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Abstract

We study the possible singularities of Miyaoka–Kobayashi curves and prove several results
about the non-existence of such curves in degrees ≥ 8.
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§1. Introduction

In the present paper we recall and study, after years of oblivion, the class of

Miyaoka–Kobayashi curves (MK-curves for short). These complex projective plane

curves of even degree n ≥ 6 were defined and studied in Hirzebruch’s paper [8]

and in his student Ivinskis’ master’s thesis [9]. They are important for constructing

complex ball-quotient surfaces – the related facts are briefly recalled in Section 2

below as a motivation for our paper.

In Section 3, firstly we rephrase the definition of MK-curves in terms of total

Tjurina numbers; see Corollary 3.3. Then, using deep properties of these Tjurina

numbers going back to results by du Plessis and Wall [6], we show in Theorem 3.4

that an MK-curve must have a lot of singularities. Finally, we quote Ivinskis’

result saying that in degree 6, there are exactly three types of MK-curves; see

Theorem 3.9.

On the other hand, in degrees n ≥ 8 no example of an MK-curve is known,

and most of our results give restrictions on the singularities that an MK-curve

might have. For instance, in Section 4, we get restrictions on the singularities of

an irreducible MK-curve using the dual curves.
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In Section 5, we prove a number of non-existence results for MK-curves having

only some classes of ADE singularities, and this is done using Langer’s version of

the orbifold Bogomolov–Miyaoka–Yau inequality from [13]. The main results here

are Theorems 5.7, 5.12, 5.16 and Corollaries 5.8, 5.10, 5.11.

Finally, in Section 6 we try to understand whether there is a relation between

MK-curves and free curves. This question is motivated by the fact that in degree

6, where we have three MK-curves, one of them is a free curve, and the other two

are nearly free; see Example 6.4 for details. We recall the definition of the freeness

defect ν(C) for any reduced plane curve and give a formula for ν(C) in terms of

the total Tjurina number τ(C) when C has only ADE singularities; see Theorem

6.2. In Example 6.5, we compute the freeness defect ν(C) for two curves of degree

18, constructed by Bonnafé [1], and which are in some sense close to being MK-

curves. This computation shows that one of them is nearly free, while the other

has no special freeness properties.

§2. Why do we care about MK-curves?

Let us describe first the setting for the constructions of complex ball-quotient

surfaces using MK-curves.

Definition 2.1. Let X be a complex quasi-smooth projective surface, i.e., a sur-

face having only isolated quotient singularities. For a quotient singularity p ∈
Sing(X) we denote by Gp the associated small group. Denote by π : X̃ → X the

minimal resolution of singularities of X and by E :=
∑

p∈Sing(X) Ep the union of

all exceptional curves over p ∈ Sing(X). The rational number

m(p) = m(Ep) := 3(e(Ep)− 1/ ord(Gp))−K(Ep)
2,

where K(Ep) denotes the local canonical divisor of p and e(Ep) denotes the Euler

characteristic, is called the Miyaoka–Kobayashi number of the quotient singularity

p ∈ Sing(X).

Remark 2.2. For the convenience of the reader, let us recall the definition of

the local canonical divisor K(Ep). Let X be a normal projective surface and let

π : X̃ → X be a minimal resolution of singularities of X. For p ∈ X being a

singular point, let Ep =
∑r

i=1 Ei be the associated exceptional curve. Now the

local canonical divisor of p ∈ X, denoted by K(Ep) =
∑r

i=1 ciEi, is a Q-divisor

uniquely defined by the condition

K(Ep) · Ei = KX̃ · Ei for all i ∈ {1, . . . , r}.
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The following result is related to simply singular curves, i.e., curves having

ADE singularities, in the setting of MK numbers [8].

Theorem 2.3 (Hirzebruch–Ivinskis). Let C ⊂ P2
C be a reduced simply singular

curve of even degree n ≥ 6. Then one has∑
p∈Sing(C)

m(p) ≤ n

2
(5n− 6),

where m(p) denotes the Miyaoka–Kobayashi number of the double cover X of P2
C

ramified along C at the point p ∈ X, identified to the singularity p ∈ C.

Definition 2.4. Let C ⊂ P2
C be a reduced simply singular curve of even degree

n ≥ 6. Define m(C) :=
∑

p∈Sing(C) m(p). We say that C is an MK-curve if

m(C) =
n

2
(5n− 6).

