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Special K-Stability and Positivity of
CM Line Bundles

by

Masafumi Hattori

Abstract

We show that the CM line bundle on a proper family parametrizing specially K-stable
varieties with maximal variation is big and nef. As an application, we show projectivity
of any proper subspace of the coarse moduli space of uniformly adiabatically K-stable
klt-trivial fibrations over curves constructed in Hashizume and Hattori (Geom. Topol. 29
(2025), 1619–1691).
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§1. Introduction

§1.1. Positivity of CM line bundles

K-stability was first introduced by Tian [Tia97] for Fano manifolds and reformu-

lated by Donaldson [Don02] for other polarized varieties. This notion is defined

in a purely algebro-geometric way and is considered to be closely related to the

existence of constant scalar curvature Kähler (for short cscK) metrics as the Yau–

Tian–Donaldson conjecture predicts. On the other hand, K-stability is closely

related to birational geometry and moduli problems. For log Fano pairs, K-stability

is completely detected by the δ-invariant, which was first introduced by Fujita–

Odaka [FO18] and Blum–Jonsson [BJ20] and the moduli scheme parametrizing K-

polystable log Fano pairs is constructed (see [X25]). On the other hand, Hashizume

and the author [HH25] construct a moduli space parametrizing uniformly adiabat-

ically K-stable klt-trivial fibrations over curves and show that this moduli space
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is a kind of K-moduli space if we choose some polarizations. Here, uniform adia-

batic K-stability is first introduced in the author’s works [Hat24b, Hat25] as the

K-stability of a fiber space when its polarization is very close to an ample line

bundle on the base.

Odaka ([Oda10, Conj. 5.2]) conjectured the K-moduli conjecture 10 years ago;

it predicts that there will exist a quasi-projective moduli scheme parametrizing all

K-polystable varieties with some fixed numerical data. This conjecture is shown

for the Fano case (cf. [XZ20, LXZ22, X25]). He further conjectured that we can

choose a Q-ample line bundle on the moduli space to be the CM line bundle,

which was introduced by Paul–Tian [PT09, PT06]. Indeed, the CM line bundle

of a KSBA moduli space (see [Ko23] for details) is ample by [PX17]. Recently,

it was shown that a K-moduli space of log Fano pairs with fixed dimension and

volume is a projective scheme ([CP21, CP23, Pos22, XZ20]) with the CM line

bundle ample. On the other hand, Fujiki–Schumacher [FS90] showed that compact

subspaces of moduli spaces parametrizing some cscK manifolds are projective by

using the generalized Weil–Petersson metric, which is closely related to the CM line

bundle. Their result is enhanced by Dervan–Naumann [DN25] for any moduli space

parametrizing all cscK manifolds. Recently, Ortu [Ort23] has constructed moduli

spaces parametrizing manifolds with optimal symplectic connections (cf. [DS21]).

Ortu also shows that any compact subspace of her moduli spaces is projective.

§1.2. Main results

In this paper, we settle Odaka’s conjecture on positivity of the CM line bundle for

special K-stability.

Theorem 1.1. Let π : (X,∆, L) → S be a polarized log Q-Gorenstein family,

where S is projective and (Xs̄,∆s̄) is klt for any geometric point s̄ ∈ S. Suppose

that π has maximal variation along any curve (cf. Definition 2.20). If (Xs,∆s, Ls)

is specially K-stable for any closed point s ∈ S, then the CM-line bundle λCM,π is

ample.

Special K-stability was first introduced by [Hat24a]. We note that K-stability

of Q-Fano varieties, log Calabi–Yau varieties, and varieties with the ample canon-

ical divisors are equivalent to special K-stability of them and special K-stability

is compatible with the theory of filtrations as Ding stability of log Fano pairs (see

[Fuj19] and [Li17]). On the other hand, special K-stability ensures the existence

of cscK metrics by the result of Zhang [Zha24].

We recall the following fact shown in [HH25].

Theorem 1.2 (For details, see Theorem 3.11). We fix d ∈ Z>0, u ∈ Q>0, v ∈ Q>0.

Then there exists a separated Deligne–Mumford moduli stack Md,v,u,r of finite type
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over C with a coarse moduli space Md,v,u,r parametrizing uniformly adiabatically

K-stable klt-trivial fibrations f : (X, 0, A) → P1 such that

(1) dimX = d,

(2) for any general fiber F , F ·Ad−1 = v, and

(3) KX ∼Q −uf∗O(1).

Furthermore, there exists w ∈ Q>0 such that for any uniformly adiabatically

K-stable klt-trivial fibration f : (X, 0, A) → P1 as above, if vol(A) = w, then (X,A)

is specially K-stable.

For the case when u is nonpositive in Theorem 1.2, Md,v,u,r parametrizes

polarized klt minimal models. In this case, the quasi-projectivity of the open

locus of Md,v,u,r parameterizing varieties with only canonical singularities has

been solved by [Vie95] We also remark that Md,v,u,r is not proper in general.

Indeed, the moduli space of uniformly adiabatically K-stable rational Weierstrass

fibrations with a fixed section is contained in the projective GIT moduli scheme

of Miranda [Mi81] as an open subset, but they do not coincide.

By Theorem 1.1, we show that proper subspaces of the coarse moduli spaces

constructed by [HH25] are all projective.

Corollary 1.3. Any proper subspace B of Md,v,u,r is projective.

§1.3. Outline of the proof

We briefly explain the idea of the proof of Theorem 1.1 here. Special K-stability

of a polarized klt pair (X,∆, L) consists of the following two properties.

(i) H := δ(X,∆, L)L+KX +∆ is ample, and

(ii) uniform JH -stability of (X,L).

Consider a polarized log family π : (X,∆, L) → S of relative dimension n and an

ample line bundle H on X. Recall that the log CM line bundle λCM,π is defined

as

π∗

(
−n(KXs +∆s) · Ln−1

s

Ln
s

Ln+1 + (n+ 1)Ln · (KX/S +∆)
)

(see Definition 3.2). We define the following variant of the CM line bundle

λJ,π,H := π∗

(
−nHs · Ln−1

s

Ln
s

Ln+1 + (n+ 1)Ln ·H
)
.

We call this the JH -line bundle (cf. Definition 3.4). The following is a key obser-

vation in this paper.
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Proposition 1.4. Let π : (X,L) → S be a polarized family with an ample Q-

line bundle H, where S is projective and every geometric fiber of π is normal. If

(Xs, Ls) is JHs-semistable for any closed point s ∈ S, then λJ,π,H is ample.

This phenomenon is first observed by Murakami [Mur23, Lem. 2.7] for the

case when π is smooth and all fibers are uniformly J-stable. In this paper, we show

that the same phenomenon occurs also when π is nonsmooth but flat. This is the

first ingredient to show Theorem 1.1. Furthermore, we remark that although we

need some assumptions on the variation on the family to deduce the positivity

of the CM line bundle, we need no such assumption to deduce Proposition 1.4.

Indeed, Proposition 1.4 also holds for trivial test configurations as we will see in

Example 5.2. On the other hand, we show that π∗(H
n+1) is ample by using a

similar technique to obtain the ampleness of the CM line bundle of a family of

K-stable log Fano pairs with maximal variation as follows.

Theorem 1.5. Let π : (X,∆, L) → S be a polarized log Q-Gorenstein family of

relative dimension n, where S is projective and (Xs̄,∆s̄) is klt for any geometric

point s̄ ∈ S. Suppose that π has maximal variation along any curve and π∗L
n+1 ≡

0. If there exists λ ∈ Q>0 such that λ < δ(Xs,∆s, Ls) for any closed point s ∈ S

and KX/S +∆+λL is π-ample, then the Q-line bundle π∗(KX/S +∆+λL)n+1 is

ample.

This is the second ingredient. With these ingredients, we obtain Theorem 1.1.

We give the proofs of these ingredients in Section 5.

§2. Preliminaries

We work over the field of complex numbers C.

Notation and conventions

(i) If we say that X is a scheme, then we assume X to be of finite type over C.
If X is further separated, irreducible, and reduced, then we say that X is a

variety. For any point x ∈ X, let κ(x) denote the residue field of the local ring

OX,x. That is, if we set mx as the maximal ideal of OX,x, κ(x) := OX,x/mx.

(ii) Let X be a scheme. We denote

X(S) := Hom(S,X)

and call this the set of all S-valued points of X. If S = SpecΩ, where Ω is

an algebraically closed field, then we call elements of X(S) geometric points

of X. If the image of SpecΩ → X is x ∈ X, we denote this by x̄ ∈ X.
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(iii) Let X be a scheme of finite type over C, and U an open subset. We say that

U is big if codimX(X \ U) ≥ 2.

(iv) For any coherent sheaf F on Pn, F (d) denotes F ⊗OPn OPn(d) for any

d ∈ Z.
(v) We say that a proper morphism of schemes f : X → Y is a contraction if

f∗OX
∼= OY .

(vi) Let X be a scheme of finite type over C with a (Q-)line bundle H. Let

|H| (resp. |H|Q) denote the set of all effective divisors linearly equivalent

(resp. effective Q-divisors Q-linearly equivalent) to H.

(vii) Let X be a scheme of finite type over C. We say that a property P holds

for any very general closed point x ∈ X if there exist countably many

closed subvarieties Vi ⊊ X such that P holds for any closed point x ∈
X \

⋃∞
i=1 Vi.

(viii) Let f : X → S be a proper morphism of normal varieties. Let g : T → S

be a morphism from a normal variety. Then we set XT := X ×S T and

fT : XT → T as the morphism induced by f and g. Let h : XT → X be the

canonical morphism. If L is a Q-line bundle on X, we set LT := h∗L. For

any s ∈ S, we denote Xs = XT and Ls = LT , where T = Specκ(s). Suppose

that f is flat, all geometric fibers are connected and normal; there exists a

Q-divisor ∆ such that KX/S +∆ is Q-Cartier and ∆ does not contain any

fiber of X over S. Then we set ∆T as follows. Take an open subset U ⊂ X

such that codimXs(Xs \ U) ≥ 2 for any s ∈ S and f |U is smooth. Then

we see that ∆|U is Q-Cartier and can consider h|∗h−1(U)∆|U . Let ∆T be the

closure of h|∗h−1(U)∆|U . We note that then

KXT /T +∆T = h∗(KX/S +∆).

(ix) Let D be a Q-Weil divisor on a projective normal variety X. We say that D

is big if there exist an ample Q-Cartier Q-divisor A and an effective Q-Weil

divisor E such that D = A + E. If D + A′ is big for any ample Q-Cartier

Q-divisor A′, then we say that D is pseudo-effective.

(x) Let X be a projective normal variety. We say that C is a movable curve of X

if there exist a projective birational morphism µ : X ′ → X and very ample

hypersurfaces H1, . . . ,HdimX−1 such that C = H1∩· · ·∩HdimX−1. Let L be

a line bundle on X. We denote L ·C := µ∗L ·C for simplicity. By [BDPP13],

L · C ≥ 0 for any movable curve C if and only if L is pseudo-effective.

(xi) Let f : X → S be a proper morphism such that any geometric fiber is normal

and connected. Then we consider the following functor. For any morphism
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of schemes T → S, we attain the following set:

PicX/S(T ) :=
{
L
∣∣ L is a line bundle on XT

}
/ ∼T ,

where L1 ∼T L2 if and only if L1 ⊗ f∗TB ∼ L2 for some line bundle B

on T . Then we have the relative Picard scheme PicX/S , which represents

the étale sheafification of the above functor. If S = SpecC, then we simply

denote Pic(X) := PicX/S . Furthermore, Pic0(X) denotes the identity com-

ponent of Pic(X) and parametrizes all line bundles algebraically equivalent

to OX . See [F+05, §9] for details. Let [L] denote an element of Pic(X) whose

representative is a line bundle L.

