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Convergence in total variation for
the kinetic Langevin algorithm

Joseph Lehec

Abstract. We prove non-asymptotic total variation estimates for the kinetic Langevin algo-
rithm in high dimension when the target measure satisfies a Poincaré inequality and has gradient
Lipschitz potential. The main point is that the estimate improves significantly upon the corre-
sponding bound for the non-kinetic version of the algorithm, due to Dalalyan. In particular, the
dimension dependence drops from O.n/ to O.

p
n/.

1. Introduction

1.1. Context

Suppose we want to sample from a probability measure � on Rn of the form

�.dx/ D e�V.x/ dx;

where V is some smooth function from Rn to R (never mind the precise hypothesis
for now) which we call the potential of �. This is a very common problem in applied
mathematics, it shows up in many different contexts, from Bayesian statistics, to opti-
mization, machine learning and many more. We will not discuss applications here at
all. Instead we focus on the sampling problem from a theoretical point of view. We
shall investigate a particular algorithm called the kinetic Langevin algorithm. This is
an order 1 algorithm, in the sense that it relies on the knowledge of the gradient of V .
Therefore, it is assumed throughout this article that there is some oracle that given a
point x in Rn returnsrV.x/. In this context the complexity of the sampling algorithm
is the number of oracle queries.

1.2. The Langevin algorithm and its kinetic version

Consider the following stochastic differential equation

dXt D
p
2 dWt � rV.Xt / dt;
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where .Wt / is a standard Brownian motion on Rn. Under mild hypotheses the equa-
tion admits a unique strong solution, which is a Markov process, for which � is the
unique stationary measure. Moreover, the process is ergodic, in the sense that we
have convergence of Xt to � in law as t tends toC1. The Langevin algorithm is the
Markov chain induced by the Euler scheme associated to this diffusion. This means
that given a time step parameter �, the algorithm is given by

xkC1 D xk C
p
2� �kC1 � �rV.xk/;

where .�k/ is an i.i.d. sequence of standard Gaussian vectors on Rn. There is quite a
lot of literature studying the performance of this algorithm, either empirically or from
a more theoretical point of view. Explicit non-asymptotic bounds seem to have started
with the seminal work of Dalalyan [10] to which we will come back later on.

Let us move on to the kinetic version of the algorithm. The main idea is to add
another variable which is interpreted as a speed variable. We thus consider the stochas-
tic differential equation on Rn �Rn given by´

dXt D Yt dt;

dYt D
p
2ˇ dWt � ˇYt dt � rV.Xt / dt;

(1)

where .Wt / is a standard Brownian motion on Rn and ˇ is a positive parameter,
called the friction parameter hereafter. Note that this equation is degenerate, in the
sense that we only have a diffusion on the speed variable and not on the space vari-
able. The kinetic version of the Langevin diffusion is sometimes called underdamped
Langevin diffusion, whereas the usual diffusion is called overdamped. We will use
both terminologies here, so underdamped and overdamped are synonyms for kinetic
and non-kinetic, respectively. The underdamped diffusion admits a unique station-
ary distribution, namely the measure � WD �˝ 
 , where 
 is the standard Gaussian
measure on Rn. Under mild assumptions, the diffusion is also ergodic, and .Xt ; Yt /
converges in distribution to � . As far as sampling is concerned what matters is that
the first factor is our target measure �, so that the position Xt converges to �. The
kinetic Langevin algorithm is the algorithm obtained by discretizing the diffusion (1).
Namely, we fix a time step parameter � and we consider the following system of
equations ´

dX
�
t D Y

�
t dt;

dY
�
t D

p
2ˇ dWt � ˇY

�
t dt � rV.X

�

bt=�c�
/ dt;

(2)

where � is the time step and b�c denotes the integer part. Thus the only difference
with (1) is that in the equation for the speed, the gradient is not queried at the current
position but at some past position, corresponding to latest integer multiple of �. We
initiate this at some (possibly random) point .x0;y0/ and we set .xk;yk/D .X

�

k�
;Y

�

k�
/
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for every integer k. The process .xk; yk/ is Markov chain whose transition kernel
is explicit. Namely, the transition measure at point .x; y/ is the Gaussian measure
on Rn �Rn, centered at point .x0; y0/ and with covariance matrix . a cc b /˝ In, where

x0 D x C
1 � e�ˇ�

ˇ
y �

e�ˇ� � 1C ˇ�
ˇ2

rV.x/;

y0 D e�ˇ�y �
1 � e�ˇ�

ˇ
rV.x/;

a D
1

ˇ2
.4e�ˇ� � e�2ˇ� C 2ˇ� � 3/; b D 1 � e�2ˇ�; c D

1

ˇ
.1 � e�ˇ�/2:

Indeed the solution of the equation (2) on Œ0; �/ is completely explicit. Namely, if we
start from .x; y/, then we have

Y
�
t D e�ˇty �

1 � e�ˇt

ˇ
rV.x/C

p
2ˇ

Z t

0

eˇ.s�t/ dWs; 8t � �:

From this we also get an explicit formula for X�t . This shows that conditioned on the
initial point .x; y/ the random vector .X�� ; Y

�
� / is a Gaussian vector on Rn � Rn.

Finding the different parameters is only a matter of computation which is omitted
here. See e.g. [7, 28] for more details.

Thus the transition kernel is just a Gaussian kernel with a somewhat intricate but
completely explicit covariance matrix, which depends only on the friction parameter ˇ
and the time step �, and not on the potential V . The potential V only appears via its
gradient in the center of mass of the Gaussian kernel. Each step of this Markov chain
is thus easy to sample, under the assumption that we have an oracle for rV .

This Markov chain is what we call the kinetic Langevin algorithm associated to �.
It depends on two parameters, the friction parameter ˇ and the discretization param-
eter �. We will show that if those parameters are chosen appropriately then after a
polynomial number of steps the distribution of .xk; yk/ is very close to � .

1.3. Main result

We will quantify the sampling error in terms of total variation distance: if � and � are
two probability measures defined on the same space E equipped with some � -field A

then
T V.�; �/ D sup

A2A

¹j�.A/ � �.A/jº:

A related notion is the chi-square divergence, defined by

�2.� j �/ D

Z
E

d�

d�
d� � 1;
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assuming that � is absolutely continuous with respect to �. If this is not the case the
convention is that the chi-square divergence isC1. The chi-square divergence is not
a distance, it is not symmetric and it does not satisfy the triangle inequality either.
However it controls the total variation distance. Indeed, we have

T V.�; �/ �
p

log.1C �2.� j �// �
p
�2.� j �/:

By a slight abuse of notations, when X; Y are random vectors we shall often write
T V.X; Y / for T V.�; �/ where �; � are the respective laws of X;Y . We adopt a sim-
ilar convention for the chi-square divergence. For instance, we shall write �2.X j �/
for the relative chi-square divergence of the law of X with respect to the measure �.

There will be two hypotheses for the target measure. First of all we assume that �
satisfies the Poincaré inequality. Namely, we assume that there is a constant CP such
that for any locally Lipschitz function f , we have

var�.f / � CP

Z
Rn

jrf j2 d�:

The second hypothesis is a regularity hypothesis: We assume that the potential V of �
is C2-smooth with Lipschitz gradient. The Lipschitz constant of rV will be denoted
by L throughout. We shall give two estimates. One that is valid under the above two
assumptions only, and one slightly better, under the additional assumption that � is
log-concave, in the sense that the potential V is a convex function.

Theorem 1. Suppose that � satisfies Poincaré with constant CP and has C2-smooth
and gradient Lipschitz potential, with constant L. Assume that the kinetic Langevin
algorithm is initiated at .x0;y0/with x0 independent of y0, and y0 distributed accord-
ing to the standard Gaussian measure on Rn. Fix the friction parameter ˇD

p
L, and

set the time step parameter � and the number of steps k by

� D c � "L�1C
�1=2
P �

�p
nC

p
log.1C �2.x0 j �//

��1
� log�1=2

�
�2.x0 j �/

"

�
;

k D C � "�1.LCP /
3=2
�
�p
nC

p
log.1C �2.x0 j �//

�
� log3=2

�
�2.x0 j �/

"

�
;

where c; C are universal constants. Then we have

T V.xk; �/ � ":

If in addition � is log-concave then we have the same result with friction ˇ D C�1=2P ,
time step � as above, and number of steps k given by

k D C � "�1LCP �
�p
nC

p
log.1C �2.x0 j �//

�
� log3=2

�
�2.x0 j �/

"

�
:
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Some comments are in order. First of all the constants c; C could be explicitly
tracked down from the proof, but we have chosen not to do so in order to lighten the
exposition. In particular, the proof has not been optimized so as minimize the value
of C . That being said, our proof does not yield horribly large constants either, see the
discussion right after Theorem 2 below.

