�ˇk� � vk2 C ˇk�k2

2

��
D log

�
1

p

�
C E�v

�
�ˇkvk2 C 2ˇh�; vi

2

�
D log

�
1

p

�
C
ˇ

2
:

To prove the desired inequality, we observe that

p D Pr.kG1=2W k 6 r/;

where W is a zero mean Gaussian random vector with covariance ˇ�1Id . Since
Tr.G/ 6 10Tr.†/, a simple computation shows that

Pr.kG1=2W k > r/ 6 EW TGW=r2 D ˇ�1 Tr.G/=r2 6 10ˇ�1 Tr.†/=r2 6 1=2;

as long as r >
p
20ˇ�1 Tr.†/. Under this assumption, p > 1=2. Therefore, we have

log.1=p/ 6 log 2:

This proves the first inequality. Using the second property of the matrix G, we have

�T†� 6 2vT†v C 2.� � v/T†.� � v/

6 2vT†v C 20.� � v/TG.� � v/

6 2k†k C 20r2:

The claim follows.

3.2. Concentration inequalities for sample quantiles

Mainly, for the purpose of completeness, we derive sub-Gaussian and sub-exponential
concentration inequalities for the quantiles of i.i.d. observations sampled from several
regular distributions. The analysis of sample quantiles is a standard question in statis-
tics. The early work of Kolmogorov [38] focused on proving a central limit theorem
for the sample median of some symmetric distributions. Subsequently, the focus was
on explicit expansions for this limit law [10]. We additionally refer to the monograph
of David and Nagaraja [17] on order statistics and to the monograph of De Haan
and Ferreira [18] on the extreme value theory. Finally, many authors focused on the
analysis of Bahadur’s representation of sample quantiles (see, e.g., [4,36], [52, Theo-
rem 5.11]). Unfortunately, neither the exact expressions for the distribution of sample
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quantiles nor various asymptotic expansions lead to the exact concentration inequali-
ties we are interested in.

Less is known about concentration inequalities for sample quantiles. Some explicit
non-asymptotic bounds appear in the monograph of Shao [52, Section 5.3]. Several
related concentration inequalities appear in the work of Boucheron and Thomas [9],
though their bounds are not sharp enough for our purposes. These authors provide
a sub-exponential concentration inequality for the sample median of the Gaussian
distribution, while our results will lead to sub-Gaussian concentration inequalities.
Another line of results is due to Bobkov and Ledoux [6]. Their results provide sharp
concentration inequalities for quantiles of log-concave distributions but only lead to
sub-exponential tails due to their generality2.

Our approach is straightforward, though, to the best of our knowledge, it is not
explicit in the literature. When proving concentration inequalities for sample quan-
tiles, we consider two regimes. For small deviations, we use the regularity of the
density function and follow the reduction to a concentration of Bernoulli random vari-
ables as in [2, 13, 21, 52, 54], while for large deviations we use the sub-Gaussian/sub-
exponential tails of our distribution. We discuss some straightforward extensions of
our analysis in Section 6. Before providing our first concentration inequality, recall
that the cumulative distribution function of a standard Gaussian is denoted by ˆ.�/.
Denote its inverse by ˆ�1.�/.

Lemma 3 (Concentration for Gaussian quantiles). There are absolute constants c1,
c2>0 such that the following holds. Let "2 Œ0;1=4�. Assume without loss of generality
that .1=2˙ "/N are integers. Let Y1; : : : ; YN be a sample of independent standard
Gaussian random variables. Then, for any t > 0,

Pr.jY..1=2˙"/N/ �ˆ�1.1=2˙ "/j > t / 6 2 exp.�c1Nt2/:

Equivalently,
kY..1=2˙"/N/ �ˆ

�1.1=2˙ "/k 2 6
c2
p
N
:

The proof of this result is deferred to Appendix. Our second result presents a
similar concentration bound for the empirical quantiles of i.i.d. observations drawn
from �21 distribution. This distribution coincides with the distribution of the squared
standard Gaussian random variable. Denote the cumulative distribution function by
F�2

1
.�/ and its inverse by F �1

�2
1

.�/. The key difference is that we only show a sub-

exponential tail in this case. We remark that when considering the �2
k

distribution

2For the special case of the uniform distribution in Œ0; 1�, Bobkov and Ledoux [6] provide a
sub-Gaussian concentration inequality for all order statistics.
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with k > 2 degrees of freedom, the desired concentration inequality follows from
log-concavity and [6, Lemma 6.5].

Lemma 4 (Quantiles of the �21 distribution). There is an absolute constant c1 > 0

such that the following holds. Assume without loss of generality that .1=2 ˙ "/N
are integers. Let Y1; : : : ; YN be a sample of independent �21 random variables and
" 2 Œ0; 1=4�. Then,

kY..1=2˙"/N/ � F
�1

�2
1

.1=2˙ "/k 1 6
c1
p
N
:

The proof of this result is also deferred to Appendix B. Our final result proves a
similar bound for the (standard) half-normal distribution. Namely, we want to prove
the concentration inequality for quantiles of the absolute values of standard Gaussian
random variables. Denote the cumulative distribution function of this distribution by
ˆH.�/ and its inverse by ˆ�1H .�/.

Lemma 5 (Quantiles of the half-normal distribution). There is an absolute constant
c1 such that the following holds. Assume without loss of generality that .1=2˙ "/N
are integers. Let Y1; : : : ; YN be a sample of independent half-normal random vari-
ables and " 2 Œ0; 1=4�. Then,

kY..1=2˙"/N/ �ˆ
�1
H .1=2˙ "/k 2 6

c1
p
N
:

The proof of this result repeats the same computations used in the proofs of Lem-
mas 3 and 4. We omit the details.

4. Proofs of the main results

We begin with the proof of our first main result that yields that the estimator defined
in (1.2) achieves an optimal error bound for the robust mean estimation problem. We
discuss the optimality of our results at the end of this section.