The notion of MK-curves plays a vital role for constructing ball-quotient sur-

faces and in order to see this, let us present here a general setting, and then we

explain the link with the setting of our paper. Let X be a quasi-smooth projective

surface and for p ∈ Sing(X) denote by Gp the associated small group. Consider

π : X̃ → X the minimal resolution of singularities and E =
∑

p∈Sing(X) Ep the

union of the exceptional curves over p ∈ Sing(X). Consider now D =
∑

i Di a

curve in X̃ with normal crossings and such that the connected components Di of

D can be written as Di =
∑

Dij , where Dij are irreducible and distinct. Assume

that suppD∩ suppE = ∅. We write (X, X̃,D,E) for such a 4-tuple. One allows D

or E to be zero divisors. For such 4-tuples Kobayashi proved the following result

– see [9, 3.2.3 Thm.] and [12, 11].

Theorem 2.5. Let (X, X̃,D,E) be a 4-tuple as above and assume that the

Kodaira dimension of KX̃ + D + E is equal to 2. Assume furthermore the fol-

lowing conditions:

(1) for each irreducible component Dij of D we have (KX̃ +D) ·Dij ≥ 0, and we

have strict inequality when Dij is smooth;

(2) there do not exist any smooth rational (−1)-curves such that D · C ≤ 1;

(3) if C is a smooth rational (−2)-curve with suppC ∩ suppD = ∅, suppC ̸⊂
suppE, and C · E > 0, then there exists a singular point p ∈ Sing(X) with

Ep.C > 0 with the property that p is not a rational double point.

Then one has the following:

(2.1)
∑

p∈Sing(X)

m(Ep) +
∑
i

n(Di) ≤ 3c2(X̃)− c21(X̃),
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where n(Di) := 3e(Di) + 2KX̃ · Di + D2
i , and the equality holds exactly when

the universal cover of X̃ \ supp(D + E) is biholomorphic with {(z1, z2) ∈ C2 :

|z1|2 + |z2|2 < 1} \ {a discrete set of points}.

In other words, the inequality in Theorem 2.5 holds exactly when there exists

a discrete subgroup Γ ⊂ PSU(2, 1) which acts properly discontinuously on the ball

B2 := {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} having only isolated fixed points such

that X \ π(suppD) ∼= Γ/B2. Based on that remark, we can define the following

fundamental object of study.

Definition 2.6. A 4-tuple (X, X̃,D,E) is called a ball-quotient provided that

(X, X̃,D,E) satisfies the assumptions of Theorem 2.5 and the equality holds

in (2.1).

Based on the above considerations, it is worth pointing out that the mentioned

result by Hirzebruch and Ivinskis follows from a direct application of Theorem 2.5

to the following setting: f : X → P2
C is the double cover branched along a simply

singular curve of degree n ≥ 6, X̃ is the minimal resolution of singularities of X,

D = 0, and E =
∑

p∈Sing(X) Ep.

If we think in the setting of 4-tuples (X, X̃, 0, E), recall that we have q(X̃) = 0.

If now n = 6, then X̃ is aK3 surface. It turns out that MK-sextic curves are special

in the sense of constructed algebraic surfaces, and this observation was summed

up and presented by Kobayashi in 1985 during his lectures [10].

Theorem 2.7. Let X be an algebraic surface having only rational double points

as singularities and let X̃ be a K3 surface obtained as the minimal resolution

π : X̃ → X. Then
∑

p∈Sing(X) m(p) = 72 exactly when X is a quotient of the

complex two-dimensional torus by a finite group of automorphisms of the torus.

Note also that there are essentially three MK-sextics; see Theorem 3.9 due to

Ivinskis.

On the other hand, no example of an MK-curve is known in degrees ≥ 8. It is

well known that if C is a simply singular curve of degree n ≥ 8, then the associated

surface is of general type, and if furthermore C is an MK-curve, then (X, X̃, 0, E)

is a ball-quotient. This brief presentation shows the significance of our search for

MK-curves in degrees ≥ 8.

§3. MK-curves have many singularities

Here we consider MK-curves in the complex projective plane, and first we restate

definitions regarding these curves using the total Tjurina number of a given reduced
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curve C ⊂ P2
C. We use the same notation A, D, E for the singular point p, when we

look at it as a singular point on X or on C. This is convenient since, for instance,

the Tjurina numbers are the same, namely τ(X, p) = τ(C, p).