(xii) Let E be a locally free sheaf on a smooth projective variety S. We say that E

is nef (resp. ample) if OPS(E)(1) is nef (resp. ample). Also, E is called weakly

positive if for any a ∈ Z>0 and ample line bundle A, the stalk of SymabE ⊗
OS(bA) at the generic point of S is generated by H0(S,SymabE ⊗OS(bA))

for some b ∈ Z>0. If S is a curve, then the nefness of S is equivalent to the

weak positivity.

(xiii) Let X be a proper normal variety and π : Y → X be a resolution of singu-

larities of X. Then Alb(Y ) denotes the Albanese variety of Y . Let β : Y →
Alb(Y ) be a canonical morphism. Then it is well known that there exists a

canonical morphism α : X → Alb(Y ) such that β = α ◦ π. Thus, we denote

Alb(Y ) by Alb(X) and call this the Albanese variety of X. We also call α

an Albanese morphism.

(xiv) Let X be a Noetherian scheme. Let F • be a complex of OX -modules. We

say that F • is a perfect complex if there exist a family of open subsets

{Ui}ri=1 and bounded complexes G •
i of finite free OUi

-modules with a quasi-

isomorphism G •
i → F •|Ui for each i. On the other hand, let E be a coherent

sheaf on X. Then E is called an OX -module of finite Tor-dimension if for

any x ∈ X, the stalk Ex admits a resolution of finitely generated free OX,x-

modules of finite length ([MFK94, p. 111]).

§2.1. K-stability

We first recall the fundamental concepts of birational geometry and K-stability.

Definition 2.1. Let X be a quasi-projective normal variety. Suppose that B is

a Q-divisor on X such that KX + B is Q-Cartier. Then we call (X,B) a sublog

pair. If B is further effective, then we say that (X,B) is a log pair. For any prime

divisor E over X, choose a proper birational morphism π : Y → X such that E is
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defined on Y . Then we set the log discrepancy of (X,B) with respect to E as

A(X,B)(E) = ordE(KY − π∗(KX +B)) + 1.

The above value is independent of the choice of π. We say that (X,B) is subklt

(resp. sublc) if A(X,B)(E) > 0 (resp. ≥ 0) for any prime divisor E over X. If E is

further effective, then we say that (X,B) is klt (resp. lc).

For any coherent ideal a of X and rational number r > 0, we consider the pair

(X,B + ra). We call ra a Q-ideal. We define the log discrepancy of (X,B + ra)

as follows. Take E a prime divisor over X and π : Y → X such that π is a log

resolution of (X,B) and a, i.e. Ex(π) + π−1
∗ B + π−1a is a simple normal crossing

and Y is a smooth variety proper over X such that E is a prime divisor defined

on Y . Here, we note that π−1a is a Cartier divisor. Then

A(X,B+ra)(E) = ordE(KY − π∗(KX +B)− rπ−1a) + 1.

We say that (X,B+ ra) is subklt (resp. sublc) if A(X,B+ra)(E) > 0 (resp. ≥ 0) for

any prime divisor E over X.

Let (X,B) be a log pair. We set

Aut(X,B) :=
{
σ ∈ AutX

∣∣ σ∗B = B
}
.

It is well known that Aut(X,B) is a group scheme and let Aut0(X,B) be the

identity component of Aut(X,B).

Definition 2.2 (Log canonical threshold). Let (X,B) be a log subpair and let D

be an effective Q-Cartier Q-divisor on X. Take an arbitrary Q-ideal a on X. Then

we define the log canonical threshold for (X,B) with respect to D as

lct(X,B;D) = sup
{
t ∈ Q

∣∣ (X,B + tD) is sublc
}
.

On the other hand, we set the log canonical threshold of (X,B) with respect to a

as

lct(X,B; a) = sup
{
t ∈ Q

∣∣ (X,B + ta) is sublc
}
.

Definition 2.3. We say that a• is a graded sequence of nonzero ideals if there

exists a sequence of ideals {am}m∈Z≥0
satisfying

am · an ⊂ an+m

for any n,m ∈ Z>0. For any prime divisor E over X, we set (cf. [JM12, Lem. 2.3])

ordE(a•) := lim
m→∞

ordE(am)

m
= inf

m≥0

ordE(am)

m
.
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By [JM12, Cor. 2.16], we can set

lct(X,B; a•) := lim
m→∞

m · lct(X,B; am) = inf
E

A(X,B)(E)

ordE(a•)
.

Further, (X,B,L) is called a polarized log pair if (X,B) is a log pair and L

is an ample Q-line bundle.

Definition 2.4. Let (X,B,L) be a polarized klt pair and take r0 ∈ Z>0 such that

r0L is Cartier. For any m ∈ Z>0, we call D an mr0-basis-type divisor of L if there

exists a basis {Di}h
0(X,OX(mr0L))

i=1 of H0(X,OX(mr0L)) such that

D =
1

mr0h0(X,OX(mr0L))

h0(X,OX(mr0L))∑
i=1

Di.

Let |L|mr0-basis denote the set of all mr0-basis-type divisors of L. We set

δr0m(X,B,L) := inf
D∈|L|mr0-basis

lct(X,B;D)

and δ(X,B,L) := lim supm→∞ δr0m(X,B,L). We call δ(X,B,L) the δ-invariant

and know by [BJ20, Thm. A] that δ(X,B,L) = limm→∞ δr0m(X,B,L).

Let (X,B,L) be a polarized klt pair as above. Let |L|Q denote the set of all

effective Q-divisors Q-linearly equivalent to L. Suppose that r0L is Cartier for

some r0 ∈ Z>0. We set for any prime divisor E over X,

TL(E) = sup
D∈|L|Q

ordE(D), SL(E) = lim
m→∞

sup
D∈|L|m-basis

ordE(D).

Indeed, we see that the above limit exists (cf. [BJ20]). We set the α-invariant as

α(X,B,L) := inf
E

A(X,B)(E)

TL(E)
.

On the other hand, we see that

δ(X,B,L) = inf
E

A(X,B)(E)

SL(E)
.

Definition 2.5 (K-stability). Let (X,B,L) be a polarized log pair of dimension n.

A normal semiample test configuration (X ,L) for (X,L) is defined as follows:

(1) X is a normal variety with a Gm-action and L is a semiample Gm-linearized

Q-line bundle on X .

(2) There exists a proper surjective and Gm-equivariant morphism π : X → A1,

where Gm acts on A1 by multiplication.
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(3) (π−1(1),L|π−1(1)) ∼= (X,L).

Let (XA1 , LA1) denote a semiample test configuration (X × A1, L × A1) with the

trivial Gm-action on the first component X. It is well known that there exists

another semiample test configuration (Y,LY) and two Gm-equivariant birational

morphisms σ : Y → X and ρ : Y → XA1 such that LY = σ∗L and their restrictions

to (π ◦ σ)−1(1) are nothing but the identity morphisms of X. Then consider the

Gm-equivariant canonical compactification (Y,LY) → P1 of (Y,LY) → A1 such

that the fiber over ∞ ∈ P1 coincides with (X,L) with the trivial Gm-action.

Let H be an arbitrary R-line bundle over X and let BY be the Zariski-closure

of B × Gm in Y. Then we set the non-Archimedean Mabuchi functional and the

non-Archimedean JH -functional as

MNA
B (X ,L) = (KY/P1 + BY − Y0 + Y0,red) · LY

n − n(KX +B) · Ln−1

(n+ 1)Ln
LY

n+1,

JH,NA(X ,L) = ρ∗HA1 · LY
n − nH · Ln−1

(n+ 1)Ln
LY

n+1.

It is well known that MNA
B (X ,L) and JH,NA(X ,L) do not depend on the choice

of (Y,LY) (cf. [BHJ17, §7] and [Hat21]).

We say that (X,B,L) is uniformly K-stable (resp. (X,L) is uniformly JH-

stable) if there exists ε > 0 such that

MNA
B (X ,L) (resp. JH,NA(X ,L)) ≥ εJ L,NA(X ,L)

for any normal semiample test configuration (X ,L) for (X,L). We say that

(X,B,L) is K-semistable (resp. (X,L) is JH-semistable) if

MNA
B (X ,L) (resp. JH,NA(X ,L)) ≥ 0

for any normal semiample test configuration (X ,L) for (X,L). It is well known that

J L,NA(X ,L) ≥ 0 (cf. [BHJ17, Prop. 7.8]) and hence uniform K-stability implies

K-semistability.

For JH -semistability in the case when H is ample, there exists a useful crite-

rion. We prepare the following notion.

Definition 2.6. Let (X,L) be a polarized normal variety of dimension n with an

R-line bundle H. We say that (X,L) is JH-nef if for any subvariety V ⊂ X of

dimension p, (
n
H · Ln−1

Ln
Lp − pH · Lp−1

)
· V ≥ 0.

We also say that (X,L) is uniformly JH-positive if there exists ε > 0 such that

(X,L) is JH−εL-nef.
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Theorem 2.7 ([Hat25, Thm. 3.2]). Let (X,L) be a polarized normal variety

with a nef R-line bundle H. Then (X,L) is JH-nef if and only if (X,L) is JH-

semistable.

If H is further ample, then (X,L) is uniformly JH-positive if and only if

(X,L) is uniformly JH-stable.

By using J-stability and the δ-invariant, we can set the following key notion.

Definition 2.8 (Special K-stability, [Hat24a, Def. 3.10]). Let (X,B,L) be a po-

larized klt pair. If (X,B,L) is uniformly Jδ(X,B,L)L+KX+B-stable and δ(X,B,L)L

+KX +B is ample, then we say that (X,B,L) is specially K-stable. If (X,B,L) is

Jδ(X,B,L)L+KX+B-semistable and δ(X,B,L)L +KX + B is nef, then we say that

(X,B,L) is specially K-semistable.

By [Hat24a, Cor. 3.21], specially K-stable log pairs are uniformly K-stable.

§2.2. Filtered linear series and good filtrations

We collect some fundamental concepts of filtrations.

Definition 2.9. Let R =
⊕

m∈Z≥0
Rm be a finitely generated graded C-algebra

such that R0 = C. Then F is called a (decreasing, left-continuous, and multiplica-

tive) filtration of R if FλRm ⊂ Rm is a vector subspace for any λ ∈ R andm ∈ Z≥0

and the following hold:

� FλRm ⊂ Fλ′
Rm for any λ > λ′ and FλRm =

⋂
λ>λ′ Fλ′

Rm,

� FλRm · Fλ′
Rm′ ⊂ Fλ+λ′

Rm+m′ , and

� F 0R0 = R0.

We say that this filtration is linearly bounded if there exist a positive real number

C and m0 ∈ Z>0 such that FλRm = 0 (resp. = Rm) for any m ≥ m0 and λ ≥ Cm

(resp. ≤ −Cm).

Let X be a normal projective variety and L an ample line bundle on X. Let

F be a linearly bounded multiplicative filtration on R =
⊕

m≥0H
0(X,OX(mL)).

Then we define a graded subalgebra FR(λ) :=
⊕

m≥0 F
mλH0(X,OX(mL)) ⊂ R.

We set

λmax(F ) := lim sup
k→∞

sup
{
t ∈ R

∣∣ F tRk ̸= 0
}

k

and

λmin(F ) := inf
{
λ ∈ R

∣∣ vol(FR(λ)) > 0
}
.