Proof of Theorem 1. First, immediately by the definition of our estimator and basic
properties of the multivariate Gaussian distribution, we have

y� D arg min
�2Rd

sup
v2Sd�1

jE�v Med.hX1; �i; : : : ; hXN ; �i/ � h�; vij;

where �v is a multivariate Gaussian distribution in Rd with mean v and covariance
ˇ�1Id (we are slightly abusing the notation, since �v defined a clipped multivariate
Gaussian distribution in the estimator of Theorem 2), and the expectation E�v is taken
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with respect to � just as in the formulation of Lemma 1. By the triangle inequality,
the definition of our estimator, and the fact that E�v� D v, we have

ky� � �k2 D sup
v2Sd�1

hy� � �; vi

6 sup
v2Sd�1

jE�v Med.hX1; �i; : : : ; hXN ; �i/ � hy�; vij

C sup
v2Sd�1

jE�v Med.hX1; �i; : : : ; hXN ; �i/ � h�; vij

6 2 sup
v2Sd�1

jE�v Med.hX1 � �; �i; : : : ; hXN � �; �i/j: (4.1)

We need to bound the last quantity. From now on, we can assume without loss of
generality that � D 0. Assume that Y1; : : : ; YN is an uncontaminated sample of zero
mean independent Gaussian vectors with covariance †. That is, at most "N elements
among X1; : : : ; XN are different from their Y1; : : : ; YN counterparts. Observe that
the sample median of projections of the contaminated sample in any direction can-
not be too far away from 1=2˙ " quantiles of the corresponding projections for the
uncontaminated sample. Formally, assuming that both the sample median and 1=2˙ "
sample quantiles are unique, we have �v-almost surely

Quant 1
2�"

.hY1; �i; : : : ; hYN ; �i/ 6 Med.hX1; �i; : : : ; hXN ; �i/

6 Quant 1
2C"

.hY1; �i; : : : ; hYN ; �i/;

and thus, taking the expectation with respect to �v , we readily get the following bound,
for any v 2 Sd�1

jE�v Med.hX1; �i; : : : ; hXN ; �i/j 6 jE�v Quant 1
2C"

.hY1; �i; : : : ; hYN ; �i/j

C jE�v Quant 1
2�"

.hY1; �i; : : : ; hYN ; �i/j:

Both terms will be analyzed similarly. We only analyze the first one. Observe that, due
to the spherical symmetry, we have that SND¹hY1;�i=

p
�T†�; : : : ;hYN ;�i=

p
�T†�º

(note that SN depends on � , but we omit the explicit dependence for brevity in the
notation) consists of independent standard Gaussian random variables (in our case,
� ¤ 0 almost surely). We have

jE�v Quant 1
2C"

.hY1; �i; : : : ; hYN ; �i/j

6
ˇ̌
E�v
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN //

ˇ̌
C
ˇ̌
E�v
p
�T†� � .E Quant 1

2C"
.SN / �ˆ

�1.1=2C "//
ˇ̌

C E�v
p
�T†� �ˆ�1.1=2C "/

D .I/C .II/C .III/;
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where E should be understood as the expectation with respect to both the observations
Y1; : : : ; YN and the distribution �v , since � is distributed according to �v . We now
bound each of the three terms (I), (II), (III) above separately.

First term. The first term jE�v
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN //j con-

cerns the distance between the empirical quantile of standard Gaussians and its expec-
tation. To bound this quantity, we apply Lemma 1. By Lemma 6 from Appendix A.1
we haveˇ̌

E�v
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN //

ˇ̌
6 c3

r
Tr.†/C k†k log.1=ı/

N

with probability at least 1 � ı, uniformly over Sd�1, where c3 is some positive abso-
lute constant.

Second term. The second term jE�v
p
�T†� � .E Quant 1

2C"
.SN / � ˆ

�1.1=2 C "//j

is the distance between the expected quantile and its theoretical counterpart, which
can be bounded using the observation that, for any scalar C , we have kCk 2 D
jC j=
p

log 2. Using this observation, together with Jensen’s inequality and Lemma 3,
we have, for some c4 > 0,ˇ̌

E�v
p
�T†� � .E Quant 1

2C"
.SN / �ˆ

�1.1=2C "//
ˇ̌

6
c4
p

log 2 � E�v
p
�T†�

p
N

6
c4
p

log 2 �
p
11k†k

p
N

:

Third term. The third term is the magnitude of the standard Gaussian quantile com-
puted around 1=2. First, we notice that the function ˆ�1.�/ is locally Lipschitz on a
closed interval Œ1=2 � "; 1=2C "� for " 2 Œ0; 1=4�. Hence, by bounding the Lipschitz
constant, we arrive at the following inequality, jˆ�1.1=2C "/j D jˆ�1.1=2C "/ �
ˆ�1.1=2/j 6 4", for all " 2 Œ0; 1=4�. Therefore, we have

E�v
p
�T†� �ˆ�1.1=2C "/ 6 4"

p
11k†k:

Combining the results of the three terms bounded above, the relation between the
median of the contaminated sample and the quantiles of an uncontaminated Gaussian
sample, as well as the inequality (4.1), concludes the proof.

We are now ready to prove our second main result.

Proof of Theorem 2. Slightly abusing the notation, we now use �v to denote the mea-
sure in the definition of the covariance estimator of Theorem 2. Recall that H is
a covariance matrix of �v and does not depend on a direction v 2 Sd�1. Observe
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that E�v�T†� D vT†vC Tr.†H/. Moreover, since our choice of parameters implies
p > 1=2 in (3.1), we have

H � 2ˇ�1Id and kHk 6 2ˇ�1:

We also observe that r.G/ D Tr.G/=kGk 6 100r.†/. Using the triangle inequality,
as well as the definition of our estimator combined with the definition of the set H

from (2.5), we have

ky† �†k D sup
v2Sd�1

jvT†v � vT y†vj

6 sup
v2Sd�1

jE�v�
T.† � y†/� j

C j.Tr.y†H/ � ˛.H// � .Tr.†H/ � ˛.H//j

6 sup
v2Sd�1

jE�v�
T.† � y†/� j

C c Tr..†C y†/H/

 r
max¹r.G/; r.†/º C log.1=ı/

N
C "

!
6 sup
v2Sd�1

jE�v�
T.† � y†/� j

C 2ˇ�1c Tr.†C 10G/

 r
100r.†/C log.1=ı/

N
C "

!
6 sup
v2Sd�1

jE�v�
T.† � y†/� j

C 202ˇ�1c Tr.†/

 r
100r.†/C log.1=ı/

N
C "

!
:

Since ˇ�1 6 10r.†/, the last term in the last inequality is not larger than the rate of
convergence in the statement of Theorem 2. We now can focus only on bounding the
first term in the last line of the inequalities from the previous display. We first need
some auxiliary computations. Using the definition of the set H , we have �v-almost
surely

p
�T†� C

p
�T y†�

6
p
2vT†v C 2.� � v/T†.� � v/C

q
2vT y†v C 2.� � v/T y†.� � v/

6
p
2k†k C 20.� � v/TG.� � v/C

p
20! C 20.� � v/TG.� � v/

6
p
2k†k C 20r2 C

p
20! C 20r2

6 c1
p
k†k;
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where c1 > 0 is some absolute constant. This implies the following lines:

sup
v2Sd�1

jE�v�
T.† � y†/� j

6 sup
v2Sd�1

E�v
ˇ̌p
�T†� �

p
�T y†�

ˇ̌ˇ̌p
�T†� C

p
�T y†�

ˇ̌
6 c1

p
k†k sup

v2Sd�1
E�v

ˇ̌p
�T†� �

p
�T y†�

ˇ̌
6 c1

p
k†k sup

v2Sd�1
E�v

ˇ̌
Med.jhX1; �ij; : : : ; jhXN ; �ij/=.ˆ�1.3=4// �

p
�T y†�

ˇ̌
C c1

p
k†k sup

v2Sd�1
E�v

ˇ̌
Med.jhX1; �ij; : : : ; jhXN ; �ij/=.ˆ�1.3=4// �

p
�T†�

ˇ̌
6 2c1

p
k†k sup

v2Sd�1
E�v

ˇ̌
Med.jhX1; �ij; : : : ; jhXN ; �ij/=.ˆ�1.3=4// �

p
�T†�

ˇ̌
;

where in the last line we used the definition of y† and that † 2 H . We focus on upper
bounding the last expression. Let Y1; : : : ; YN be the uncontaminated version of our
"-contaminated sample. Using the same argument as in the proof of Theorem 1, we
have

sup
v2Sd�1

E�v
ˇ̌
Med.jhX1; �ij; : : : ; jhXN ; �ij/ �ˆ�1.3=4/

p
�T†�

ˇ̌
6 sup
v2Sd�1

E�v
ˇ̌
Quant 1

2C"
.jhY1; �ij; : : : ; jhYN ; �ij/ �ˆ

�1.3=4/
p
�T†�

ˇ̌
C sup
v2Sd�1

E�v
ˇ̌
Quant 1

2�"
.jhY1; �ij; : : : ; jhYN ; �ij/ �ˆ

�1.3=4/
p
�T†�

ˇ̌
:

We only analyze the first term. Observe that, due to the spherical symmetry, we have
that SN D ¹jhY1; �ij=

p
�T†�; : : : ; jhYN ; �ij=

p
�T†�º (here we slightly abuse the

notation and use the symbol SN in a different context) consists of independent half-
normal random variables (in our case, � ¤ 0 almost surely). By the triangle inequality,
we have

sup
v2Sd�1

E�v
p
�T†� jQuant 1

2C"
.SN / �ˆ

�1.3=4/j

6 sup
v2Sd�1

E�v
p
�T†�

� .jQuant 1
2C"

.SN / �ˆ
�1
H .1=2C "/j � EjQuant 1

2C"
.SN / �ˆ

�1
H .1=2C "/j/

C sup
v2Sd�1

E�vE
p
�T†� jQuant 1

2C"
.SN / �ˆ

�1
H .1=2C "/j

C sup
v2Sd�1

E�v
p
�T†� jˆ�1.3=4/ �ˆ�1H .1=2C "/j

D .I/C .II/C .III/:



A. Minasyan and N. Zhivotovskiy 50

We want to apply Lemma 1 to control (I). Fix � > 0 and let 
 be a multivariate
Gaussian distribution in Rd with zero mean and covariance ˇ�1Id . Lemma 2 implies
that for our choice of parameters KL.�v; 
/ 6 log.2/C ˇ=2. Denote

Q.SN / D jQuant 1
2C"

.SN / �ˆ
�1
H .1=2C "/j � EjQuant 1

2C"
.SN / �ˆ

�1
H .1=2C "/j:

Observe that, conditioned on � , the random variable Q.SN / is a centered version of
the random variable jQuant 1

2C"
.SN / � ˆ

�1
H .1=2 C "/j whose k � k 2 is controlled

by Lemma 5. Since centering multiplies the  2-norm by at most an absolute constant
factor, we have (conditioned on � ) that kQ.SN /k 2 6 c2p

N
for some absolute constant

c2 > 0. By Lemma 1 we have with probability at least 1 � ı, simultaneously for all
v 2 Sd�1,

�E�v
p
�T†� Q.SN / 6 E�v log E exp

�
�
p
�T†� Q.SN /

�
C ˇ=2C log.2=ı/:

Thus, by [53, Proposition 2.5.2 (v)] (conditioned on � , we take �
p
�T†� instead of

� in that result), repeating the lines of the proof of Theorem 1, we have, for some
absolute constants c3; c4 > 0,

E�v log E exp
�
�
p
�T†� Q.SN /

�
6 E�v

c3�
2�T†�

N
6
c4�

2k†k

N
:

Combining the bounds and optimizing with respect to �, we have simultaneously, for
all v 2 Sd�1, with probability at least 1 � ı,

.I/ 6 c5
p
k†k

 r
r.†/
N
C

r
log.1=ı/
N

!
;

where c5 > 0 is some absolute constant. We now bound the term (II). Similarly to the
proof of Theorem 1, we use Lemma 5 to get, for some absolute constant c6 > 0, the
following bound:

E�vE
p
�T†� jQuant 1

2C"
.SN / �ˆ

�1
H .1=2C "/j 6 c6

r
k†k

N
:

To bound (III) we first observe that ˆ�1H .1=2/ D ˆ�1.3=4/. Now, we show that the
difference ˆ�1H .1=2C "/�ˆ�1H .1=2/ is bounded by " (up to multiplicative constant)
for " 2 Œ0; 1=4�. Similarly to the arguments used in the proof of Theorem 1 for the
quantile function of standard Gaussian distribution, we compute and bound the deriva-
tive of ˆ�1H .1=2C x/ when x 2 Œ0; 1=4� as follows:

d

dx
ˆ�1H .1=2C x/ D

r
�

2
exp..ˆ�1H .1=2C x//2=2/

6
r
�

2
exp..ˆ�1H .3=4//2=2/ 6 3:
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Therefore, we have, for some c7 > 0,

E�v
p
�T†� � jˆ�1H .1=2C "/ �ˆ�1H .1=2/j 6 c7"

p
k†k:

Combining the obtained bounds, we complete the proof.

Statistical optimality of our estimators. We shortly discuss the claimed optimality
of our bounds. The optimality results follow immediately from existing lower bounds.
The bounds in [13, Theorems 2.2 and 3.2] show that Theorems 1 and 2 both have the
optimal dependence on the contamination level with correct dimension-free paramet-
ric rate. For covariance estimation, the optimality of the remaining terms is described
in detail in [1, Section 5]. Matching lower bounds for the mean estimation problem
are shown in [44].