Lemma 3.1. We have the following formulas on Miyaoka–Kobayashi numbers of

singular points:

m(Ak) = 3(k + 1)− 3

k + 1
for k ≥ 1,

m(Dk) = 3(k + 1)− 3

4(k − 2)
for k ≥ 4,

m(E6) =
167

8
, m(E7) =

383

16
, and m(E8) =

1079

40
.

This result can be easily reformulated as follows.

Lemma 3.2. For any isolated hypersurface singularity W we denote by τ(W ) the

Tjurina number of the singularity. Then we have the following:

m(Ak)

3
= τ(Ak) + ε(Ak), where ε(Ak) =

k

k + 1
for k ≥ 1,

m(Dk)

3
= τ(Dk) + ε(Dk), where ε(Dk) =

4k − 9

4(k − 2)
for k ≥ 4,

m(E6)

3
= τ(E6) + ε(E6), where ε(E6) =

23

24
,

m(E7)

3
= τ(E7) + ε(E7), where ε(E7) =

47

48
,

and

m(E8)

3
= τ(E8) + ε(E8), where ε(E8) =

119

120
.

Using Lemma 3.2, Definition 2.4 can be formulated as follows.

Corollary 3.3. Let C ⊂ P2
C be a reduced simply singular curve of even degree

n ≥ 6. Define τ(C) :=
∑

p∈Sing(C) τ(C, p), the total Tjurina number of C, and

ε(C) :=
∑

p∈Sing(C) ε(C, p). Then C is an MK-curve if and only if

τ(C) + ε(C) =
n

6
(5n− 6).

In particular, if C is an MK-curve and s(C) denotes the number of singularities

of C, then

τ(C) +
s(C)

2
≤ n

6
(5n− 6) < τ(C) + s(C).
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Proof. The last claim follows from the fact that

1

2
≤ ε(C, p) < 1

for all singularities p ∈ C.

Using Definition 2.4 and its reformulations above, one has the following results.

Our first result says that an MK-curve has necessarily a large number of singular-

ities.

Theorem 3.4. If C is an MK-curve of even degree n = 2m ≥ 6 and s(C) denotes

the number of singularities of C, then

s(C) >
m2 + 3m− 3

3
.

Moreover, if the curve C has only A1 and A2 singularities, then the much stronger

inequality

s(C) >
7m2 − 3m

9
holds.

Proof. We use the notation and results recalled in [4, Sect. 2]. It was shown there,

in the proof of Theorem 2.9, that the total Tjurina number τ(C) of a plane curve

of degree n = 2m having only ADE singularities satisfies the inequality

τ(C) ≤ 3m(m− 1) + 1.

Using this result, Corollary 3.3 implies

s(C) >
m

3
(10m− 6)− τ(C) ≥ m

3
(10m− 6)− 3m(m− 1)− 1 =

m2 + 3m− 3

3
.

If the curve C has only A1 and A2 singularities then, as in the proof of [4, Thm. 2.9],

we get

τ(C) ≤ (2m− 1)2 − r0(2m− 1− r0)−
(
2r0 + 2− 2m

2

)
,

where

r0 =
5m

3
− 2.

It follows that

τ(C) ≤ 23m2 − 15m

9
and hence, as above,

s(C) >
m

3
(10m− 6)− τ(C) ≥ m

3
(10m− 6)− 23m2 − 15m

9
=

7m2 − 3m

9
.
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Example 3.5. Theorem 3.4 applied to sextic curves gives that s(C) > 5. In other

words, an MK-sextic must have at least 6 singularities. An MK-sextic having only

nodes and cusps must have at least 7 singularities.

The following result shows that this bound is rather sharp, namely there are

MK-sextics with 7 singularities.

Proposition 3.6. The only line arrangement which is an MK-curve is the line

arrangement which is given in suitable coordinates by the equation

(x2 − y2)(y2 − z2)(z2 − x2) = 0.

Proof. A line arrangement L has only simple singularities if it has only double

and triple points. Let n2 (resp. n3) be the number of double points (resp. triple

points) in L. If the total number of lines in L is 2m, then we have

n2 + 3n3 = m(2m− 1).

If we assume that L is an MK-curve, we get a new equation involving n2 and n3,

namely
3n2

2
+

39n3

8
=

m(10m− 6)

3
.

Solving this system of two equations in n2 and n3, we get

n2 =
9m− 2m2

3
.

