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Counting stars is constant-degree optimal for
detecting any planted subgraph

Xifan Yu, Ilias Zadik, and Peiyuan Zhang

Abstract. We study the computational limits of the following general hypothesis testing prob-
lem. Let H D Hn be an arbitrary undirected graph. We study the detection task between a
“null” Erdős–Rényi random graph G.n; p/ and a “planted” random graph which is the union
of G.n; p/ together with a random copy of H D Hn. Our notion of planted model is a gen-
eralization of a plethora of recently studied models initiated with the study of the planted
clique model (Jerrum, 1992), which corresponds to the special case where H is a k-clique
and p D 1=2.

Over the last decade, several papers have studied the power of low-degree polynomials for
limited choices of H ’s in the above task. In this work, we adopt a unifying perspective and
characterize the power of constant degree polynomials for the detection task, when H D Hn
is any arbitrary graph and for any p D �.1/. Perhaps surprisingly, we prove that an optimal
constant degree polynomial is always given by simply counting stars in the input random graph.
As a direct corollary, we conclude that the class of constant-degree polynomials is only able to
“sense” the degree distribution of the planted graph H , and no other graph theoretic property
of it.
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1. Introduction

During the last decade, researchers have revealed the existence of an intriguing phe-
nomenon in several hypothesis testing tasks called a computational-statistical trade-
off, which is a parameter regime where some test statistic is known to succeed, but,
conjecturally, no computationally efficient1 test statistics can work. This phenomenon
interestingly appears in multiple different contexts across high-dimensional statistics,
including community detection settings [2, 32], principal component analysis frame-
works [5], regression models [12], and more.

To understand the nature of these phenomena, researchers have focused on simple
statistical models that exhibit them. A simple, yet rich and canonical, family of such
settings appears in community detection, and specifically are the so-called “planted”
subgraph detection (or hypothesis testing) tasks where the goal is to detect the pres-
ence of a subgraph planted in an otherwise Erdős–Rényi random graph G.n; p/ [2,5,
31,32].2 The motivation to study these planted subgraph tasks is to be able to identify
the presence of an unusually large community in an otherwise homogeneous graph.
A notable and very well-studied example of such a task is the planted clique prob-
lem [16], where one seeks to detect between a “null” model which is the Erdős–Rényi
G.n; 1=2/, and a “planted subgraph” model which is the union of G.n; 1=2/ with
a randomly chosen k-clique. Albeit a natural first choice, the assumption that the
planted subgraph is a clique may stand as too restricted for many applications; the
hidden community may be subject to some other structure that could significantly
alter its detection limits. As an example, the desire to extract information from mobile
objects in physics led to the study of the planted matching problem [7, 10, 19, 22].
For other reasons, researchers have studied multiple other planted subgraph models
as well such that: (a) the planted dense subgraph problem [13], where one plants in
G.n; p/ an instance of G.n; q/ for q > p, (b) the planted tree model [21], where one
plants in G.n; p/ a D-ary tree, (c) the planted Hamiltonian cycle problem [3] where
one plants a Hamiltonian cycle.

1For us, we say a test statistic is computational efficient if it is polynomial-time computable.
2For n 2 N, p D pn, an instance of the Erdős–Rényi G.n; p/ is an n-vertex undirected

random graph where each edge appears independently with probability p.
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Notably, while at a high-level the methods to understand each planted subgraph
model share similarities, the actual technical statistical analysis is often quite intricate
and tailored to the specifics of the planted graph structure. For this reason, it appears
hard to conclude general statistical principles for community detection based on this
line of work. It is natural to wonder if one could simultaneously study all planted sub-
graph detection tasks by focusing on the properties of a general framework. Motivated
by exactly this desire, the authors of [25] studied the information-theoretic transitions
of a general planted subgraph model, which includes all the above mentioned planted
models as special cases. While [25] focused on the recovery task of estimating the
hidden subgraph, we focus here on the detection variant of it.

Definition 1.1 (Planted subgraph detection task). Let n 2 N, p D pn 2 .0; 1/ and
H D Hn be an arbitrary undirected graph. We consider the following detection task:

(1) (Null distribution Q) In this case, the statistician observes an instance from
the Erdős–Rényi random graph distribution Q D G.n; p/.

(2) (Planted-H distribution P ) In this case, the statistician observes the union of
an Erdős–Rényi random graphG.n;p/with a random copy ofH . The random
copy of H is chosen uniformly at random from all the labelled copies of H
in the complete graph.

It is rather straightforward to see how the general Definition 1.1 contains the men-
tioned detection tasks as special cases; e.g., when H is a k-clique and p D 1=2, we
recover the planted clique task.

Searching for universal structure: Null and planted models. It is worth mention-
ing that this desire for generality shares roots with a fascinating line of work on the
Kahn–Kalai conjecture from probabilistic combinatorics (see [18] for the conjecture,
[28] for a recent breakthrough proof, as well as [26] for connection to Bayesian infer-
ence). The context of the conjecture has similarities with our setting. It studies our null
distribution QD G.n;p/, and it is about characterizing the thresholds p for which an
instance of a G.n; p/ contains a specific subgraph H D Hn of interest. Similar again
to the literature of planted models, a plethora of works have studied the thresholds for
specific choices of subgraphs (e.g., see the classic work on Hamiltonian cycles [29]
and the very technical recent work on spanning trees of bounded degree [24]). The
Kahn–Kalai conjecture offers a formula for the threshold for any subgraph H. It is
remarkable how the, now proven, Kahn–Kalai conjecture directly implies multiple
previous notable results in random graph theory as direct corollaries (including the
mentioned examples). It is also remarkable that the proof of the conjecture was only
a few pages long. This line of work offers at least an argument that seeking a gen-
eral and unifying structure in the analysis of such random graph models can be very
fruitful.
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Returning now to planted subgraph models, similar to [25], the question of finding
a general (now statistical) structure underlying all these models, similar to the line of
work on the Kahn–Kalai conjecture, is the primary motivation of our work. While [25]
studied the information-theoretic limits of planted subgraph recovery tasks, in this
work we investigate a common structure on their computational limits, i.e., in their
computational-statistical trade-offs. Unfortunately, given that the P 6D N P ques-
tion remains unsolved, identifying the “true” computational limit of any detection
task, characterizing when some polynomial-time test succeeds or not, appears to be
well beyond the current mathematical abilities. For this reason, researchers on compu-
tational-statistical trade-offs have turned to studying multiple powerful restricted class
of test statistics, often containing the best known polynomial-time test, and offering
their proven failure point as evidence that the existing computational limits are fun-
damental.

Low-degree polynomials. Motivated by connections with a celebrated family of
semidefinite programs, called the Sum-of-Squares hierarchy, the study of the power-
ful class of low-degree polynomials to construct test statistics has played a key role
in this direction. First, it can be verified in a plethora of cases that the best known
polynomial-time test statistics (e.g., based on spectral methods, or message passing
methods) can be well approximated by low-degree polynomials (commonly O.1/
or O.log n/ degree suffices). On top of that, the class of low-degree polynomials is
believed to be very powerful, and a now well-known “low-degree conjecture” [14],
[20] states that for a general class of detection problems when all degree-O.log n/
polynomials fail to strongly separate the two distributions (see Definition 2.1 below),
then no polynomial-time test will be able to detect between the two. The performance
of the class of degree-O.1/ polynomials has also been used as (less strong but still
quite interesting) evidence of hardness. For example, a recent work [23] established
that Approximate Message Passing is optimal among degree-O.1/ polynomial in a
spiked matrix estimation setting.

For these reasons, multiple papers have studied so far the power of low-degree
polynomials to achieve strong separation for a number of different planted subgraph
detection tasks. For example, in the planted clique model it is known that if k D
�.
p
n/, some degree-O.logn/ polynomial succeeds, while if k D o.

p
n/ all degree-

O.logn/ polynomials fail to strongly separate the two distributions (see e.g., [20] and
references therein). It should be noted though that for every new planted subgraph
detection task that has been analyzed a new careful analysis is usually needed, which
often brings its own challenges (similar to the literature on the Kahn–Kalai conjec-
ture). The main focus of this work is to explore the simultaneous study of the class of
low-degree polynomials for all planted subgraph detection tasks i.e., for any planted
subgraph H .
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Absence of structural positive results. Moreover, prior work on low-degree polyno-
mials has built a powerful technique, based on what is called the low-degree advantage
(or low-degree likelihood ratio) [20] (see Definition 2.2), to prove the failure3 of the
class of low-degree polynomials for detection tasks. To be more precise, as long as
the degree-D advantage remains bounded, we know that no degree-D polynomial
can strongly separate Q and P . Yet, our understanding of how to argue about positive
results for the class of low-degree polynomials is significantly more limited and much
less automated. One natural candidate would be to consider the low-degree advantage
again and use it as a criterion if it is unbounded. Unfortunately, this suggestion is not
generally true. For example, for a regime of the so-called planted dense hypergraph
problem, the low-degree advantage explodes (due to rare events) but in fact no low-
degree polynomial succeeds [9]. Understanding whether the low-degree advantage
exploding is a sufficient criterion for the success of low-degree polynomials when we
focus on planted subgraph detection tasks is also a partial motivation for the present
work.

A related struggle is that even if a low-degree polynomial is “predicted” to work,
there is no known general tool to understand the structure of this “optimal” low-degree
polynomial. Yet, the best known algorithms (and therefore their polynomial approx-
imations) appear to be significantly different among different settings. For example,
the best known polynomial-time algorithm for detecting or recovering the planted
clique when k D c

p
n for c > 0 small, is a spectral method combined with a postpro-

cessing step [1], while for the recovery task in the planted Hamiltonian cycle problem
it is a linear program relaxation of a TSP problem [3]. This is a significant issue, as for
any new detection or recovery task that statisticians are facing, it appears as they need
to design the “correct” polynomial-time test statistic mostly based on their intuition
and the unique properties of each subgraph H .

Summarizing the above, this work is motivated by the following three key ques-
tions on planted subgraph detection tasks:

(Q1) For any H D Hn, can we automate when a degree-D polynomial works?

(Q2) Can we characterize the structure of an optimal degree-D polynomial?

(Q3) Which features of H D Hn should a degree-D polynomial be exploiting?

Main contributions (informal). In this work, our main contribution is to offer an
answer to the above questions (Q1), (Q2), (Q3) for any planted subgraph detection
task with arbitrary H D Hn and for any p D �.1/, when we focus on the class of
degree-D D O.1/ polynomials. Informally, under these assumptions, a summary of
our contributions is as follows:

3From this point on in the introduction, by “success” (or “failure”) of a polynomial in a de-
tection task we strictly refer to whether it strongly separates P and Q (or not), per Definition 2.1.
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(i) We start with our main result (Theorem 3.1). We prove that for all choices of
H D Hn, an optimal degree-D D O.1/ polynomial is always given by the signed
count of a t -star graph in the input graph for some t 2 ¹1;Dº. In other words, some
degree-D polynomial succeeds in detecting if and only if the signed edge count or the
signedD-star count works. This reveals an interesting new statistical principle shared
by all planted subgraph detection tasks, and an easy-to-check criterion for the success
of constant degree polynomials.

(ii) A moment analysis of the star counting polynomials, together with our main
result, implies that the success of constant degree polynomials is a function solely
of the degree distribution of the planted H (see Theorem 4.2). In other words, for
any two H1 and H2 with the same degree distribution, either some degree-D polyno-
mial succeeds in both detection tasks corresponding to H1 and H2, or all degree-D
polynomials fail in both detection tasks corresponding to H1 and H2. We find this a
surprising conclusion of our work, given all the potential other features of H a con-
stant degree polynomial could be exploiting (e.g., the local-neighborhood structure of
each vertex).

(iii) We describe how our results implies a series of old and new results on low-
degree polynomials for planted detection tasks (see Section 4.1).

(iv) We prove that our main result is tight. We provide counterexamples for the
optimality of star counts when either p D o.1/ or D D !.1/ (see Section 5).

Further comparison with previous work. We would like to expand here briefly on
our literature review. We are not aware of any other work attempting to understand the
above questions for planted subgraph detection tasks per Definition 1.1 in that level
of generality. Yet, we should mention a relevant work by [15].

First, while the author of [15] also defined the union model, they focus their results
on a similar, yet incomparable, general planted subgraph setting where one seeks to
detect between an Erdős–Rényi G.n; p/ and a planted distribution where one plants
a copy of a subgraph H as an induced subgraph in G.n; p/.

We first note this is not the same setting as Definition 1.1, as in our planted model
we observe the union of a copy of H with G.n; p/. In particular, in our model the
planted H is not assumed to be an induced subgraph of the input graph. Interestingly
notice that the “induced” and “union” models are two distinct generalizations of the
planted clique setting.

The power of a low-degree polynomial in the induced setting for all n�o.1/ � p �
1 � n�o.1/ and for all H that have edge density bounded away from p is analyzed
in [15]. In that case, the author proved that the computational trade-off is similar to
the case of the planted clique model. For any such H , by simply counting edges one
can detect whenever jV.H/j D !.

p
n logn/, and the authors proved that a spectral
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method can improve this to jV.H/j D �.
p
n/. Moreover, if jV.H/j D o.

p
n/ the

author established that no degree-O.log n/ polynomial works for the H ’s of interest.
We remark again that we analyze the incomparable union model, and on top of this,
we note that our results do not restrict H at all.

2. Preliminaries

To describe our main contribution in more detail, we need first to give a few def-
initions. Recall that a graph on n vertices can be represented as a list of Boolean
variables

G D .G¹i;j º/¹i;j º2.Œn�2 /
;

where each variable is the indicator variable of one edge in the complete graph Kn.
We start with the notion of the strong separation which will be our focus of “success”
for a polynomial in a planted subgraph detection task.

Definition 2.1 (Strong separation). For two distributions P ;Q supported on graphs
¹0; 1º.

n
2/, we say that an

�
n
2

�
-variate polynomial f .G/ strongly separates the distribu-

tions P and Q if it holds that

max
®p

VarP .f /;
p

VarQ.f /
¯
D o

�
jEP .f / � EQ.f /j

�
:

One should think of strong separation as a stronger condition for detection. A sim-
ple application of Chebychev’s inequality implies that if f strongly separates P ;Q,
then thresholding f suffices to distinguish between the two distributions with vanish-
ing Type I and II errors.

Relevant to strong separation is the concept of the advantage of a test function.