We set the weight wF (m) of Rm with respect to F as

wF (m) =
∑
λ∈R

dim

(
FλRm/

⋃
λ<λ′

Fλ′
Rm

)
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and we call wF the weight function of F . Set

Sm(F ) :=
wF (m)

mh0(X,OX(mL))

and

S(F ) := λmin(F ) +
1

(Ln)

∫ λmax(F )

λmin(F )

vol(FR(λ)) dλ.

It is well known that S(F ) = limm→∞ Sm(F ) (cf. [BJ20, Cor. 2.12]).

Two fundamental examples follow.

Example 2.10. Let X be a proper variety with an ample line bundle L on X.

Let R :=
⊕
H0(X,OX(mL)) and D be a closed subvariety of X. Let F be a

linearly bounded multiplicative filtration on R. Then we set a filtration F |D on⊕
H0(D,OD(mL|D)) as

F |λDH0(D,OD(mL|D)) := Image
(
FλH0(X,OX(mL)) → H0(D,OD(mL|D))

)
for any λ ∈ R and m ∈ Z≥0. Then we call F |D the restricted filtration on D. We

can check that F |D is multiplicative and linearly bounded.

Example 2.11. Let F be a linearly bounded multiplicative filtration of R =⊕
m≥0Rm. If we set for any λ ∈ R,

Fλ
ZRm := F ⌈λ⌉Rm,

then we see that FZ is also a linearly bounded multiplicative filtration.

Definition 2.12 (Good filtrations, cf. [Hat24a, Def. 2.12]). Let X be a normal

projective variety of dimension n and L an ample line bundle on X. Let F be a

linearly bounded multiplicative filtration on R =
⊕

m≥0H
0(X,OX(mL)). If there

exist a0, a1 ∈ R and C ∈ R>0 such that

|wF (m)− a0m
n+1 − a1m

n| < Cmn−2

for any m ∈ Z>0, then we say that F is a good filtration.

We note that if F = FZ and
⊕
FλRm is a finitely generated bigraded algebra,

then F is good.

The following notion was first introduced by [XZ20].

Definition 2.13. Let (X,B,L) be a polarized klt pair. Take r ∈ Z>0 such that

rL is Cartier and a linearly bounded filtration F on R :=
⊕

m≥0Rm, where Rm =

H0(X,OX(mrL)). Now we set the base ideal of FλRm as

Im,λ(F ) := Image(FλRm ⊗OX(−mrL) → OX)
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for λ ∈ R. Set I(λ)• (F ) := {Im,mλ(F )}m≥0 as a graded sequence of ideals. For any

δ > 0, we set the δ-lc slope of F as

µδ(F ) := sup
{
λ ∈ R

∣∣ lct(X,B; I
(λ)
• (F )) ≥ δ

r

}
.

Furthermore, we set

βδ(F ) :=
µδ(F )− S(F )

r
.

We remark that the following holds.

Theorem 2.14 ([XZ20, Prop. 4.5]). Let (X,B,L) be a polarized klt pair. Take

r ∈ Z>0 such that rL is Cartier and set R := R(X, rL). Then

δ(X,∆, L) = sup
{
δ > 0

∣∣ βδ(F ) ≥ 0 for any linearly bounded filtration F on R
}
.

We remark that Xu and Zhuang showed Theorem 2.14 only for log Fano pairs,

but their proof also works for Theorem 2.14 in the same way. We also note the

following useful lemma, which also holds for general polarized klt pairs.

Lemma 2.15 ([XZ20, Lem. 4.13]). Let (X,B,L) be a polarized klt pair. Take r ∈
Z>0 such that rL is Cartier and a linearly bounded filtration F on R :=

⊕
m≥0Rm,

where Rm = H0(X,OX(mrL)). For any real numbers s, ε ∈ (0, 1), it holds that

µ1+(1−ε)s(F ) ≥ s · µε−1(F ) + (1− s)µ1(F ).

Definition 2.16 (Donaldson–Futaki invariant and J-functional for filtrations).

Let (X,L) be a polarized variety of dimension n with L a line bundle and let F be

a multiplicative filtration on R, where R =
⊕

m≥0Rm and Rm = H0(X,OX(mL)).

Let wF (m) be the weight function of F . Then we see that (cf. [Hat24a, eq. (2)])

lim
m→∞

wF (m)

mn+1

exists and write this as b0. On the other hand, it is well known that χ(X,OX(mL))

is a polynomial of degree n. We denote this by a0m
n + a1m

n−1 +O(mn−2).

Take H an ample Q-line bundle on X. Take a sufficiently divisible r ∈ Z>0

such that rH is very ample. LetD ∈ |rH| be a very general member and let F |D be

the restriction (cf. Example 2.10). Let ã0 := H·Ln−1

(n−1)! and b̃0 := limm→∞
wF |D (m)

rmn .

By [Hat24a, Lem. 2.20], we see that the value

b̃0a0 − ã0b0
a20

is independent of the choice of r and very general D. We denote this by JH,NA(F )

and call it the JH -functional of F . For an arbitrary Q-line bundle T on X, there
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exist two ample line bundles H1 and H2 such that T = H1 −H2. It is easy to see

that JH,NA(F ) is linear with respect to H. We set J T,NA(F ) := JH1,NA(F ) −
JH2,NA(F ). Then J T,NA(F ) is independent of the choice of H1 and H2.

If F is a good filtration and wF (m) = b0m
n+1 + b1m

n + O(mn−1), then we

set the Donaldson–Futaki invariant of F as

DF(F ) = 2
b0a1 − a0b1

a20
.

Remark 2.17. We do not know much about the relationship between this Donald-

son–Futaki invariant and the Futaki invariant introduced by Székelyhidi [Szé15].

For details, we refer to [Hat24a, Rem. 2.20].

Proposition 2.18 ([Hat24a, Lem. 2.20]). Let (X,L) be a polarized variety with

L a line bundle and let H be a nef Q-line bundle. If (X,L) is JH-semistable, then

JH,NA(F ) ≥ 0

for any multiplicative linearly bounded filtration F on
⊕

m≥0H
0(X,OX(mL)).

Proof. Let F be a multiplicative linearly bounded filtration on
⊕

m≥0H
0(X,

OX(mL)). By the fact that JH,NA(F ) is linear with respect to H, we may assume

that H is very ample and take a very general member D ∈ |H|. By [Hat24a,

Lem. 2.20], we see that

JH,NA(FZ) ≥ 0.

By [BJ20, Cor. 2.12], S(F ) = S(FZ). On the other hand, FZ|D = (F |D)Z. Since

JH,NA(F ) = n
(
S(F |D)− H · Ln−1

Ln
S(F )

)
,

we have JH,NA(FZ) = JH,NA(F ), which completes the proof.

§2.3. Polarized log family

In this subsection, we discuss the following concept.

Definition 2.19. Let π : X → S be a proper flat morphism of normal varieties

such that π∗OX
∼= OS , ∆ an effective Q-Weil divisor on X, and L a π-ample Q-line

bundle on X. We say that π : (X,∆, L) → S is a polarized log family if any fiber

Xs over s ∈ S is normal and no irreducible component of ∆ contains some fiber

Xs. If KX/S+∆ is Q-Cartier, then we say that π : (X,∆, L) → S is Q-Gorenstein.

We say that π is of relative dimension n if dimXs = n for general s ∈ S.

A polarized log Q-Gorenstein family π : (X,∆, L) → S satisfies the condition

of (viii) in “Notation and conventions”. Hence, for any morphism g : T → S from
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a normal variety, we can set ∆T as (viii). To state Theorem 1.1, we prepare the

following notion.

Definition 2.20 (Maximal variation). Let π : (X,∆, L) → S be a polarized log

family. Suppose that for any irreducible curve C ⊂ S containing a general point of

S and two general distinct closed points p, q ∈ C, (Xp,∆p) and (Xq,∆q) are not

isomorphic. Then we say that π has maximal variation.

On the other hand, if the restriction π|π−1(C) has maximal variation for any

irreducible curve C ⊂ S, we say that π has maximal variation along any curve.

Next we show that if some fiber of a polarized log Q-Gorenstein family is

specially K-stable, then so are very general fibers. We make use of this assertion

to show Theorem 1.1. To prove this, we first show the following on J-semistability.

Proposition 2.21. Let π : (X,∆, L) → S be a polarized log family and let H be a

Q-line bundle on X. Suppose that there exists a closed point s0 ∈ S such that Hs0

is nef and (Xs0 , Ls0) is JHs0 -semistable. Then for any very general point s ∈ S,

(Xs, Ls) is JHs-semistable.

Proof. It is well known that if Hs0 is nef, then so is Hs for any very general point

s ∈ S. On the other hand, we deal with JHs -nefness. Consider the Hilbert scheme

HilbX/S . Recall that for any S-scheme T , the set of T -valued points of HilbX/S is

the set of closed subschemes of X ×S T flat over T . It is well known that HilbX/S

has countably many connected components and each of them is proper over S.

Here, we claim that for a very general point s ∈ S and any p-dimensional closed

subvariety V ⊂ Xs, (
n
Hs · Ln−1

s

Ln
s

Ls − pHs

)
· Lp−1

s · V ≥ 0.

Indeed, for any closed subvariety V ⊂ Xs of dimension p, there exists a connected

component H ⊂ HilbX/S containing the point corresponding to V . Since s is very

general, H → S is surjective. Then(
n
Hs · Ln−1

s

Ln
s

Ls − pHs

)
· Lp−1

s · V =
(
n
Hs0 · Ln−1

s0

Ln
s0

Ls0 − pHs0

)
· Lp−1

s0 · V ′ ≥ 0

by the JHs0 -nefness of (Xs0 , Ls0), where V
′ ⊂ Xs0 is a p-dimensional closed sub-

scheme whose corresponding point in HilbX/S is contained in H. This means that

for any very general closed point s ∈ S, (Xs, Ls) is JHs-nef and Hs is nef. By

Theorem 2.7, we obtain the assertion.

Corollary 2.22. Let π : (X,∆, L) → S be a polarized log Q-Gorenstein family.

Suppose that there exists a closed point s0 ∈ S such that (Xs0 ,∆s0 , Ls0) is specially
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K-stable. Then there exist positive rational numbers λ and ε such that for any very

general point s ∈ S, δ(Xs,∆s, Ls) ≥ λ+ε and (Xs, Ls) is J
KXs+∆s+λLs-semistable.

In particular, (Xs,∆s, Ls) is specially K-stable for any very general closed point

s ∈ S.

Proof. We know that the correspondence

S ∋ s 7→ δ(Xs̄,∆s̄, Ls̄)

is lower-semicontinuous by [BL22, Thm. 6.6]. Thus, for any sufficiently small ε ∈
Q>0, there exists a nonempty open subset U ⊂ S such that δ(Xs̄,∆s̄, Ls̄) ≥
δ(Xs0 ,∆s0 , Ls0) − ε for any geometric point s̄ ∈ U . Choose ε small enough such

that there exists λ ∈ Q>0 such that (Xs0 , Ls0) is uniformly JKXs0
+∆s0

+λLs0 -stable

and λ + 2ε ≤ δ(Xs0 ,∆s0 , Ls0). Then we see that δ(Xs̄,∆s̄, Ls̄) ≥ λ + ε for any

geometric point s̄ ∈ U . On the other hand, (Xs, Ls) is JKXs+∆s+λLs -semistable

by Proposition 2.21 for any very general closed point s ∈ S.

§3. CM line bundle

In this section, we discuss the CM line bundle.

§3.1. CM line bundle and J-line bundle

First, we explain how to define the log CM line bundle for a polarized log Q-

Gorenstein family.