Since n2 and n3 are non-negative integers, it follows that m = 3, n2 = 3, and

n3 = 4, and this is the only non-negative integer solution. It is known that these

numerical data correspond to the line arrangement given in suitable coordinates

by the equation

(x2 − y2)(y2 − z2)(z2 − x2) = 0.

Example 3.7. Now we would like to discuss two additional examples of MK-

curves having degree 6.

� It is well known that a smooth elliptic curve E has exactly 9 inflection points

and the dual curve to a smooth elliptic curve is an irreducible sextic S having

exactly 9 simple cusps corresponding to the inflection points. Now we explain

that S is an MK-curve. To this end, recall that for p ∈ Sing(S) we have

m(p) = 8, and thus

72 =
n

2
(5n− 6) =

∑
p∈Sing(S)

m(p) = 9 · 8 = 72.
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� There exists an arrangement C of one smooth conic and 4 lines such that

each line is tangent to the conic, and other singular points are just double

intersection points – we have 6 such points. Using formulas for MK-numbers,

we see that if p ∈ C is a double intersection point, then m(p) = 9
2 , and if

q ∈ Sing(C) is a tacnode, then m(q) = 11 1
4 . Then we have

72 =
n

2
(5n− 6) =

∑
p∈Sing(C)

m(p) = 11
1

4
· 4 + 9

2
· 6 = 72.

It turns out, as was proved by Ivinskis’ in his master’s thesis, the above

mentioned 3 types of MK-sextics are the only examples of MK-curves in degree 6.

Definition 3.8. Let C ⊂ P2
C be a reduced sextic curve having only ADE singu-

larities.

(A) We say that C is of type A if it consists of a smooth conic and 4 lines that

intersect the conic at exactly 4 distinct points, i.e., each line intersects the

conic at exactly one point. Note that arrangements of type A form a one-

parameter family.

(B) We say that C is of type B if this is an irreducible sextic curve with exactly 9

simple cusps, so this is the dual curve to a smooth elliptic curve in P2
C. Note

that sextics of type B form, up to the projective equivalence, a one-parameter

family.

(C) We say that C is of type C if this is an arrangement of 6 lines having exactly

4 triple and 3 double intersection points.

Theorem 3.9 (Ivinskis). A reduced curve C ⊂ P2
C is an MK-sextic if and only if

C is of type A, B, C.

For the proof, we refer to [9, 4.8.3 Thm.].

Remark 3.10. As was kindly pointed out by the referee, in the case of arrange-

ments coming from families A and B, the Kodaira dimension of the associated

4-tuples (X, X̃, 0, E) is 1. Furthermore, the associated K3 surfaces to arrange-

ments of type A (respectively, of type B) are quotients of abelian surfaces by

order 4 (respectively, by order 3) symplectic automorphisms.

§4. MK-curves and dual curves

Let C ⊂ P2
C be an irreducible curve of degree n having only isolated singularities.

Then the dual curve C∨ is also irreducible, and its degree n∨ is given by the
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formula

(4.1) n∨ = n(n− 1)−
∑

p∈Sing(C)

(µ(C, p) + mult(C, p)− 1),

where µ(C, p) denotes the Milnor number of the singularity (C, p) and mult(C, p)

denotes its multiplicity; see for instance [2, form. (1.2.18)]. Since mult(C, p) ≥ 2

for any singularity, it follows that for a plane curve having only simple singularities

we have

(4.2) n∨ ≤ n(n− 1)− τ(C)− s(C),

and equality holds if and only if C has only Ak singularities.

Corollary 4.1. Let C ⊂ P2
C be an irreducible MK-curve of degree n = 2m. Then

n∨ = deg(C∨) <
2m2

3
.

Proof. Using inequality (3.5) and Corollary 3.3, we have

n∨ ≤ n(n− 1)− τ(C)− s(C) < 2m(2m− 1)− m(10m− 6)

3
=

2m2

3
.

In view of Ivinskis’ Theorem 3.9, in the study of MK-curves we may assume

n = deg(C) ≥ 8.

Proposition 4.2. Let C ⊂ P2
C be an irreducible MK-curve of even degree n ≥ 8.

Assume that C has nk singularities of type Ak for k = 1, 2 and no other singular-

ities. Then one has

n2 − n1 ≥ 20− n.