Definition 2.2 ((Low-degree) advantage). For two distributions P ;Q supported on
graphs ¹0; 1º.

n
2/, the advantage of a real-valued test function f W ¹0; 1º.

n
2/ ! R for

testing distribution P against distribution Q is given by

Adv.f / WD
EP Œf �p
EQŒf 2�

;

and the degree-D advantage for testing distribution P against distribution Q (also
called, the low-degree likelihood ratio) is

Adv�D WD max
f 2RŒX��D

Adv.f / D max
f 2RŒX��D

EP Œf �p
EQŒf 2�

:

It is known (see, e.g., [8, Lemma 7.3]) that if Adv�D D O.1/, then no degree-D
polynomial can strongly separate P and Q.
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Walsh–Fourier basis. We will use the Walsh–Fourier basis .�S /S�.Œn�2 /
(resp. the

degree-D Walsh–Fourier basis .�S /S�.Œn�2 /WjS j�D
) with respect to the Erdős–Rényi

distribution G.n; p/, which is defined by

�S .G/ WD
Y
¹i;j º2S

G¹i;j º � pp
p.1 � p/

:

Signed subgraph counts. Of special role in this work are the degree-D polynomials
called (signed) subgraph counts. That is, for any shape4 � with at most D edges, the
signed count of � is the degree-D polynomial given by

f� .G/ D
X

S�.Œn�2 /WSŠ�

�S .G/;

where S Š � denotes the graph isomorphism relation.
Finally, we remind the reader of the definition of a star graph.

Definition 2.3. A star graph with t edges is a tree with t C 1 vertices consisting of t
leaves and 1 internal “central” vertex, as shown in Figure 1. In this paper, this graph
is denoted as K1;t , as it can be viewed as the complete bipartite graph with 1 vertex
in one part and t vertices in the other. We will call K1;t a t -star graph.

:::

Figure 1. A generic star graph on the left, and the star graph K1;5 on the right.

3. Main result: Optimality of star counts

Our main result is a generic result that holds for any p D �.1/ and any D D O.1/.
We prove that for all planted subgraph detection tasks (per Definition 1.1), i.e., for any
H D Hn, there exists t � D for which the t -star signed subgraph count is optimal
among all degree-D polynomials to strongly separate P and Q. Formally, our main
result is the following.

4A shape is an edge-induced graph.
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Theorem 3.1. SupposeH DHn is an arbitrary subgraph,D DO.1/ and p D�.1/.
Then, the following hold for testing P and Q in the planted subgraph detection task
corresponding to planting a copy of H per Definition 1.1:

• If lim supn!1Adv�D <1, then no degree-D polynomial f 2RŒX��D achieves
strong separation between P and Q (see [8, Lemma 7.3]).

• If limn!1 Adv�D D 1, then either the signed edge count fK1;1
or the signed

D-star count fK1;D
has unbounded advantage, i.e.,

lim
n!1

max¹Adv.fK1;1
/;Adv.fK1;D

/º D 1:

Moreover, suppose � 2 ¹K1;1;K1;Dº satisfies

max¹Adv.fK1;1
/;Adv.fK1;D

/º

Adv.f� /
D O.1/;

then f� achieves strong separation between P and Q.

A few remarks are in order.

Remark 3.2. As we mentioned in the introduction, it is not generally true that a
growing advantage Adv�D D !.1/ implies that some degree-D polynomial achieves
strong separation. One such example has recently been studied in [9], where one
plants an H � G.n
 ; n�˛/ in a G.n; n�ˇ / for constants ˛; ˇ; 
 2 .0; 1/. The authors
prove that whenever ˛ > ˇ
 and 0 < 
 < 1=2, no degree-no.1/ polynomial can strong-
ly separate P from Q. Yet, it is easy to check that, e.g., when ˛ D 5=16, 
 D 1=4,
ˇ D 1, the constant degree advantage diverges to infinity with n. See Appendix C for
more details on this.

We also note that the above is in interesting contrast to the well-known fact (the
first bullet point in Theorem 3.1) that bounded degree-D advantage rules out the exis-
tence of degree-D polynomials that achieve strong separation [8, Lemma 7.3].

Our Theorem 3.1 shows that, interestingly, for all planted subgraph detection
tasks with p D �.1/, the “converse” does indeed hold for D D O.1/: whenever the
degree-D advantage tends to infinity, there indeed exists a degree-D polynomial that
achieves strong separation. In particular our result offers, to the best of our know-
ledge, the first complete characterization of the power of constant-degree polynomials
in such settings.

Remark 3.3. Theorem 3.1 implies that for all planted H ’s, the simple choice of
counting signed star graphs is always an optimal choice for strong separation between
P and Q, among all constant-degree polynomials. To the best of our knowledge, this
is the first result revealing this universal optimality of counting stars for all planted
subgraph detection tasks in our regime.
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It is natural to wonder what is the reason counting stars enjoy such general opti-
mality. We point the reader to Section 7, and specifically Proposition 7.1 for details
and a proof sketch. We only would like to note here that the star structure appears
naturally as a subgraph � whose signed count has (almost5) maximum advantage
max� Adv.f� / among all constant-sized graphs.

Remark 3.4. Our theorem needs two assumptions for the optimality of signed t -
star counts. First, that the class is constant degree polynomials, i.e., D D O.1/, and
second that p D�.1/. It turns out that both assumptions are necessary: if either is not
satisfied, then the signed count of stars may fail to be optimal among constant-degree
polynomials (see Section 5).

3.1. A simple criterion using only the degree profile of H

The fact that for any D D O.1/, the signed count of star graphs is optimal among
degree-D polynomials for strong separation implies a very simple criterion for the
success of the class of polynomial test functions. To present this, we fix an arbitrary
subgraph H and consider the planted subgraph detection task for H with any noise
level p D �.1/. Suppose a statistician wishes to understand the power of degree-D
polynomial test functions for this setting. Based on the literature, the currently natural
approach would be as follows. First, the statistician would try to show that in one
regime the low-degree advantage

Adv�D D max
f 2R�D ŒX�

Adv.f /

remains bounded and then, in the remaining regime, to design (from scratch!) a con-
stant-degree polynomial that works.

Based on Theorem 3.1, we arrive at a much simpler and automated approach for
how to understand both directions when D D O.1/. It is in fact sufficient for the
statistician to only calculate the advantage of the signed edge counts and the advan-
tage of the signed D-star count. Indeed, by our Theorem 3.1 there exists a degree-D
polynomial that can strongly separate P and Q, if and only if

max¹Adv.fK1;1
/;Adv.fK1;D

/º D !.1/; (3.1)

and by comparing the advantages of the two polynomials fK1;1
and fK1;D

, the statis-
tician would also arrive at an optimal test function.

5By “almost” we mean that whenever the low-degree advantage tends to infinity, the signed
count of some star graph also has its advantage tending to infinity.
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On top of that, one can give a more explicit condition than (3.1) using Proposi-
tion 7.9 and Lemma 7.7. Together with the above discussion, this leads to the follow-
ing simple and general condition for all planted subgraph detection tasks.

Corollary 3.5 (A simple condition on the degree profile of H ). For any H D Hn,
p D �.1/, D D O.1/, and the corresponding planted subgraph detection task, the
following holds. There exists a degree-D polynomial that achieves strong separation
if and only if

lim
n!1

max

´ P
v2V.H/ dv

n.p=.1 � p//1=2
;

P
v2V.H/ d

D
v

n.1CD/=2.p=.1 � p//D=2

µ
D1; (3.2)

where dv WD degH .v/ denotes the degree of v in H . Moreover, if (3.2) holds, by
choosing t� 2 ¹1;Dº that satisfies

max
° P

v2V.H/ dv

n.p=.1�p//1=2
;

P
v2V.H/ d

D
v

n.1CD/=2.p=.1�p//D=2

±
P
v2V.H/ d

t�
v

n.1Ct
�/=2.p=.1�p//t

�=2

D O.1/;

we can strongly separate P and Q using fK1;t�
.

A potential striking aspect of Corollary 3.5 is that to judge whether some constant-
degree polynomial works one needs to only know the degree profile ofH , and no other
graph property of it. For example, for a d -regular H with v vertices, constant degree
polynomials can strongly separate P and Q either for all such graphs H or for no
suchH at all. Other more specific properties ofH (e.g., theH ’s clique number, or its
girth, or even spectral properties like H being an expander or not), which could nat-
urally motivate the study of several other candidate degree-D polynomials, make no
difference in whether some constant-degree polynomial can strongly separate or not.

4. Characterization of the optimal signed star count

Definition 4.1. We say a test T is an optimal test among a class of tests T for test-
ing P against Q if whenever there exists a test zT 2 T that strongly separates P and Q,
the test T also does so.

Based on Corollary 3.5, for constant D, an optimal degree-D polynomial test for
detecting the planted subgraph is given by the signed count of t -stars for the maxi-
mizer of the condition (3.2) among t 2 ¹1;Dº. We will present a characterization of
an optimal test that is (almost6) entirely based on the maximum degree of the planted

6Excluding a small “gray” area, see Figure 2.
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Counting Large Stars
Succeeds

Both Counting Edges
and Large Stars

Succeed

Counting Edges
Succeeds

CD Impossible

�
np
1�p

�1=2 � np
1�p

�1=2Co.1/
�0

m

n
q

p
1�p

Figure 2. Phase-transition diagram characterized by Theorem 4.2. The x-axis is the maximum
degree � and the y-axis is the number of edges m of the planted subgraph H . CD is an abbre-
viation of constant degree.

subgraph H . If the maximum degree is below the threshold � .np=.1 � p//1=2, one
should simply count edges. On the other hand, if the maximum degree is much bigger
than� .np=.1 � p//1=2, an optimal test is to count signed large stars (see Figure 2).

Theorem 4.2. Denote � D maxi2V.H/ di , where di D degH .i/ and m D jE.H/j.
Then, for p D �.1/, we have the following characterization for optimal constant
degree polynomial tests for the planted subgraph detection problem of testing P

against Q as defined in Definition 1.1:

• If � D O..n.p=.1 � p///1=2/, then an optimal test is to count signed edges, i.e.,

f D
X

¹i;j º2.V2 /

�¹i;j º:

In particular, some constant-degree polynomial achieves strong separation if and
only if m D !..n.p=.1 � p///1=2/.

• If � � .n.p=.1 � p///1=2C" for some constant " > 0, then an optimal test is to
count signed “large” stars , i.e.,

f D
X

S�.V2 /WSŠ�

�S ;
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where � D K1;t for a large enough constant t . Moreover, it is always possible to
set t D d3=2"e so that the above f achieves strong separation.

The result of Theorem 4.2 is best visualized in Figure 2.

Remark 4.3. Although the characterization in Theorem 4.2 does not capture a middle
region of

!
��
n

p

1 � p

�1=2�
� � �

�
n

p

1 � p

�1=2Co.1/
;

an optimal test for this region can still be found by comparing the advantage achieved
by the signed count of edges and that achieved by the signed count ofD-stars as stated
in Theorem 3.1.

4.1. Applications

To show the applicability of Theorem 4.2, we apply it to a number of examples.

Planted dense subgraph. Let n; k D kn 2 N and p D pn; q D qn 2 .0; 1/. The
first example we consider is the planted dense subgraph (PDS) setting, denoted by
PDS.k; p; q/. To describe it, we first draw H from G.k; q/. Then we consider the
planted detection task per Definition 1.1 for planted H and p. Notice that this is
called a PDS setting, as in the planted model P , the induced subgraph on the k vertices
corresponding to H is “denser” compared to the rest edges of the graph. Indeed, in
the planted instance, every edge using only vertices of H appears marginally with
probability p C .1 � p/q > p while the rest of the edges with probability p.

Notice that, as long as kqD!.logk/,H has maximum degree .1C o.1//.k � 1/q
and edges .1 C o.1//k2q=2 with high probability as n grows to infinity (see Lem-
ma B.1 in the appendix). Using Theorem 4.2 we directly conclude the following.

Corollary 4.4. If p D �.1/, a constant-degree polynomial can achieve strong sepa-
ration in PDS.k; p; q/ if and only if

k D !

� p
n

p
q.1 � p/1=4

�
:

Moreover, if k D !.
p
n=
p
q.1 � p/1=4/, counting edges achieves strong separation.

For instance, if k D nˇ , p D 1 � n�
 and q D n�˛ for constants ˛; ˇ; 
 2 .0; 1/
we immediately conclude the phase diagram for this PDS.k;p; q/ for constant-degree
polynomials: they work if and only if ˇ > 1=2C ˛=2C 
=4 (see Figure 3).

It is worth noting that PDS has been commonly studied under the slightly different
following definition we call PDS0.k;p;p0/ for 0 < pD pn <p0D p0n < 1 and k D kn
(see, e.g., [6]). PDS0.k; p; p0/ is the detection task between the null Q D G.n; p/
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and the planted model P where now the observed graph is sampled like a G.n; p/
except that the edges between k vertices, chosen uniformly at random, are sampled
now with probability p0 > p. Notice this definition, differently from the one using
Definition 1.1, is not assuming that the planted instance is the union ofG.n;p/ with a
randomly placedH �G.n;q/. Yet, for q D .p0 � p/=.1� p/ the two planted models
of PDS.k; p; q/ and PDS0.k; p; p0/ have marginally (per edge) the same law and it is
natural to expect to have a similar computational transition.

Indeed, for PDS0.k; p; p0/ in the specialized regime

�.1/ D p D 1 ��.1/; p0 � p D ‚.n�˛/; and k D ‚.nˇ /

it is known, by using an average-case reduction from planted clique [6], that there
is conjectured hard phase if and only if ˇ < 1=2C ˛=2. By choosing the matching
parameter q D .p0 � p/=.1� p/D‚.n�˛/ and 
 D 0, we arrive at the same conclu-
sion for PDS.k; p; q/: constant degree polynomials fail if and only if ˇ < 1=2C ˛=2
and counting edges works in the opposite regime.

We are not aware of any comparable low-degree lower bound result for either
PDS0.k; p; p0/ and PDS.k; p; q/.

CD Impossible Counting edges
succeeds

ˇ2C2˛C

4

Figure 3. Phase-transition diagram for PDS.k;p; q/, with k D nˇ , p D 1� n�
 and q D n�˛ .

Planted clique and planted independent set. When we choose q D 1 and p D 1=2
for PDS.k; p; q/, the setting simply corresponds to the detection task of the planted
clique problem. Corollary 4.4 then directly yields the well-known k D ‚.

p
n/ com-

putational phase transition for constant-degree polynomials for planted clique [1, 4].
Interestingly, for p D 1 � d=n, d D o.n/ and q D 1, PDS.k; p; q/ now maps to

the detection task of the planted independent set problem. Indeed, PDS.k; 1� d=n;1/
is the detection setting between G.n; 1 � d=n/ and G.n; 1 � d=n/ union a random
k-clique. By equivalently considering the complements of the observation graphs,
we need to detect between G.n; d=n/ and G.n; d=n/ where k vertices are con-
strained to induce an independent set, known as the planted independent set model.
This and several related settings has been well studied in the literature (see, e.g.,
when d D O.1/, [33] for low-degree lower bounds for the search problem in the
null model, and [17] for certification lower bounds in the null model). Corollary 4.4
implies that constant degree polynomials can detect if and only if k D !.n3=4=d1=4/,
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Both Counting Edges
and Large Stars

Succeed

Counting Edges
Succeeds

CD Impossible

1C

2

1C
Co.1/
2

1C 

2

˛0

ˇ

1C 

2

Figure 4. Phase-transition diagram of planted bipartite clique, where H D Ka;b with a � b.
The small blue triangle represents the region that only counting large stars succeeds. We use
parameter configuration p D 1 � n�
 , a D n˛ and b D nˇ .

which recovers the reduction-based hardness of planted independent set conditional
on planted clique conjecture shown in [6].