Definition 3.1. Let S be a Noetherian scheme and let E be a vector bundle

over S. Let X ⊂ PS(E) be a closed subscheme such that OX is a perfect complex

as an OPS(E)-module. Suppose that the generic fiber of the canonical morphism

π : X → S is of dimension n. We say that OX satisfies the condition Q(r) if the

following hold:

(1) for each point s ∈ S of depth 0,

dim((Supp(OX))s) ≤ r,

(2) for each point s ∈ S of depth 1,

dim((Supp(OX))s) ≤ r + 1.

Let L := OPS(E)(1)|X . Assume now that OX satisfies the condition Q(r). For any

sufficiently large m ∈ Z>0, consider the Knudsen–Mumford expansion [KM76,

Thm. 4] (cf. [MFK94, Lem. 5.8])

det(π∗OX(mL)) ∼=
n+1⊗
i=0

M⊗(mi )
i ,
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where Mi is a uniquely determined line bundle on S for i = 0, . . . , n+1. It is well

known that the Knudsen–Mumford expansion is compatible with base changes.

More precisely, for any morphism g : T → S, consider the Knudsen–Mumford

expansion

det(πT∗OXT
(mLT )) ∼=

n+1⊗
i=0

N⊗(mi )
i ,

where πT , XT , and LT are the base changes by T → S. Then Ni = g∗Mi for

0 ≤ i ≤ n+ 1 (cf. [CP21, Lem. 3.5]).

Definition 3.2 (CM line bundle). Let π : (X,∆, L) → S be a polarized log family

of relative dimension n. Take r ∈ Z>0 such that rL is a π-very ample line bundle.

Then X ⊂ PS(π∗OX(mrL)). We set the log CM line bundle of π as

λCM,π := π∗(µLL
n+1 + (n+ 1)Ln · (KX/S +∆)),

where µL := n
−(KXt+∆t)·Ln−1

t

Ln
t

for general closed point t ∈ S, and π∗(L
n · D) is

defined to be a Q-divisor unique up to Q-linear equivalence on S for any Q-Cartier

Q-divisor D on X as follows. Suppose that mL is relatively very ample over S.

Take a line bundleM on S such that N := mL+π∗M is very ample. By the Bertini

theorem and [Har77, II, Exer. 8.2], we see that there exist a positive integer l and

D1, . . . , Dn ∈ |lN | such that Y := D1 ∩D2 ∩ · · · ∩Dn is normal, irreducible, and

finite over S. We may further assume that Y ̸⊂ SuppD and then we can define

D ∩ Y as a Q-Cartier Q-divisor on Y . Then we set a Q-Weil divisor

π∗(L
n ·D) :=

1

(ml)n
π∗(D ∩ Y )− nm(Dt · Ln−1

t )M.

Then we see the following.

Proposition 3.3. Let π : (X,∆, L) → S be a log Q-Gorenstein polarized family

with a Q-Cartier Q-divisor D on X as above. Then π∗(L
n · D) is a Q-Cartier

Q-divisor on S uniquely determined up to Q-linear equivalence independent of the

choices of m, l, and D1, . . . , Dn. In particular, λCM,π is a well-defined Q-line

bundle on S and for any morphism g : T → S from a normal variety, it holds that

λCM,πT
= g∗(λCM,π).

Proof. We note that for any Q-Cartier Q-divisors E1 and E2 on X, we have

π∗(Y ∩ (E1 + E2)) ∼Q π∗(Y ∩ E1) + π∗(Y ∩ E2)

and if E1 ∼Q E2, then π∗(Y ∩ E1) ∼Q π∗(Y ∩ E2). Thus, we may replace D

with a very ample line bundle on X by the linearity of π∗(Y ∩ D) with respect

to D and by decomposing mD = A1 − A2, where A1 and A2 are very ample and
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m ∈ Z>0 is sufficiently large. We may further assume that D is an effective normal

Cartier divisor on X such that every fiber of π|D : D → S is equidimensional and

of dimension n − 1 by the Bertini theorem and [Har77, II, Exer. 8.2]. Then we

see that OD satisfies the assumption of [KM76, Thm. 4]. Indeed, it suffices to

show that OD is a perfect complex of PS(E), where E = π∗(OX(rL)), since the

condition Q(r) is satisfied (see [KM76, p. 50] and [CP21, Lem. A.1]). For this, it is

enough to show that OD is an OPS(E)-module of finite Tor-dimension (cf. [MFK94,

p. 111]). By the fact that D is a Cartier divisor of X and [MFK94, Lem. 5.8], we

know that OD is also of finite Tor-dimension. Thus, we may apply [KM76, Thm. 4]

for π|D and there exists the Knudsen–Mumford expansion

det((π|D)∗OD(mrL|D)) ∼=
n⊗

i=0

N⊗(mi )
i .

We assert that π∗(D ·Ln) = (π|D)∗(L|nD) = 1
rnNn. Indeed, take a big open subset

S◦ ⊂ S such that S◦ is smooth and D is flat over S◦. Over S◦, we have

π∗(D · Ln)|S◦ = (π|D)∗(L|nD)|S◦ =
1

rn
Nn|S◦

by [CP21, Lems A.1, A.2]. Hence, π∗(D · Ln) ∼Q
1
rnNn is Q-Cartier and for

any morphism g : T → S from a normal variety, we see that g∗(π∗(L
n · D)) =

πT∗(L
n
T · DT ). It follows from this that λCM,πT

= g∗(λCM,π). We complete the

proof.

Definition 3.4 (J-line bundle). Let π : (X,∆, L) → S be a polarized log pair with

an R-line bundle H on X. We set the JH-line bundle with respect to H as

λJ,π,H := π∗

(
(n+ 1)Ln ·H − n

Ht · Ln−1
t

Ln
t

Ln+1
)
,

where t ∈ S is a general closed point. As Proposition 3.3, we have the following.

Proposition 3.5. Let π : (X,∆, L) → S be a polarized log pair with an R-line
bundle H on X. Then, g∗(λJ,π,H) = λJ,πT ,HT

for any morphism g : T → S from

a normal variety.

If H = KX/S + ∆ for a Q-Gorenstein family, then we obtain that λJ,π,H =

λCM,π.

Definition 3.6 (CM degree and J-degree). Let π : (X,∆, L) → C be a polarized

log family of relative dimension n with C a proper smooth curve. Let t be a closed

point of C and v := (Ln
t ). Then we set the CM degree as

CM((X,∆, L)/C) :=
1

(n+ 1)v
degC λCM,π|C .
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On the other hand, let H be an R-line bundle on X. We set the JH -degree as

JH((X,L)/C) :=
1

(n+ 1)v
degC λJ,π,H |C .

We note that

CM((X,∆, L)/C) = v−1
(
(KX/S +∆) · Ln − n(KXt

+∆t) · Ln−1
t

(n+ 1)Ln
t

Ln+1
)
,

JH((X,L)/C) = v−1
(
H · Ln − nHt · Ln−1

t

(n+ 1)Ln
t

Ln+1
)
.

Next, we explain a relationship between the CM degree and the Harder–

Narasimhan filtration.

Definition 3.7 (Harder–Narasimhan filtration). Let C be a proper smooth curve.

For any locally free sheaf E on C, we set the slope of E as

µ(E) :=
degC E

rankE
.

We say that E is semistable if µ(E) ≥ µ(F ) for any nonzero subsheaf F ⊊ E. It

is well known that there exists the unique sequence (cf. [HL10, Thm. 1.3.4])

0 = E0 ⊊ E1 ⊊ E2 ⊊ · · · ⊊ Ek−1 ⊊ Ek = E

such that Ei/Ei−1 is a semistable locally free sheaf and µi := µ(Ei/Ei−1) satisfies

that µi > µi+1 for 1 ≤ i ≤ k. We denote µmin := µk and call this the minimal

slope of E. For any λ ∈ R, we set Fλ
HNE as the union of subsheaves of minimal

slope at least λ. We call FHN the Harder–Narasimhan filtration of E.

Definition 3.8. Let π : (X,∆, L) → C be a polarized log family of relative

dimension n, where C is a proper smooth curve. Take r ∈ Z>0 such that rL

is Cartier. Take s ∈ C such that Xs is normal. Let Rm := π∗OX(mrL) and

Rm := H0(Xs,OXs(mrLs)) for any m ∈ Z≥0. We set the Harder–Narasimhan

filtration FHN on Rm as Definition 3.7. We define a filtration FHN as

Fλ
HNRm := Image(Fλ

HNRm ⊂ Rm → Rm).

It is known by [XZ20, Lem.-Def. 2.26] that the filtration FHN is linearly bounded

and multiplicative and so is FHN. We call FHN the induced filtration of R =⊕
m≥0Rm (see [XZ20, §2.8]).

The following is important to calculate the CM degree or the J-degree.

Proposition 3.9. Let π : (X,∆, L) → C be a polarized log pair of relative dimen-

sion n, where C is a proper smooth curve. Let s ∈ C be a closed point. Take
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r ∈ Z>0 such that rL is Cartier and define the induced filtration FHN on R =⊕
m≥0H

0(Xs,OXs
(mrLs)). Then FHN is a good filtration and

S(FHN) = r
Ln+1

(n+ 1)Ln
s

.

Proof. By definition (cf. [XZ20, Prop. 4.6]), we see that

Sm(FHN) =
degC π∗OX(mrL)

mh0(Xs,OXs(mrLs))
.

Furthermore, let g(C) be the genus of C. By the Leray spectral sequence and the

Serre vanishing theorem, we have that

χ(X,OX(mrL)) = χ(C, π∗OX(mrL))

for any sufficiently large m > 0. Then, by the Riemann–Roch theorem on locally

free sheaves on C, we have

(1) degC π∗OX(mrL) = h0(Xs,OXs
(mrLs))(g(C)− 1) + χ(X,OX(mrL)).

By this, we see that FHN is a good filtration. Note that

h0(Xs,OXs(mrLs)) =
(mr)n

n!
Ln
s +O(mn−1),

χ(X,OX(mrL)) =
(mr)n+1

(n+ 1)!
Ln+1 +O(mn).

Thus we have the second assertion by limm→∞ Sm(FHN) = S(FHN).

As [Hat24a, Cor. 3.9], we obtain that the CM degree is nonnegative when a

fiber is smooth and admits a unique cscK metric.

Corollary 3.10. We keep the notation as above. Suppose further that ∆ = 0 and

Xs is a smooth variety with a cscK metric in c1(Ls) and Aut(Xs, Ls) discrete for

some s ∈ C. Then CM((X, 0, L)/C) ≥ 0.

Proof. Let χ(X,OX(mrL)) = b0m
n+1+b1m

n+O(mn−1) and h0(Xs,OXs
(mrLs))

= a0m
n + a1m

n−1 +O(mn−2). We see by (1) that

degC π∗OX(mrL) = b0m
n+1 + (b1 + a0(g(C)− 1))mn +O(mn−1).

Thus, we see that CM((X, 0, L)/C) = DF(FHN). On the other hand, we see that

(Xs, Ls) is asymptotically Chow stable by [Don01]. Thus, we see as [Hat24a,

Thm. 2.18] that

DF(FHN) ≥ 0.

We complete the proof.
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§3.2. Moduli of uniformly adiabatically K-stable klt-trivial fibrations

over curves and the CM line bundle

Let f : X → C be a morphism of normal varieties such that f∗OX
∼= OC and

suppose that C is a proper smooth curve. We say that f : (X,∆) → C is a klt-

trivial fibration over a curve if KX +∆ ∼Q,C 0 and (X,∆) is klt. Then we set the

discriminant divisor

B :=
∑
P∈C

(1− lct(X,∆; f∗P ))P.