Secondly, the result depends on some warm start hypothesis. Namely the algo-
rithm must be initiated at some point x0 for which we have some control on the
chi-square divergence to the target measure. Assuming that this chi-square divergence
is polynomial in the dimension, we then get

O�
�
"�1.LCP /

3=2
� n1=2

�
complexity for the kinetic Langevin algorithm in general and O�."�1LCP � n1=2/
complexity in the log-concave case. The notation O� means up to a multiplicative
constant and possibly poly-logarithmic factors. This is a common notation when
studying the complexity of algorithms. Note that even in the more pessimistic sce-
nario were the chi-square divergence of the initial distribution is exponentially large
in the dimension, Theorem 1 still provides polynomial bounds, though with a worst
dependence on the dimension.

Coming back to the situation where a polynomial warm-start is available, our
result should be compared with the complexity one gets for the overdamped version
of the algorithm under the same set of hypothesis. The state of the art is Dalalyan [10],
which gives convergence after O�."�2.LCP /2n/ steps of the algorithm. The result
in [10] is not quite written this way but the above complexity does follow from the
proof, see the discussion at the end of the introduction of [19]. Well, in this discussion
the assumption is that � satisfies the log-Sobolev inequality, and that we have a warm
start in the relative entropy sense, but the argument is exactly the same assuming
Poincaré and a chi-square divergence warm start assumption.

The most important improvement given by the kinetic version is probably the
dependence in the dimension, which drops from O.n/ to O.

p
n/, but it should be

noted that also the dependence on the precision ", on the Lipschitz constant L of the
potential and on the Poincaré constant CP of the measure are definitely improved by
the kinetic version of the algorithm, all the more so in the log-concave case.

1.4. The hypocoercive estimate

The proof of the main theorem splits into two parts: firstly we need to estimate the
speed of convergence of the true diffusion towards its equilibrium measure and sec-
ondly to control the discretization error. For the first part the difficulty lies in the fact
that the diffusion is degenerate, in the sense that there is only a diffusion term in the
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speed variable and not in the space variable. This implies that we cannot expect an
exponential decay of the chi-square divergence along the diffusion of the form:

�2.�Pt j �/ � e�ct�2.� j �/;

where c is the positive constant. Here � is some probability measure on the product
space Rn � Rn and .Pt / denotes the semigroup associated to the kinetic Langevin
equation (1). In other words �Pt denotes the law of .Xt ; Yt / when .X0; Y0/ is dis-
tributed according to �. The terminology is that the diffusion fails to be coercive.
However, there is no obvious obstruction to having this inequality with a prefactor.
Such estimates are called hypocoercive estimates, and there are a number of them
available in the literature.

The result that we shall use is essentially from Cao, Lu and Wang [5], but for
reasons to be explained later on we will reprove the result from scratch rather than
taking it for granted. In terms of hypothesis, the hypocoercive estimate still requires
Poincaré, but a weaker condition than gradient Lipschitz potential is enough. Indeed,
it only requires a semi-convexity property. Namely, the assumption is that there exists
a constant � � 0 such that the potential V of � has the property that V.x/C �

2
jxj2 is

a convex function of x. Note that if rV is Lipschitz with constant L then this holds
true with � D L but the converse is not true.

Theorem 2. If � has C2-smooth and semi-convex potential, with constant � � 0, and
satisfies Poincaré with constantCP , then for every probability measure � on Rn �Rn,
we have

�2.�Pt j �/ � 2 � exp
�
�c �

ˇt

1C .ˇ2 C �/CP

�
� �2.� j �/;

for all t > 0, where ˇ is the friction parameter of the kinetic Langevin diffusion and c
is a positive universal constant.

It should be noted that most hypocoercivity results are established with a prefactor
that depends on the initial measure �. A nice feature of this one is that the prefactor is
just a universal constant.

Again, the focus of this work is on the theoretical aspects of the kinetic Langevin
algorithm rather than its practical implementation, but for this result we do provide a
version of the inequality that is completely free of hidden constants, namely

�2.�Pt j �/ � exp
�
�

ˇt

10 � .3C ˇ
p
CP C 2

p
1C �CP /2

C
1

60

�
� �2.� j �/

for all t > 0. This is obtained by simply keeping track of the various constants involved
in the proof of the theorem, see Section 2 below.
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1.5. Related works

The fact that the kinetic version of the algorithm has better performance was already
observed in a number of works. Maybe the first theoretical results in this direction
are [16, 17] in which the case where the target measure is Gaussian is studied in
details. Of course a Gaussian target measure is of little interest for sampling but the
point there was to show that when the friction parameter is set appropriately then the
kinetic diffusion is faster than the overdamped one. As far as sampling is concerned,
relevant references include [7, 11] in which non-asymptotic bounds for the kinetic
Langevin algorithm are established. The two results are very similar and differ in two
ways from the present article.

Firstly, the performance is measured in terms of the Wasserstein 2 distance (i.e. the
optimal transportation associated to the cost function jx � yj2) rather than total vari-
ation. Also the hypothesis is more stringent, the target measure is assumed to be uni-
formly log-concave and gradient Lipschitz. In other words the potential V is assumed
to satisfy

mIn � r
2V.x/ �MIn (3)

for all x, and wherem;M are positive constants. Notice that such a potential is gradi-
ent Lipschitz with constant L � M and satisfies Poincaré with constant CP � m�1.
Nevertheless, [7, 11] establish that all things equal (namely under the assumption (3)
and as far as the Wasserstein distance is concerned) the underdamped version outper-
forms the best bounds available for the overdamped algorithm, which were established
previously in [9, 13]. In particular, it is shown that the dimension dependence drops
from O.n/ to O.

p
n/, as in the present work.

In [22] a relative entropy estimate for the kinetic Langevin algorithm is estab-
lished. Although relative entropy controls total variation (see Section 3 below) this
does not recover our main result. First of all, the result from [22] is proven under
the assumption that the target measure satisfies a log-Sobolev inequality, which is
a stronger hypothesis than Poincaré, and more importantly it is only partly quantita-
tive, in the sense that the dependence on certain parameters of the problem is not made
explicit. The reference that comes closer to our work is [28] (which we were not aware
of until the first version of this paper was released). At a high level, the results and
methods of proof there are very similar to what is done in the current work. However,
our analysis of the discretization error is much simpler and also allows to capture
more accurately the dependence on the initial condition. In [28] the convergence
is established for a specific warm start condition for which both the log chi-square
divergence and the Fisher information are order n (essentially). In such a situation the
authors of [28] obtain convergence in total variation after O�."�1.LCP /3=2n2/ steps
of the algorithm in general and O�."�1LCPn2/ steps in the log-concave case. While
it is true that when log�2.x0 j �/ D O�.n/ we get exactly the same complexity, our
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result has the advantage of not requiring bounded Fisher information. Also we get a
better dimension dependence if one happens to have a better warm start hypothesis.
In particular, as we mentioned already the dimension dependence becomes as low as
O�.
p
n/ when the initial chi-square divergence is polynomial in the dimension. This

does not seem to follow from the analysis of [28].
Let us discuss also the literature on the Hamiltonian Monte Carlo algorithm, which

is a sampling algorithm very much related to the kinetic Langevin algorithm. It is
based on the observation that the Hamiltonian dynamic´

y0.t/ D x.t/;

x0.t/ D �rV.y.t//
(4)

preserves the Lebesgue measure as well as the potential H .x; y/ WD V.x/C jyj2=2.
As a result it also preserves the probability measure � . The HMC process is the piece-
wise deterministic process obtained by choosing a time step ı, resampling the speed y
at every integer multiple of ı and following the system of equations (4) in between.
Of course this does not admit an explicit solution and in order to turn this ideal HMC
dynamic into a proper algorithm one needs to replace the Hamiltonian dynamic phase
by an Euler-type discretization. The resulting algorithm looks a lot like the kinetic
Langevin algorithm, and in particular the two algorithms should have pretty much the
same performance. Non-asymptotic theoretical bounds for the HMC algorithm are
established in [6, 23, 24]. As for the works on the kinetic Langevin algorithm men-
tioned above, they prove convergence estimates in the Wasserstein sense and under
the assumption that the Hessian of the potential of the target measure is bounded
from above and below (by a positive constant). The result from [6] gives essentially
the same estimate as what [7, 11] get for the kinetic Langevin algorithm.