Planted bipartite clique. Given the previous examples where counting edges is al-
ways constant-degree optimal, one may wonder if the count of large stars is an optimal
constant-degree polynomial in some natural setting. For this reason, we now consider
a planted bipartite clique setting PBC.a; b; p/ for a D an, b D bn 2 N and p D
pn 2 .0; 1/ with a � b, where we simply choose the planted H to be the bipartite
clique Ka;b . The maximum degree of H is then clearly � D a. Using Theorem 4.2
we arrive at the following richer computational diagram (see Figure 4).

Corollary 4.5. For ˛; ˇ; 
 2 .0; 1/, if p D 1 � n�
 , a D n˛ , b D nˇ , we have for
PBC.a; b; p/:

• if 2˛ � 1C 
 and ˛ C ˇ � 1C 
=2, constant-degree polynomial test fails;

• ˛ C ˇ > 1C 
=2 if and only if counting edges achieves strong separation;

• if 2˛ > 1C 
 C " for some constant " > 0, counting large stars achieves strong
separation.

We note that the planted bipartite clique has been studied in [30] in the case
when p is bounded away from 1, where they showed a similar statistical computa-
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tional gap as in the planted clique model. On the other hand, the example we describe
here applies for all p D �.1/.

5. Tightness of Theorem 3.1

In this section, we prove the tightness of our main result (Theorem 3.1). Recall, that
according to Theorem 3.1, under the assumptions p D �.1/ and D D O.1/, the
degree-D polynomials achieve strong separation for detecting a planted subgraph in
G.n; p/ if and only if the signed count polynomial of a t � D-star does so too. We
provide counterexamples showing that if either p D �.1/ or D D O.1/ is not sat-
isfied, counting stars could fail to achieve strong separation even when some other
degree-D polynomial does so.

Failure of counting stars under vanishing p. Assume p D n�
 for a constant

 2 .0; 1/. Then we show that for some appropriate constant size k, the planted detec-
tion model with H being a k-clique has the following behavior.

Lemma 5.1. For any pD n�
 where 
 2 .0;1/ is a constant, there exists a constant k
such that, for the planted subgraph detection task per Definition 1.1 with H being a
k-clique, counting constant-sized stars fails to achieve strong separation, whereas
some constant-degree polynomial test achieves strong separation.

Failure of counting stars under non-constant degree D. Here, we fix p D 1=2 and
k D C

p
n, where C > 0 is a large enough constant. By focusing on the performance

of degree-DDO.logn/ polynomials for the planted subgraph detection task whereH
is a k-clique the following holds.

Lemma 5.2. Let H be a clique of size C
p
n and p D 1=2, where C > 0 is any con-

stant. Consider the planted subgraph detection task where H is planted in G.n; p/.
Then, for any t D tn � 1 (potentially growing with n), counting t -stars fails to achieve
strong separation. However, for large enough C > 0, a degree-O.log n/ polynomial
achieves strong separation.

6. Proof preliminaries

We now move to the proof sections of our results. We start by introducing some nec-
essary definitions and notations.

Let n; k 2 N be natural numbers. We will denote Œn� WD ¹1; 2; : : : ; nº. We will
use

�
n
k

�
to denote the number of ways to choose k elements from n elements, and

n.k/ WD n.n � 1/ : : : .n � k C 1/ to denote the k-th falling factorial of n. By conven-
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tion, the 0-th falling factorial of any number is equal to 1 and n.k/ D 0 for any k > n.
Let X be a set. We will denote

�
X
k

�
WD ¹A � X W jAj D kº.

Asymptotic notations. We will use standard asymptotic notationsO;o;�;!;‚. Let
.an/n2N , .bn/n2N be two sequences of positive real numbers. We sometimes write
an . bn when an D O.bn/, an � bn when an D o.bn/, an & bn when an D �.bn/,
an � bn when an D !.bn/, and an � bn when limn!1.an=bn/ D 1.

Graph theory basics. A graph is a pair of .V; E/ where V is the vertex set and
E �

�
V
2

�
is the edge set. Sometimes we will identify the vertex set V with Œn�. Kn

will denote the complete graph on n vertices, and Ks;t will be the complete bipartite
graph with one part having s vertices and the other having t vertices.

We say that H is a subgraph of G, denoted as H � G, if

V.H/ � V.G/ and E.H/ � E.G/:

We say that H is an induced subgraph of G, if

V.H/ � V.G/ and E.H/ D E.G/ \

�
V.H/

2

�
:

For S � V.G/, we denote the unique induced subgraph of G with vertex set S
as GŒS�. We say H is a spanning subgraph of G, if it is a subgraph of G and
V.H/ D V.G/. We say a graph G is edge-induced if there are no isolated vertices
in G.

A homomorphism from graph G1 to graph G2 is a mapping f WV.G1/! V.G2/

that preserves adjacency relation, i.e., ¹f .u/; f .v/º 2 E.G2/ if ¹u; vº 2 E.G1/. An
isomorphism is a bijective homomorphism whose inverse is also a homomorphism,
and we use G1 Š G2 to denote that G1 and G2 are isomorphic. An automorphism
of a graph G is an isomorphism from G to itself. The set of automorphisms of a
graph G equipped with composition forms a group called the automorphism group
of G, denoted as Aut.G/.

Subgraph copies: Notation. We will use throughout a notion of shape and labelled/
unlabelled copies of a shape.

Definition 6.1. A shape � is an edge-induced graph, i.e., a graph without isolated
vertices. By a slight abuse of notation, we sometimes use � to refer to the edge set
E.�/ as an edge-induced graph is determined by its edge set. ForD 2N, we use G�D
to denote the collections of shapes with at most D edges up to isomorphism.

Let � be a shape, and G be a graph. An unlabelled copy of � in G is a subgraph
S � G such that � is isomorphic to S . A labelled copy of � in G is a pair .S; 
/
of a subgraph S � G together with a labelling 
 W V.S/! V.�/, such that 
 is an
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isomorphism from S to � . Note that for a labelled copy .S;
/ of � , 
�1 is an injective
homomorphism from � to G, and conversely every injective homomorphism defines
a labelled copy.

Unless stated otherwise, in this paper we will use copies to refer to labelled copies.

Following the notation in [27] we define for a shape � and a graph G,

M�;G WD #¹copies of � inside Gº; (6.1)

and when n is clear from context, M� WDM�;Kn D n.jV.�/j/.

Example 6.2. In the complete graphKn, the number of (labelled) copies of a triangle
K3 is n.3/ D n.n � 1/.n � 2/, whereas the number of triangles is

�
n
3

�
D

n.n�1/.n�2/
6

.

Definition 6.3 (Isomorphic pairs of copies). Let �1 and �2 be two shapes, and G
and yG be graphs. Let ..S1; 
1/; .S2; 
2// be a pair of copy of �1 and copy of �2 in G,
and similarly .. yS1; y
1/; . yS2; y
2// be a pair of copy of �1 and copy of �2 in yG. We say
that ..S1; 
1/; .S2; 
2// and .. yS1; y
1/; . yS2; y
2// are isomorphic if

• for every u 2 V.S1/ \ V.S2/, y
�11 .
1.u// D y

�1
2 .
2.u//;

• for every v 2 V. yS1/ \ V. yS2/, 
�11 .y
1.u// D 

�1
2 .y
2.u//.

Example 6.4. To illustrate Definition 6.3, consider the two shapes �1 and �2, and
the 4 pairs of copies of them in Figure 5. .1/ and .2/ are isomorphic, as the pairs
of labellings on all the vertices in the intersection are the same. .1/ and .3/ are not
isomorphic, as in .1/ a vertex in the intersection has a pair of labels .b; g/ but in .3/
a vertex in the intersection has a pair of labels .b; f /. .1/ and .4/ are not isomorphic,
as in .1/ the two vertex sets intersect whereas in .4/ the two vertex sets are disjoint.

Remark 6.5. It is not hard to see that the isomorphism of pairs of copies in Defi-
nition 6.3 forms an equivalence relation of the pairs of copies of two shapes in all
graphs. Therefore, the set of pairs of copies ..S1; 
1/; .S2; 
2// of �1 and �2 in all
graphs can be partitioned into isomorphism classes, i.e., equivalence classes defined
by the isomorphism relation.

Definition 6.6 (Intersecting pattern). Let �1 and �2 be two shapes. Then, an intersect-
ing pattern of �1 and �2 is an isomorphism class of the pairs of copies of �1 and �2 in
all graphs.

The set of all intersecting patterns of �1 and �2 is denoted as Inter.�1; �2/, and
an element in it is denoted as i.S1; S2/. We use non-calligraphic i.S1; S2/ in order to
distinguish a specific intersecting pattern from the given shapes �1 and �2.

Remark 6.7. Recall that an intersecting pattern is characterized by the exact way the
vertex labels of two labelled copies of two shapes intersect. Let us now consider two



Counting stars is constant-degree optimal for detecting any planted subgraph 123

a

b c

ed

f g

�1 �2

a; f

b; gc

d

e
b; g a; f

e

c d

a

bc

d

e

f

g

a; g

b; fc

d

e

.1/ .2/ .3/ .4/

Figure 5. An example of 4 pairs of copies of �1 and �2 numbered by .1/, .2/, .3/, .4/, where
the labellings of copies of �1 are marked with blue letters, and the labellings of copies of �2 are
marked with red letters.

arbitrary shapes �1 and �2, with s1 D jV.�1/j and s2 D jV.�2/j. Notice that the total
number of possible intersecting patterns of �1 and �2 is

P
k

�
s1
k

��
s2
k

�
kŠ, as two pairs

of copies of �1 and �2 are isomorphic if and only if the labels in their intersection are
in to one to one correspondence (see Definition 6.3 and Example 6.4). Indeed, given
the above, we just need to count the total number of ways to choose a subset of V.�1/
of size k, a subset of V.�2/ of size k, and a bijective function (that specifies how the
vertices are “glued” in the intersection) between these two subsets, for all values of k.
Importantly, if � is a shape with a constant number of edges (thus a constant number
of vertices), then the number of intersecting patterns of pairs of copies of � with � is
also bounded by a constant.

Definition 6.8. Let �1 and �2 be shapes, and i.S1; S2/ be an intersecting pattern of
pairs of copies of �1 and �2. For i.S1; S2/, we define the symmetric difference shape
S14S2 as the shape obtained by first taking the symmetric difference of the edge sets
of a pair of copies that have the intersecting pattern i.S1; S2/ and deleting isolated
vertices after the symmetric difference operation. Similarly, we define the union shape
S1 [ S2 as the shape obtained by taking the union of the edge sets of a pair of copies
that have the intersecting pattern i.S1; S2/.

Remark 6.9. Let �1 and �2 be shapes, i.S1; S2/ be an intersecting pattern, and G
be a graph. The number of pairs of copies of �1 and �2 with the intersecting pattern
i.S1; S2/ in G is equal to MS1[S2;G .
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7. Proof of the main theorem

7.1. Proof strategy

We briefly describe our proof strategy for Theorem 3.1. The first bullet point is a
standard result in the literature of low-degree polynomials, cf. [8, Lemma 7.3], and
our focus will be on the second bullet point of Theorem 3.1.

The first key step of the proof is proving that if the low-degree advantage Adv�D

explodes, then the advantage of the count of a t -star Adv.fK1;t
/ explodes for some

t � D. It is easy to see that if Adv�D D !.1/ for some D D O.1/, then the signed
count of some shape � with at most D edges satisfies Adv.f� / D !.1/. This follows
by expanding the low-degree advantage (Proposition 7.5 and Proposition 7.9) to get

.Adv�D/2 D
X

�2G�D

.Adv.f� //
2;

and using that there are a constant number of shapes with at most D edges. Our main
idea is to use a careful recursive argument, stated in Proposition 7.1, that proves that
as long as

Adv.f� / D !.1/ (7.1)

for some � , then it also holds

Adv.fK1;t
/ D !.1/

for some star shape K1;t . To prove this we use two “advantage-preserving” reduc-
tions that allow us to start with any shape S satisfying (7.1) and recursively switch
to (1) any vertex-spanning subgraph of S which still satisfies (7.1) and (2) any con-
nected component of S which still satisfies (7.1), as shown in Corollary 7.14 and
Corollary 7.15, respectively. This is the key step where the star shapes arise, as it is
easy to prove that the minimal connected and spanning sub-shapes of any subgraph S
are trees of diameter at most 2, which are exactly the star shapes. Using a convexity
argument, we further show in Proposition 7.1 that it suffices to consider the signed
count of star graphs for two extreme cases: either the edge graph, or theD-star graph.

The second step is to prove that either the signed edge count or the signed D-star
count, fK1;t

for t 2 ¹1; Dº, achieves strong separation. Note that having an advan-
tage that tends to infinity already implies by definition part of the strong separation
condition, i.e., q

VarQŒfK1;t
� D o

�
jEP ŒfK1;t

� � EQŒfK1;t
�j
�
:

To show the other side of the strong separationq
VarP ŒfK1;t

� D o
�
jEP ŒfK1;t

� � EQŒfK1;t
�j
�
;
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we need to show equivalently

EP Œf
2

K1;t
�

EP ŒfK1;t
�2
� 1C o.1/:

We begin by expanding EP Œf
2

K1;t
� as the sum of the expectations EŒ�S�0S � for all

pairs of S; S 0 Š K1;t . We show that the pairs with empty (edge) intersection con-
tributes at most 1C o.1/ to the ratio above. For the pairs with non-empty intersection,
we show that they contribute o.1/ to the ratio above using Proposition 7.2, under the
assumption that

lim
n!1

max¹Adv.fK1;1
/;Adv.fK1;D

/º D 1;

and an approximate maximization condition

max¹Adv.fK1;1
/;Adv.fK1;D

/º

max1�t�D Adv.fK1;t
/

D �.1/:

We highlight that this is a key technical part of the proof and the simplicity of the
star shape appears essential. For example, one way this manifests itself is that there
are only a few different cases that two star graphs can be intersecting (see, e.g., Fig-
ures 6, 7 and 8 below) which greatly simplifies the second moment expansion (see
Proposition 7.2).

7.2. Key lemmas

Recall the notation M�;G in (6.1). The first key proposition proves that an exploding
degree-D advantage implies that for � either being the edge graph K1;1 or the D-
star K1;D , the quantity .M 2

�;H
=M� /..1 � p/=p/

j� j is exploding. This quantity is
simply the rescaled squared advantage of star count f� , since by Proposition 7.9, we
have

Adv.f� /
2
D

EP Œf� �
2

EQŒf
2

�
�
D

M 2
�;H

M� � jAut.�/j

�1 � p
p

�j� j
:

Proposition 7.1. Suppose D D O.1/ and p D �.1/. If Adv�D !1, then among
the edge graph K1;1 and the D-star K1;D , we have

max¹Adv.fK1;1
/;Adv.fK1;D

/º ! 1:

Moreover, if Adv�D !1, there exists a constant C D C.D/ such that for all large
enough n, we have

max
1�t�D

Adv.fK1;t
/ � C �max¹Adv.fK1;1

/;Adv.fK1;D
/º:
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The next is an important and quite technical proposition that reveals some struc-
ture between overlapping copies of the star shape � with exploding advantage from
Proposition 7.1. This proposition is the key step in a second moment calculation used
in the proof of Theorem 3.1.