Proof. Note that formula (4.1) implies that the dual of an irreducible curve of

degree ≤ 3 has degree ≤ 6. Hence in our case degree n∨ = deg(C∨) must be at

least 4 and we get the inequality

(4.3) 2n1 + 3n2 ≤ n(n− 1)− 4.

On the other hand, the fact that C is an MK-curve implies

(4.4) 9n1 + 16n2 = n(5n− 6).

If we multiply inequality (4.3) by 5 and subtract equality (4.4), we get

n1 − n2 ≤ n− 20,

which is exactly our claim.
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§5. On the existence of MK-curves of degree greater than 6

In this section we elaborate on the existence of MK curves having degree n > 6.

As we saw in Section 3, there is a complete classification of MK-sextics and we

know a linkage between the geometry of MK-sextics and K3 surfaces by a result

due to Kobayashi. The case of MK-curves having even degree ≥ 8 is extremely

interesting and important since such curves can lead to examples of ball-quotient

surfaces (X, X̃, 0, E). However, we are not aware of any example of an MK-octic or

MK-dodectic curve! We start by describing the world-record example of an octic

curve having the highest known value of m(C).

Example 5.1 (Steiner quartic and 4 lines). Let us consider the Steiner quartic

curve that is given by the equation

F (x, y, z) = −1

4
y2x2 − z2(x2 + y2 − 2xy) + x2yz + y2xz.

This quartic is an irreducible plane curve having exactly 3 cusps. We now add four

lines, namely one bitangent line to the quartic, for example the line at infinity

z = 0, and 3 tangents to cusps – notice that these 3 lines intersect at the ordinary

triple point. Denote by SQ the resulting arrangement of 4 lines and the Steiner

quartic. We have altogether exactly three E7 singularities, one D4, two A3, and

six A1 singular points. Observe that

m(SQ) = 135
9375

10000
<

n

2
(5n− 6) = 136,

so SQ is not an MK-octic, but its value of m(SQ) is the highest known.

Remark 5.2. In the case of degree 10 curves, we have the same problem, namely

we are not aware of any MK-dodectic curves!

We start our discussion with the case of octics having only A1, A2, A3, and

D4 singularities. Before that happens, we present a general result on reduced plane

curves with simple singularities of types A1, A2, A3, and D4.

In order to prove such a result, we are going to use Langer’s version of the

orbifold Bogomolov–Miyaoka–Yau inequality proved in [13, Sect. 11.1].

Theorem 5.3 (Langer). Let C ⊂ P2
C be a reduced curve of degree n and assume

that (P2
C, αC) is a an effective log canonical pair for a suitably chosen α ∈ [0, 1].

Then one has∑
p∈Sing(C)

3(α(µp − 1) + 1− eorb(p,P2
C, αC)) ≤ (3α− α2)n2 − 3αn,
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where Sing(C) denotes the set of all singular points, µp is the Milnor number of a

singular point p, and eorb denotes the local orbifold Euler number of p.

Theorem 5.4. Let C ⊂ P2
C be a reduced curve of degree n ≥ 8 having n1 singu-

larities of type A1, n2 singularities of type A2, n3 singularities of type A3, and d4
singularities of type D4. Then

468n1 + 814n2 + 1128n3 + 1485d4 ≤ 252n2 − 288n.

Proof. Consider the pair (P2
C, αC), where C has only singularities of types A1, A2,

A3, D4. Recall that for our singularities we have the following data:

Singularity type µp eorb(p,P2
C, αC) α

A1 1 (1− α)2 0 < α ≤ 1

A2 2 (5−6α)2

24
1
6 ≤ α ≤ 5

6

A3 3 (3−4α)2

8
1
4 ≤ α ≤ 3

4

D4 4 (2−3α)2

4 0 < α ≤ 2
3

Since our pair has to be effective and log canonical, one should have α ∈ [ 3n ,
2
3 ].

Since n ≥ 8, let us take α = 3
8 . We are going to use Theorem 5.3 for the pair

(P2
C,

3
8C), namely∑

p∈Sing(C)

3
(3
8
(µp − 1) + 1− eorb

(
p,P2

C,
3

8
C
))

≤ 63

64
n2 − 9

8
n.

We start with the left-hand side. One has

3n1

(3
8
(1− 1) + 1− 25

64

)
+ 3n2

(3
8
(2− 1) + 1− 121

384

)
+ 3n3

(3
8
(3− 1) + 1− 9

32

)
+ 3d4

(3
8
(4− 1) + 1− 49

256

)
=

117

64
n1 +

407

128
n2 +

141

32
n3 +

1485

256
d4.