We have only presented a very short selection of the literature on the Langevin
and the HMC algorithms. For instance there are also many references where the focus
is on the discretization scheme. Indeed, we used the most natural one in this paper but
there exist variants in the literature. These typically yield better dependence on the
error " at the cost of higher order regularity estimates on the potential. See [4] and the
references therein.

1.6. Perspectives

First, we conjecture that Theorem 1 should hold true for the HMC algorithm as well.
Maybe more interestingly, one drawback with our result is that we lose regularity
from the hypothesis to the conclusion. We prove a total variation estimate under a
warm start hypothesis in the chi-square sense. It would be more satisfactory to get
a chi-square estimate in the conclusion as well. Note that the chi-square divergence
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controls the Wasserstein distance under Poincaré (see [21]). Therefore, such a result
would imply also a convergence estimate for the Wasserstein distance, similar to that
from the aforementioned works [7, 11], but under significantly weaker hypothesis on
the target measure. In the same way, it would be interesting to have an analogue
result for the relative entropy (both in the hypothesis and in the conclusion) under
a log-Sobolev hypothesis for the target measure. In the overdamped version of the
algorithm this task was completed by Vempala and Wibisono [26] but it is not clear at
all whether their approach can be adapted to the kinetic Langevin algorithm.

2. The hypocoercive estimate

Itô’s formula shows that the generator of the kinetic diffusion (1) is the operator

Lf .x; y/ D ˇ�yf .x; y/Crxf .x; y/ � y � ˇryf .x; y/ � y � ryf .x; y/ � rV.x/:

Integrating by parts we see that the probability measure � on Rn �Rn whose density
is proportional to

e�V.x/ � e�jyj
2=2

is stationary. One important fact is that the diffusion .Xt ; Yt / is not reversible. In
terms of the operator L, this means that the operator is not symmetric in L2.�/.
More precisely, direct calculations show that the part

�yf .x; y/ � ryf .x; y/ � y DW LOUf

is symmetric and that the part

rxf .x; y/ � y � ryf .x; y/ � rV.x/ DW LHamf

is antisymmetric. The indices “OU” and “Ham” stand for Ornstein–Ulhenbeck and
Hamiltonian, respectively. As a result the adjoint operator is L� D ˇLOU �LHam.

We let .Pt / be the semigroup with generator L, and .P �t / be the adjoint semi-
group. In other words, if � is a probability measure on Rn � Rn which is absolutely
continuous with respect to � , with density f , then �Pt has density P �t f with respect
to � . Moreover, the chi-square divergence between � and � is nothing but the vari-
ance of the relative density, so that �2.�Pt j �/D var�.P �t f /. Therefore, Theorem 2
can be reformulated as follows.

Theorem 3. If the potential of � is C2-smooth and semi-convex, with constant � � 0,
and if � satisfies Poincaré with constant CP , then for every function f 2 L2.�/, we
have

var�.P �t f / � 2 exp
�
�c �

ˇt

1C .ˇ2 C �/CP

�
var�.f /:
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As we mentioned in the introduction, the difficulty arises from the degeneracy of
the diffusion. Let us say a few more words about this. By definition

@tP
�
t f D L�P �t f:

Integrating by parts, we see that

d

dt
var�.P �t f / D 2

Z
R2n

.L�P �t f /P
�
t f d� D �2ˇ

Z
R2n

jryP
�
t f j

2 d�:

This shows that the variance of P �t f is non-increasing in time. If we want a more
quantitative statement, the issue is that only the gradient in y appears in the dissipation
of the variance, and not the full gradient. This comes from the fact that the associated
diffusion is degenerate and that the Brownian term only appears in the y variable.
Thus we cannot hope to lower bound the dissipation of variance by the variance itself.

There are a number of ways around this issue, and this line of research usually
goes by the name of hypocoercivity. This was pioneered by Villani [27], other classical
references include [2,12] to name only a very few of them. In Villani’s work the main
idea is to consider the dissipation of some perturbed energy of the form

E.ft / WD var�.ft /C
Z

Rn�Rn

hArft ;rft i d�;

where A is a suitably chosen positive semi-definite matrix. This is also the approach
taken by many of the subsequent works, including the works having application to
sampling [7, 11] which we already mentioned. To arrive at Theorem 3, we take a
slightly different route, inspired by the work of Albritton, Armstrong, Mourrat and
Novack [1]. The main idea is that while an inequality of the form

var�.f / � C
Z
jryf j

2 d�

is impossible, if we integrate this on some time interval along the kinetic Langevin
diffusion, then the inequality becomes plausible. This is called space-time Poincaré
inequality. This approach is quite general and not restricted to the case of the kinetic
Langevin diffusion. However the results from [1] are mostly qualitative, whereas here
we need quantitative estimates with explicit dependence on all parameters of the prob-
lem. A quantitative version of [1] was developed by Cao, Lu and Wang in [5] and the
proof spelled out below is very much inspired by their argument.

Before embarking for the proof of Theorem 3 let us remark that it is invariant
by scaling. Indeed, notice that if .Xt ; Yt / is a kinetic Langevin diffusion associated
to � and with friction parameter ˇ, then . 1

�
X�t ; Y�t / is a kinetic Langevin diffusion

associated to the measure � scaled by 1=� (i.e. the law of X=� if X is a vector with
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law �) and friction parameter �ˇ. This implies easily that if we define ˛ D ˛.t; ˇ;�/
to be the best estimate one could get for � in this theorem, namely

˛.t; ˇ; �/ D sup
²

var�.P �t f /
var�.f /

³
;

where the supremum is taken over every function f 2 L2.�/, then ˛ has the property
that

˛.t; ˇ; �/ D ˛
� t
�
; ˇ�; �1=�

�
;

where �1=� denotes the measure � scaled by 1=�. The upper bound for ˛ provided
by Theorem 3 is also invariant by this change of variable. As a result it is enough to
prove the result when one of the parameters has a prescribed value, we will exploit
this observation later on.

2.1. The L2 method for Poincaré

In this section we gather some well-known facts about the Laplace operator associated
to some measure that will be needed later on. Let � be a probability measure on Rn,
of the form

�.dx/ D e�V.x/ dx

for some C2-smooth function V WRn ! R. The Laplace operator associated to � is
the differential operator L� defined by

L�f D �f � hrf;rV i:

Originally, L� is defined on the space of C1-smooth and compactly supported func-
tions f , in which case an integration by parts givesZ

Rn

.L�f /g d� D �

Z
Rn

hrf;rgi d�:

This shows in particular

hL�f; giL2.�/ D hf;L�giL2.�/;

and that hL�f; f iL2.�/ � 0 for any functions f; g in the domain of L�. In the lan-
guage of operator theory, the operator �L� is said to be symmetric and monotone. It
turns out that L� admits a unique self-adjoint extension, the domain of which con-
tains H 1.�/, and that the above integration by parts is true for every f; g in H 1.�/.
Recall that H 1.�/ is the space of functions f 2 L2.�/ whose weak gradient also
belongs to L2.�/. The operator L� admits 0 as a simple a eigenvalue, the corre-
sponding eigenspace consists of constant functions. We say that L�, or rather �L�,
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has a spectral gap if there exists �0 > 0 such that the rest of the spectrum of �L� is
included in some interval Œ�0I C1/. This property turns out to be equivalent to the
Poincaré inequality, as we shall see now.