Proposition 7.2. SupposeD D O.1/, C D O.1/, and p D �.1/. Suppose � ŠK1;t

with 1 � t � D is a star shape that satisfies Adv.f� 0/ � C � Adv.f� / for all star
shapes � 0 Š K1;t 0 with at most j� j D t edges, and suppose Adv.f� / ! 1. Let
i.S1; S2/ 2 Inter.� ;�/ be an intersecting pattern such that S1 and S2 have non-empty
intersection. Then,

njV.S1[S2/j�jV.S14S2/jMS14S2;H ..1 � p/=p/
jS14S2j=2

M 2
�;H

..1 � p/=p/j� j
D o.1/:

7.3. Auxiliary lemmas

In this section, we have a series of auxiliary lemmas needed for the proof of Theo-
rem 3.1. The proofs for some of the lemmas are deferred to Section A in the appendix.

We start with a standard result, which we state as a fact.

Fact 7.3. The Walsh–Fourier basis .�S /S�.Œn�2 /
(resp. the degree-D Walsh–Fourier

basis .�S /S�.Œn�2 /WjS j�D
) with respect to the Erdős–Rényi distribution Q WD G.n; p/

form an orthonormal basis for RŒX� (resp. RŒX��D) with respect to the inner prod-
uct h�; �iQ defined by hf; giQ D EQŒfg�.

The following lemma is taken from [27], and will be useful throughout the calcu-
lations in this paper. Recall the definition of M�;H in (6.1).

Lemma 7.4. For a fixed S �
�
Œn�
2

�
isomorphic to some shape � , and .G;H/ drawn

from P , the probability that S is a subgraph of the planted H is

P .S � H/ D
M�;H

M�

:

Proof of Lemma 7.4. We have

M�;H D EŒ#¹copies of � inside Hº� DM� � P .S � H/:

The following proposition calculates the low-degree advantage for all planted sub-
graph detection tasks.

Proposition 7.5. For the planted subgraph detection task, the square of the degree-D
advantage for testing distribution P against distribution Q is

.Adv�D/2 D
X

�2G�D

M 2
�;H

M� � jAut.�/j

�1 � p
p

�j� j
:
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The following proposition gives a way of double counting the number of pairs of
copies of two shapes in a graph in terms of their intersecting patterns.

Proposition 7.6. Let �1 and �2 be shapes, and G be a graph. Then,

M�1;GM�2;G D

X
i.S1;S2/2Inter.�1;�2/

MS1[S2;G :

Proof of Proposition 7.6. The left-hand side is the number of pairs of copies of �1

and �2. The right-hand side counts the same number by enumerating over intersecting
patterns of �1 and �2, and then counting the number of pairs isomorphic to a specific
intersecting pattern.

Next, we state a lemma that expresses the number of copies of a star shape in any
graph in terms of its degree sequence.

Lemma 7.7. Let H be a graph, and � ŠK1;t be a star shape. Then,

M�;H D

X
i2V.H/

.di /.t/;

where di D degH .i/.

The following lemmas will be useful when dealing with sums of falling factorials
that arise from Lemma 7.7.

Lemma 7.8. Let d1; : : : ; dk be a sequence of natural numbers taking values at most k
for some function k D k.n/, and t 2 N be a constant. If

P
i2Œk� d

t
i D !.k/, thenX

i2Œk�

.di /.t/ D .1 � o.1//

� X
i2Œk�

d ti

�
:

7.4. Proof of Theorem 3.1: Putting it all together

For the signed count polynomial f� of some shape � , the following proposition
expresses its first, second moments under Q and the first moment under P in sim-
ple formulas, whose proof is deferred to Section A in the appendix.

Proposition 7.9. Let � be a shape. Then the following identities hold:

EQŒf� � D 0; EQŒf
2

� � D
M�

jAut.�/j
;

EP Œf� � D
M�;H

jAut.�/j

�1 � p
p

�j� j=2
;

Adv.f� / D
M�;H

M
1=2

�
� jAut.�/j1=2

�1 � p
p

�j� j=2
:
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Now we are ready to present the full proof of our main theorem.

Proof of Theorem 3.1. If lim supn!1 Adv�D <1, by [8, Lemma 7.3] we conclude
no degree-D polynomial f achieves strong separation between P and Q.

From now on we assume that limn!1Adv�D D1. Suppose � 2 ¹K1;1;K1;Dº

satisfies
max¹Adv.fK1;1

/;Adv.fK1;D
/º

Adv.f� /
D O.1/:

By Proposition 7.1,

max¹Adv.fK1;1
/;Adv.fK1;D

/º ! 1; (7.2)

and for some constant C1, for all large enough n,

max
1�t�D

Adv.fK1;t
/ � C1 �max¹Adv.fK1;1

/;Adv.fK1;D
/º: (7.3)

We now aim to show that f� , the signed count of � , achieves strong separation
between P and Q. From Proposition 7.9, we have

EQŒf� � D 0; EQŒf
2

� � D
M�

jAut.�/j
;

EP Œf� � D
M�;H

jAut.�/j

�1 � p
p

�j� j=2
:

Note that

VarQŒf� � D EQŒf
2

� � � EQŒf� �
2
D

M�

jAut.�/j
;

jEP Œf� � � EQŒf� �j D
M�;H

jAut.�/j

�1 � p
p

�j� j=2
:

The condition in (7.2) implies one side of the strong separationp
VarQŒf� � D o

�
jEP Œf� � � EQŒf� �j

�
; (7.4)

where we use that jAut.�/j D O.1/ as � has a constant number of edges.
It remains to show thatp

VarP Œf� � D o
�
jEP Œf� � � EQŒf� �j

�
:

Since EP Œf� � � EQŒf� � D EP Œf� � and VarP Œf� � D EP Œf
2

�
� � EP Œf� �

2, to show
VarP Œf� � D o.jEP Œf� � � EQŒf� �j

2/ is equivalent to proving

EP Œf
2

�
�

EP Œf� �2
� 1C o.1/:
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Recall f� D
P
S�.V2 /WSŠ�

�S . We now examine this ratio

EP Œf
2

�
�

EP Œf� �2
D

P
S;S 0�.V2 /WS;S 0Š�

EP Œ�S�S 0 �

.M 2
�;H

=jAut.�/j2/..1 � p/=p/j� j
: (7.5)

Let us compute

EP Œ�S�S 0 � D EP

� Y
¹i;j º2S

Gi;j � pp
p.1 � p/

Y
¹i 0;j 0º2S 0

Gi 0;j 0 � pp
p.1 � p/

�
D EP

� Y
¹i;j º2S4S 0

Gi;j � pp
p.1 � p/

Y
¹i 0;j 0º2S\S 0

�
Gi 0;j 0 � pp
p.1 � p/

�2�
D EP

�
�S4S 0

Y
¹i;j º2S\S 0

�
Gi;j � pp
p.1 � p/

�2�
D EHEP

�
�S4S 0

Y
¹i;j º2S\S 0

�
Gi;j � pp
p.1 � p/

�2 ˇ̌̌̌
H
�
: (7.6)

Observe that the conditional expectation above evaluates to 0 whenever S4S 0 is not
fully contained inside H. For a fixed embedding H of H , if S4S 0 � H, then

EP

�
�S4S 0

Y
¹i;j º2S\S 0

�
Gi;j � pp
p.1 � p/

�2 ˇ̌̌̌
H
�

D

�1 � p
p

�jS4S 0j=2
EP

� Y
¹i;j º2S\S 0

�
Gi;j � pp
p.1 � p/

�2 ˇ̌̌̌
H
�

D

�1 � p
p

�jS4S 0j=2�1 � p
p

�j.S\S 0/\E.H/j
; (7.7)

where the last equality follows from

E

�
.Gi;j � p/

2

p.1 � p/

ˇ̌̌̌
H
�
D

´
.1 � p/=p if ¹i; j º 2 E.H/;
1 otherwise:

Moreover, sinceD DO.1/ and p D�.1/, there exists some constant C2 D C2.D;p/
such that �1 � p

p

�j.S\S 0/\E.H/j
� max

²
1;
�1 � p

p

�D³
� C2; (7.8)

and for S; S 0 with S \ S 0 D ¿, we have�1 � p
p

�j.S\S 0/\E.H/j
D 1: (7.9)
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Inserting (7.7) and (7.8) back to (7.6), we get

EP Œ�S�S 0 � D EHEP

�
�S4S 0

Y
¹i;j º2E.S\S 0/

�
Gi;j � pp
p.1 � p/

�2 ˇ̌̌̌
H
�

� C2 � EH

�
1¹S4S 0 � Hº

�1 � p
p

�jS4S 0j=2�
D C2 �

�1 � p
p

�jS4S 0j=2
P .S4S 0 � H/

D C2 �
�1 � p

p

�jS4S 0j=2MS4S 0;H

MS4S 0
; (7.10)

where in the last line we use Lemma 7.4. Specifically, in the case that S \ S 0 D ¿,
by (7.9), we have

EP Œ�S�S 0 � D
�1 � p

p

�jS4S 0j=2MS4S 0;H

MS4S 0
: (7.11)

Substituting the bound (7.10) and (7.11) back to our ratio (7.5), we get

EP Œf
2

�
�

EP Œf� �2
D

P
S;S 0�.V2 /WS;S 0Š�

EP Œ�S�S 0 �

.M 2
�;H

=jAut.�/j2/..1 � p/=p/j� j

D
1

M 2
�;H

..1 � p/=p/j� j
�

X
..S;
/;.S 0;
 0//W

S;S 0Š�

EP Œ�S�S 0 �

D
1

M 2
�;H

..1 � p/=p/j� j
�

X
i.S1;S2/
2Inter.�;�/

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

EP Œ�S�S 0 �

�
1

M 2
�;H

..1 � p/=p/j� j
�

 X
i.S1;S2/
2Inter.�;�/W
S1\S2D¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS14S2;H

MS14S2

�1 � p
p

�jS14S2j=2

C C2 �
X

i.S1;S2/
2Inter.�;�/W
S1\S2¤¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS14S2;H

MS14S2

�1 � p
p

�jS14S2j=2!
;

where in the second line the summation is over pairs of copies of � , rather than sets
(unlabelled copies) isomorphic to � , which cancels out the jAut.�/j2 from the first
line.
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Let us examine the first term, corresponding to pairs with empty intersection:X
i.S1;S2/
2Inter.�;�/W
S1\S2D¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS14S2;H

MS14S2

D

X
i.S1;S2/
2Inter.�;�/W
S1\S2D¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS1[S2;H

MS1[S2

�

X
i.S1;S2/
2Inter.�;�/

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS1[S2;H

MS1[S2

D

X
i.S1;S2/
2Inter.�;�/

MS1[S2

MS1[S2;H

MS1[S2

D

X
i.S1;S2/
2Inter.�;�/

MS1[S2;H

DMS1;HMS2;H DM
2
�;H ;

where in the second-to-last equality we use Proposition 7.6. As a result, the first term
can be bounded by

1

M 2
�;H

..1 � p/=p/j� j
�

X
i.S1;S2/
2Inter.�;�/W
S1\S2D¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS14S2;H

MS14S2

�1 � p
p

�jS14S2j=2

�
1

M 2
�;H

..1 � p/=p/j� j
�M 2

�;H

�1 � p
p

�j� j
D 1:

Thus, we obtain a bound

EP Œf
2

�
�

EP Œf� �2
� 1C

C2

M 2
�;H

..1 � p/=p/j� j

�

X
i.S1;S2/
2Inter.�;�/W
S1\S2¤¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS14S2;H

MS14S2

�1 � p
p

�jS14S2j=2
: (7.12)

Next let us examine the second term, corresponding to pairs with non-empty inter-
section: X

i.S1;S2/
2Inter.�;�/W
S1\S2¤¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS14S2;H

MS14S2

�1 � p
p

�jS14S2j=2

D

X
i.S1;S2/
2Inter.�;�/W
S1\S2¤¿

MS1[S2 �
MS14S2;H

MS14S2

�1 � p
p

�jS14S2j=2
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�

X
i.S1;S2/
2Inter.�;�/W
S1\S2¤¿

njV.S1[S2/j�jV.S14S2/jMS14S2;H

�1 � p
p

�jS14S2j=2
;

which is a sum over a constant number (depending on the constantD) of terms. More-
over, under the condition (7.2) and (7.3), each term is o.M 2

�;H
..1 � p/=p/j� j/ by

Proposition 7.2. Thus, the second term is bounded by

C2

M 2
�;H

..1 � p/=p/j� j
�

X
i.S1;S2/
2Inter.�;�/W
S1\S2¤¿

X
.S;S 0/W
.S;S 0/
Ši.S1;S2/

MS14S2;H

MS14S2

�1 � p
p

�jS14S2j=2

�
C2

M 2
�;H

..1 � p/=p/j� j

�

X
i.S1;S2/
2Inter.�;�/W
S1\S2¤¿

njV.S1[S2/j�jV.S14S2/jMS14S2;H

�1 � p
p

�jS14S2j=2

D o.1/:

Plugging it back to (7.12), we get the desired bound

EP Œf
2

�
�

EP Œf� �2
� 1C o.1/;

which, as discussed at the beginning of the proof, implies the other side of the strong
separation p

VarP Œf� � D o
�
jEP Œf� � � EQŒf� �j

�
: (7.13)

Since both conditions (7.4) and (7.13) hold, we conclude that f� , the signed count
of the star shape � , where � is either the edge graph K1;1 or the D-star K1;D ,
achieves strong separation between P and Q.

7.5. Proof of the key lemmas

We will need the following two claims about some combinatorial properties of the
quantities M�;H . This will be directly useful for proving the intuition that focusing
on stars is all we need, leading to Proposition 7.1.

Claim 7.10. Let � be a shape, and � 0 be a spanning sub-shape of � . Then, M� 0;H �

M�;H for any graph H .

Claim 7.11. Let � be a shape that is the disjoint union of two shapes �1 and �2 that
are vertex-disjoint inside � . Then, M�1;HM�2;H �M�;H for any graph H . If more-
over � has a constant number of edges, then M�1M�2 � .1C o.1//M� as n!1.
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Proof of Claim 7.10. Let S �H together with a labelling 
 WV.S/! V.�/ be a copy
of � inH . Since � 0 is a spanning sub-shape of � , there is a spanning subgraph S 0 � S
that is isomorphic to � 0 and moreover inherits 
 as the isomorphism mapping. It is
not hard to see from the argument above for every copy of � , we find a distinct copy
of � 0, and M� 0;H �M�;H .