Then
117

64
n1 +

407

128
n2 +

141

32
n3 +

1485

256
d4 ≤ 63

64
n2 − 9

8
n.

Multiplying by 256 we obtain the desired inequality, which completes the proof.

Now we focus on the existence of MK-octics with A1, A2, A3, and D4 singu-

larities. If C ⊂ P2
C is such an octic, then we have

36n1 + 64n2 + 90n3 + 117d4 = 8 ·m(10m− 6) = 8 · 136 = 1088,

n1 + 2n2 + 3n3 + 4d4 ≤ 3m(m− 1) + 1 = 37,

n1, n2, n3, d4 ∈ Z≥0.
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It turns out that the above system has exactly 8 solutions in non-negative integers,

namely

(a) (n1, n2, n3, d4) = (0, 17, 0, 0),

(b) (n1, n2, n3, d4) = (1, 8, 6, 0),

(c) (n1, n2, n3, d4) = (2, 8, 3, 2),

(d) (n1, n2, n3, d4) = (3, 8, 0, 4),

(e) (n1, n2, n3, d4) = (6, 8, 4, 0),

(f) (n1, n2, n3, d4) = (7, 8, 1, 2),

(g) (n1, n2, n3, d4) = (11, 8, 2, 0),

(h) (n1, n2, n3, d4) = (16, 8, 0, 0).

In the first step, we can automatically exclude case (a). It follows from Zariski’s

theorem that the maximal possible number of cusps for an octic is less than 16;

see [14]. Then, using the inequality proved in Theorem 5.4, we can exclude cases

(d), (e), (f), (g), and (h) – this is a straightforward check. It remains to check

whether cases (b) and (c) can be geometrically realized by a reduced plane curve

of degree 8. In order to decide whether case (b) can hold, we mimic our argument

in Theorem 5.4 for α = 55
100 , obtaining the following result (which we treat as a

corollary, mostly in order to avoid repetitions).

Corollary 5.5. In the setting of Theorem 5.4, we have

(5.1) 3828n1 + 6862n2 + 9696n3 + 12573d4 ≤ 2156n2 − 2640n.

Now using (5.1) we can exclude case (b), so the last remaining step is to decide

on case (c). Again, we mimic our argument in Theorem 5.4 for α = 48
100 obtaining

the following result.

Corollary 5.6. In the setting of Theorem 5.4, we have

(5.2) 10944n1 + 19391n2 + 27213n3 + 35424d4 ≤ 6048n2 − 7200n.

Using (5.2) we can exclude case (c). The above discussion leads us to the

following result.

Theorem 5.7. There do not exist any MK-octics with A1, A2, A3, and D4 sin-

gularities.

Based on the discussion presented above, we can observe the following corol-

lary.
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Corollary 5.8. There is no MK-dodectic curve that has nodes, tacnodes, and

ordinary triple points.

Proof. It follows from the fact that the Diophantine equation

9

2
n1 + 11

1

4
n3 + 14

5

8
d4 = 220

does not have non-negative integer solutions.

Proposition 5.9. Let C ⊂ P2
C be an irreducible MK-curve of even degree n =

2m ≥ 6. Assume that C has nk singularities of type Ak for k = 1, 2 and no other

singularities. Then one has

n2 >
7m2 − 21m

18
+ 10.

In particular, there is no such curve if n ∈ {8, 10, 12}.

Proof. Using Theorem 3.4 and Proposition 4.2, we have

2n2 >
7m2 − 3m

9
+ 20− 2m,

which is our first claim.

When m = 4, this gives n2 ≥ 12. Note that when n = 8, equation (4.4) implies

that n1 is divisible by 16. If n1 = 0, then equation (4.4) implies that n2 = 17, which

is impossible due to Zariski’s theorem [14]. If n1 = 16, then equation (4.4) implies

that n2 = 8, impossible by our bound above. The cases n1 > 16 are discarded by

the same argument.

When m = 5, our bound gives n2 ≥ 14. Equation (4.4) implies that n1 =

8(2k + 1), with k being a positive integer. When n1 = 8, equation (4.4) implies

that n2 = 27, which is impossible, see [7, table on p. 25]. If n1 = 24, then equation

(4.4) implies that n2 = 14, a contradiction with Proposition 4.2. The cases n1 > 24

are discarded by the same argument or using the inequality n2 ≥ 14.