Lemma 4. The measure � satisfies Poincaré with constant CP if and only if the
spectral gap of the operator L� is at least C�1P . Moreover, this is also equivalent to
the inequality Z

Rn

jrf j2 d� � CP �

Z
Rn

.L�f /
2 d�

for every f in the domain of L�.

Lemma 5 (Bochner formula). For every smooth and compactly supported function f ,
we have Z

Rn

.L�f /
2 d� D

Z
Rn

kr
2f k2F Cr

2V.rf;rf / d�:

Here and in the sequel

kAkF D

�X
i;j

a2ij

�1=2
denotes the Frobenius norm of a symmetric matrix AD .aij /. If we combine together
these two lemmas we easily get the so-called Lichnerowicz estimates: If the poten-
tial V of� is uniformly convex, in the sense that there exists a constant ˛ > 0 such that
r2V � ˛ � Id pointwise and for the order given by the cone of positive semi-definite
matrices, then the measure � satisfies Poincaré with constant 1=˛. Indeed Bochner’s
formula then implies Z

Rn

.L�f /
2 d� � ˛

Z
Rn

jrf j d�;

which yields the claimed bound on the Poincaré constant thanks to Lemma 4.
This approach for the Poincaré inequality dates back to the work of Lichnerow-

icz [20]. More recent references where this method plays a role include [8,18] among
others. We refer to these for the proofs of Lemmas 4 and 5. For our purposes the
following immediate consequence of the two lemmas will be important.

Corollary 6. If � satisfies Poincaré with constant CP and if the potential V of � is
C2-smooth and semi-convex with constant �, then for every f in the domain of L�,
we have Z

Rn

kr
2f k2F d� � .1C � � CP /

Z
Rn

.L�f /
2 d�:

Proof. Bochner’s formula and the semi-convexity hypothesis yieldZ
Rn

.L�f /
2 d� �

Z
Rn

kr
2f k2F d� � �

Z
Rn

jrf j2 d�:
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By Lemma 4, Z
Rn

jrf j2 d� � CP

Z
Rn

.L�f /
2 d�;

and the result follows.

2.2. A divergence equation

The next proposition, taken from the Cao, Lu, Wang paper, is the main ingredient in
the proof of the hypocoercive estimate. This proposition is revisited and extended to
a somewhat more general context in the preprint [14]. However, instead of just taking
the result for granted we shall reprove it. One reason is that in the aforementioned
works the proposition is proven under annoying additional technical assumptions
which are actually not needed. Maybe more importantly the existing proofs are mostly
computational and we find them hard to follow. Our proof relies on spectral theory
and is arguably more conceptual. This hopefully sheds new light on this somewhat
delicate proposition.

Proposition 7. Suppose that the potential of � is C2-smooth and semi-convex, with
constant �, and that � satisfies Poincaré with constant 1. Fix a time horizon T and let

f 2 L2
�
Œ0; T � �Rn; �˝ �

�
;

where � is the Lebesgue measure, and assume that f is orthogonal to constants. Then
there exist u and v inL2.�˝�/ satisfying the Dirichlet boundary conditions, namely
u.0; �/ D u.T; �/ D 0, and similarly for v, such that

@tuC L�v D f; (5)

and such that the following estimates hold true:

(i) krukL2.�˝�/ . T kf kL2.�˝�/,

(ii) kr@tvkL2.�˝�/ . T �1kf kL2.�˝�/,

(iii) krvkL2.�˝�/ . kf kL2.�˝�/,

(iv) kr2vkL2.�˝�/ . .1C �/1=2kf kL2.�˝�/.

Here, the notation . means up to a multiplicative universal constant. Also, when
applied to tensors, norms should be interpreted coordinate-wise. For instance,

kr
2vk2

L2.�˝�/
D

X
ij

k@ij vk
2
L2.�˝�/

:

The results from the previous subsection section will play a role at some point but
there is still some work to be done here. The main difficulty is that there is a mismatch
between the boundary condition for u and that for v.
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As a preliminary step to the proof of Proposition 7, we notice that it is enough to
consider the case where T D 1. Indeed given three functions u, v, f in

L2
�
Œ0; T � �Rn; �˝ �

�
;

we let zu, zv, zf be the functions in L2.Œ0; 1� �Rn; �˝ �/ given by

zf .t; x/ D f .tT; x/;

zu.t; x/ D T �1 � u.tT; x/;

zv.t; x/ D v.tT; x/:

Obviously, f is orthogonal to constants if and only if zf is, and u; v satisfy the
Dirichlet boundary conditions if and only if zu, zv do. It is also clear that the diver-
gence equation (5) for .u; v; f / is equivalent to that for .zu; zv; zf /. Lastly, elementary
computations show that the Sobolev-type estimates (i), (ii), (iii), (iv) for u; v; f; T
amount to the same estimates for zu, zv, zf , 1. Therefore, we assume that T D 1 from
now on.

Remark. In the same way, while we stated this proposition under the assumption
that CP D 1 (which will be sufficient for our needs later on), one can show a more
general estimate that depends on the Poincaré constant of the measure � by rescaling
the space variable.

It will be convenient to introduce the following notations. We let A D �@t@t with
Dirichlet boundary conditions. By a slight abuse of notation we will view it either as
an operator on L2.�/ or as an operator on L2.�˝ �/ that acts on the time variable
only. In both cases it is a self-adjoint positive semi-definite unbounded operator. We
also let B D �L�, and again we view this either as a positive semi-definite operator
on L2.�/ or on L2.�˝ �/. We also denote by L20 the subspace of L2 consisting of
functions which are orthogonal to constants. Lastly for h 2 L2.�˝ �/, we define

…h.x/ D

Z 1

0

h.t; x/ dt:

In other words, …h is the second marginal of h. Note that …WL2.�˝ �/! L2.�/

is a bounded operator, and that its adjoint …� is the canonical injection of L2.�/ into
L2.�˝ �/. Observe that both … and …� preserve L20. The next lemma is the key to
the proof of Proposition 7.

Lemma 8. Recall that we assume that T D 1. Consider the following operators:

• Q1 WD …AB.A
2 C B2/�1…�;

• Q2 WD …A
4.A2 C B2/�2…�;

• Q3 WD …A
2.A2 C B2/�1.
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The following properties hold true:

(a) Both Q1 and Q2 are bounded and positive semi-definite on L2.�/ and leave
the subspace L20.�/ invariant. The operator Q3 is bounded from L2.�˝ �/

to L2.�/ and maps L20.�˝ �/ to L20.�/.

(b) As operators on L20.�/ the operators Q1; Q2 satisfy Q2 � C �Q1 for the
order given by the cone of positive semi-definite operators, and where C is a
universal constant.

(c) As operators on L20.�/ both Q1 and Q2 are actually positive definite.

(d) On L20.�/, we also have 0 � Q�3Q
�1
1 Q3 � C � Id.

Proof. We start with claim (a). SinceA andB commute and are positive semi-definite,
we have

0 � AB.A2 C B2/�1 �
1

2
Id:

In particular, we note that AB.B2 C A2/�1 is a bounded positive semi-definite oper-
ator on L2.�˝ �/. Observe that 1 is an eigenfunction

AB.A2 C B2/�11 D A.B2 C A2/�1B1 D 0:

Since AB.A2CB2/�1 is self adjoint, it also leaves the space span¹1º? D L20.�˝�/
invariant. Composing by … and …� we thus see that Q is a positive semi-definite
bounded operator on L2.�/ leaving L20.�/ invariant. In a similar way, we have

A2.A2 C B2/�1 D 1 � B2.A2 C B2/�11 D 1:

Thus A2.B2 C A2/�1 leaves L20.� ˝ �/ invariant. It is also clearly positive semi-
definite and bounded. This implies easily thatQ2 is also a positive semi-definite oper-
ator on L2.�/ that preserves L20.�/, and that Q3WL2.�˝ �/! L2.�/ is bounded
and maps L20.�˝ �/ to L20.�/.