Let M be a Q-divisor on C such that

KX +∆ ∼Q f
∗(KC +M +B).

We call M the moduli divisor. Take an f -ample Q-Cartier Weil divisor A. We say

that f : (X,∆, A) → C is uniformly adiabatically K-stable if there exist positive

constants ε0 and δ such that

MNA
∆ (X ,M) ≥ δJ εA+L,NA(X ,M)

for any ε ∈ (0, ε0) and normal semiample test configuration (X ,M) for (X, εA+L),

where L is a fiber of f . It is known by [Hat25, Thm. 1.1] that f is uniformly

adiabatically K-stable if and only if one of the following holds.

� −KX −∆ is nef but not numerically trivial and δ(C,B,−KC −M −B) > 1,

or

� KX +∆ is nef.

Let Zd,v,u be the following set of isomorphism classes of uniformly adiabati-

cally K-stable klt-trivial fibrations for d ∈ Z>0, u ∈ Q>0, and v ∈ Q>0:
f : (X, 0, A) → P1

∣∣∣∣∣∣∣∣∣∣∣

(i) f is a uniformly adiabatically K-stable klt-trivial fibration

over P1 with dimX = d,

(ii) A is an f -ample line bundle such that KX ·Ad−1=−uv,

(iii) KX ∼Q −uf∗OP1(1)


.

Theorem 3.11 (Cf. [HH25, Thm. 1.2]). We fix d ∈ Z>0, u ∈ Q>0, v ∈ Q>0.

Then we have the following for some r ∈ Z>0. For any locally Noetherian scheme



Special K-Stability and Positivity of CM Line Bundles 467

S over C, we attain a groupoid Md,v,u,r(S) whose objects are

(X ,A )
f

//

πX
��

C

��

S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) πX is a flat projective morphism and X is a scheme,

(ii) A ∈ PicX/S(S) such that A is f -ample,

(iii) ω
[r]
X/S exists as a line bundle, whose restriction to any geometric

fiber Xs̄ over s̄ ∈ S coincides with OXs̄
(rKXs̄

),

(iv) πX∗ω
[−lr]
X/S is locally free and it generates H0(Xs,OXs

(−lrKXs
)),

for any point s ∈ S and any l ∈ Z>0,

(v) f is the canonical S-morphism to C := ProjS(
⊕
πX∗ω

[−lr]
X/S )

and (Xs̄,As̄) → Cs̄ ∈ Zd,v,u for any geometric point s̄ ∈ S



.

and isomorphisms are S-isomorphisms α : (X ,A ) → (X ′,A ′) such that α∗A ′ =

A ⊗ f∗B for some B ∈ PicC/S(S).

Then Md,v,u,r is a separated Deligne–Mumford stack of finite type over C with

a coarse moduli space Md,v,u,r (cf. [Ols16]).

Furthermore, there exists w > 0 such that for any geometric point s̄∈Md,v,u,r,

if vol(As̄) = w, then As̄ is ample and the object (Xs̄,As̄) corresponding to s̄ is

specially K-stable.

Take w as in Theorem 3.11. We can set the CM line bundle ΛCM,w on Md,v,u,r

with respect to the volume w as follows. As [HH25, Rem. 6.5], we can put the univer-

sal family πU : (U ,A ) → Md,v,u,r for any geometric fiber (Us̄,As̄) over Md,v,u,r.

Here, we note that A is uniquely determined up to relative Q-linear equivalence

over the universal base curve C := ProjMd,v,u,r
(
⊕

l≥0 πU ∗ω
[−lr]
U /Md,v,u,r

). If we

choose the relative linear equivalence class of A so that vol(As̄) < w for some

geometric point s̄ ∈ Md,v,u,r, then (Us̄,As̄) might not be K-semistable or As̄

might not be ample. It is not hard to see that by adding a sufficiently relatively

ample line bundle on C over Md,v,u,r to A , we may choose A so that A is rela-

tively ample over Md,v,u,r and vol(As̄) = w. By Theorem 3.11, we have that all the

members (Us̄,As̄) of Md,v,u,r are specially K-stable. Then we can define the CM

line bundle λCM,πU with respect to A on Md,v,u,r by the construction of (U ,A )

(cf. [HH25, Exa. 2.13]). Let π : Md,v,u,r →Md,v,u,r be the canonical morphism to

its coarse moduli space. By [Alp13, Thm. 10.3] and [HH25, Thm. 1.4], we obtain

a Q-line bundle ΛCM,w on Md,v,u,r such that π∗ΛCM,w = λCM,πU as the argument

of [CP21, Lem. 10.2]. Note that any geometric fiber (Us̄,As̄) is specially K-stable

by Theorem 3.11.

§4. Nefness of the CM line bundle

We first discuss the nonnegativity of J-degree.
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Proposition 4.1. Let π : (X,∆, L) → C be a polarized log family, where C is a

proper smooth curve, and let H be a nef Q-line bundle on X. Suppose that for any

very general closed point s ∈ C, (Xs, Ls) is JHs-semistable. Then

JH((X,L)/C) ≥ 0.

Proof. We first deal with the case when H is ample and for any very general point

s ∈ C, (Xs, Ls) is J
Hs-semistable. Suppose that rH is very ample. Take a general

member D ∈ |rH| such that D is normal, π|D : D → C is flat and a contraction,

andDs is compatible with FHN, where r ∈ Z>0. We set the Harder–Narasimhan fil-

trations FHN on
⊕

m≥0 π∗OX(mrL) and FD,HN on
⊕

m≥0 π∗OD(mrL|D) respec-

tively. There exists the canonical map

(2) Fλ
HNπ∗OX(mrL) → Fλ

D,HNπ∗OD(mrL|D)

for any sufficiently divisible m ∈ Z>0 and λ ∈ Q by [HL10, Lem. 1.3.3]. We

consider the restricted filtration (FHN)|Ds
(cf. [Hat24a, Exa. 2.4]) and the induced

filtration FD,HN defined for the family (D, rL|D) → S. We see by (2) that for any

sufficiently divisible m ∈ Z>0 and λ ∈ Q, there exists a natural inclusion

(FHN)|λDs
H0(Ds,ODs(mLs)) ⊂ Fλ

D,HNH
0(Ds,ODs(mLs)).

Let wFHN
(m), wFD,HN

(m), and w(FHN)|Ds
(m) be the weight functions of FHN,

FD,HN, and (FHN)|Ds respectively. Then we have by Proposition 3.9 that

J rH((X,L)/C) = lim
m→∞

(
n!
wFD,HN

(m)

mn
− nr(Hs · Ln−1

s )

(n+ 1)Ln
s

(n+ 1)!wFHN
(m)

mn+1

)
≥ lim

m→∞

(
n!
w(FHN)|Ds

(m)

mn
− nr(Hs · Ln−1

s )

(n+ 1)Ln
s

(n+ 1)!wFHN(m)

mn+1

)
= J rH,NA(FHN).

By Proposition 2.18 and the linearity of JH,NA(FHN) with respect to H, we have

rJH,NA(FHN) = J rH,NA(FHN) ≥ 0.

We claim that the assertion in the general case follows from what we have

shown in the previous paragraph. Indeed, suppose that L+cπ∗P is ample for some

c ∈ Q>0 and closed point P ∈ C. Then we see that

JH+ε(L+cπ∗P )((X,L)/C) ≥ 0

for any ε ∈ Q>0. Thus,

JH((X,L)/C) = lim
ε→0

JH+ε(L+cπ∗P )((X,L)/C) ≥ 0.

We complete the proof.
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Next we deal with nefness of the CM line bundle when a fiber is specially

K-semistable.

Proposition 4.2. Let π : (X,∆, L) → C be a polarized log Q-Gorenstein family

such that C is a proper smooth curve and Ln+1 = 0. Take r ∈ Z>0 such that rL is a

line bundle. Suppose that there exist a closed point s ∈ C and δ ∈ (0, δ(Xs,∆s, Ls)]

such that KX/C +∆+ δL is π-nef. Then the following hold:

(1) For any sufficiently divisible m ∈ Z>0 and sufficiently small ε ∈ Q>0 and ε′ ∈
Q>0, there exists D ∈ |mrL+(mε+2g(C))π∗P | such that (Xs,∆s +

δ+ε′

mr Ds)

is lc, where g(C) is the genus of C and P is an arbitrary closed point of C.

(2) KX/C +∆+ δL is globally nef.

Proof. Consider the induced filtration FHN of R :=
⊕

m≥0Rm, where we let Rm =

H0(Xs,OXs
(mrLs)). By L

n+1 = 0 and Proposition 3.9, we see that S(FHN) = 0.

By Theorem 2.14 and Lemma 2.15, for any positive sufficiently small rational

numbers ε and ε′, it holds that

lct(Xs,∆s; Im,−mε(FHN)) ≥
δ(Xs,∆s, Ls) + ε′

mr

for any sufficiently large m ∈ Z>0, where Im,λ(FHN) is the base ideal of Fλ
HNRm.

In particular, Im,−mε(FHN) ̸= 0. We know that Im,−mε(FHN) is the image of

F−mε
HN π∗OX(mrL)⊗OXs

(−mrLs) → OXs
.

By [CP21, Prop. 5.7], we see that

F−mε
HN π∗OX(mrL) ⊂ Image(H0(X,mrL+ (mε+ 2g(C))π∗P )⊗OC

→ π∗OX(mrL))

for any sufficiently divisible m ∈ Z>0. This means that there exists an effective

divisor D ∈ |mrL+ (mε+ 2g(C))π∗P | such that the section corresponding to Ds

is contained in Im,−mε(FHN). Thus, we see that (Xs,∆s+
δ+ε′

mr Ds) is lc. Note that

KX/C +∆+
δ + ε′

mr
D ∼Q KX/C +∆+ (δ + ε′)

(
L+

mε+ 2g(C)

mr
π∗P

)
and hence π∗OX(l(KX/C + ∆ + δ+ε′

mr D)) is a nef vector bundle for any suffi-

ciently large and divisible l ∈ Z>0 [F18, Thm. 1.11]. This means that O(1) of

PC(π∗OX(l(KX/C + ∆ + δ+ε′

mr D))) is globally nef. Since KX/C + ∆ + δ+ε′

mr D is

π-ample, we have a closed immersion ι : X ↪→ PC(π∗OX(l(KX/C +∆+ δ+ε′

mr D))).

Then we have that

KX/C +∆+
δ + ε′

mr
D ∼Q

1

l
ι∗O(1)
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is nef. Here, we take m sufficiently divisible and ε, ε′ sufficiently small. Thus,

KX/S +∆+ δL is nef by taking the limit. We complete the proof.

Theorem 4.3. Let π : (X,∆, L) → C be a polarized log Q-Gorenstein family,

where C is a proper smooth curve. If there exists a closed point s ∈ C such that

(Xs,∆s, Ls) is specially K-semistable and KX/C + ∆ + δ(Xs,∆s, Ls)L is π-nef,

then

CM((X,∆, L)/C) ≥ 0.

Proof. By taking some c ∈ Q and replacing L by L + cπ∗P , where P is a closed

point of C, we may assume that Ln+1 = 0. Then we see that

CM((X,∆, L)/C) = JKX/C+∆+δ(Xs,∆s,Ls)L((X,L)/C).

Thus, the assertion follows from Propositions 4.1 and 4.2.

§5. Bigness of the CM line bundle

First, we deal with Proposition 1.4. To show this, we assert the following.

Proposition 5.1. Let π : (X,L) → S be a polarized family. Suppose that S is

projective and there exists an ample Q-line bundle H on X. If there exists a closed

point s0 ∈ S such that (Xs0 , Ls0) is JHs0 -semistable, then λJ,π,H is big.