Proof of Claim 7.11. Let S � H with a labelling 
 W V.S/! V.�/ be a copy of �

inside H . As � is the vertex-disjoint union of two shapes �1 and �2, S consists of
two vertex-disjoint subgraphs 
�1.�1/ and 
�1.�2/, and 
 induces two labellings

1W 


�1.�1/! �1 and 
2W 
�1.�2/! �2. Thus, .
�1.�i /; 
i / is a copy of �i in H
for i 2 ¹1; 2º. It is not hard to see that for every copy of � , we find a distinct pair of
copies of �1 and �2, and M�1;HM�2;H �M�;H .

On the other hand, if � has only a constant number of edges, then in the complete
graph Kn, we have

M�1M�2 D .n/.jV.�1/j/.n/.jV.�2/j/ � n
jV.�1/jCjV.�2/j

�
�
1C o.1/

�
.n/jV.�/j D

�
1C o.1/

�
M� :

Immediately, the two claims above yield the following two simple corollaries,
which will be used to prove Proposition 7.1.

Corollary 7.12. Let � be a shape, and � 0 be a spanning sub-shape of � . Then,

M 2
� 0;H

M� 0
�
M 2

�;H

M�

:

Corollary 7.13. Let � be a shape with a constant number of edges that is the disjoint
union of two shapes �1 and �2 that are vertex-disjoint inside � . Then,�

M 2
�1;H

M�1

�1 � p
p

�j�1j�
�

�
M 2

�2;H

M�2

�1 � p
p

�j�2j�
�
�
1 � o.1/

�M 2
�;H

M�

�1 � p
p

�j� j
:

Combining the advantage of signed subgraph count computed in Proposition 7.9
and the fact that shapes with a constant number of edges have automorphism groups
of constant size, we state the following direct consequences of Corollary 7.12 and
Corollary 7.13, which may be of independent interest.

Corollary 7.14. Let � be a shape, and � 0 be a spanning sub-shape of � . Suppose
p D �.1/. If j� j D O.1/, then Adv.f� 0/ D �.Adv.f� //.

Corollary 7.15. Let � be a shape that is the disjoint union of two shapes �1 and �2

that are vertex-disjoint inside � . If j� j D O.1/, then

Adv.f�1/ � Adv.f�2/ D �
�
Adv.f� /

�
:
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Proof of Corollary 7.14. By Proposition 7.9, we have

Adv.f� 0/
2
D

M 2
� 0;H

M� 0�jAut.� 0/j

�1 � p
p

�j� 0j
; Adv.f� /

2
D

M 2
�;H

M� � jAut.�/j

�1 � p
p

�j� j
:

Notice that the automorphism group of any constant sized shape has size bounded by
a constant, and that �1 � p

p

�j� j
�

�1 � p
p

�j� 0j
since p D �.1/ and j� 0j � j� j. We may thus use Corollary 7.12 to conclude

Adv.f� 0/
2
D

M 2
� 0;H

M� 0�jAut.� 0/j

�1 � p
p

�j� 0j
&

M 2
�;H

M� �jAut.�/j

�1 � p
p

�j� j
D Adv.f� /

2:

Proof of Corollary 7.15. Again the proof follows straightforwardly by using Proposi-
tion 7.9 and noticing that the automorphism groups involved have constant sizes.

Proof of Proposition 7.1. By Proposition 7.5 and Proposition 7.9, we have

.Adv�D/2 D
X

�2G�D

M 2
�;H

M� � jAut.�/j

�1 � p
p

�j� j
D

X
�2G�D

Adv.f� /
2:

Since there are at most a constant number of shapes with at most D edges for con-
stant D, if Adv�D !1, then

max
�2G�D

Adv.f� /!1:

Now let � be a shape with at mostD edges that maximizes Adv.f� / in the above.
With Corollary 7.14 and Corollary 7.15 in hand, we will show a properly chosen
sub-shape of � satisfies the condition of the corollary.

If � is already star graph, then we are done. If � is not a connected shape, then
we may recurse on one of the connected components � 0 of � while ensuring that
Adv.f� /!1 using Corollary 7.15. So now let us assume � is connected. Let T be
a spanning tree of the shape � . By Corollary 7.14,

Adv.fT / & Adv.f� /!1:
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If the diameter of T is at least 3, let us consider a path a� b � c � d of length 3 in T .
Note that after the edge ¹b; cº is deleted from T , what remains is still a spanning
sub-shape T � ¹b; cº, and we may recurse on it by Corollary 7.14.

Repeating the process above, we will end up with a shape � that satisfies

Adv.f� /!1;

and moreover is either a star graph or a tree of diameter at most 2. Note that star
graphs are precisely trees with diameters at most 2. This shows that

max
�ŠK1;t Wt�D

Adv.f� /!1: (7.14)

Next, we will show that (7.14) implies that

max¹Adv.fK1;1
/;Adv.fK1;D

/º ! 1;

and
max
1�t�D

Adv.fK1;t
/ � C �max¹Adv.fK1;1

/;Adv.fK1;D
/º

for some constant C that depends on D. For � Š K1;t , let us consider the following
function

g.t/ WD
MK1;t ;H

M
1=2

K1;t

�1 � p
p

�jK1;t j=2

:

By Proposition 7.9, g.t/ D jAut.K1;t /j
1=2 � Adv.fK1;t

/. Thus, for t � D D O.1/,
since the automorphism group of K1;t has bounded size, there exists C0 > 0 such that

C0 � Adv.fK1;t
/=g.t/ � 1: (7.15)

We will show that g.t/ is sandwiched between two convex functions. Using this
strategy, we will show that whenever (7.14) holds, we have max¹g.1/; g.D/º ! 1.
By Lemma 7.7, we have

g.t/ D
�
1C o.1/

�
�

P
i2V.H/.di /.t/

n.1Ct/=2

�1 � p
p

�t=2
:

For the ease of notation, let us denote

yg.t/ WD

P
i2V.H/.di /.t/

n.1Ct/=2

�1 � p
p

�t=2
;

so that g.t/ � yg.t/. We will prove that, for fixed constant D, there exists constants
C1; C2 > 0 such that

C1 � h.t/ � C2 � yg.t/ � h.t/; 8t 2 ŒD�; (7.16)
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where we denote

h.t/ WD

P
i2V.H/ d

t
i

n.1Ct/=2

�1 � p
p

�t=2
:

The second inequality of (7.16) is trivial using the definition of falling factorial. We
then focus on the first inequality. Let us group all the vertices i 2 V.H/ according to
their degrees di : X

i2V.H/

.di /.t/ D
X
i Wdi�t

.di /.t/ C
X
i Wdi<t

.di /.t/:

For any i 2 V.H/ with di � t , by Lemma 9.1,

.di /.t/ � d
t
i � e

�t2=2.di�tC1/ � d ti � e
�t2=2

� d ti � e
�D2=2;

since t � D and t � di . For the vertices with degrees less than t , we computeP
i2V.H/Wdi<t

d ti

n.1Ct/=2

�1 � p
p

�t=2
�
jV.H/j � t t

n.1Ct/=2

�1 � p
p

�t=2
�
jV.H/jt

n
�

� t2
np

�.t�1/=2
D O.1/;

since p D�.1/, jV.H/j � n, and di < t �D DO.1/. Combining the results, we get

h.t/ D

P
i2V.H/ d

t
i

n.1Ct/=2

�1 � p
p

�t=2
D

P
i2V.H/Wdi<t

d ti

n.1Ct/=2

�1 � p
p

�t=2
C

P
i2V.H/Wdi�t

d ti

n.1Ct/=2

�1 � p
p

�t=2
� O.1/C eD

2=2
�

P
i2V.H/Wdi�t

.di /.t/

n.1Ct/=2

�1 � p
p

�t=2
D O.1/C eD

2=2
�

P
i2V.H/.di /.t/

n.1Ct/=2

�1 � p
p

�t=2
D O.1/C eD

2=2
� yg.t/; (7.17)

where the second last equality holds because .di /.t/ D 0 for di < t . Note that eD
2=2

is a constant when D is a constant. Therefore, by (7.17), given fixed D, there exists
constants C1; C2 > 0 such that

C1 � h.t/ � C2 � yg.t/ � h.t/; 8t 2 ŒD�;

which finishes the proof of (7.16).
Finally, we notice that the following is convex:

h.t/ D

P
i2V.H/ d

t
i

n.1Ct/=2

�1 � p
p

�t=2
:



Counting stars is constant-degree optimal for detecting any planted subgraph 137

We will make use of the convexity of h.t/ and the sandwiching bound (7.16) to con-
clude the proof. When (7.14) holds, we have

max
1�t�D

Adv.fK1;t
/!1

) max
1�t�D

g.t/!1 by the bound (7.15);

) max
1�t�D

yg.t/!1 since g.t/ � yg.t/;

) max
1�t�D

h.t/!1 by the bound (7.16);

) max¹h.1/; h.D/º ! 1 by the convexity of h.t/;

) max¹g.1/; g.D/º ! 1 again by (7.16) and g.t/ � yg.t/;

) max¹Adv.fK1;1
/;Adv.fK1;D

/º ! 1 again by (7.15): (7.18)

We could similarly check that

max1�t�D Adv.fK1;t
/

max¹Adv.fK1;1
/;Adv.fK1;D

/º
� C0 �

max1�t�D g.t/
max¹g.1/; g.D/º

since C0 � Adv.fK1;t
/=g.t/ � 1,

�
�
C0 C o.1/

� max1�t�D yg.t/
max¹yg.1/; yg.D/º

since g.t/ � yg.t/,

�
�
C0 C o.1/

� max1�t�D h.t/
max¹.C1 � h.1/ � C2/; .C1 � h.D/ � C2/º

by (7.16) and that max¹h.1/; h.D/º ! 1,

�
2C0

C1
�

max1�t�D h.t/
max¹h.1/; h.D/º

�
2C0

C1

since h.t/ is convex. In other words, there exists a constant C3 such that, if

max
1�t�D

Adv.fK1;t
/!1;

then for large enough n,

max
1�t�D

Adv.fK1;t
/ � C3 �max¹Adv.fK1;1

/;Adv.fK1;D
/º: (7.19)

Moreover, notice that C0 and C1 depend on D only, and thus C3 depends on D only.
In conclusion, we showed that (7.14) implies (7.18) and (7.19).
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Proof of Proposition 7.2. Let di D degH .i/ for i 2 V.H/. By Lemma 7.7,

M�;H D

X
i2V.H/

.di /.t/:

First, let us notice that if S14S2 D ¿, then S1 D S2 Š � , and the desired bound
easily follows, as in this situation the ratio of interest is bounded by

njV.S1[S2/jM¿;H

M 2
�;H

..1 � p/=p/j� j
�
�
1C o.1/

� M�

M 2
�;H

..1 � p/=p/j� j

D
�
1C o.1/

� 1

jAut.�/j � Adv.f� /2
D o.1/;

where we use Proposition 7.9 in the second to last line and Adv.f� /!1 in the last
line. So from now on let us assume S14S2 ¤ ¿. If S1; S2 Š K1;t have non-empty
intersection and S14S2 ¤ ¿, there are two cases.

Case 1. In this case, S1 and S2 do not share the same root. Note that

jV.S1 [ S2/j D jV.S14S2/j and jS14S2j D 2j� j � 2

in this case. Consider the shapes S 01 D S1 n S2 and S 02 D S2ŒV .S2/ n V.S
0
1/�, as illus-

trated in Figure 7.
Notice that S 01 and S 02 are vertex disjoint, and S 01 t S

0
2 is a spanning sub-shape

of S14S2. By Claim 7.10 and Claim 7.11, we have

MS14S2;H �MS 0
1
tS 0
2
;H �MS 0

1
;HMS 0

2
;H :

Then, using jV.S1 [S2/j D jV.S14S2/j, jS14S2j D 2j� j � 2, and thatMS14S2;H �

MS 0
1
;HMS 0

2
;H , we get

njV.S1[S2/j�jV.S14S2/jMS14S2;H ..1 � p/=p/
jS14S2j=2

M 2
�;H

..1 � p/=p/j� j

�
MS 0

1
;HMS 0

2
;H

M 2
�;H

..1 � p/=p/

�
�
1C o.1/

�q.M 2
S 0
1
;H
=MS 0

1
/..1 � p/=p/jS

0
1
j � .M 2

S 0
2
;H
=MS 0

2
/..1 � p/=p/jS

0
2
j

.M 2
�;H

=M� /..1 � p/=p/j� j

�
..1 � p/=p/j� j�.jS

0
1
jCjS 0

2
j/=2�1

njV.�/j�.jV.S
0
1
/jCjV.S 0

2
/j/=2

; (7.20)

where the last line uses MS D .1 � o.1//n
jV.S/j for constant sized shapes S .
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� � � � � � � � �„ ƒ‚ …
x

Figure 6. Case 1 for the intersecting pattern i.S1; S2/ of two t -stars with non-empty intersec-
tion. The edges contained solely in S1, solely in S2, and in the intersection of S1 and S2, are
marked by blue, red, and purple respectively.

� � � � � � � � �

S 0
1

S 0
2

Figure 7. Vertex disjoint S 0
1

and S 0
2

whose union is a spanning sub-shape of S14S2 in Figure 6.

Since for some constant C , � satisfies Adv.f� 0/ � C �Adv.f� / for all star shapes
� 0 Š K1;t 0 with at most j� j edges, by Proposition 7.9 and that the automorphism
groups involved have bounded size for j� j � D D O.1/, we have that for some con-
stant C 0 > 0,

.M 2
� 0;H

=M� 0/..1 � p/=p/
j� 0j

.M 2
�;H

=M� /..1 � p/=p/j� j
� C 0 (7.21)

for all star shapes � 0 Š K1;t 0 with at most j� j edges. As S 01; S
0
2 are also star shapes

with at most j� j number of edges, we haveq
.M 2

S 0
1
;H
=MS 0

1
/..1 � p/=p/jS

0
1
j � .M 2

S 0
2
;H
=MS 0

2
/..1 � p/=p/jS

0
2
j

.M 2
�;H

=M� /..1 � p/=p/j� j
� C 0:

Also observe that as

j� j �
jS 01j C jS

0
2j

2
� 1 � 0 and jV.�/j �

jV.S 01/j C jV.S
0
2/j

2
� 1;

we have
..1 � p/=p/j� j�.jS

0
1
jCjS 0

2
j/=2�1

njV.�/j�.jV.S
0
1
/jCjV.S 0

2
/j/=2

.
1

n
;

where we use the fact that .1 � p/=p D O.1/ as p D �.1/, and j� j � D D O.1/.
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� � � � � � � � �„ƒ‚…
x

Figure 8. Case 2 for the intersecting pattern i.S1; S2/ of two t -stars with non-empty intersec-
tion. The edges contained solely in S1, solely in S2, and in the intersection of S1 and S2, are
marked by blue, red, and purple, respectively.