The same approach as above shows that when m = 6 the only possibility would

be

n1 = 8 and n2 = 36.

Applying the Bogomolov–Miyaoka–Yau inequality for the pair (P2
C,

1
4C), where C

is a reduced curve of degree n ≥ 12 with only A1 and A2 singularities, we arrive

at the inequality

(5.3) 42n1 + 71n2 ≤ 22n2 − 24n.

Using this inequality for n = 12, n1 = 8, and n2 = 36 we get a contradiction.
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The above techniques can be used to show the non-existence of MK-curves

having a single type of singular point. The following results are easy consequences

of Theorem 5.4.

Corollary 5.10. Let C ⊂ P2
C be a curve of even degree n ≥ 8 which is nodal, i.e.,

C has only A1 singularities. Then C is not an MK-curve.

Corollary 5.11. Let C ⊂ P2
C be a curve of even degree n ≥ 8 which is cuspidal,

i.e., C has only A2 singularities. Then C is not an MK-curve.

Now we focus on the case of curves with E6 singularities. We start with the

following.

Theorem 5.12. There do not exist any MK-curves C of degree n ∈ {6, . . . , 24}
with only E6 singularities.

Proof. Assume that C is an MK-curve with only E6 singularities. Denoting the

number of E6 singularities by e6 and taking n = 2m, the following condition holds:

(5.4)
167

8
· e6 = m(10m− 6) = 10m2 − 6m.

Using Langer’s orbifold Bogomolov–Miyaoka–Yau inequality for the pair (P2
C,

7
12C)

we obtain

3e6 ·
(35
12

+ 1
)
=

∑
p∈Sing(C)

3(α(µp − 1) + 1− eorb(p,P2
C, αC))

≤ (3α− α2)n2 − 3αn =
203

144
n2 − 21

12
n,

where µp is the local Milnor number of p, and eorb denotes the local orbifold Euler

number of p ∈ Sing(C). Observe that for α = 7
12 the local orbifold Euler number is

equal to 0 and this follows from the fact that α = 7
12 is the log canonical threshold

for E6 singularities. This gives us the following upper bound:

(5.5) e6 ≤ 203

1692
n2 − 7

47
n.

By the above considerations, we arrive at the following inequality for every m ∈
{3, . . . , 12}:

(5.6)
203

1692
· (2m)2 − 7

47
· (2m) ≥ e6 =

80

167
m2 − 48

167
m,

which means that

m ≥ 738

61
≈ 12.10,

a contradiction.
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The above result is rather technical, but also sharp as we can see right now.

Example 5.13. In [1, Exa. 3.4] Bonnafé proved that there exists a reduced curve

C18 of degree n = 18 with exactly 36 singularities of type E6. It turns out that

C18 is optimal in the sense that it reaches the upper bound on the number of E6

singularities, which can be verified using the above theorem. Observe that

n

2
(5n− 6)− 167

8
· e6 =

9

2
,

which means that C18 misses the property of being an MK-curve by a node!

Remark 5.14. Among others, Bonnafé explained in [1] that there exists a reduced

curve C ′
18 of degree n = 18 with 72 singularities of type A2 and 12 singularities of

type D4. Denoting by n2 the number of A2 singularities and by d4 the number of

D4 singularities, observe that

n

2
(5n− 6)− 8 · n2 − 14

5

8
· d4 =

9

2
,

and unluckily C ′
18 misses the property of being an MK-curve by a node.

Remark 5.15. Using the same arguments one can show that there do not exist

any MK-curves of degree n ∈ {6, . . . , 118} with only E7 singularities. Unfortu-

nately there is no direct argument which allows us to exclude the existence of such

MK-curves with only E7 singularities for every even degree n ≥ 6.

Now we look at MK-curves with only E8 singularities.

Theorem 5.16. There do not exist any MK-curves C of degree n ≥ 6 with only

E8 singularities.