We move one to the proof of (b). We introduce the sine basis of L2.Œ0; 1�; �/,
namely

en.t/ D
p
2 � sin.�nt/; n � 1:

This is an orthonormal basis of L2.Œ0; 1�; �/ for which A is diagonal. More precisely,

Aen D n
2en; 8n � 1:

An element f 2 L2.�˝ �/ can be written uniquely

f D
X
n�1

en ˝ fn;
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where .fn/ is a sequence of elements of L2.�/ such that the seriesX
n�1

kfnk
2
L2.�/

is converging. Here for h 2 L2.�/ and k 2 L2.�/, we denote by h˝ k the function
that maps .t; x/ to h.t/k.x/. Then the action of A is simply given by the equation

Af D
X
n�1

n2en ˝ fn: (6)

A bit more precisely, f belongs to the domain of A if and only if the seriesX
n�1

n4kfnk
2
L2.�/

is converging, in which case (6) holds true. In the same way, f belongs to the domain
of B if every function fn does and if the seriesX

n�1

kBfnk
2
L2.�/

is converging. When this is the case we have

Bf D
X
n�1

en ˝ .Bfn/:

Therefore,
.A2 C B2/f D

X
n�1

en ˝
�
.n4IdC B2/fn

�
;

and also
AB.A2 C B2/�1f D

X
n�1

en ˝
�
n2B.n4IdC B2/�1fn

�
: (7)

The constant function admits the following decomposition in the sine basis:

1 D
2
p
2

�

X
n odd

en

n
:

Therefore, for g 2 L20.�/, we have

…�g D 1˝ g D
2
p
2

�

X
n odd

en ˝ g

n
;

and for f D
P
n�1 en ˝ fn 2 L

2
0.�˝ �/, we have

…f D
2
p
2

�

X
n odd

fn

n
:
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Combining with (7), we thus get

Q1 D …AB.A
2
C B2/�1…� D

8

�2

X
n odd

B.n4IdC B2/�1:

In the same way, we have

Q2 D …A
4.A2 C B2/�2…� D

8

�2
�

X
n odd

n6.n4IdC B2/�2: (8)

Therefore, the desired inequality (b) can be reformulated asX
n odd

n6.n4IdC B2/�2 � C
X
n odd

B.n4IdC B2/�1; (9)

as self-adjoint operators on L20.�/.
Recall that � satisfies Poincaré with constant 1, which by Lemma 4 shows that

the spectral gap of B D �L� is at least 1. This means that when we restrict to L20.�/
the spectrum of B is included in the interval Œ1;C1/. We claim that this information
alone yields (9). In other words, the inequality would be true for any Hilbert space, and
any unbounded positive definite operatorB whose spectrum lies in the interval Œ1;1/.
Indeed, by the spectral theorem there is some resolution .E�/ of the identity of L20.�/
such that

B D

Z
R
�dE�: (10)

Moreover, since the spectrum ofB is above 1, the integral in (10) is actually supported
on Œ1;1/ rather than on the whole line. Then for any integer n ¤ 0 and any function
g 2 L20.�/, we have

hB.n4IdC B2/�1g; giL2.�/ D

Z 1
1

�

n4 C �2
�g.d�/;

where �g is the spectral measure associated to g, namely the measure on Œ1;1/whose
distribution is given by

�g
�
Œ1; ��

�
D hE�g; giL2.�/; 8� � 1:

There is an analogous formula for n6.n4 C B2/�2 and (9) can thus be reformu-
lated asZ 1

1

X
n odd

n6

.n4 C �2/2
�g.d�/ � C

Z 1
1

X
n odd

�

n4 C �2
�g.d�/; 8g 2 L

2
0.�/:

But this would obviously follow from the pointwise inequalityX
n odd

n6

.n4 C �2/2
� C

X
n odd

�

n4 C �2
; 8� � 1: (11)
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Thus all we have to do is to prove this relatively elementary inequality, which can be
done as follows. Since n6 � .n4 C �2/3=2 it is enough to prove thatX

n odd

1

.n4 C �2/1=2
� C�

X
n odd

1

n4 C �2
; 8� � 1:

Now observe thatX
n odd

1

.n4 C �2/1=2
�

X
n�1

1

.n4 C �2/1=2

�

Z 1
0

1

.x4 C �2/1=2
dx D C1�

�1=2; (12)

where C1 D
R1
0
.x4 C 1/�1=2 dx. In a similar way,X

n odd

1

n4 C �2
�
1

2

X
n�1

1

n4 C �2

D �
1

2�2
C
1

2

X
n�0

1

n4 C �2

� �
1

2�2
C
1

2

Z 1
0

1

x4 C �2
dx D �

1

2�2
C

C2

�3=2
;

where C2 D .1=2/
R1
0
.x4 C 1/�1 dx. This clearly implies thatX

n odd

1

n4 C �2
� C3�

�3=2 (13)

for all �� 1 and some universal constantC3. Putting (12) and (13) together yields (11)
and finishes the proof of (b).

To prove (c), observe that if g 2 L20.�/ is different from 0 then the spectral mea-
sure �g is not identically zero. As a result

hn6.n4 C B2/�4g; giL2.�/ D

Z 1
1

n6

.n4 C �2/2
�g .d�/ > 0:

Summing over odd integers and combining with (8) we see that Q2 restricted to
L20.�/ is positive definite. By claim (b) this implies that also Q1 is positive definite
on L20.�/.

Lastly, (a) and (c) imply that the operator Q�3Q
�1
1 Q3 is well defined and positive

semi-definite on L20.�/. A priori this operator could be unbounded. However, since
…�… is the identity map, we have Q3Q�3 D Q2. As a result

.Q�3Q
�1
1 Q3/

2
D Q�3Q

�1
1 Q2Q

�1
1 Q3:
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Now (b) implies that

Q�11 Q2Q
�1
1 � C �Q

�1
1 Q1Q

�1
1 D C �Q

�1
1 :

Therefore, .Q�3Q
�1
1 Q3/

2 � C �Q�3Q
�1
1 Q3. This implies that Q�3Q

�1
1 Q3 � C � Id,

and finishes the proof of the lemma.

Remark. As is apparent from this proof, Q2 is also positive definite on L2.�/,
whereas constant functions belong to the kernel ofQ1. So it is important to restrict to
L20.�/ for the inequality Q2 � CQ1 to be valid.

We are now in a position to prove the key divergence estimate of Cao, Lu and
Wang.

Proof of Proposition 7. We focus on the Sobolev estimates (i) and (ii) for now. For
these two estimates the semi-convexity hypothesis is not needed, only the hypoth-
esis on the Poincaré constant matters. We need to find u; v satisfying the Dirichlet
boundary conditions, the equation @tuC L�v D f , and such that

kruk2
L2.�˝�/

C k@tvk
2
L2.�˝�/

. kf k2
L2.�˝�/

:

Note that the choice of the function v determines u. Namely, u is the anti-derivative
of f � L�v D f C Bv:

u.t; x/ D

Z t

0

f .s; x/C Bv.s; x/ ds: (14)

Then u satisfies the t D 0 boundary condition by definition, whereas the t D 1 bound-
ary condition becomes Z 1

0

f .t; x/C Bv.t; x/ dt D 0:

In other words, ….f C Bv/ D 0. Since B commutes with … this amounts to

…v D �B�1…f: (15)

Recall that f is assumed to be centered, so that …f 2 L20.�/. Since B�1 is
bounded operator onL20.�/, the functionB�1…f is a well-defined element ofL20.�/.
Integrating by parts in time and space, we see that

kr@tvk
2
L2.�˝�/

D hABv; viL2.�˝�/:

In a similar way, if u satisfies (14) and the Dirichlet boundary condition, then

kruk2
L2.�˝�/

D hA�1B.Bv C f /; Bv C f iL2.�˝�/:
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We thus have to consider the following optimization problem:

minimizehA�1B.Bv C f /; Bv C f iL2.�˝�/ C hABv; viL2.�˝�/;

among functions v satisfying the Dirichlet boundary condition as well as the con-
straint (15). We need to show that the value of this optimization problem is at most
kf k2