5. Tuning the unknown parameters

Our focus is now on tuning a few parameters used in our estimators. For the sake
of simplicity, we assume that either " is known exactly or a known upper bound
"0 is available such that " 6 "0 < 1=2. This is a standard assumption in the litera-
ture [45]. Observe that at least in mean estimation the value of " is only used to tune
the parameter ˇ. The most standard approach to estimating other parameters is the
sample-splitting idea. One splits the sample into several independent blocks of equal
sizes. For each block, we can bound the number of contaminated points. This will
allow us to state our result for any " 2 Œ0; c�, where c is some small enough absolute
constant. An interesting aspect of our analysis is that we can tune different parameters
on the same sample. We will now discuss this in detail.

Handling the dependencies. It is clear that in the strong contamination setup, the
adversary can make the aforementioned blocks dependent. That is, the outliers in any
sub-sample may depend on the entire sample. Some authors assume implicitly that the
splitting of the sample results in independent subsamples. For example, the analysis
of the trimmed-mean estimator in [45, Theorem 1] uses this independence, which
holds, for example, in Huber’s contamination model but is not true in the general
strong contamination model. Taking care of the sample splitting step in the strong
contamination model requires some additional stability-type analysis. We refer to [22,
Section 6] as an example of this approach.

We now show that our approach allows one to tune the parameters on the same
sample. Thus, our result is valid in the strong contamination model without additional
assumptions. For clarity, we only focus on the mean estimation problem. Assume that
we are given an "-contaminated sample of sizeN . We denote it by SN . Given SN , we
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first find an integer ˇ D ˇ.SN / satisfying, with probability at least 1 � ı=2,

r.†/=10 6 ˇ.SN / 6 10r.†/: (5.1)

We then compute our estimator defined in (1.2) on the same sample SN with ˇ D
ˇ.SN /. Denote the event where (5.1) holds by E. We show that, due to the nature of
Lemma 1, this dependence does not lead to additional technical issues. First, observe
that since ˇ is an integer, we can use the union bound over at most 10r.†/ prior
Gaussian distributions 
 to handle potential dependence of ˇ on SN . One can verify
that this application of the union bound does not change the bound of Theorem 1.
Importantly, the result of Lemma 1 is uniform with respect to the posterior distribution
�v and allows ˇ to depend on the sample as long as KL.�v; 
/D ˇ.SN /=26 5r.†/,
which holds on the event E. Finally, one can easily verify that, on the same event E,
the desired upper bound on the term

E�v log E exp
�
�
p
�T†�.Quant 1

2˙"
.SN / � E Quant 1

2˙"
.SN //

�
;

appearing in the proof of Theorem 1, is not affected by the fact that ˇ D ˇ.SN /. This
argument allows us to use ˇ.SN / in our estimator.

Similar ideas can also be applied in the covariance estimation setup. To avoid
unnecessary technicalities, we assume that for covariance estimation we can indeed
split the sample into several blocks and the adversary is not allowed to create depen-
dencies between these blocks. This covers many standard contamination models,
including Huber’s "-contamination model.

Estimating ˇ and !. This step follows from existing results. In particular, in the
Gaussian case, [1, Proposition 6] provides an estimator ! satisfying k†k=4 6 ! 6
4k†k whenever N > c.r.†/C log.1=ı//, where c > 0 is an absolute constant. We
also need to estimate Tr.†/. This problem reduces to mean estimation. The linear
dependence on " will not play any role since we only need to know Tr.†/ up to
a multiplicative constant factor. In particular, one can use any sub-Gaussian mean
estimator in R (see [43] for the exact definition) that is tolerant to strong contam-
ination and gives a

p
"-dependence on the contamination level to find � satisfying

Tr.†/=26 � 6 2Tr.†/, whenever " is small enough andN > c log.1=ı/. This allows
us to find an integer ˇ satisfying (5.1).

Constructing the matrix G . We discuss how to construct a positive semi-definite
matrix G, satisfying

† � 10G and Tr.G/ 6 10Tr.†/: (5.2)

The following result allows us to construct such a matrix efficiently whenever N >
c.d C log.1=ı//, where c > 0 is some absolute constant.
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Proposition 1. There are absolute constants c; c1 > 0 such that the following holds.
Assume that X is a zero mean Gaussian vector in Rd with covariance†. Let X1; : : : ;
XN be an "-contaminated set of independent copies of X . Fix ı 2 .0; 1/. Assume that
"6 c andN > c1.d C log.1=ı//. Then, with probability at least 1� ı, simultaneously
for all I 0 � ŒN � such that jI 0j D cN , we have

† �
10

N

X
i2ŒN �nI 0

XiX
T
i :

Moreover, on the same event, there exists I � ŒN � such that jI j D cN , and

1

N

X
i2ŒN �nI

kXik
2 6 10Tr.†/:

This result implies immediately that the matrix

G D
1

N

X
i2ŒN �nI

XiX
T
i

satisfies the desired property (5.2). In order to find this set, one only needs to find a
set I of size "N such that

P
i2ŒN �nI kXik

2 6 10N Tr.†/. This can be done simply
by removing the "N vectors with the largest norms.

Proof. Without loss of generality, we assume that cN is an integer. Fix any I � ŒN �
of size 2cN . Let Y1; : : : ; YN denote an uncontaminated sample. The total number
of such subsets is upper bounded by

�
N
2cN

�
6 .2e=c/2cN . By the bound of Oliveira

[49, Theorem 4.1 with h D 3] and the union bound over all sets I of size 2cN , we
have

†

 
1 � 27

r
d C 4cN log.2e=c/C 2 log.2=ı/

N � 2cN

!
�

1

N � 2cN

X
i2ŒN �nI

YiY
T
i :

When c is small enough and N > c1.d C log.1=ı// for large enough c1 > 0, on the
same event, we have

† �
10

N

X
i2ŒN �nI

YiY
T
i :

Observe that since each term YiY
T
i is a positive semi-definite matrix and " 6 c, we

have that, for any I 0 of size cN , there is a set I of size 2cN such thatX
i2ŒN �nI

YiY
T
i �

X
i2ŒN �nI 0

XiX
T
i :

Indeed, to build such a set I , we consider the union of the set of contaminated points
with the set I 0. (We can add any additional elements if the cardinality of this union is
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less than 2cN .) This implies that, under our assumption for all I 0 � ŒN � of size cN ,
with probability at least 1 � ı,