Example 5.2. We remark that we do not need to assume that π has a maximal

variation. Indeed, we can easily check that λJ,π,H is big even in the case when the

family pi is a trivial test configuration as follows. Let (XA1 , LA1) be the trivial test

configuration for a polarized manifold (X,L). Let H be an ample line bundle on

X and it is trivial that HA1 + aX × {0} is ample on XA1 for a > 0. It is easy to

see that

DF(XA1 , LA1) =
1

(n+ 1)Ln
degP1 λCM,π = 0,

where π : (X × P1, L× P1) → P1 is the canonical compactification of XA1 and

JH,NA(XA1 , LA1) = 0.

However, we see that

1

(n+ 1)Ln
degP1(λJ,π,HA1+aX×{0}) = JH,NA(XA1 , LA1) + a = a > 0.

Proof of Proposition 5.1. Take an ample line bundle M on S. Take δ ∈ Q>0 such

that H − δπ∗M is also ample. By Proposition 2.21, we have that (Xs, Ls) is J
Hs -

semistable for any very general closed point s ∈ S since (H − δπ∗M)s = Hs. For



Special K-Stability and Positivity of CM Line Bundles 471

any movable curve C → S,

λJ,π,H−δπ∗M · C ≥ 0

by Propositions 3.5 and 4.1. By [BDPP13], we conclude that λJ,π,H−δπ∗M is

pseudo-effective. On the other hand,

λJ,π,π∗M · C = (n+ 1)(Ln
t )M · C

for any movable curve C → S where t is a general point of S. Thus, λJ,π,π∗M ≡
(n + 1)(Ln

t )M is big by [BDPP13]. Since λJ,π,H = λJ,π,H−δπ∗M + δλJ,π,π∗M , we

have that λJ,π,H is big.

Proof of Proposition 1.4. This immediately follows from Propositions 4.1 and 5.1.

Indeed, we see that λJ,π,H |V ∼ λJ,πV ,HV
is big and nef for any subvariety V ⊂ S

by Proposition 3.5. Then λJ,π,H is ample by the Nakai–Moishezon criterion.

Next, we deal with Theorem 1.1. For this, we show the following technical

result.

Proposition 5.3. Let π : (X,∆, L) → S be a polarized log Q-Gorenstein family of

relative dimension n with maximal variation, where S is projective and (Xs̄,∆s̄)

is klt for any geometric point s̄ ∈ S. Suppose that π∗L
n+1 ≡ 0. Suppose that there

exists λ ∈ Q>0 such that λ < δ(Xs,∆s, Ls) for any very general closed point s ∈ S

and KX/S +∆+ λL is π-ample. Then the Q-line bundle π∗(KX/S +∆+ λL)n+1

is big.

Proof. We modify the argument of all the parts of the proof of [XZ20, Lem. 7.4]

as follows. By taking a resolution of singularities of S, we may assume that S is

smooth. Let D = Supp(∆). Take a big line bundle H on S and r ∈ Z>0 such that

M := r(KX/S +∆+λL) is a π-very ample line bundle and Hj(Xs,M
⊗k
s ) = 0 and

Hj(Ds,M
⊗k
s |Ds) = 0 for any s ∈ S, j > 0, and k > 0. We may also assume that

the two canonical maps

SymdH0(Xs,OXs
(Ms)) → H0(Xs,OXs

(dMs))

and

H0(Xs,OXs
(dMs)) → H0(Ds,OXs

(dMs))

are surjective (cf. [F+05, Lem. 5.1]) for any d ∈ Z>0 by taking Ms sufficiently

ample. Choose d ∈ Z>0 such that the following further holds:

� Let IXs
and IDs

be ideal sheaves of Ph0(Xs,OXs (Ms))−1 with respect to closed

embeddings of Xs and Ds into Ph0(Xs,OXs (Ms))−1 induced by Ms. Then

H0(IXs
(d)) and H0(IDs

(d)) generate IXs
and IDs

respectively for any s ∈ S.
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Indeed, since there are only finitely many possibilities for the Hilbert polynomials

of Xs and Ds for all s ∈ S with respect to Ms, we can take d such that IXs

and IDs
are d-regular by [F+05, Thm. 5.3] and the above condition immediately

follows from [F+05, Lem. 5.1]. Then it is easy to see that Xs and Ds are cut out

by homogeneous polynomials of degree at most d in Ph0(Xs,OXs (Ms)). Combining

them, we conclude that π and d satisfy all the conditions of [XZ20, Def. 6.1]. Let

W = π∗OX(M) and Q := π∗OX(dM) ⊕ (π|D)∗OD(dM |D) and set the ranks of

them as w and q respectively. We note that Q is not locally free in general but there

exists a big open subset S◦ ⊂ S such that D|S◦ and any irreducible component of

D|S◦ are flat over S◦. We see that Q|S◦ is a locally free sheaf of rank q and set B

as a Weil divisor on S such that det(Q|S◦) ∼ B|S◦ . Since S is smooth, we regard

B as a Cartier divisor. Due to [XZ20, Thm. 6.6], we see that there exist m ∈ Z>0

and a nonzero map

Symdqm(W⊕4w)|S◦ → det(Q|S◦)⊗m ⊗OS(−H)|S◦ .

By the S2-condition of S, the above map is uniquely extended to the nonzero map

Symdqm(W⊕4w)|S◦ → OS(mB −H)|S◦ .

For any movable curve g : C → S, the image of C contains a very general point of

S and hence g∗W is a nef vector bundle by Proposition 4.2 and [F18, Thm. 1.11].

This means that the degree of the image of Symdqm(W⊕4w) → OS(mB − H)

is nonnegative since g∗ Symdqm(W⊕4w) is nef (cf. [L04b, Thm. 6.1.15]). Since the

map Symdqm(W⊕4w) → OS(mB−H) is also nonzero, the degree of g∗OS(mB−H)

is nonnegative. Therefore, B is big by [BDPP13].

In this paragraph, we show the inequality (6) below, which is a key step to

show Proposition 5.3. Consider the injective maps

det(π∗OX(dM)) ↪→
q1⊗
i=1

π∗OX(dM)

and

det(π∗OD(dM |D)|S◦) ↪→
q2⊗
i=1

π∗OD(dM |D)|S◦ ,

which are sections of the canonical surjections

q1⊗
i=1

π∗OX(dM) → det(π∗OX(dM))



Special K-Stability and Positivity of CM Line Bundles 473

and
q2⊗
i=1

π∗OD(dM |D)|S◦ → det(π∗OD(dM |D)|S◦)

respectively, where q1 and q2 are the ranks of π∗OX(dM) and π∗OD(dM |D) respec-

tively. We note that such sections indeed exist since for any vector space V of

dimension l over C, the canonical surjection

l⊗
i=1

V → det(V )

splits in a GL(l)-equivariant way by the linear reductivity of GL(l). By them, we

obtain the embedding

(3) det(Q|S◦) ↪→
q1⊗
i=1

π∗OX(dM)|S◦ ⊗
q2⊗
i=1

π∗OD(dM |D)|S◦

in a similar way. Let Z := X(q1)×SD
(q2), whereX(q1) := X×SX×S · · ·×SX means

the q1-times self fiber product of X over S. LetMZ :=
∑q1

i=1 p
∗
iM +

∑q2
j=1 p

′∗
j M |D,

where pi : Z → X is the ith projection and p′j : Z → D is the (q1+ j)th projection.

Let f : Z → S denote the canonical morphism. Then we see that (see [CP21, §2.2])

q1⊗
i=1

π∗OX(dM)⊗
q2⊗
i=1

π∗OD(dM |D) ∼= f∗OZ(dMZ).

By the adjunction of f∗ and f∗ applied to (3), we have a nonzero map

f∗OS(B)|f−1(S◦) → OZ(dMZ)|f−1(S◦).

This means that (dMZ − f∗B)|f−1(S◦) is effective on some irreducible component

of f−1(S◦). Now, Z might not satisfy Serre’s S2-condition and dMZ − f∗B might

not be effective on Z entirely. For this, we discuss as follows. Recall that any irre-

ducible component of D ∩ π−1(S◦) = D×S S
◦ is flat over S◦. Thus, so is f−1(S◦)

and hence we see that any irreducible component of f−1(S◦) can be denoted as

π−1(S◦)(q1)×S◦ π−1(S◦)∩D1×S◦ · · ·×S◦ π−1(S◦)∩Dq2 for some irreducible com-

ponents D1, . . . , Dq2 of D. We can also check that f−1(S◦) is generically reduced

by the fact that f is flat over S◦ and a general fiber of f is a fiber product of

reduced schemes over C. Let Z ′ := X(q1) ×S D1 ×S · · · ×S Dq2 and Z ′
1 be the

Zariski closure in Z ′,

π−1(S◦)(q1) ×S◦ π−1(S◦) ∩D1 ×S◦ · · · ×S◦ π−1(S◦) ∩Dq2 .
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Let ι : Z ′
1 ↪→ Z ′ be the natural inclusion and ν : Z ′ν → Z ′

1 the normalization.

Since codimZ(Z \ f−1(S◦)) ≥ 2, codimZ′ν (Z ′ν \ ν−1(f−1(S◦) ∩ Z ′
1))) ≥ 2. By the

S2-condition of Z ′ν , there exists a nonzero map

(4) ν∗ι∗f |∗Z′OS(B) → ν∗ι∗OZ′
1
(dMZ |Z′).

We denote the base change by g for any movable curve g : C → S of f |Z′ , MZ |Z′ ,

ι : Z ′
1 ↪→ Z ′, and ν : Z ′ν → Z ′

1 by fZ′
C
, MZ′

C
, ιC , and νC . Let BC := g∗B. We

note that MZ′
C

is nef by Proposition 4.2. By the property of (4), dν∗Cι
∗
CMZ′

C
−

ν∗Cι
∗
Cf

∗
Z′

C
BC is effective for any movable curve C → S. Thus, we obtain that

(5) (dν∗Cι
∗
CMZ′

C
− ν∗Cι

∗
Cf

∗
Z′

C
BC) · ν∗Cι∗CMN−1

Z′
C

≥ 0,

where N = dq1+(d−1)q2 = dimZ ′
1,C −1. Then we have that dim(Z ′

C \Z ′
1,C) ≤ N

since each fiber of each Di → S is of dimension at most n − 1. This means that

for any N + 1 line bundles L1, L2, . . . , LN+1 on Z ′
C ,

L1 · . . . · LN+1 = L1|Z′
1,C

· . . . · LN+1|Z′
1,C
.

Therefore, we have by (5) that

(6) dMN+1
Z′

C
≥ (MN

Z′
C ,t) degC BC .

To complete the proof of Proposition 5.3, we have to show by (6) that there

exists a positive constant C4 > 0 such that Mn+1
C ≥ C4 degC BC for any movable

curve C → S. Let

C0 := max

{
(Mn

t )
q1

q2∏
i=1

(Mt|D′
i,t
)n−1

}
> 0

be a constant, where D′
1, . . . , D

′
q2 run over all q2 irreducible components of

D|π−1(S◦). Here, we note that (MN
Z′

C ,t) = (Mn
t )

q1
∏q2

i=1(Mt|Di,t
)n−1 and thus

(MN
Z′

C ,t) ≥ C0. Next, we see as the equation [Pos22, (6.3.5.i)] that there exists

a constant C1 > 0 such that

(7) Mn+1
C +Mn

C ·∆C ≥ C1M
N+1
Z′

C
,

independent of the choice of D1, . . . , Dq2 and C. Indeed, let Di,C := Di ×S C and

take the Zariski closure D∗
i,C := Di,C ∩ π−1(S◦) ⊂ Di,C for each 1 ≤ i ≤ q2. It is

easy to see that D∗
i,C is flat over C. Let

Z ′
2 := X

(q1)
C ×C D

∗
1,C ×C · · · ×C D

∗
q2,C ⊂ Z ′

C .
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Since each fiber of each Di → S is of dimension at most n − 1, (MZ′
C
)N+1 =

(MZ′
C
|Z′

2
)N+1. By applying [Pos22, Lem. 7.0.5] to Z ′

2, there exists a positive con-

stant d1 ∈ Q>0 depending only on n such that

(MZ′
C
)N+1 = q1d1(M

n+1
C )(Mn

t )
q1−1

q2∏
i=1

(Mt|Di,t
)n−1

+ d1

q2∑
i=1

(MC |Di)
n(Mn

t )
q1

q2∏
j ̸=i

(Mt|Dj,t)
n−1.