L2.�˝�/
, up to a multiplicative universal constant. Formally, we can rewrite the

optimization problem as´
minimize hAv; viL2.�˝�/ C 2hb; viL2.�˝�/ C c;

under …v D d;
(16)

where
A D A�1B.A2 C B2/;

b D A�1B2f; c D hA�1Bf; f iL2.�/; d D B�1…f:
(17)

This formulation is not quite legitimate. Indeed, f need not belong to the domain
of B , so b and c are not really well-defined. We can nevertheless use this formulation
to guess that the solution of the quadratic optimization problem should be

vopt
D A�1.�b C g/; (18)

where g is the Lagrange multiplier associated to the constraint. Thus g must belong
to the orthogonal complement of the kernel of …, which is also the range of …�. So
there is h 2 L20.�/ such that g D …�h. Note that

A�1b D A.A2 C B2/�1f:

Thus the constraint …v D �B�1…f becomes

…AB�1.A2 C B2/�1…�h D …B.A2 C B2/�1f � B�1…f

D �B�1…A2.A2 C B2/�1f

(recall that B commutes with …). So formally h is given by

h D �B
�
…AB.A2 C B2/�1…�

��1
…A2.A2 C B2/�1f:

This looks unwieldy but if we use the notations from Lemma 8 we can rewrite this as

B�1h D �Q�11 Q3f: (19)

Plugging back in (18), we get the following expression for the solution of the opti-
mization problem:

vopt
D �B.A2 C B2/�1f � A.A2 C B2/�1…�Q�11 Q3f

D �B.A2 C B2/�1f � A�1Q�3Q
�1
1 Q3f: (20)
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Although this computation was somewhat formal, this latest expression defines a
genuine element of L2.� ˝ �/. Indeed, as we have seen before AB.A2 C B2/�1

is a bounded operator. Also, when we restrict to centered functions, the operator
Q�3Q

�1
1 Q3 is bounded, thanks to the last part of Lemma 8. Therefore,

AB.A2 C B2/�1f CQ�3Q
�1
1 Q3f

is a well-defined element of L2.�/. Now (20) shows that vopt is well defined and
belongs to the range of A�1, which equals the domain of A. In particular, vopt satisfies
the Dirichlet boundary condition.

Now we focus on the value of the optimization problem (16). From (18), we get

value D �hA�1b; biL2.�˝�/ C c C hA
�1g; giL2.�˝�/: (21)

By (17), we have

�hA�1b; biL2.�˝�/ C c D �hA
�1B3.A2 C B2/�1f; f iL2.�˝�/

C hA�1Bf; f iL2.�˝�/

D hAB.A2 C B2/�1f; f iL2.�˝�/

�
1

2
kf k2

L2.�˝�/
: (22)

On the other hand,

hA�1g; giL2.�˝�/ D hAB
�1.A2 C B2/�1…�h;…�hiL2.�˝�/

D h…AB.A2 C B2/�1…�B�1h;B�1hiL2.�/

D hQ1B
�1h;B�1hiL2.�/:

Plugging in (19) and using Lemma 8 again, we thus get

hA�1g; giL2.�˝�/ D hQ1Q
�1
1 Q3f;Q

�1
1 Q3f iL2.�/

D hQ�3Q
�1
1 Q3f; f iL2.�˝�/

� C � kf k2
L2.���/

: (23)

Equations (21), (22) and (23) together show that the value of the optimization prob-
lem (16) is at most ..1=2/C C/kf k2

L2.���/
. This proves that there exist u; v satis-

fying the Dirichlet boundary condition, the divergence equation (5) and the Sobolev-
type estimate

kruk2
L2.���/

C kr@tvk
2
L2.���/

�

�1
2
C C

�
� kf k2

L2.���/
: (24)
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It remains to prove (iii) and (iv). This is where the semi-convexity hypothesis and the
results of the previous subsection enter the picture. Since u; v satisfy the Dirichlet
boundary condition, we have

�h@tu;L�viL2.�˝�/ D hu;L�@tviL2.�˝�/

D �hru;r@tviL2.�˝�/

�
1

2
kruk2

L2.�˝�/
C
1

2
kr@tvk

2
L2.�˝�/

:

On the other hand, from the equation @tuC L�v D f , we get

kf k2
L2.�˝�/

D k@tuC L�vk
2
L2.�˝�/

� kL�vk
2
L2.�˝�/

C 2h@tu;L�viL2.�˝�/:

This, together with (24), yields

kL�vk
2
L2.�˝�/

� kf k2
L2.�˝�/

C kruk2
L2.�˝�/

C kr@tvk
2
L2.�˝�/

�

�3
2
C C

�
kf k2

L2.�˝�/
: (25)

Since the potential V of � is � semi-convex and since � satisfies Poincaré with con-
stant 1, we can apply Lemma 4 and Corollary 6 from the previous section to the
function v.t; �/. Integrating the two inequalities on Œ0; 1� gives

krvk2
L2.�˝�/

� kL�vk
2
L2.�˝�/

; kr2vk2
L2.�˝�/

� .1C �/kL�vk
2
L2.�˝�/

: (26)

Equations (25) and (26) yield the estimates (iii) and (iv).

2.3. Space-time Poincaré inequality

We are now in a position to prove the integrated Poincaré inequality. The argument is
essentially the same as that of Cao, Lu, Wang. We spell it out here for completeness.
We fix a probability measure �, and a friction parameter ˇ, and we let .P �t / be the
corresponding kinetic Fokker–Planck semigroup. Recall that the equilibrium measure
is � WD �˝ 
 , where 
 is the standard Gaussian measure.

Proposition 9. Assume that the potential of � is C2-smooth and semi-convex, with
constant �, and that � satisfies Poincaré with constant 1. Then for every f 2 L2.�/
and every T > 0, we haveZ T

0

var�.P �t f / dt . .T 2 C T �2 C ˇ2 C �/ �

Z
Œ0;T ��R2n

jryP
�
t f j

2 dt d�:

Proof. Given a function g in L2.�/, we denote by Mg its first marginal, namely

Mg.x/ D

Z
Rn

g.x; y/ 
.dy/:
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We first note that it is enough to prove thatZ T

0

var�.MP �t f / dt . .T 2 C T �2 C ˇ2 C �/

Z
Œ0;T ��R2n

jryP
�
t f j

2 dt d�: (27)

Indeed, we can decompose the variance and use the Gaussian Poincaré inequality to
get

var�.P �t f / D
Z

Rn

var

�
P �t f .x; �/

�
�.dx/C var�.MP �t f /

�

Z
R2n

jryP
�
t f j

2 d� C var�.MP �t f /:

If we integrate on Œ0; T � and combine with (27) we indeed obtain the desired inequal-
ity. It remains to prove (27). By a slight abuse of notation, we denote

f .t; x; y/ D P �t f .x; y/:

We can assume that f .0; �/ is centered for � . This property is preserved along the
diffusion, so for every fixed t , the function f .t; �/ is centered for � , and the function
Mf.t; �/ is centered for �. In particular,Z

Œ0;T ��Rn

Mf dt d� D 0:

We now invoke the previous proposition: There exist u; v 2 L2.� ˝ �/ which
vanish at t D 0 and t D T such that

Mf D @tuC L�v;

and satisfying the following Sobolev-type estimates:

krukL2.�˝�/ . T kMf kL2.�˝�/;

krvkL2.�˝�/ . kMf kL2.�˝�/;

kr@tvkL2.�˝�/ . T �1kMf kL2.�˝�/;

kr
2vkL2.�˝�/ . .1C �/1=2kMf kL2.�˝�/:

(28)

Notice that as v is a function depending only on t and x but not on the y variable, we
have

Lv.t; x/ D hrxv.t; x/; yi

and also

L2v.t; x/ D hr2v.t; x/y; yi � ˇhrv.t; x/; yi � hrv.t; x/;rV.x/i:
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Integrating in the y variable and using the fact that the standard Gaussian has mean 0
and identity covariance matrix, we get

ML2v D L�v:

Therefore,

kMf k2
L2.�˝�/

D hMf; @tuC L�viL2.�˝�/

D hMf; @tuCML2viL2.�˝�/

D hf; @tuiL2.�˝�/ C hMf;L
2viL2.�˝�/

D hf; @tuCL2viL2.�˝�/ � hf �Mf;L
2viL2.�˝M/:

Moreover, since u vanishes on the boundary of Œ0; T � � Rn and since f satisfies the
kinetic Fokker–Planck equation, we have

hf; @tuiL2.�˝�/ D �h@tf; uiL2.�˝�/

D �hL�f; uiL2.�˝�/ D �hf;LuiL2.�˝�/:

In a similar way, since v.t; x/ vanishes when t D 0 and t D T , the function

Lv.t; x; y/ D hrv.t; x/; yi

also has this property. As a result

hf;L2viL2.�˝�/ D hL
�f;LviL2.�˝�/

D h@tf;LviL2.�˝�/ D �hf;L@tviL2.�˝�/:

Therefore,

kMf k2
L2.�˝�/

D �hf;LuCL@tviL2.�˝�/ � hf �Mf;L
2viL2.�˝�/:

Next we replace L2v by its expression and we observe that some terms cancel
out. We finally obtain

kMf k2
L2.�˝�/

D �hf;LuCL@tv C ˇLviL2.�˝�/ � hf �Mf; hiL2.�˝�/; (29)

where h is the function given by

h.t; x; y/ D hr2xv.t; x/y; yi: (30)

Now we will start writing inequalities. Recall that if w is a function not depending
on y, then Lw D hrxw;yi. Together with the Gaussian integration by parts formula:Z

Rn

f .x; y/y 
.dy/ D

Z
Rn

ryf .x; y/ 
.dy/
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and Cauchy–Schwarz, we get

hf;LwiL2.�˝�/ D hryf;rxwiL2.�˝�/ � kryf kL2.�˝�/ � krxwkL2.�˝�/:

This allows to upper bound the first term of the right-hand side of (29). For the sec-
ond term we use the Gaussian Poincaré inequality again. Note that if A is a fixed
symmetric matrix, then the gradient of hAy; yi is 2Ay, and thus

var

�
hAy; yi

�
� 4

Z
Rn

jAyj2 d
 D 4kAk2F

(actually if we were tracking down constants we could save a factor 2 here). As a
result, using Cauchy–Schwarz and the definition (30) of the function h, we get

hf �Mf; hiL2.�˝�/ �

Z
Œ0;T ��Rn

var

�
f .t; x; �/

�1=2
� var


�
h.t; x; �/

�1=2
dt d�

�

Z
Œ0;T ��Rn

kryf kL2.
/ � 2kr
2
xvkF dt d�

� 2kryf kL2.�˝�/ � kr
2
xvkL2.�˝�/:

Putting everything together, we obtain

kMf k2
L2.�˝�/

� D � kryf kL2.�˝�/

with

D D krxukL2.�˝�/ C krx@tvkL2.�˝�/ C ˇkrxvkL2.�˝�/ C 2kr
2
xvkL2.�˝�/:

Plugging in the bounds (28), we finally get

kMf kL2.�˝�/ .
�
T C T �1 C ˇ C

p
1C �

�
kryf kL2.�˝�/:

This implies (27) and finishes the proof of the proposition.

2.4. Proof of the hypocoercive estimate

We can now finally prove the hypocoercive estimate, Theorem 3. Again that part of
the argument is pretty much the same as in the Cao, Lu, Wang paper and we include
it for completeness.

As we already mentioned there is some homogeneity in the problem which allows
us to rescale the measure �. In particular, it is enough to prove the result assuming
CP D 1, say. By the previous proposition, given f 2 L2.�/, we then haveZ T

0

var�.P �t f / dt .
�
T 2 C

1

T 2
C ˇ2 C �

� Z
Œ0;T ��R2n

jryP
�
t f j

2 dt d�:
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Since
d

dt
var�.P �t f / D �2ˇ

Z
R2n

jryP
�
t f j

2 d� � 0;

the previous inequality implies that

T � var�.P �T f / �
Z T

0

var�.P �t f / dt

.
1

ˇ

�
T 2 C

1

T 2
C ˇ2 C �

��
var�.f / � var�.P �T f /

�
:

Hence,

var�.P �T f / �
1

1C x.T /
var�.f /;

where

x.T / D
ˇT

C.T 2 C 1=T 2 C ˇ2 C �/
;

and where C is a universal constant, which we can assume to be larger than 1. Since
ˇ2 C T 2 � 2ˇT , we have x.T / � 1=.2C / � 1=2, no matter what the value of T
and ˇ. For x � 1=2, we certainly have 1=.1C x/ � e�x=2, and thus

var�.P �T f / � e�x.T /=2 var�.f /

for all T > 0. Applying this inequality to P �T f , then P �2T f , and so on, and using the
semigroup property, we get

var�.P �nT f / � e�n�x.T /=2 var�.f /

for every T > 0 and every integer n. Equivalently,

var�.P �t f / � e�n�x.t=n/=2 var�.f /

for every t > 0 and every integer n ¤ 0. It remains to optimize on n. Since

n � x
� t
n

�
D

tˇ

C.t2=n2 C n2=t2 C ˇ2 C �/
;

assuming t � 1 and choosing n to be the integer part of t yields

var�.P �t f / � exp
�
�c �

tˇ

1C ˇ2 C �

�
var�.f /; 8t � 1;

and where c is a small universal constant. For t � 1 we can just use the trivial bound
var�.P �t f / � var�.f /, so that the last inequality implies

var�.P �t f / � 2 � exp
�
�c00 �

tˇ

1C ˇ2 C �

�
var�.f /; 8t � 0;

which is the result.
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Remark. The proof also yields a non-trivial estimate for small values of t , namely

var�.P �t f / � exp
�
�c �

tˇ

1C t�2 C ˇ2 C �

�
var�.f /:

3. The discretization argument

It remains to estimate the discretization error. The approach is taken from Dalalyan’s
article [10] and relies on the Girsanov change of measure formula. The relative en-
tropy (a.k.a. Kullback divergence) plays an important role in this approach. Recall its
definition: If �; � are probability measures defined on the same space X , then

D.� j �/ D

Z
X

log
� d�
d�

�
d�;

assuming that � is absolutely continuous with respect to �. If this is not the case the
convention is that the relative entropy equals C1. An important feature of relative
entropy is that it controls the total variation distance:

T V.�; �/ �

r
1

2
D.� j �/:

This is known as Pinsker’s inequality. Another property that we will need is that taking
a marginal can only lower the relative entropy. More generally, if T WX ! Y is any
measurable map, then

D.T #� j T #�/ � D.� j �/: (31)

Here T #� denotes the pushforward of the measure � by the map T . Note that this
contraction property is not specific to the Kullback divergence, the chi-square diver-
gence also has this property. Lastly we will need the following elementary lemma,
which can be thought of as an approximate triangle inequality for the relative entropy.

Lemma 10. Let �1; �2; �3 be probability measures defined on the same space E.
Then

D.�3 j �1/ � 2D.�3 j �2/C log
�
1C �2.�2 j �1/

�
:

Proof. We can assume that �3 � �2 � �1, where the symbol � denotes absolute
continuity. Indeed, if �3 is not absolute continuous with respect to �2 or if �2 is not
absolutely continuous with respect to �1 then the inequality trivially holds true. We
can also assume that �1 � �2 � �3 (and thus that all three measures are equivalent)
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by some limiting argument. Then

D.�3 j �1/ D

Z
E

log
�d�3
d�1

�
d�3

D D.�3 j �2/C

Z
E

log
�d�2
d�1

�
d�3: (32)

Moreover, by Jensen’s inequality, we haveZ
E

logf d�3 D
Z
E

log
�
f �

d�1

d�3

�
d�3 CD.�3 j �1/

� log
�Z

E

f d�1

�
CD.�3 j �1/

for any positive function f . Applying this to f D .d�2=d�1/2, we get

2

Z
X

log
�d�2
d�1

�
d�3 � log

�
1C �2.�2 j �1/

�
CD.�3 j �1/:

Plugging this back into (32) yields the result.

Proposition 11. Assume that V is gradient Lipschitz, with Lipschitz constant L.
Given a probability measure � on R2n let �t be the law of the discretized kinetic
Langevin diffusion (2) starting from � at time t , and recall that �Pt denotes the law
of the true diffusion at time t . Then

T V.�t ; �Pt / .
p
t � L�p
ˇ
�
�p
nC

p
log.1C �2.� j �//

�
;

where � is the time step and ˇ is the friction parameter.