† �
10

N

X
i2ŒN �nI 0

XiX
T
i :

We now consider the second part of the statement. Combining the Gaussian concen-
tration inequality [8, Example 5.7] and [53, Proposition 2.5.2], we get that there is an
absolute constant c2 > 0 such that

kkXk � EkXkk 2 6 c2
p
k†k:

It is now standard to verify that kkXk2 � EkXk2k 1 6 c3k†k, where c3 > 0 is an
absolute constant. By the Bernstein inequality [53, Theorem 2.8.1] and the union
bound, simultaneously for all I � ŒN �, jI j D cN , with probability at least 1 � ı, it
holds for some absolute constant c4 > 0 thatX
i2ŒN �nI

kYik
2

6 N Tr.†/C c4k†k
�p
N.log.1=ı/C cN log.e=c//C log.1=ı/C cN log.e=c/

�
6 10N Tr.†/:

The last inequality holds provided that c is small enough and c1 is large enough. We
choose I to be the set corresponding to the set of contaminated points. For this set I ,
on the same event, we have

1

N

X
i2ŒN �nI

kXik
2
D

1

N

X
i2ŒN �nI

kYik
2 6 10Tr.†/:

The claim follows by the union bound.

Estimating ˛.H /. We conclude by the analysis of a real-valued parameter ˛ D
˛.H/, defined in (2.3). In what follows, H is a known positive semi-definite matrix.
When allowing slightly sub-optimal dependence on ", we can use the analysis of
the trimmed mean estimator in R (see [45, Theorem 1]). Unfortunately, the analysis
becomes more complicated when the linear dependence on the contamination level is
of interest. Recall that we are interested in finding ˛ D ˛.H/ such that, with proba-
bility at least 1 � ı,

j˛ � Tr.†H/j 6 c Tr.†H/

 r
r.†/C log.1=ı/

N
C "

!
:

We present an estimator that achieves this error rate in almost any interesting regime.
More precisely, we will either make an additional assumption that ı > exp.�

p
r.†//,

or that log d 6 r.†/. In what follows, e1; : : : ; ed denote the standard basis in Rd .
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Proposition 2. There are absolute constants c; c1; c2 > 0 such that the following
holds. Assume that X is a Gaussian zero mean vector in Rd with covariance †. Let
X1; : : : ; XN be an "-contaminated set of independent copies of X . Fix ı 2 .0; 1/.
Assume that " 6 c andN > c1 log.1=ı/. Then, with probability at least 1� ı, it holdsˇ̌̌̌

ˇ.ˆ�1.3=4//�2 dX
iD1

Med.hei ;H 1=2X1i
2; : : : ; hei ;H

1=2XN i
2/ � Tr.†H/

ˇ̌̌̌
ˇ

6 c1 Tr.†H/
�

log.1=ı/
p
N

C "

�
: (5.3)

If, additionally, N > c2.log d C log.1=ı//, then, on the same event, it holdsˇ̌̌̌
ˇ.ˆ�1.3=4//�2 dX

iD1

Med.hei ;H 1=2X1i
2; : : : ; hei ;H

1=2XN i
2/ � Tr.†H/

ˇ̌̌̌
ˇ

6 c1 Tr.†H/

 r
log d C log.1=ı/

N
C "

!
:

Proof. Let Y1; : : : ; YN denote the uncontaminated sample, and let Y be a zero mean
Gaussian in Rd with covariance †. Since Tr.†H/ D Tr.H 1=2†H 1=2/, by triangle
inequality and the arguments of the proof of Theorem 1, we haveˇ̌̌̌

ˇ dX
iD1

Med.hei ;H 1=2X1i
2; : : : ; hei ;H

1=2XN i
2/ � .ˆ�1.3=4//2 Tr.†H/

ˇ̌̌̌
ˇ

6
dX
iD1

jMed.hei ;H 1=2X1i
2; : : : ; hei ;H

1=2XN i
2/

� .ˆ�1.3=4//2k†1=2H 1=2eik
2
j

6
dX
iD1

jQuant1=2C".hei ;H
1=2Y1i

2; : : : ; hei ;H
1=2YN i

2/

� .ˆ�1.3=4//2k†1=2H 1=2eik
2
j

C

dX
iD1

jQuant1=2�".hei ;H
1=2Y1i

2; : : : ; hei ;H
1=2YN i

2/

� .ˆ�1.3=4//2k†1=2H 1=2eik
2
j:

We only consider the first sum, as the second sum is analyzed similarly. Observe
that by the spherical symmetry the random variable hei ;H 1=2Y i2=k†1=2H 1=2eik

2 is
distributed according to the �21 distribution. Denote

SN;i D ¹hei ;H
1=2Y1i

2=k†1=2H 1=2eik
2; : : : ; hei ;H

1=2YN i
2=k†1=2H 1=2eik

2
º:



A. Minasyan and N. Zhivotovskiy 56

Using the notation from the previous display, triangle inequality, and the fact that
F �1
�2
1

.1=2/ D .ˆ�1.3=4//2, we arrive at

jQuant1=2C".hei ;H
1=2Y1i

2; : : : ; hei ;H
1=2YN i

2/ � .ˆ�1.3=4//2k†1=2H 1=2eik
2
j

6 k†1=2H 1=2eik
2
� jQuant1=2C".SN;i / � E Quant1=2C".SN;i /j

C k†1=2H 1=2eik
2
� jE Quant1=2C".SN;i / � F

�1

�2
1

.1=2C "/j

C k†1=2H 1=2eik
2
� jF �1

�2
1

.1=2C "/ � F �1
�2
1

.1=2/j

D .I/i C .II/i C .III/i :

By Lemma 4 we have, for some c1 > 0,

k.I/i C .II/ik 1 6
c1k†

1=2H 1=2eik
2

p
N

;

and therefore, 




 dX
iD1

..I/i C .II/i /







 1

6
c1 Tr.†H/
p
N

;

where the last expression follows from the triangle inequality. Using the exact form
of the inverse cumulative distribution function of the �21 distribution and the same
technique used to bound the difference of quantiles of half-normal distribution, one
can verify that for any " 6 1=4 we have jF �1

�2
1

.1=2˙ "/ � F �1
�2
1

.1=2/j 6 c2", where

c2 > 0 is an absolute constant. This readily yields

.III/i D k†1=2H 1=2eik
2
� jF �1

�2
1

.1=2C "/ � F �1
�2
1

.1=2/j 6 c2k†
1=2H 1=2eik

2":

Therefore, for " 6 1=4, we have
Pd
iD1.III/i 6 c2" Tr.†H/. Combining the above

computations and using the tail bound of [53, Proposition 2.7.1], we prove the inequal-
ity (5.3).