Plugging these bounds back into (7.20), we get

njV.S1[S2/j�jV.S14S2/jMS14S2;H ..1 � p/=p/
jS14S2j=2

M 2
�;H

..1 � p/=p/j� j

�
�
1C o.1/

�q.M 2
S 0
1
;H
=MS 0

1
/..1 � p/=p/jS

0
1
j � .M 2

S 0
2
;H
=MS 0

2
/..1 � p/=p/jS

0
2
j

.M 2
�;H

=M� /..1 � p/=p/j� j

�
..1 � p/=p/j� j�.jS

0
1
jCjS 0

2
j/=2�1

njV.�/j�.jV.S
0
1
/jCjV.S 0

2
/j/=2

.
C 0

n
D o.1/:

Case 2. Under this case, star-shaped copies S1 and S2 share the same root vertex, as
shown in the Figure 8. Let x WD jV.S1 [ S2/j � jV.S14S2/j. Note that 0 < x < t .
Then, S14S2 Š K1;2t�2x , and by Lemma 7.7, we have

MS14S2;H DMK1;2t�2x ;H D

X
i2V.H/

.di /.2t�2x/:

If x � t=2, then S14S2 Š K1;2t�2x is a star graph with at most t edges, and
therefore by the inequality (7.21), for some constant C 0, � satisfies

.M 2
� 0;H

=M� 0/..1 � p/=p/
j� 0j

.M 2
�;H

=M� /..1 � p/=p/j� j
� C 0

for all star shapes � 0 ŠK1;t 0 with at most j� j D t edges, we have

M 2
S14S2;H

MS14S2

�1 � p
p

�jS14S2j
� C 0 �

M 2
�;H

M�

�1 � p
p

�j� j
:
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Rearranging the inequality, we get

MS14S2;H �
p
C 0 �M�;H

s
MS14S2

M�

�1 � p
p

�j� j�jS14S2j
�
�p
C 0 C o.1/

�
� n.jV.S14S2/j�jV.�/j/=2

�1 � p
p

�.j� j�jS14S2j/=2
M�;H

D
�p
C 0 C o.1/

�
� n.t�2x/=2

�1 � p
p

�.2x�t/=2
M�;H ;

and

njV.S1[S2/j�jV.S14S2/jMS14S2;H ..1 � p/=p/
jS14S2j=2

M 2
�;H

..1 � p/=p/j� j

�
�p
C 0 C o.1/

�
�
.n.p=.1 � p///x.n.p=.1 � p///t=2�x

M�;H

�
�p
C 0 C o.1/

�
�
.n.p=.1 � p///t=2

M�;H

� o.1/;

as

M 2
�;H

.n.p=.1 � p///t
�
�
1 � o.1/

�
�
M 2

�;H

M�

�1 � p
p

�j� j
�
�
1 � o.1/

�
� Adv.f� /

2
� jAut.�/j ! 1

by our assumption.
Therefore, we now assume x < t=2. SinceX

i2V.H/

.di /.2t�2x/ �
X

i2V.H/

.di /.t/

DM�;H � !
�
n.1Ct/=2

� p

1 � p

�t=2�
D !.n/;

we may apply Lemma 7.8 and calculate

njV.S1[S2/j�jV.S14S2/jMS14S2;H ..1 � p/=p/
jS14S2j=2

M 2
�;H

..1 � p/=p/j� j

D
.n.p=.1 � p//x

P
i2V.H/.di /.2t�2x/

.
P
i2V.H/.di /.t//

2

�
�
1C o.1/

�
�
.n.p=.1 � p///x

P
i2V.H/ d

2t�2x
i

.
P
i2V.H/ d

t
i /
2

:
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Let � WD maxi2V.H/ di . We have

.n.p=.1 � p///x
P
i2V.H/ d

2t�2x
i

.
P
i2V.H/ d

t
i /
2

�
.n.p=.1 � p///x.

P
i2V.H/ d

t
i /�

t�2x

.
P
i2V.H/ d

t
i /
2

D
.n.p=.1 � p///x�t�2xP

i2V.H/ d
t
i

: (7.22)

Recalling the assumption that the star-shape � ŠK1;t satisfies

M 2
�;H

M�

�1 � p
p

�j� j
D Adv.f� /

2
� jAut.�/j ! 1;

and using Lemma 7.8, we have

!.1/�
M 2

�;H

M�

�1 � p
p

�j� j
D

.
P
i2V.H/.di /.t//

2

.n/.tC1/.p.1 � p//t
�
�
1C o.1/

�
�
.
P
i2V.H/ d

t
i /
2

ntC1.p=.1 � p//t
:

Thus, we obtain

1P
i2V.H/ d

t
i

� o

�
1

n.tC1/=2.p=.1 � p//t=2

�
;

and plugging it back to (7.22), we get

.n.p=.1 � p///x
P
i2V.H/ d

2t�2x
i

.
P
i2V.H/ d

t
i /
2

�
.n.p=.1 � p///x�t�2xP

i2V.H/ d
t
i

� o

�
�t�2x

n.tC1/=2�x.p=.1 � p//t=2�x

�
: (7.23)

On the other hand, notice that
P
i2V.H/ d

t
i � �

t , and therefore

.n.p=.1 � p///x
P
i2V.H/ d

2t�2x
i

.
P
i2V.H/ d

t
i /
2

�
.n.p=.1 � p///x�t�2xP

i2V.H/ d
t
i

�
.n.p=.1 � p///x

�2x
: (7.24)

Combining (7.23) and (7.24),

.n.p=.1 � p///x
P
i2V.H/ d

2t�2x
i

.
P
i2V.H/ d

t
i /
2

� min
²
o

�
�t�2x

n.tC1/=2�x.p=.1 � p//t=2�x

�
;
.n.p=.1 � p///x

�2x

³
: (7.25)
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If � � n1=2C1=.2t/.p=.1 � p//1=2, then

.n.p=.1 � p///x

�2x
�

.n.p=.1 � p//x

nxCx=t .p=.1 � p//x
D

1

nx=t
D o.1/;

since x > 0 and t � D D O.1/. Otherwise, if � � n1=2C1=.2t/.p=.1 � p//1=2, we
can bound

o

�
�t�2x

n.tC1/=2�x.p.1 � p//t=2�x

�
� o

�
n.tC1/=2�x�x=t .p=.1 � p//t=2�x

n.tC1/=2�x.p=.1 � p//t=2�x

�
D o

� 1

nx=t

�
D o.1/:

Since in both regimes of � the expression in (7.25) is o.1/, we conclude that

njV.S1[S2/j�jV.S14S2/jMS14S2;H ..1 � p/=p/
jS14S2j=2

M 2
�;H

..1 � p/=p/j� j

�
�
1C o.1/

�
�
.n.p=.1 � p///x

P
i2V.H/ d

2t�2x
i

.
P
i2V.H/ d

t
i /
2

� o.1/;

which finishes the proof for Case 2.
Combining the case discussions, we obtain the result.

8. Proof of the main corollary

Proof of Corollary 3.5. We prove both directions of the stated condition.
If lim supn!1

P
v2V.H/ d

t
v

n.1Ct/=2.p=.1�p//t=2
<1 for t 2 ¹1; Dº, then by Lemma 7.7, we

have

lim sup
n!1

max
²M 2

K1;1;H

MK1;1

�1 � p
p

�1
;
M 2

K1;D ;H

MK1;D

�1 � p
p

�D³
D lim sup

n!1
max
t2¹1;Dº

²�
1C o.1/

�� P
v2V.H/.dv/.t/

n.1Ct/=2.p=.1 � p//t=2

�2³
� lim sup

n!1
max
t2¹1;Dº

²�
1C o.1/

�� P
v2V.H/ d

t
v

n.1Ct/=2.p=.1 � p//t=2

�2³
<1:

Thus, by Proposition 7.9, we have max¹Adv.fK1;1
/;Adv.fK1;D

/º D O.1/ since the
automorphism groups of K1;1 and K1;D have bounded sizes. By the contrapositive
of Proposition 7.1, the degree-D advantage in this case must be bounded away from
infinity. By Theorem 3.1, degree-D polynomial tests do not achieve strong separation
between P and Q.
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If limn!1maxt2¹1;Dº¹
P
v2V.H/ d

t
v

n.1Ct/=2.p=.1�p//t=2
º D1, by Lemma 7.7 and Lemma 7.8,

lim
n!1

max
²M 2

K1;1;H

MK1;1

�1 � p
p

�1
;
M 2

K1;D ;H

MK1;D

�1 � p
p

�D³
D lim
n!1

max
t2¹1;Dº

²�
1C o.1/

�� P
v2V.H/.dv/.t/

n.1Ct/=2.p=.1 � p//t=2

�2³
D lim
n!1

max
t2¹1;Dº

²�
1 � o.1/

�� P
v2V.H/ d

t
v

n.1Ct/=2.p=.1 � p//t=2

�2³
D1:

By Proposition 7.5, the square of the degree-D advantage can be written as

.Adv�D/2 D
X

�2G�D

M 2
�;H

M� � jAut.�/j

�1 � p
p

�j� j
; (8.1)

which clearly tends to infinity as n!1, since for t 2 ¹1;Dº, K1;t is one shape that
contributes to the summation (8.1), its automorphism group has constant size, and all
the terms are non-negative. If t� 2 ¹1;Dº satisfies

max
° P

v2V.H/ dv

n.p=.1�p//1=2
;

P
v2V.H/ d

D
v

n.1CD/=2.p=.1�p//D=2

±
P
v2V.H/ d

t�
v

n.1Ct
�/=2.p=.1�p//t

�=2

D O.1/; (8.2)

then by Proposition 7.9 and Lemma 7.7, we also have

max¹Adv.fK1;1
/;Adv.fK1;D

/º

Adv.fK1;t�
/

�
�
1C o.1/

�
�

max
° P

v2V.H/ dv

jAut.K1;1/j1=2�n.p=.1�p//1=2
;

P
v2V.H/.dv/.D/

jAut.K1;D/j1=2�n.1CD/=2.p=.1�p//D=2

±
P
v2V.H/.dv/.t�/

n.1Ct
�/=2.p=.1�p//t

�=2

.
max

° P
v2V.H/ dv

n.p=.1�p//1=2
;

P
v2V.H/ d

D
v

n.1CD/=2.p=.1�p//D=2

±
C1 �

P
v2V.H/ d

t�
v

n.1Ct
�/=2.p=.1�p//t

�=2
� C2

for some constants C1; C2 > 0 by the bound (7.16),

D O.1/;

where in the last line we use that (8.2) together with the assumption

max
t2¹1;Dº

² P
v2V.H/ d

t
v

n.1Ct/=2.p=.1 � p//t=2

³
!1
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implies that
P
v2V.H/ d

t�

v

n.1Ct
�/=2.p=.1�p//t

�=2
!1, and thus

C1 �

P
v2V.H/ d

t�

v

n.1Ct
�/=2.p=.1 � p//t

�=2
� C2 D ‚

� P
v2V.H/ d

t�

v

n.1Ct
�/=2.p=.1 � p//t

�=2

�
:

Finally, since Adv�D !1 and

max¹Adv.fK1;1
/;Adv.fK1;D

/º

Adv.fK1;t�
/

D O.1/;

by Theorem 3.1, the polynomial fK1;t�
strongly separates P and Q.

9. Proof of the characterization theorem

Here we prove our characterization theorem of optimal tests based on the maximum
degree.

Proof of Theorem 4.2. By Corollary 3.5, whenever strong separation can be achieved
by degree-D polynomials for some constant D, an optimal test is

fK1;t�
D

X
S�.V2 /WSŠK1;t�

�S ;

where t� 2 ¹1;Dº and satisfies

max
° P

v2V.H/ dv

n.p=.1�p//1=2
;

P
v2V.H/ d

D
v

n.1CD/=2.p=.1�p//D=2

±
P
v2V.H/ d

t�
v

n.1Ct
�/=2.p=.1�p//t

�=2

D O.1/: (9.1)

Now let us consider for which t� 2 ¹1;Dº the condition (9.1) is achieved.
If � . .n.p=.1 � p///1=2, thenP

i2V.H/ d
D
i

n.1CD/=2.p=.1 � p//D=2
D

1
p
n

X
i2V.H/

�
di

.n.p=.1 � p///1=2

�D
.

1
p
n

X
i2V.H/

�
di

.n.p=.1 � p///1=2

�
D

P
i2V.H/ di

n.p=.1 � p//1=2
:

Therefore, t� D 1 achieves the condition (9.1), and the signed count of edges is an
optimal test in this case. Let us now address when the signed count of edges achieves
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strong separation given that it is an optimal test. By Corollary 3.5, fK1;1
achieves

strong separation if and only if P
i2V.H/ di

n.p=.1 � p//1=2
!1:

Since
P
i2V.H/ di D 2m wheremD jE.H/j, we thus conclude that the signed count

of edges achieves strong separation if and only if m D !.n.p.1 � p//1=2/.

On the other hand, if � � .n.p=.1 � p///1=2C" for some constant " > 0,P
i2V.H/ d

D
i

n.1CD/=2.p=.1 � p//D=2
�

�D

n.1CD/=2.p=.1 � p//D=2

D
1
p
n

�
�

.n.p=.1 � p///1=2

�D
�

1
p
n
.n.p=.1 � p///"D:

In particular, setting D D d3=2"e, we haveP
i2V.H/ d

D
i

n.1CD/=2.p=.1 � p//D=2
�

1
p
n

�
n

p

1 � p

�"D
�

1
p
n

�
n

p

1 � p

�3=2
D n

� p

1 � p

�3=2
&

P
i2V.H/ di

n.p=.1 � p//1=2
;

where in the last line we use that
P
i2V.H/ di � n.n � 1/ and p D �.1/. Therefore,

t� D D D d3=2"e achieves the condition (9.1), and the signed count of D-stars is an
optimal test in this case. Moreover, from the second to last line above, we knowP

i2V.H/ d
D
i

n.1CD/=2.p=.1 � p//D=2
!1:

By Corollary 3.5, we conclude that the signed count of D-stars, fK1;D
, achieves

strong separation.

Lemma 9.1. Let a; b be non-negative integers with a � b. Then it holds that

.a/.b/ D
aŠ

.a � b/Š
� ab � exp

�
�b2=2.a � b C 1/

�
:

Proof. We compute

log
�

aŠ

.a � b/Š

�
D b log aC

b�1X
iD0

log.1 � i=a/
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using the fact that log.1 � x/ � �x=.1 � x/ holds for any x 2 .0; 1/,

� b log a �
b�1X
iD0

i

a � i

� b log a �
b�1X
iD0

i

a � b C 1

� b log a �
b2

2.a � b C 1/
:

We conclude by taking exponential of both sides.

10. Proof of tightness of the main theorem

In this section, we prove the tightness of our main theorem: if either p D �.1/ or
D D O.1/ is not satisfied, counting stars could fail to strong separate P and Q in the
planted subgraph detection task while some other degree-D polynomial does so. Our
proofs consider two natural planted subgraph detection settings:

• a constant-sized clique planted in a sparse G.n; p/,

• a clique of size k D ‚.
p
n/ planted in G.n; 1=2/,

and show in each case that counting stars does not capture the strong separability
of the problem with respect to degree-D polynomials, with D D O.1/ in the first
setting and D D O.log n/ in the second setting. The main effort in these proofs lies
in careful second moment analysis which confirms strong separation is achieved by
some natural degree-D polynomial (which of course is not achieved by counting stars)
in each setting.