This proves the existence of such C1. Thus, we see by (6) and (7) that there exists

a positive constant C2 := d−1C0C1 independent of the choice of movable curves C

such that

(8) Mn+1
C +Mn

C ·∆C ≥ C2 degC BC .

Now it suffices to show the following claim.

Claim 1. There exists a positive constant C3 > 0 independent of the choice of

movable curves C → S such that

Mn+1
C ≥ C3(M

n
C ·∆C).

Proof of Claim 1. We mimic the proof of [XZ20, Lem. 7.6]. We note that there

exists 0 < ξ < 1 such that KXs
+(1−ξ)∆s+λLs is big as a Q-Weil divisor for any

very general point s ∈ S. Indeed, we choose ξ such that KXη
+(1− ξ)∆η +λLη is

big, where η is the generic point of S. Then we see that KXs
+ (1− ξ)∆s + λLs is

big for general s. For any movable curve C → S, we see that (XC ,∆C) is klt since

(Xc,∆c) is klt for any closed point c ∈ C. Thus, we can take a Q-factorization Y

of XC , i.e. there exists a small projective birational morphism g : Y → XC from

a normal Q-factorial variety by [BCHM10, Cor. 1.4.3]. Let ∆′
C := g−1

∗ ∆C and let

φ : Y → C be the canonical morphism. Fix r′ ∈ Z>0 such that r′L is a line bundle.

By Proposition 4.2, we see that for any sufficiently small ε > 0 and sufficiently

divisiblem ∈ Z>0, there exists an effective divisor D ∈ |mr′LC+(mε+2g(C))f∗P |
such that lct(Xs,∆s;Ds) ≥ λ+ε

mr′ , where g(C) is the genus of C, P ∈ C is a closed

point, and s ∈ C is a very general point. Thus, we see that (Xs,∆s +
λ+ε
mr′Ds)

is lc for any very general s ∈ C. Let Γ := (1 − ξ)∆′
C + λ+ε

mr′ g
∗D. For any very

general s ∈ C, we see that gs : Ys → Xs is a small birational morphism and

KYs
+Γs ∼Q (gs)

−1
∗ (KXs

+ (1− ξ)∆s + λLs) +
ε

mr′ g
∗
sDs. Note that the birational

map g−1
s is isomorphic in codimension one and hence (gs)

−1
∗ (KXs + (1− ξ)∆s) is

a big Q-divisor. Thus, KYs
+ Γs is big for any very general s ∈ C and hence

(9) H0
(
Ys,OYs

(l(KYs
+ Γs))

)
̸= 0
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for any sufficiently divisible l ∈ Z>0. Let ψ : Ylc → Y be the lc modification of

(Y,Γ) by [OX12, Thm. 1.1]. In other words, ψ is a projective birational morphism

of normal varieties and there exists an effective ψ-exceptional Q-divisor G such

that

ψ∗(KY + Γ)−G = KYlc
+ ψ−1

∗ Γ + Ex(ψ),

KYlc
+ ψ−1

∗ Γ + Ex(ψ) is ψ-ample and (Ylc, ψ
−1
∗ Γ + Ex(ψ)) is lc. Since (Xs,∆s +

λ+ε
mr′Ds) is lc for sufficiently general s ∈ C, we have that G is vertical with respect

to C. Therefore, there exists a coherent sheaf Gl on C whose support is zero-

dimensional for any sufficiently divisible l ∈ Z>0 such that there exists an exact

sequence

0 → (φ ◦ ψ)∗OYlc

(
l(KYlc/C + ψ−1

∗ Γ + Ex(ψ))
)
→ φ∗OY (l(KY/C + Γ)) → Gl → 0.

By [F17, Thm. 1.1], we have that (φ ◦ ψ)∗OYlc
(l(KYlc/C + ψ−1

∗ Γ + Ex(ψ))) is

weakly positive over C for any sufficiently divisible l. Since dimSuppGl = 0,

φ∗OY (l(KY/C + Γ)) is also weakly positive. This means that for any ample line

bundle A on C and positive integer a, there exists b ∈ Z>0 such that the stalk

of Symab(g∗OY (l(KY/C + Γ))) ⊗ OC(bA) at the generic point of C is generated

by H0(C, Symab(g∗OY (l(KY/C + Γ))) ⊗ OC(bA)). By the following commutative

diagram for any very general point s ∈ C,

Symab
(
φ∗OY (l(KY/C + Γ))

)
⊗OC(bA) //

��

φ∗OY (abl(KY/C + Γ))⊗OC(bA)

��

SymabH0
(
Ys,OYs

(l(KYs
+ Γs))

)
// H0

(
Ys,OYs

(abl(KYs
+ Γs))

)
,

(9), and the facts that

Symab
(
φ∗OY (l(KY/C + Γ))

)
⊗ (OC/ms) ∼= SymabH0

(
Ys,OYs(l(KYs + Γs))

)
,

φ∗OY (abl(KY/C + Γ))⊗ (OC/ms) ∼= H0
(
Ys,OYs

(abl(KYs
+ Γs))

)
,

where ms is the maximal ideal sheaf corresponding to s, for any very general point

s ∈ C, H0(C, g∗OY (abl(KY/C +Γ))⊗OC(bA)) ̸= 0. This means that b(al(KY/C +

Γ)+ g∗A) is effective. By considering a→ ∞, we obtain that KY/C +Γ is pseudo-

effective and hence so is KXC/C + (1 − ξ)∆C + λ+ε
mr′D. Therefore, we obtain that

KXC/C + (1− ξ)∆C + λLC is pseudo-effective. This means that

Mn+1
C ≥ rξ(Mn

C ·∆C).

By taking C3 = rξ, we complete the proof of Claim 1.
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By (8), Claim 1, and [BDPP13], we obtain that there exists a positive constant

C4 such that π∗(M
n+1)−C4B is pseudo-effective. Since B is big, so is π∗(M

n+1).

We complete the proof.

Proof of Theorem 1.5. Here, we note that for any closed subvariety V ⊂ S, the

restriction πV : (XV ,∆V ) → V of π to V also has maximal variation since π has

maximal variation along any curve. By the property of the Knudsen–Mumford

expansion, we have that (πV )∗(MV )
n+1 = (π∗(M)n+1)|V . By Propositions 4.2

and 5.3, (πV )∗(MV )
n+1 is big and nef. Thus, Theorem 1.5 immediately follows

from the Nakai–Moishezon criterion.

By applying Proposition 5.3, we show the following key ingredient to prove

Theorem 1.3.

Theorem 5.4. Let π : (X,∆, L) → S be a polarized log Q-Gorenstein family with

maximal variation, where S is projective and (Xs̄,∆s̄) is klt for any geometric point

s̄ ∈ S. Suppose that there exists a closed point s0 ∈ S such that (Xs0 ,∆s0 , Ls0) is

specially K-stable and KX/S+∆+δ(Xs0 ,∆s0 , Ls0)L is π-ample. Then the CM-line

bundle λCM,π is big.

Proof. Let n be the relative dimension of π and v = Ln
s0 . Then, for any movable

curve C → S, the pullback of (n+ 1)vL− π∗(π∗(L
n+1)) satisfies(

(n+ 1)vL− π∗(π∗(L
n+1))

)n+1

C
= 0.

Thus, we may assume that Ln+1
C = 0 for any movable curve C → S by replacing

L with (n+ 1)vL− π∗(π∗(L
n+1)). Next we take positive rational numbers λ and

ε such that for any very general point s ∈ S, δ(Xs,∆s,Ls) ≥ λ + ε and (Xs, Ls)

is JKXs+∆s+λLs-semistable by Corollary 2.22. Here, we may assume that KX/S +

∆ + λL is π-ample. By taking a suitable r ∈ Z>0, we may further assume that

M := r(KX/S +∆+ λL) is a π-very ample line bundle.

By Proposition 5.3, π∗(M
n+1) is big. This means that for any movable curve

C → S, Mn+1
C > 0. If we choose 0 < δ < 1

(n+1)(Mn
t ) , then we see by [L04a,

Thm. 2.2.15] that

MC − δ(πC)
∗(πC)∗(M

n+1
C ) = r

(
KXC/C +∆C + λLC − δ

r
π∗
C(πC)∗(M

n+1
C )

)
is big, where t is a general closed point of S. Here, we claim the following.

Claim 2. Let α := inft∈S α(Xt,∆t;Mt). Then α > 0 and

(10) KXC/C +∆C + λLC − αδε

λ+ (1 + rα)ε
π∗
C(πC)∗(M

n+1
C )

is nef.
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Proof of Claim 2. Take D′ ∈ |MC−δπ∗
C(πC)∗(M

n+1
C )|Q by the bigness and assume

that SuppD′ does not contain Xs for some very general closed point s ∈ C. By

Proposition 4.2, we see that for any sufficiently small η ∈ Q>0 and sufficiently

divisible m ∈ Z>0, there exists an effective divisor D ∈ |mLC +(mη+2g(C))π∗
CP |

such that lct(Xs,∆s;Ds) ≥ λ+ε
m , where g(C) is the genus of C, P ∈ C is a closed

point, and s ∈ C is a very general point. Then we have that for any prime divisor

E over Xs,
λ

(λ+ ε)
A(Xs,∆s)(E) ≥ λ

m
ordE(Ds).

On the other hand, α > 0 by [BL22, Prop. 5.3]. Thus, we have that (Xs,∆s +
λ
mDs +

αε
λ+εD

′
s) is lc. This means that

KXC/C +∆C +
λ

m
D +

αε

λ+ ε
D′

∼Q KXC/C +∆C + λ
(
LC +

mη + 2g(C)

m
π∗
CP

)
+

rαε

λ+ ε

(
KXC/C +∆C + λLC − δ

r
π∗
C(πC)∗(M

n+1
C )

)
is nef by [F18, Thm. 1.11]. Since this holds for any sufficiently small η and large

m, we have that (10) is nef.

Take α as Claim 2. Then we have that for any movable curve C → S,

CM((XC ,∆C ,LC)/C) = J (KXC/C+∆C+λLC− αδε
λ+(1+rα)ε

π∗
C(πC)∗(M

n+1
C ))((XC ,LC)/C)

+
αδε

λ+ (1 + rα)ε
(Mn+1

C ).

By the choice of α, KXC/C +∆C +λLC − αδε
λ+(1+rα)επ

∗
C(πC)∗(M

n+1
C ) is absolutely

nef on XC . Since (Xs, Ls) is JKXs+∆s+λLs -semistable for any very general point

s ∈ S as we stated in the first paragraph of the proof of Theorem 5.4, we have by

Propositions 3.3 and 4.1 that

1

(n+ 1)v
λCM,π · C ≥ αδε

λ+ (1 + rα)ε
(π∗(M

n+1) · C).