Proof. We are going to mimic the argument presented for MK-curves with only

E6 singularities. Assume that C is an MK-curve of degree n = 2m ≥ 6 with only

E8 singularities. We have then

(5.7)
1079

40
· e8 = m(10m− 6) = 10m2 − 6m,

where e8 denotes the number of E8 singularities. Using Langer’s orbifold Bogo-

molov–Miyaoka–Yau inequality for the pair (P2
C,

8
15C), where α = 8

15 is the log

canonical threshold for E8 singularities, we obtain the following upper bound:

(5.8) e8 ≤ 296

3195
n2 − 8

71
n.
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Combining this inequality with the condition on MK-curves with only E8 singu-

larities, we arrive at

(5.9)
1184

3195
m2 − 16

71
m ≥ e8 =

400

1079
m2 − 240

1079
m,

so we have a contradiction for every m ≥ 3.

§6. On the freeness of simply singular plane curves

Let C be a reduced curve P2
C of degree n given by f ∈ S := C[x, y, z]. We denote by

Jf the Jacobian ideal generated by the partial derivatives ∂xf , ∂yf , ∂zf . We define

the minimal degree of relations among the partial derivatives, denoted here by

mdr(f), which is equal to the minimal degree r of a non-trivial triple (a, b, c) ∈ S3
r

such that

a · ∂xf + b · ∂yf + c · ∂zf = 0.

We denote by m = ⟨x, y, z⟩ the irrelevant ideal. Consider the graded S-module

N(f) = If/Jf , where If is the saturation of Jf with respect to m. It is known

that N(f) is an Artinian graded S-module; in particular the integer

ν(C) = max
k

dimN(f)k

is well defined.

Definition 6.1. The integer ν(C) is called the freeness defect of the reduced com-

plex plane curve C.

This definition is justified by the fact that the curve C is free (resp. nearly

free) if and only if ν(C) = 0 (resp. ν(C) = 1). For more on free and nearly free

curves we refer to [4, 5]. In particular, we have shown in [4, Thm. 2.9] that the

maximizing curves in the study of surfaces with maximal Picard number form

a special class of free curves. In this section we study the freeness defect of the

MK-curves. We start with a general result applying to all simply singular curves

of even degree.

Theorem 6.2. Let C be a reduced curve P2
C of even degree n = 2m having only

ADE singularities. Then the freeness defect of C is given by the following equality:

ν(C) = 3m2 − 3m+ 1− τ(C).

Proof. We have shown in the proof of [4, Thm. 2.9] that for a plane curve C : f = 0

of degree n = 2m having only ADE singularities, the minimal degree of a relation

among the partial derivatives satisfies the inequality

mdr(f) ≥ m− 1.
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In other words, we have

mdr(f) ≥ n− 2

2

and our claim follows from [3, Thm. 1.2(2)] by a direct computation.

Corollary 6.3. Let C be a reduced MK-curve P2
C of even degree n = 2m ≥ 6.

Then the freeness defect of C is given by

ν(C) = ε(C) + 1− m(m+ 3)

3
.

In particular, one has in this situation

ε(C) ≥ m(m+ 3)

3
− 1,

where ε(C) is the constant defined in Corollary 3.3.

Proof. It follows from Theorem 6.2 and Corollary 3.3.

Example 6.4. Consider now the three types of MK-sextics C described in Def-

inition 3.8 and Example 3.7. When C is of type A, then C has 6 singularities of

type A1 and 4 singularities of type A3. It follows that in this case

ν(C) = 19− τ(C) = 19− 6− 4 · 3 = 1,

and hence C is nearly free. When C is of type B, then C has 9 singularities of

type A2. We get

ν(C) = 19− τ(C) = 19− 9 · 2 = 1,

and hence again this sextic C is nearly free. When C is of type C, then C has 3

singularities of type A1 and 4 singularities of type D4. It follows that in this case

ν(C) = 19− τ(C) = 19− 3− 4 · 4 = 0,

and hence in this case C is free.

Example 6.5. Consider now the curve C18 discussed in Example 5.13 above. This

curve has degree n = 18 and has 36 singularities of type E6. It follows that

ν(C18) = 217− τ(C) = 217− 36 · 6 = 1,

and hence C18 is nearly free.We look now at the curve C ′
18 discussed in Remark 5.14

above. This curve has degree n = 18 and has 72 singularities of type A2 and 12

singularities of type D4. It follows that

ν(C ′
18) = 217− τ(C) = 217− 72 · 2− 12 · 4 = 25,
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and hence C ′
18 is very far from being a free curve. Since both C18 and C ′

18 are close

to being MK-curves, this example may suggest that the property of being an MK-

curve is not related to some freeness property, in spite of the case of MK-sextics

discussed in Example 6.4 above.
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