Proof of Lemma 5.1. For p D n�
 where 
 2 .0; 1/ is a constant, let k D 4=
 . Con-
sider the planted subgraph detection task with a clique of size k planted in G.n; p/.
We want to show under this setting, it holds that (1) counting stars fails to achieve
strong separation and (2) there exists a constant degree polynomial test that strongly
separates the two hypotheses.

For (1), we calculate the advantage of signed count of a star shape K1;t using
Proposition 7.9 and Lemma 7.7:�

Adv.fK1;t
/
�2
D
.
P
i2V.H/.di /.t//

2

jAut.K1;t /j � n1Ct

�1 � p
p

�t
�
.
P
i2V.H/ d

t
i /
2

n1Ct

�1 � p
p

�t
�
k2

n
�

� k2

n1�


�t
: (10.1)
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In particular, we plug in k D 4=
 and can easily verify that k2 � n1�
 � n holds.
Therefore, the advantage (10.1) of counting a star shape K1;t isO.1/ for any t , which
implies that counting star fails to achieve strong separation.

For (2), consider the simple polynomial test f which counts the unsigned number
of unlabelled copies of k-cliques in G, which can be expressed as

f .G/ D
X

U�V WjU jDk

1¹GŒU � is a cliqueº;

and corresponds to a degree-
�
k
2

�
polynomial. We will show that f achieves strong

separation for detecting a planted clique of size k in G.n; p/. To this end, we need to
compute the first and the second moments of f under P and Q. We observe that we
always have f � 1 underG � P , so EP Œf �� 1. Recall that p D n�
 D o.n�2=.k�1//
for our choice of k. Under Q, we have

EQŒf � D
X

U�V WjU jDk

EQŒ1¹GŒU � is a cliqueº�

D

X
U�V WjU jDk

p.
k
2/ � nkp.

k
2/ D o.1/;

EQŒf
2� D

X
U;U 0�V WjU jDjU 0jDk

EQŒ1¹GŒU � is cliqueº1¹GŒU 0� is cliqueº�

D

X
U;U 0�V WjU jDjU 0jDk

p2.
k
2/�.

jU\U 0j
2 /

D

kX
iD0

X
U;U 0�V W
jU jDjU 0jDk;
jU\U 0jDi

p2.
k
2/�.

i
2/

�

kX
iD0

�
n

i

��
n

k � i

��
n

k � i

�
pk.k�1/�i.i�1/=2

�

kX
iD0

n2k�ipk.k�1/�i.i�1/=2

D

kX
iD0

�
nkp.

k
2/
�2�i=k

pi.k�i/=2 D o.1/;

and we get VarQŒf � D o.1/. Now we turn to the second moment of f under P . We
first notice that for any realization of the planted H, we have

EP Œf
2� D EP Œf

2
jH�:
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Thus, we may equivalently consider another distribution P 0 where we fix the planted
k-clique to be on the first k vertices ¹1; : : : ; kº � V WD Œn�. Let us denote this fixed
set of vertices where the k-clique under P 0 is planted on asW . We may now compute

EP Œf
2� D EP 0 Œf

2�

D

X
U;U 0�V W
jU jDjU 0jDk

EP 0 Œ1¹GŒU � is cliqueº1¹GŒU 0� is cliqueº�

D

kX
xD0

kX
yD0

X
i�min¹k�x;k�yº;
j�min¹x;yºX

U;U 0�V W
jU jDjU 0jDk;

jU\W jDx; jU 0\W jDy;
jU\U 0nW jDi; jU\U 0\W jDj

EP 0 Œ1¹GŒU � is cliqueº1¹GŒU 0� is cliqueº�

D 1C 2
X
0�x<k

X
U�V W
jU jDk;
jU\W jDx

EP 0 Œ1¹GŒU � is cliqueº�

C

X
0�x<k

X
0�y<k

X
i�min¹k�x;k�yº;
j�min¹x;yºX

U;U 0�V W
jU jDjU 0jDk;

jU\W jDx; jU 0\W jDy;
jU\U 0nW jDi; jU\U 0\W jDj

EP 0 Œ1¹GŒU � is cliqueº1¹GŒU 0� is cliqueº�

D 1C 2
X
0�x<k

X
U�V W
jU jDk;
jU\W jDx

p.
k
2/�.

x
2/

C

X
0�x<k

X
0�y<k

X
i�min¹k�x;k�yº;
j�min¹x;yº

X
U;U 0�V W
jU jDjU 0jDk;

jU\W jDx; jU 0\W jDy;
jU\U 0nW jDi; jU\U 0\W jDj

p2.
k
2/�.

x
2/�.

y
2/�.

i
2/�ij

� 1C 2
X
0�x<k

kxnk�xp.
k
2/�.

x
2/

C

X
0�x<k

X
0�y<k

X
0�i�min¹k�x;k�yº;
0�j�min¹x;yº

kxCy�jnink�x�ink�y�ip2.
k
2/�.

x
2/�.

y
2/�.

i
2/�ij
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� 1C 2
X
0�x<k

kxnk�xp.
k
2/�.

x
2/

C 2
X

0�x�y<k

X
0�i�k�y;
0�j�x

kxCy�jn2k�x�y�ip2.
k
2/�.

x
2/�.

y
2/�.

i
2/�ij

� 1C Ck max
0�x<k

nk�xp.
k
2/�.

x
2/ (10.2)

C Ck max
0�x�y<k;
0�i�k�y;
0�j�x

n2k�x�y�ip2.
k
2/�.

x
2/�.

y
2/�.

i
2/�ij ; (10.3)

where Ck in the last inequality is a constant depending on the constant k. Let us sepa-
rately examine the terms nk�xp.

k
2/�.

x
2/ and n2k�x�y�ip2.

k
2/�.

x
2/�.

y
2/�.

i
2/�ij appear-

ing in (10.2) and (10.3). Recall p D n�
 D o.n�2=.k�1//.
For any 0 � x < k, we have

nk�xp.
k
2/�.

x
2/ D

�
nkp.

k
2/
�1�x=k

px.k�x/=2 D o.1/:

For any 0 � x � y < k, 0 � i � k � y, and 0 � j � x, we have

n2k�x�y�ip2.
k
2/�.

x
2/�.

y
2/�.

i
2/�ij

D
�
nkp.

k
2/
�2�.xCyCi/=k

px.k�x/=2Cy.k�y/=2Ci.k�i�2j /=2: (10.4)

Note that the first exponent 2 � .x C y C i/=k is strictly positive as x C y C i �
x C k < 2k, and the second exponent satisfies

x.k � x/

2
C
y.k � y/

2
C
i.k � i � 2j /

2

�
x.k � x/

2
C
y.k � y/

2
C
i.k � i � 2x/

2

�
x.k � x/

2
C
y.k � y/

2
C
i.k � .k � y/ � 2x/

2

�
x.k � x/

2
C
y.k � y/

2
C
�ix

2

�
x.k � x/

2
C
y.k � y/

2
C
�.k � y/x

2

�
x.k � x/

2
C
.y � x/.k � y/

2

� 0;

where we repeatedly apply 0 � i � k � y, 0 � j � x, and 0 � x � y < k. Therefore,
we conclude that the expression in (10.4) is o.1/. Now that we know both terms
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in (10.2) and (10.3) are o.1/, we use these bounds and conclude that

EP Œf
2� � 1 � Ck max

0�x<k
nk�xp.

k
2/�.

x
2/

C Ck max
0�x�y<k;
0�i�k�y;
0�j�x

n2k�x�y�ip2.
k
2/�.

x
2/�.

y
2/�.

i
2/�ij

� o.1/:

Since moreover EP Œf � � 1, we know VarP Œf � D o.1/. As VarQŒf �;VarP Œf � D o.1/

and jEP Œf ��EQŒf �j � 1� o.1/, we conclude that f achieves strong separation.

Proof of Lemma 5.2. Let k D C
p
n where C > 0 is a constant. Consider the planted

subgraph detection task with a clique of size k planted in G.n; 1
2
/. We want to show

under this setting, it holds that (1) counting stars fails to achieve strong separation
and (2) there exists a degree-O.logn/ polynomial test that strongly separates the two
hypotheses.

For (1), let us consider the signed count polynomial f� where � is a star shape.
When � is a t -star for any t � 2, jAut.�/j D t Š. By Proposition 7.9, we may cal-
culate the advantage of counting t -stars for detecting a planted clique of size k in
G.n; 1=2/ as

�
Adv.f� /

�2
D

M 2
�;Kk

jAut.�/j �M�

D
�
1C o.1/

�
�
.
P
i2V.Kk/

.di /.t//
2

n1Ct � t Š

�
�
1C o.1/

�
�
.k � kt /2 � et

n1Ct � t t
�
k2

n

�e � k2
t � n

�t
;

which is bounded by O.1/ for any t � 2 when k D C
p
n for a constant C . It is also

easy to check that counting edges does not achieve strong separation in this case. We
thus conclude that counting stars fails to strongly separate P under this setting for
any t .

Now we turn to prove (2). The seminal work of [1] proved that a spectral method
successfully detects a planted k-clique with high probability when k D C

p
n for

a large enough constant C > 0, and it is known that such spectral method can be
well approximated by degree-O.log n/ polynomials (see [11, 20]). However, these
results do not address the aspect of strong separation. Here, we will show that some
degree-O.log n/ polynomial does achieve strong separation when k D C

p
n for a

large enough constant C > 0, following a slight variant of the polynomial that approx-
imates the trace method.
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For convenience, in the following discussion we will useM to denote the ¹C1;�1º
adjacency matrix of G drawn from the null distribution Q or the planted distribu-
tion P , where an entry .i; j / is 1 if ¹i; j º is an edge in G, �1 if ¹i; j º is not an edge,
and 0 on the diagonal i D j . Let l D B log n, where B is a large enough constant.
Consider the following polynomial

f .M/ D
X

.i1;:::;il /W
it2Œn�; all distinct

Mi1;i2Mi2;i3 : : :Mil�1;ilMil ;i1

of M , which is a degree-l polynomial in the entries of M . Moreover, we will call
xi D .i1; : : : ; il/ a (simple) closed path (of length l on l vertices), and use

M
xi
WDMi1;i2Mi2;i3 : : :Mil�1;ilMil ;i1

to denote this product that corresponds to the closed path xi .
Under the null distribution Q, we have

EQŒf .M/� D 0;

EQŒf .M/2� D
X

closed paths xi ;xj

EQŒM
xiM
xj �

D

X
closed paths xi ;xj

1¹E.xi/ D E. xj /º

D n.n � 1/ : : : .n � l C 1/ � 2l

D
�
1C o.1/

�
2lnl :

Let us now consider the planted distribution P . Since the planted clique can be
specified by a subset of vertices the clique is planted on, we will denote this subset of
vertices as W, where we use bold letter to emphasize it is uniformly random among
all subsets of size k. Under P , we have

EP Œf .M/� D
X

closed path xi

EP ŒM
xi �

D

X
closed path xi

EP Œ1¹i1; : : : ; il 2Wº�;

since conditioning on the planted clique, EP ŒM
xi jW�D 0 whenever xi is not fully con-

tained in the planted clique, and 1 otherwise. We further observe that the probability
that any fixed closed path xi of length l is contained in W is simply

k.k � 1/ : : : .k � l C 1/

n.n � 1/ : : : .n � l C 1/
D
�
1C o.1/

�
�

�k
n

�l
;
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which can also be verified using Lemma 7.4. As a result,

EP Œf .M/� D
X

closed path xi

EP Œ1¹i1; : : : ; il 2Wº�

D

X
closed path xi

P .i1; : : : ; il 2W/

D
�
1C o.1/

�
n.n � 1/ : : : .n � l C 1/ �

�k
n

�l
D
�
1C o.1/

�
kl :

Finally, we turn to the second moment of f .M/ under P . We have

EP Œf .M/2� D
X

closed paths xi ;xj

EP ŒM
xiM
xj �

D

X
closed paths xi ;xj

EP

�
1¹V.xi4xj / �Wº

�
D
�
1C o.1/

� X
closed paths xi ;xj

�k
n

�jV.xi4xj /j
;

following similar reasoning as before, where xi4xj denotes the symmetric difference
shape of the two closed paths xi and xj , which in particular, as we recall from Defini-
tion 6.8, does not contain any isolated vertex. Note that for the case of vertex-disjoint
xi and xj , there are approximately n2l many such terms in the sum, each contributing
approximately .k=n/2l , and thus the total contribution is close to k2l which matches
the square of the first moment of f .M/ under P . If we can show that the rest of
the contribution from the other terms corresponding to pairs of xi and xj that are not
vertex-disjoint7 is much smaller than k2l , then we would be done.

Let us further break down the situation when xi and xj are not vertex-disjoint into
cases. In the following definitions, the indices in the constraints are cyclic modulo l
(e.g., it 0�1 refers to il if t 0 D 1). For a pair of closed paths xi and xj , define

A WD ¹t 2 Œl � W 8t 0 2 Œl �; jt ¤ it 0º;

B WD ¹t 2 Œl � W 9t 0 2 Œl �; s.t. jt D it 0 ; jt�1 ¤ it 0�1; jtC1 ¤ it 0C1º;

S WD ¹¹jt ; jtC1º; t 2 Œl � W 9t
0
2 Œl �; s.t. ¹jt ; jtC1º D ¹it 0 ; it 0C1ºº;

a WD jAj; b WD jBj; s WD jS j;

7In fact, one can even follow the argument used in the proof of our main theorem to only
focus on the pairs of xi and xj that are not edge-disjoint. Nevertheless, the argument we present
here suffices for the proof.



X. Yu, I. Zadik, and P. Zhang 154

whereA is the index set of vertices in xj not shared withxi ,B is the index set of vertices
in xj shared with xi that do not participate in any shared edges, and S is the set of edges
in xj shared with xi . We moreover observe that if we restrict the attention to the set S
of shared edges, they form a number of connected components, and we denote this
number as c. Formally,

C WD ¹t 2 Œl � W ¹jt ; jtC1º 2 S; ¹jt�1; jtº 62 Sº;

c WD jC j;

CC WD ¹.jt ; jtC1; : : : ; jtCst / W t 2 C , st is the maximum such that

8t � r � t C st � 1, ¹jr ; jrC1º 2 Sº;

where C is the set of the starting indices in the closed path xj of the connected compo-
nents of the set S of shared edges (ifxi and xj do not overlap completely), andCC is the
collection of connected components (sub-paths of xj ) of S . Let us state as a fact that
whenever s D jS j < l , the parameters a; b; s; c satisfy the identity l D aC bC sC c,
which is easy to verify.