To prove the second part of the bound, we propose a slightly different analysis for
the term .I/i . Denote

S 0N;i D ¹jhei ;H
1=2Y1ij=k†

1=2H 1=2eik; : : : ; jhei ;H
1=2YN ij=k†

1=2H 1=2eikº;

and observe that S 0N;i consists of independent half-normal random variables. We have

.I/i D k†1=2H 1=2eik
2
�
ˇ̌
Quant1=2C".S

0
N;i / �

q
E Quant1=2C".SN;i /

ˇ̌
�
ˇ̌
Quant1=2C".S

0
N;i /C

q
E Quant1=2C".SN;i /

ˇ̌
:



Statistically optimal robust mean and covariance estimation 57

We first bound the second multiplier of the expression from the last display. By
Lemma 5, with probability at least 1 � ı, we have

Quant1=2C".S
0
N;i /C

q
E Quant1=2C".SN;i / 6 2ˆ�1H .1=2C "/C c3

r
log.1=ı/
N

:

Now, observe that the last expression from the previous line is bounded by some
absolute constant given that " 2 Œ0; 1=4� and N > c4 log.1=ı/. Using Lemma 5 once
again together with union bound, we bound the term .I/i , with probability at least
1 � ı, as follows:

.I/i 6 c4k†
1=2H 1=2eik

2

r
log.1=ı/
N

:

By the union bound, for all i 2 Œd �, we have, with probability at least 1 � ı,

.I/i 6 c3k†
1=2H 1=2eik

2

r
log d C log.1=ı/

N
;

whenever

N > c2.log d C log.1=ı//:

Taking the sum over all i 2 Œd � concludes the proof.

6. Additional comparisons and further extensions

The previously existing trimmed-mean-based estimators for the mean [45] and covari-
ance [1, 50] have a remarkable property: they work similarly for classes of distri-
butions starting from heavy-tailed to sub-Gaussian. The bounds for these estima-
tors automatically adjust their dependence on the contamination level ". However, it
appears that these estimators are not adaptive to the favorable Gaussian case and give
additional

p
log.1="/ and log.1="/ in mean and covariance estimation, respectively.

Assume that we are estimating the mean of a standard Gaussian random variable in R.
We focus on the regime where the confidence level ı is fixed and the sample size N
is approaching infinity, emphasizing the dependence on ". For large enough N , the
trimmed-mean-based estimator operates as follows (see [45, Section 2]): it drops the
fraction of observations proportional to " from both the smallest and largest ends and
averages the remaining observations to form the mean estimator. However, for small
enough ", it is known that, in the standard Gaussian case, even the population " and
1� " quantiles are of order

p
log.1="/ away from zero. Thus, if a malicious adversary

places "N observations close to one of these quantiles, the trimmed mean estimator,
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while averaging over "N observations each scaling as
p

log.1="/, will be away by
order of "

p
log.1="/ from the true mean, which is zero.

The same problem exists for robust covariance estimators. For example, consider
the covariance estimator by Oliveira and Rico [50]. Assume that X1; : : : ; XN is an
"-contaminated sample of standard Gaussians in R. In this particular case, the esti-
mator described in [50] drops the k largest values among X21 ; : : : ; X

2
N and averages

the remaining N � k observations. However, as with the trimmed mean, for large
enough N , the “optimal” choice of k (termed k0 in their paper), proportional to "N ,
corresponds to the 1� " quantiles of the squared Gaussian random variable, which are
known to be of order log.1="/ away from 1. As before, an adversary can exploit this
to incur a loss of " log.1="/. In contrast, our estimators, based on different principles,
avoid averaging and bypass these additional logarithmic factors.

While trimmed-mean-based estimators do not adaptively capture the specific be-
havior of the Gaussian distribution, this does not preclude other estimators from
achieving similar dimension-free bounds with optimal dependence on ". Since the
release of first version of this paper, the authors have explored whether other estima-
tors can match the optimal bounds of Theorems 1 and 2. The approach of Minsker
[47], which concentrates on minimizing Huber’s loss, seems to be the most promis-
ing. Although not explicit in his text, [47, Corollary 3.1] suggests a dimension-free
bound, showing the same optimal " dependence as in Theorem 1. The key difference
lies in the treatment of the quantity Gfv .n; �/ appearing in this bound. While that
paper opts for upper bounding this quantity in terms of the number of moments of the
distribution, one can instead demonstrate that Gfv .n;�/ equals zero in the Gaussian
case. This indicates no error in the Berry–Esseen approximation in this case. However,
it remains unclear if the techniques in [47] extend beyond Gaussian mean estimation
to recover the bound of Theorem 2.

Several natural questions arise from our results. The first is on the existence of
computationally efficient estimators achieving our bounds. It is known that getting a
polynomial time algorithm with a linear dependence on " in the strong contamination
model matching the bound of Theorem 1 is a challenging problem, even when the
covariance matrix is identity. Covariance estimation is an even harder problem from
the computational perspective. To the best of our knowledge, it is unknown if there is
a polynomial time algorithm achieving the statistical performance of Theorem 2 even
with the much weaker

p
"-dependence on the contamination level.

One simpler question is if our bounds can be generalized beyond the Gaussian
case. The answer is yes, and we opted for explicit Gaussian computations only to
make our proofs more reader-friendly. In particular, the proof of Theorem 1 only uses
the following properties of the distribution.

(1) The distribution of X � � is symmetric around the origin.
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(2) The distribution is spherically symmetric. That is, for any v 2 Sd�1, the dis-
tribution of hX � �; vi=

p
vT†v does not depend on v. Denote the density

function of this distribution by f .

(3) The density function f is separated from zero by some absolute constant for
all x 2 ŒF �1.1=2 � "/; F �1.1=2C "/�. This, in particular, implies

jF �1.1=2˙ "/ � F �1.1=2/j 6 c"

for some c > 0 and small enough ".

(4) The distribution corresponding to the density function f is sub-Gaussian.
That is, for Y distributed according to this distribution, we have kY k 2 6 c

for some c > 0.