Proof. We use the following version of Girsanov: Let .Wt / be a standard Brownian
motion on Rn, defined on some probability space .�; F ; P / equipped with some
filtration .Ft /. Let .Xt / be a process of the formXt DWt C

R t
0
us ds, where .ut / is a

progressively measurable process satisfying some integrability conditions. Fix a time
horizon T . The new measure Q defined by

dQ

dP
D exp

�
�

Z t

0

us dWs �
1

2

Z t

0

jusj
2 ds

�
(33)

is a probability measure under which the process .Xt /t�T is a standard Brownian
motion.

Now consider the solution .X�; Y �/ of the discretized Langevin equation (2) ini-
tiated at some measure �, in the sense that the starting point .X�0 ; Y

�
0 / has law �, and
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consider the process . zWt / given by

zWt D Wt C
1p
2ˇ

Z t

0

�
rV.X�s / � rV.X

�

bs=�c�
/
�
ds:

Observe that by definition of zW , we have´
dX

�
t D Y

�
t dt;

dY
�
t D

p
2ˇ d zWt � ˇY

�
t dt � rV.X

�
t / dt:

In other words, if we replace W by zW then .X�t ; Y
�
t / becomes a genuine kinetic

Langevin diffusion. According to Girsanov, if we set

us D .2ˇ/
�1=2

�
rV.X�s / � rV.X

�

bs=�c�
/
�

and define Q by (33), then zW is standard Brownian motion under Q, so that .X�; Y �/
is a genuine kinetic Langevin diffusion under Q. Therefore,

.X
�
t ; Y

�
t /#Q D �Pt and .X

�
t ; Y

�
t /#P D �t :

Hence, from (31),
D.�t j �Pt / � D.P j Q/:

Moreover, since
R
us � dWs is a martingale having expectation 0,

D.P j Q/ D E log
dP

dQ
D

1

4ˇ

Z t

0

EjrV.X�s / � rV.X
�

bs=�c�
/j2 ds:

Hence, the estimate

D.�t j �Pt / �
1

4ˇ

Z t

0

EjrV.X�s / � rV.X
�

bs=�c�
/j2 ds: (34)

Strictly speaking the Girsanov change of measure formula is only valid under
some integrability condition on the drift .ut /. For instance .ut / uniformly bounded
on Œ0; T � is enough. However using some localization argument one can get around
this issue and show that inequality (34) remains valid under no further assumption.
See [15] for more details. Suppose that t is an integer multiple of �. Fix an inte-
ger k � N � 1, where N D t=�. Since rV is Lipschitz with constant L, for every
s 2 Œk�; .k C 1/��, we get from Cauchy–Schwarz

EjrV.X�s / � rV.X
�

k�
/j2 � L2EjX�s �X

�

k�
j
2
� L2�

Z s

k�

EjY �u j
2 du:
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Integrating this inequality on the interval s 2 Œk�; .kC 1/��, summing over k �N � 1,
and plugging back in (34), we finally get

D.�t j �Pt / �
L2�2

4ˇ

Z t

0

EjY �s j
2 ds: (35)

It remains to control EjY �s j2. Intuitively the law of Y �s should not be too far away
from that of the second factor of the equilibrium measure, which is the standard Gaus-
sian 
 . Therefore we should have EjY �s j2 . n. Let �s;2 be the second marginal of �s ,
namely the law of Y �s . Observe that if Y;G is a coupling of .�s;2; 
/, then

EjY �s j
2
D EjY j2 � 2EjYs �Gj

2
C 2EjGj2 D 2EjYs �Gj

2
C 2n:

Taking the infimum over such couplings yields

EjY �s j
2
� 2T2.�s;2; 
/C 2n;

where T2 is the transportation distance from �2;s to 
 associated to the cost func-
tion jx � yj2. Next we invoke Talagrand’s inequality [25]:

T2.�s;2; 
/ � 2D.�s;2 j 
/:

Combining this with the contraction principle and Lemma 10, we get

EjY �s j
2
� 2nC 4D.�s;2 j 
/

� 2nC 4D.�s j �/

� 2nC 8D.�s j �Ps/C 4 log
�
1C �2.�Ps j �/

�
:

Recall that �2.�Ps j �/ is non-increasing with s (see the previous section). Together
with (35), we thus obtain

EjY �t j
2
� 2nC 4 log

�
1C �2.� j �/

�
C
2L2�2

ˇ

Z t

0

EjY �s j
2 ds

for all t > 0. Using Gronwall’s lemma and the convexity on the exponential function,
we see that this impliesZ t

0

EjY �s j
2 ds . t �

�
nC log

�
1C �2.� j �/

��
as long as 2tL2�2 � ˇ. Plugging this back into (35) yields

D.�t j �Pt / .
tL2�2

ˇ
�
�
nC log

�
1C �2.� j �/

��
:

Combining this with Pinsker’s inequality, we get the result under the additional hyp-
othesis that 2tL2�2 � ˇ. However, since the total variation is anyways less than 1, if
this additional hypothesis is violated then the result trivially holds true.
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4. Proof of the main result

In this section we wrap up the proof of Theorem 1.
Let .xk; yk/ be the Markov chain induced by the discretization with time step � of

the kinetic Langevin diffusion and assume that the law of the initial point is a product
measure whose second factor is 
 . We write

T V.xk; �/ � T V
�
.xy ; yk/; �

�
� T V

�
.xk; yk/; .Xt ; Yt /

�
C T V

�
.Xt ; Yt /; �

�
;

where t D k�. Recall that the notation T V..x; y/; �/ stands for the total varia-
tion between the law of .x; y/ and � . Also, as the reader probably guessed already,
.Xt ; Yt / denotes the genuine kinetic Langevin diffusion initiated at the same point as
the algorithm. To upper bound the first term we invoke the latest proposition. For the
second term we use the bound

T V
�
.Xt ; Yt /; �

�
�
p
�2..Xt ; Yt / j �/

and we apply Theorem 2. Since

�2
�
.X0; Y0/ j �

�
D �2

�
.x0; y0/ j �

�
D �2.x0 j �/;

we finally arrive at

T V.xk; �/ .
L�
p
tp

ˇ
�
�p
nC

p
log.1C �2.x0 j �//

�
C exp

�
�

ctˇ

1C .ˇ2 C �/CP

�p
�2.x0 j �/: (36)

We still have the freedom to optimize on ˇ. Let us focus on the log-concave case
for now. Namely, we assume that � D 0. In this situation the best choice is ˇ D C�1=2p

in which case the latest displays becomes

T V.xk j �/ . L�C
1=4
P t1=2 �

�p
nC

p
log.1C �2.x0 j �//

�
C exp

�
�

ct
p
CP

�p
�2.x0 j �/

Fix " 2 .0; 1/. For the second term to be of order " we need to take

t �
p
CP � log

�
�2.x0 j �/

"

�
:

Then we adjust � so that the first term equals ", and the corresponding number of
steps is

k D
t

�
� "�1C

1=4
P Lt3=2 �

�p
nC

p
log.1C �2.x0 j �//

�
� "�1LCP � C.n; "; x0/;
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where

C.n; "; x0/ D
�p
nC

p
log.1C �2.x0 j �//

�
� log

�
�2.x0 j �/

"

�3=2
:

This finishes the proof of the main result in the log-concave case.
For the general case, observe that being gradient Lipschitz is a stronger assump-

tion than being semi-convex. We can thus replace � by L in (36). Note that we always
have LCP � 1. This follows from Caffarelli’s contraction theorem [3]. Therefore,

exp
�
�

ctˇ

1C .ˇ2 C L/CP

�
� exp

�
�

c0tˇ

.ˇ2 C L/CP

�
:

Choosing ˇ D
p
L then yields

T V.xk; �/ . �L3=4t1=2 �
�p
nC

p
log.1C �2.x0 j �//

�
C exp

�
�

c00t
p
LCP

�p
�2.x0 j �/:

We then conclude as in the log-concave case.
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