Now, we claim that jV.xi4xj /j D 2l � b � 2s. To see this, let us consider which
vertices in V.xi/[ V. xj / belong to V.xi4xj /. If s D jS j D l , then the two closed walks
overlap completely, and the claim obviously holds. So let us consider otherwise.

• First, all vertices in V.xi/ [ V. xj / that do not correspond to any shared vertex or
participate in any shared edges belong to V.xi4xj /, and there are

2.l � b � .s C c// D 2a

such vertices.

• Second, each pair of shared vertices from xi and xj that do not participate in shared
edges (corresponding to vertices in xj indexed by B) contributes exactly 1 vertex
to V.xi4xj /, and there are b of them.

• Third, every connected component of shared edges in S contributes 2 vertices,
since each connected component is a sub-path shared by xi and xj , and only the
two endpoints of the sub-path survive the symmetric difference operation. This
gives a total of 2c vertices.

From the analysis above, we have jV.xi4xj /j D 2aC b C 2c D 2l � b � 2s.
Moreover, we may estimate the number of pairs ofxi and xj with the specific choice

of parameters a; b; s; c in the following way:

• Without loss of generality, we enumerate the number of xi as

n.n � 1/ : : : .n � l C 1/ � nl :

• Next, we enumerate the vertices indexed in A in the order they are traversed in xj ,
creating � na choices.
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• Then, we enumerate the vertices in xj indexed in B , by enumerating the indices t
and the matching indices t 0 of xi , creating � .l � l/b D l2b choices.

• Finally, we enumerate the vertices that participate in the shared edges according
to the connected components the shared edges form. For each of the c connected
components, we enumerate the starting index t in xj , the matching index t 0 in xi ,
the size st of this connected component, and the direction (whether they follow
the forward direction jt D jt 0 , jtC1 D it 0C1, jtC2 D it 0C2; : : : or the backward
direction jt D jt 0 , jtC1 D it 0�1, jtC2 D it 0�2; : : : ) of this component of shared
edges, creating � .l � l � l � 2/c D .2l3/c choices.

It is not hard to see one can uniquely recover a pair of xi and xj using the information
above. Thus, the total number of pairs ofxi and xj with the specific choice of parameters
a; b; s; c is bounded by

N.a; b; s; c/ � nl � na � l2b � .2l3/c D 2cl2bC3cnlCa:

Now we are ready to prove a bound on the second moment of f .M/ under P :

EP Œf .M/2� D
�
1C o.1/

� X
paths xi ;xj

�k
n

�jV.xi4xj /j
D
�
1C o.1/

� X
a;b;s;c

X
paths xi ;xj W

xi ;xj satisfies the parameters a;b;s;c

�k
n

�2l�b�2s

D
�
1C o.1/

� X
a;b;s;c

N.a; b; s; c/
�k
n

�2l�b�2s
;

note that whenxi ; xj are vertex-disjoint, the parameters are (aD l , b D 0, s D 0, c D 0)

�
�
1C o.1/

��
n2l �

�k
n

�2l
C

X
a;b;s;cW
a<l

2cl2bC3cnlCa
�k
n

�2l�b�2s�
:

Let us examine one term in the sum above:

2cl2bC3cnlCa
�k
n

�2l�b�2s
D 2cl2bC3ck2l�b�2snaCbC2s�l

D 2cl2bC3ck2l�b�2sns�c

D k2l
� l2
k

�b�2l3
n

�c� n
k2

�s
;

where we use the previously stated identity l D a C b C s C c in the second to
last line. Moreover, when xi and xj are not vertex-disjoint (i.e., a < l), either b > 0
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or c > 0. In either situation, when k D C
p
n for a large constant C and l D‚.logn/,

the expression k2l.l2=k/b.2l3=n/c.n=k2/s above is o.k2l=n0:49/. Since there are at
most l4 D o.n0:01/ choices of parameters a; b; s; c that satisfies a < l , and each term
in the sum contributes o.k2l=n0:49/, we conclude that

EP Œf .M/2� �
�
1C o.1/

��
n2l �

�k
n

�2l
C

X
a;b;s;cW
a<l

2cl2bC3cnlCa
�k
n

�2l�b�2s�
�
�
1C o.1/

�
Œk2l C k2l=n0:48�

�
�
1C o.1/

�
k2l :

Together with the first moment under P , we get that VarP Œf .M/�D o.k2l/. From
the moment computation for Q, we also have

VarQŒf .M/� D O.lnl/ D o.k2l/;

jEP Œf .M/� � EQŒf .M/�j D
�
1 � o.1/

�
kl :

We have thus verified that f .M/ achieves strong separation for detecting a planted
clique of size k in G.n; 1=2/.

11. Conclusion and future directions

In this paper, we initiate the unified study of the computational thresholds in detecting
arbitrary planted subgraph structures in G.n; p/. We give a complete characteriza-
tion of the strong separation power of constant degree polynomials in the regime of
p D �.1/. In particular, we reveal that under these assumptions, it is always optimal
to count stars among all constant-degree polynomials.

Our work suggests many future directions.

(1) At a conceptual level, we believe our results make a strong case that studying
“unified” planted random graph models, containing as special cases multiple well-
studied models, is very beneficial. In our case, it was the generality of the studied
model (Definition 1.1) that allowed us to reveal the (perhaps surprising) constant-
degree optimality of the star counts. To the best of our knowledge, this optimality
has not been observed before for any specific case of planted H . It is interesting
what other common structural computational properties are satisfied by all planted
subgraph models.

(2) In terms of specific directions, we consider a very interesting project to study
what the optimal degree-D polynomial is when eitherD D !.1/ or p D o.1/ that our
established star-count optimality fails (see Section 5). Moreover, our proof techniques
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carefully leverage the graph structure and do not trivially extend to hypergraphs. It is
a nice question whether and how these phenomena generalized to planted hypergraph
settings.

(3) The recent work [23] suggests the constant-degree optimality of counting
trees (equivalently of Approximate Message Passing) in terms of recovering a hidden
spike in the spiked Wigner model (with a “dense” prior). While no trivial connection
with our work is possible (we study the detection version between Bernoulli graph
models), it is an exciting direction to study possible connections between the star-
optimality from our work and the tree-optimality from [23].

(4) It is also interesting to explore whether similar unified phenomena hold in
planted random hypergraph or even more general settings.

A. Proof of auxiliary lemmas

Proof of Proposition 7.5. Recall that the fact that

�S .X/ D
Y

¹i;j º2E.S/

Xi;j � pp
p.1 � p/

for S �
�
V
2

�
W jS j � D form an orthonormal basis of the multilinear polynomials

in RŒX��D with respect to h�; �iQ. Thus, we may expand any polynomial f 2 RŒX��D
in this basis as

f .X/ D
X

S�.V2 /WjS j�D

hf; �S iQ�S D
X

S�.V2 /WjS j�D

yfS�S ;

where yfS WD hf; �S iQ are the Fourier coefficients of f . Thus, we may compute

Adv�D D max
f 2RŒX��D

EP Œf �p
EQŒf 2�

D max
¹ yfS º

S�.V2 /WjS j�D

EP Œ
P
S
yfS�S �q

EQŒ.
P
S
yfS�S /2�

D max
¹ yfS º

S�.V2 /WjS j�D

P
S
yfSEP Œ�S �qP

S;S 0
yfS yfS 0EQŒ�S�S 0 �

D max
¹ yfS º

S�.V2 /WjS j�D

P
S
yfSEP Œ�S �qP
S
yf 2S

D

p X
S�.V2 /WjS j�D

EP Œ�S �
2 :
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We may compute the expectation EP Œ�S � by first conditioning on H and then
taking the expectation over random H:

EP Œ�S � D EHEP Œ�S jH�:

Conditioning on a fixed H, EP Œ�S jH� D 0 whenever S is not fully contained in H,
and EP Œ�S jH� D ..1 � p/=p/jS j=2 if S � H. Therefore, we have

EP Œ�S jH� D 1.S � H/
�1 � p

p

�jS j=2
:

Thus,

EP Œ�S � D EH1.S � H/
�1 � p

p

�jS j=2
D P .S � H/

�1 � p
p

�jS j=2
D
MS;H

MS

�1 � p
p

�jS j=2
; (A.1)

where the last line uses Lemma 7.4. Plugging this expression back in (A), we get

.Adv�D/2 D
X

S�.V2 /WjS j�D

M 2
S;H

M 2
S

�1 � p
p

�jS j
:

Finally, we group the summation over subsets S �
�
V
2

�
W jS j � D according to the

isomorphism classes of the shapes � . For each shape � , there are M�=jAut.�/j sub-
sets of

�
V
2

�
(unlabelled copies) that are isomorphic to � , and for isomorphic subsets,

the expressions in the summation are equal. As a result, we may rewrite the summa-
tion as

.Adv�D/2 D
X

�2G�D

M�

jAut.�/j
�
M 2

�;H

M 2
�

�1 � p
p

�j� j
D

X
�2G�D

M 2
�;H

M� � jAut.�/j

�1 � p
p

�j� j
:

Proof of Lemma 7.7. For the enumeration of M�;H , we first fix vertex i 2 V.H/ and
count the number of copies of K1;t that have its root at i . Suppose the degree of i
is di , then the number of copies of K1;t rooted at i is .di /.t/. The total number of
copies of K1;t in H is obtained by summing over all the vertex i 2 V.H/:

M�;H D

X
i2V.H/

.di /.t/:
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Proof of Lemma 7.8. Clearly, one side of the inequality is obviousX
i2Œk�

.di /.t/ �
X
i2Œk�

d ti ;

so we focus on the other inequality.
We have for all i 2 Œk�,

.di /.t/ � d
t
i

�
1 �

t

di

�t
1.di � t /

� d ti

�
1 �

t2

di

�
1¹di � tº � d

t
i � t

t
� t2d t�1i :

Hence, P
i2Œk�.di /.t/P
i2Œk� d

t
i

� 1 �
kt tP
i2Œk� d

t
i

� t2

P
i2Œk� d

t�1
iP

i2Œk� d
t
i

: (A.2)

Clearly, by our assumption,

kt tP
i2Œk� d

t
i

D o.1/: (A.3)

Also by the Hölder inequality,

t2

P
i2Œk� d

t�1
iP

i2Œk� d
t
i

� t2
.
P
i2Œk� d

t
i /
1�1=tk1=tP

i2Œk� d
t
i

D t2
�

kP
i2Œk� d

t
i

�1=t
D o.1/: (A.4)

Inserting (A.3) and (A.4) into (A.2), we obtainP
i2Œk�.di /.t/P
i2Œk� d

t
i

� 1 � o.1/;

as desired.

Proof of Proposition 7.9. Recall that the Walsh–Fourier basis �S form an orthonormal
basis with respect to Q. Thus,

EQŒ�S � D 0 if S ¤ ¿;
EQŒ�

2
S � D 1;

EQŒ�S�
0
S � D 0 if S ¤ S 0;
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and we may compute the first and the second moments of f� under Q as

EQŒf� � D
X

S�.V2 /WSŠ�

EQŒ�S � D 0;

EQŒf
2

� � D
X

S;S 0�.V2 /WS;S 0Š�

EQŒ�S�S 0 �

D

X
S�.V2 /WSŠ�

EQŒ�
2
S � D

M�

jAut.�/j
:

Finally, we calculate the first moment of f� under P . Using the expectation of �S
under P in (A.1), it holds that

EP Œf� � D
X

S�.V2 /WSŠ�

EP Œ�S �

D

X
S�.V2 /WSŠ�

MS;H

MS

�1 � p
p

�jS j=2
D

M�;H

jAut.�/j

�1 � p
p

�j� j=2
:

The advantage of f� follows from the definition

Adv.f� / D
EP Œf� �p
EQŒf

2
�
�
D

M�;H

M
1=2

�
� jAut.�/j1=2

�1 � p
p

�j� j=2
:

B. Deferred lemmas and proof of lemmas in applications and
counterexamples

Lemma B.1. Let k � n and 0 < q � 1 be such that kq D !.log k/. With probability
1 � o.1/, for H � G.k; q/, its maximum degree is .1 ˙ o.1// � .k � 1/q, and its
number of edges is .1˙ o.1// �

�
k
2

�
q.

Proof of Lemma B.1. Let X � Binomial.k � 1; q/, where k, q are given as in the
statement. We use the multiplicative Chernoff inequality to obtain the tail bound forX
as follows:

P
�
jX � EŒX�j � ıEŒX�

�
D P

�
jX � .k � 1/qj � ı � .k � 1/q

�
� 2 exp

�
�
ı2.k � 1/q

3

�
;

where 0 < ı < 1 is a parameter to be determined.



Counting stars is constant-degree optimal for detecting any planted subgraph 161

Now let H � G.k; q/, and denote the degree of a vertex i 2 V.H/ as di . Note
di � Binomial.k � 1; q/ for every i 2 V.H/. Using union bound, we compute an
upper bound on the probability that the maximum degree of H is too large as

P
�

max
i2V.H/

di � .1C ı/ � .k � 1/q
�
� k � P

�
X � .1C ı/ � .k � 1/q

�
� 2k � exp

�
�
ı2.k � 1/q

3

�
: (B.1)

In the same way, we can also bound the probability that the minimum degree is too
small:

P
�

min
i2V.H/

di � .1 � ı/ � .k � 1/q
�
� 2k � exp

�
�
ı2.k � 1/q

3

�
: (B.2)

Since kq � !.log k/, we may set ı2 D C.log k/=kq for a large enough constant C
that ensures both bounds (B.1) and (B.2) are o.1/. This implies, with high probability,
that all degrees di of H � G.k; q/ is concentrated in the range .1˙ o.1// � .k � 1/q,
and consequently, the maximum degree of H � G.k; q/ is .1˙ o.1// � .k � 1/q and
the number of edges is .1˙ o.1// �

�
k
2

�
� q.

C. Explanation of Remark 3.2

Let us consider the advantage of the signed count of a triangle K4. We claim that it
diverges to infinity in the setting of Remark 3.2, where in the planted model P we
have G.n
 ; n�˛/ planted in a G.n; n�ˇ / with ˛ D 5=16; 
 D 1=4, ˇ D 1.

Indeed, we may verify

Adv.fK4
/2 D

EP ŒfK4
�2

EQŒf
2

K4
�
�

�P
S�.n2/WSŠK4

EP Œ�S �
�2

njV.K4/j=jAut.K4/j
;

by Proposition 7.9, we have

�
�
1 � o.1/

�
�
njV.K4/j

jAut.K4/j
� EP Œ�S �

2

for an arbitrary S �
�
Œn�
2

�
such that S ŠK4,

�
1

C
� n4

�
P .S � H/

�1 � n�ˇ
n�ˇ

�jS j=2�2
�

1

C 0
� n4

��n

n

�4
.n�˛/.

4
2/.nˇ /.

4
2/=2

�2
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�
1

C 0
n.ˇ�2˛/.

4
2/

n.1�2
/4

D
1

C 0
n9=4

n2
D �.n1=4/ D !.1/;

where C;C 0 are universal constants.
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