Following the lines of our proof almost verbatim, one can analyze these more general
distributions. It will be interesting to understand if the sub-Gaussian tails assumption
(Property 5) can be avoided. In fact, assuming Properties 1–4, and additionally that
† D Id , combining our techniques and the analysis in [21, Proposition 1.3], one can
build an estimator y� satisfying, with probability at least 1 � ı,

ky� � �k 6 c

 r
d C log.1=ı/

N
C "

!
;

whenever N > c1.d C log.1=ı//. Here, c; c1 > 0 are some absolute constants. A
similar bound without the sub-Gaussian assumption is also given by Chen, Gao, and
Ren [13, Section 4]. In our case, the sub-Gaussian assumption (Property 5) is needed
to control the moment-generating function when applying Lemma 1, while the proof
in [21, Proposition 1.3] is based on the union bound over the "-net for which we do
not need sub-Gaussian tails in the “large deviation” regime.

Finally, some of the parameters of Theorem 2 are rather hard to estimate without
making additional assumptions on the sample size and confidence level. One can adapt
other approaches, such as, for example, Lepskii’s method [42]. This could provide an
alternative way of tuning these parameters.

A. Details for the proof of Theorems 1 and 2

This appendix contains lemmas that are used to prove Theorems 1 and 2.

A.1. Quantiles of Gaussian projections

Lemma 6. Let Y1; : : : ; YN be a sample of Gaussian vectors with covariance †.
Denote SN D ¹hY1; �i=

p
�T†�; : : : ; hYN ; �i=

p
�T†�º, where � is a random vector
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with distribution �v . Then, with probability at least 1 � ı, for all v 2 Sd�1, we have

ˇ̌
E�v
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN //

ˇ̌
6 c3

r
Tr.†/C k†k log.1=ı/

N

for some absolute constant c3 > 0.

Proof. Fix � > 0 and let 
 be a multivariate Gaussian distribution in Rd with zero
mean and covariance ˇ�1Id . The standard formula for the KL divergence between
Gaussian vectors implies KL.�v; 
/ D ˇ=2. Thus, by Lemma 1, we have with prob-
ability at least 1 � ı, simultaneously for all v 2 Sd�1,

�E�v
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN //

6 E�v log E exp
�
�
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN //

�
C ˇ=2C log.1=ı/:

Since centering multiplies the  2-norm by at most an absolute constant factor (see,
e.g., [53, Lemma 2.6.8]), we have by Lemma 3, for some absolute constant c1 > 0,

kQuant 1
2C"

.SN / � E Quant 1
2C"

.SN /k 2 6
c1
p
N
:

Thus, by [53, Proposition 2.5.2 (v)] (conditioned on � , we take �
p
�T†� instead of �

in that result), we have, for some absolute constant c2 > 0,

E�v log E exp
�
�
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN //

�
6

E�vc2�2�T†�
N

D
c2�

2.vT†v C ˇ�1 Tr.†//
N

6
11c2�

2k†k

N
;

where the last lines are based on a direct computation and our choice of ˇ (we have
ˇ�1 6 10k†k= Tr.†/). Optimizing the bound on �E�v

p
�T†�.Quant 1

2C"
.SN / �

E Quant 1
2C"

.SN // with respect to � > 0 and since ˇ 6 10 Tr.†/=k†k, we obtain

that uniformly over Sd�1,

E�v
p
�T†�.Quant 1

2C"
.SN / � E Quant 1

2C"
.SN // 6 c3

r
Tr.†/C k†k log.1=ı/

N
;

where c3 > 0 is an absolute constant. Repeating the proof for � < 0 and using the
union bound, we get the desired upper bound.
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B. Proofs of concentration inequalities for sample quantiles

Proof of Lemma 3

We only analyze the quantile Y..1=2C"/N/, since the analysis for Y..1=2�"/N/ is the
same. We analyze two parts of the tail separately. First, we show that

Pr.Y..1=2C"/N/ �ˆ�1.1=2C "/ > t / 6 exp.�c1Nt2/:

This analysis is also split into two regimes. For some absolute constant C > 0, we first
show the above inequality for 0 6 t 6 C and then proceed with the case t > C . In
the first regime, we follow the standard reduction to binomial tails (see similar com-
putations in [52, Theorem 5.9] and [54]). Let Z1; : : : ; ZN be independent Bernoulli
random variables with expectation

p D 1 �ˆ.s/

for some fixed s 2 R. We have

Pr.Y..1=2C"/N/ > s/ D Pr

 
NX
iD1

Zi > .1=2 � "/N

!
:

We set sDˆ�1.1=2C "/C t and obtain, using that EZi D 1�ˆ.ˆ�1.1=2C "/C t /,

Pr.Y..1=2C"/N/ > ˆ�1.1=2C "/C t /

D Pr

 
1

N

NX
iD1

Zi � EZi > ˆ.ˆ�1.1=2C "/C t / �
1

2
� "

!
:

Denoting 'C.t/Dˆ.ˆ�1.1=2C "/C t /� 1=2� ", we have by Hoeffding’s inequal-
ity applied to independent Bernoulli random variables, whenever 'C.t/ > 0,

Pr.Y..1=2C"/N/ �ˆ�1.1=2C "/ > t / 6 exp.�2N.'C.t//2/: (B.1)

Let us lower bound the function 'C. Using the density formula, we have

'C.t/ D ˆ.ˆ
�1.1=2C "/C t / �ˆ.ˆ�1.1=2C "//

>
t
p
2�

exp.�.ˆ�1.1=2C "/C t /2=2/

>
t
p
2�

exp.�.ˆ�1.3=4/C t /2=2/:

We combine these computations with the tail for large values of t . Since " 6 1=4, we
need that at least N=4 (assume that it is an integer without loss of generality) of all
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observations are above ˆ�1.1=2C "/C t . This can be controlled as follows:

Pr.Y..1=2C"/N/ �ˆ�1.1=2C "/ > t / 6
�
N

N=4

�
.Pr.Y1 > ˆ�1.1=2C "/C t //N=4

6 2N .Pr.Y1 > t //N=4

6 2N exp.�Nt2=8/

D exp.N log.2/ �Nt2=8/

6 exp.�Nt2=16/;

whenever t > 4
p

log.2/. The inequality (B.1) and the lower bound on 'C.t/ give us

Pr.Y..1=2C"/N/ �ˆ�1.1=2C "/ > t / 6 exp
�

�2Nt2

2� exp..ˆ�1.3=4/C 4
p

log.2//2/

�
;

whenever 0 6 t 6 4
p

log.2/. Combining two regimes and adjusting the absolute con-
stant, we prove an upper tail. Let us prove the lower tail bound. The proof is similar,
though the computations are slightly different. We want to show that, for any t > 0,

Pr.Y..1=2C"/N/ �ˆ�1.1=2C "/ 6 �t / 6 exp.�c1Nt2/:

We have for any s 2 R and Z1; : : : ; ZN as above

Pr.Y..1=2C"/N/ 6 s/ D Pr

 
NX
iD1

Zi 6 .1=2 � "/N

!
:

Define
'�.t/ D ˆ.ˆ

�1.1=2C "/ � t / � 1=2 � ":

We have similarly

Pr.Y..1=2C"/N/ �ˆ�1.1=2C "/ 6 �t / 6 exp.�2N.'�.t//2/:

Now, we lower bound the quantity j'�.t/j as follows:

j'�.t/j D ˆ.ˆ
�1.1=2C "// �ˆ.ˆ�1.1=2C "/ � t /

>
t
p
2�

exp.�max¹.ˆ�1.1=2C "//2; .ˆ�1.1=2C "/ � t /2º=2/

>
t
p
2�

exp.�max¹.ˆ�1.3=4//2; t2º=2/:

As above, we need to get the tail for large values of t . We need that at least N=4 of all
observations are below ˆ�1.1=2C "/ � t . In what follows, we assume

t > 2ˆ�1.3=4/:
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We have

Pr.Y..1=2C"/N/ �ˆ�1.1=2C "/ 6 �t /
D Pr.�Y..1=2C"/N/ > t �ˆ�1.1=2C "//

6
�
N

N=4

�
.Pr.�Y1 > t �ˆ�1.1=2C "///N=4

6 2N .Pr.Y1 > t �ˆ�1.3=4///N=4

6 2N .Pr.Y1 > t=2//N=4

6 2N exp.�Nt2=32/

6 exp.�Nt2=64/;

whenever t > max¹2ˆ�1.3=4/; 8
p

log.2/º. The union bound concludes the proof.
Finally, our bound on the  2-norm follows from [53, Proposition 2.5.2].

Our next auxiliary result converts a mixed sub-Gaussian/sub-exponential tail
bound into a bound on the k � k 1-norm. We present this standard computation for
the sake of completeness.

Lemma 7. Assume that a random variable X satisfies, for all t > 0,

Pr.jX j > t / 6 2 exp.�K min¹t2; tº/;

where K > 1 is some constant. Then, there is an absolute constant c > 0 such that

kXk 1 6
c
p
K
:

Proof. We can simply compute the moments of X . For fixed p > 1, we have

EjX jp D
Z 1
0

Pr.jX jp > t / dt

D

Z 1
0

Pr.jX j > t /ptp�1 dt 6 2

Z 1
0

exp.�K min¹t2; tº/ptp�1dt

6 2

Z 1
0

exp.�Kt2/ptp�1dt C 2
Z 1
0

exp.�Kt/ptp�1dt

D
1

Kp=2
p�.p=2/C

1

Kp
2p�.p/

6
3p.p=2/p=2

Kp=2
C
2pp

Kp
6

3pp

Kp=2
C
2pp

Kp
6

5pp

Kp=2
;

where �.�/ stands for the gamma function, and we used �.x/ 6 3xx for all x > 1=2

together with p�.p/ D �.p C 1/ 6 pp . Finally, [53, Proposition 2.7.1 (b)] implies
the desired bound.



A. Minasyan and N. Zhivotovskiy 64

Proof of Lemma 4

First, the density g of �21 is given by

g.x/ D
exp.�x=2/
p
2�x

; x > 0: (B.2)

It is also easy to show that F �1
�2
1

.1=2/D .ˆ�1.3=4//2. Using the same notation again,

we denote 'C.t/ D F�2
1
.F �1
�2
1

.1=2 C "/ C t / � 1=2 � ". Repeating the lines of the

proof of Lemma 3, whenever 'C.t/ > 0, we have

Pr.Y..1=2C"/N/ � F �1�2
1

.1=2C "/ > t / 6 exp.�2N.'C.t//2/:

Using (B.2), we have

'C.t/ D F�2
1
.F �1
�2
1

.1=2C "/C t / � F�2
1
.F �1
�2
1

.1=2C "//

>
t exp.�F�2

1
.F �1
�2
1

.1=2C "/C t //q
2�F�2

1
.F �1
�2
1

.1=2C "/C t /
:

This gives us a sub-Gaussian tail for as long as " 6 1=4 and t > 0 is bounded by
some absolute constant. By the concentration of the �2 distribution [41, Lemma 1],
we have, for t > 0,

Pr.Y1 > 1C
p
2t C t / 6 exp.�t /;

and thus; Pr.Y1 > t / 6 exp.�t=2/; whenever t > 4C 2
p
3:

Since " 6 1=4, we need that at least N=4 of all observations are above F �1
�2
1

.1=2C

"/C t . Therefore, whenever t > 4C 2
p
3, we have

Pr.Y..1=2C"/N/ � F �1�2
1

.1=2C "/ > t / 6
�
N

N=4

�
.Pr.Y1 > ˆ�1.1=2C "/C t //N=4

6
�
N

N=4

�
.Pr.Y1 > t //N=4

6 2N exp.�Nt=8/

D exp.N log.2/ �Nt=8/

6 exp.�Nt=16/;

where the last inequality requires additionally t > 16 log.2/. Combining the above
bounds and adjusting the absolute constant c1 > 0, we show that

Pr.Y..1=2C"/N/ � F �1�2
1

.1=2C "/ > t / 6 exp.�c1N min¹t; t2º/:
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We continue with the bound on the lower tail. We want to show, for any t > 0,

Pr.Y..1=2C"/N/ � F �1�2
1

.1=2C "/ 6 �t / 6 exp.�c2Nt2/;

where c2 is an absolute constant. For 0 6 t < F �1
�2
1

.1=2C "/, we define

'�.t/ D F
�1

�2
1

.F �1
�2
1

.1=2C "/ � t / � 1=2 � ":

Using the same argument, we show

Pr.Y..1=2C"/N/ � F �1�2
1

.1=2C "/ 6 �t / 6 exp.�2N.'�.t//2/:

We have

j'�.t/j D F�2
1
.F �1
�2
1

.1=2C "// � F�2
1
.F �1
�2
1

.1=2C "/ � t /

>
t exp.�F �1

�2
1

.1=2C "//q
2�F �1

�2
1

.1=2C "/
:

Since " 6 1=4, we conclude the proof in the regime t 6 F �1
�2
1

.1=2 C "/. Observe

that due to the non-negativity of Y..1=2C"/N/ we can extend this bound to all t >
F �1
�2
1

.1=2C "/. Lemma 7 in Section 3 concludes the proof. The analysis of the .1=2�

"/-th quantile repeats the same lines.
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