Thus, λCM,π is big by [BDPP13] since π∗(M
n+1) is big.

Proof of Theorem 1.1. First, we assert that there exists a closed point s0 ∈ S

such that KX/S + ∆ + δ(Xs0 ,∆s0 , Ls0)L is π-ample. To show this, we note that

for any closed point s ∈ S, KXs
+ ∆s + δ(Xs,∆s, Ls)Ls is ample. Thus, there

exists an open neighborhood U of s such that KXU/U + ∆U + δ(Xs,∆s, Ls)LU

is π|π−1U -ample by [KM98, Prop. 1.41]. By quasi-compactness of S, there exist



Special K-Stability and Positivity of CM Line Bundles 479

finitely many open subsets Ui and closed points si ∈ Ui such that
⋃
Ui = S

and KXUi
/Ui

+ ∆Ui
+ δ(Xsi ,∆si , Lsi)LUi

is π|π−1Ui
-ample. By letting s0 be an

si attaining max{δ(Xsi ,∆si , Lsi)}, we see the claim holds. Then, the assertion

of Theorem 1.1 immediately follows from Proposition 3.3, Theorems 4.3 and 5.4

applied to this s0 in the same way as Proposition 1.4 by using the Nakai–Moishezon

criterion.

§6. An application to the moduli of K-stable Calabi–Yau fibrations

over curves

Let Md,v,u,r be the coarse moduli space of Md,v,u,r, which exists by [KeMo97]. In

this section, we deal with Corollary 1.3. More precisely, we prove the positivity of

some CM line bundles for certain polarizations.

Theorem 6.1. There exists w ∈ Z>0 such that for any proper subspace B of

Md,v,u,r, ΛCM,w|B is ample. In particular, B is projective.

First, we recall the following well-known result.

Lemma 6.2 (Cf. [Ka85, Prop. 8.3], [DG18, Prop. 4.2]). Let (X,∆) be a projective

klt pair such that KX + ∆ ∼Q 0. Then dimAut0(X,∆) = dimPic0(X) and for

any two ample line bundles A1 and A2 algebraically equivalent to each other, there

exists ξ ∈ Aut0(X,∆) such that ξ∗A1 ∼ A2.

Proof. For the reader’s convenience, we show this lemma here. First, we show that

dimAut0(X,∆) ≤ dimPic0(X). Fix a very ample line bundle L on X. Consider a

morphism

φL : Aut0(X,∆) ∋ g 7→ [g∗L⊗ L⊗−1] ∈ Pic0(X).

By [M70, §4, Cor. 1] and [A05, Prop. 4.6], φL is a homomorphism of Abelian

varieties. Thus, it suffices to show that KerφL is a finite group scheme. Let

ι : X ↪→ Ph0(X,OX(L))−1 be the natural embedding defined by |L|. Since g ∈ KerφL

satisfies that g∗L ∼ L, there exists a group homomorphism ν : (KerφL)
0 →

PGL(h0(X,OX(L))) such that (KerφL)
0 acts on Ph0(X,OX(L))−1 so that ι is

(KerφL)
0-equivariant, where (KerφL)

0 is the identity component of KerφL. It

is easy to see that ν is trivial and (KerφL)
0 trivially acts on (X,∆). Therefore,

KerφL is a finite group scheme. We note that if dimAut0(X,∆) ≥ dimPic0(X),

then φL is further étale.

We prove dimAut0(X,∆) ≥ dimPic0(X) by induction on dimX = n. It is

well known that the assertion holds when n = 1. We may assume that n > 1.

Since (X,∆) is klt, X has only rational singularities by [KM98, Thm. 5.22]. Thus,

dimPic0(X) = dimAlb(X), where π : X → Alb(X) is the Albanese morphism
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(cf. [Ka85, §8]). By [A05, Thm. 4.8], we have that there exist an étale morphism

A→ Alb(X) from an Abelian variety, a projective connected klt log pair (F,∆F ),

and an isomorphism over A,

Φ: A×Alb(X) (X,∆) → A× (F,∆F ).

Note that A→ Alb(X) is an étale Galois covering and let G = Ker(A→ Alb(X))

be the Galois group. We see that G is a finite commutative group. By identifying

(F,∆F ) with the fiber of π : (X,∆) → Alb(X) over 0, G acts on (F,∆F ) naturally.

Let ψ : G→ Aut(F,∆F ) be the natural homomorphism induced by the G-action.

On the other hand, G naturally acts on (X,∆) ×Alb(X) A equivariantly over A.

By Φ, we obtain the induced G-action on A× (F,∆F ) such that

g · (a, f) = (a+ g, ϕg(a)(f)),

where g ∈ G, a ∈ A, and f ∈ F are closed points. Here, ϕg(a) ∈ Aut(F,∆F ).

Note that ϕg(0) = Φ(g, ·) ◦ ψ(g) ◦ Φ(0, ·)−1. Thus, ϕg(0) is contained in the same

component of Aut(F,∆F ) as ψ(g). Since ϕg(a) is continuous on a ∈ A, we can

write

ϕg(a) = ψ(g) ◦ tg(a),

where tg : A→ Aut0(F,∆F ) is a morphism of Abelian varieties.

If Alb(X) is a point, then dimAut0(X,∆) = 0 also holds by what we have

shown in the first paragraph. Thus, we may assume that dimAlb(X) > 0 and then

dimF < n. Take a very ample line bundle L on X. Let L̃ be the pullback of L

to A× F under the morphism A× F → X. Now, La denotes the restriction of L̃

to {a} × F ⊂ A × F for any closed point a ∈ A. For any closed point a ∈ A and

g ∈ G, we have

La = g∗L̃⊗O{a}×F = ϕg(a)
∗Lg+a

= tg(a)
∗(ψ(g)∗Lg+a).(11)

Set

ρ : A ∋ a 7→ [La ⊗ L⊗−1
0 ] ∈ Pic0(F );

ρ is indeed a morphism. We also consider the morphism

φ := φL0
: Aut0(F,∆F ) ∋ g 7→ [g∗L0 ⊗ L⊗−1

0 ] ∈ Pic0(F ).

By what we have shown in the first paragraph and the induction hypothesis, φ is

an étale homomorphism. Furthermore, by [KM98, Lem. 1.6], we see that

φ(h) = [h∗Lb ⊗ L⊗−1
b ]
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for any h ∈ Aut0(F,∆F ) and b ∈ A. Thus (11) is rephrasable as

ρ(a)− φ(tg(a)) = [ψ(g)∗Lg+a ⊗ L⊗−1
0 ].

Since L0 is G-invariant, we see that

ψ(g)∗Lg+a ⊗ L⊗−1
0 = ψ(g)∗(Lg+a ⊗ L⊗−1

0 ).

Thus we obtain that

(12) ρ(a)− φ(tg(a)) = ψ(g)∗ρ(g + a).

Then, consider the cartesian diagram

Ã1
//

��

Aut0(F,∆F )

φ

��

A
ρ
// Pic0(F ),

and let Ã be the identity component of Ã1. We see that Ã is an Abelian variety

since this is a projective algebraic group. Let η : Ã→ A be the natural morphism.

Then there exists a morphism ρ̃ : Ã→ Aut0(F,∆F ) such that φ ◦ ρ̃ = ρ ◦ η. Let H
be a Galois group of p : Ã→ Alb(X) and let q : H → G be the natural morphism.

Via q, H acts on Ã × (F,∆F ) equivariantly over A × (F,∆F ). We denote the

automorphism of Ã × (F,∆F ) by bh induced by h ∈ H. Note that G acts on

Aut0(F,∆F ) and Pic0(F ) in the way that

g · s = ψ(g) ◦ s ◦ ψ(g−1),

for any g ∈ G and s ∈ Aut0(F,∆F ), and

g · [M ⊗ L⊗−1
0 ] = [ψ(g−1)∗M ⊗ L⊗−1

0 ]

for any g ∈ G and [M ] ∈ Pic0(F ) respectively. We see that φ is G-equivariant. Let

t̃h(ã) := tq(h)(p(ã)) for any h ∈ H and ã ∈ Ã. By (12), if we put

θh(ã) := ρ̃(ã)− t̃h(ã)− ψ(q(h−1)) ◦ ρ̃(ã+ h) ◦ ψ(q(h))

for h ∈ H and ã ∈ Ã, then we have that θh(ã) ∈ Ker q = Ker p. Since θh : Ã →
Ker p is a morphism and Ker p is finite, θh(ã) is independent of ã and we also

denote θh = θh(ã) ∈ Ker p. Put an automorphism of Ã× (F,∆F ) over Alb(X) as

Ψ: (ã, f) 7→ (ã, ρ̃(ã)(f))

and a morphism ch for any h ∈ H as

ch : Ã× F ∋ (ã, f) 7→ (ã+ h, ψ(q(h)) ◦ θ−1
h (f)) ∈ Ã× F.
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Then we see that ch = Ψ ◦ bh ◦ Ψ−1. By Ψ, we may assume that H acts on

Ã× (F,∆F ) by ch and then we see that the automorphism of Ã× (F,∆F ),

σb̃ : (ã, f) 7→ (ã+ b̃, f)

is H-invariant for any b̃ ∈ Ã. This means that σb̃ descends to an automor-

phism of (X,∆) and hence Ã acts on Alb(X) transitively. Therefore, Aut0(X,∆)

acts on Alb(X) transitively. This shows that dimPic0(X) = dimAlb(X) ≤
dimAut0(X,∆). We complete the proof of dimAut0(X,∆) = dimPic0(X).

Finally, we deal with the last assertion. Take m ∈ Z>0 such that A⊗m
1 is very

ample. We see that

φA1 : Aut0(X,∆) ∋ g 7→ [g∗A1 ⊗A⊗−1
1 ] ∈ Pic0(X)

is surjective since φA⊗m
1

is a surjective map and is the composition of φA1
and an

étale endomorphism

Pic0(X) ∋ [M ] 7→ [M⊗m] ∈ Pic0(X).

This is equivalent to the existence of an isomorphism ξ ∈ Aut0(X,∆) such that

ξ∗A1 ∼ A2 for any A2 algebraically equivalent to A1. We complete the proof.

To prove Theorem 6.1, we show the following by applying Lemma 6.2.

Proposition 6.3. Let f : (X,∆, A) → P1 be a uniformly adiabatically K-stable

klt-trivial fibration with −(KX +∆) not numerically trivial but nef.

Then dimAut0(X,∆) = dimPic0(X) and for any two ample line bundles A1

and A2 algebraically equivalent to each other, there exists φ ∈ Aut0(X,∆) such

that φ∗A1 ∼ A2.

Proof. Take s ∈ Q>0 such that −(KX +∆) ∼Q sf
∗O(1). Then we see by [Hat25,

Thm. 1.1] that for any three distinct closed points p1, p2, p3 ∈ P1, (X,∆ +
s
3

∑3
i=1 f

−1(pi)) is klt and KX +∆+ s
3

∑3
i=1 f

−1(pi) ∼Q 0. We claim that

(13) Aut0(X,∆) = Aut0

(
X,∆+

s

3

3∑
i=1

f−1(pi)

)
.

Indeed, Aut0(X,∆) acts on P1 but Aut0(X,∆) is an Abelian variety by [Hat24a].

Let G be the image of the group homomorphism Aut0(X,∆) → PGL(2). Since G

is a proper linear algebraic group, G is a point. Thus, Aut0(X,∆) fixes f−1(p) for

any p ∈ P1 and (13) holds. By Lemma 6.2,

dimAut0

(
X,∆+

s

3

3∑
i=1

f−1(pi)

)
= dimPic0(X).
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Thus, we complete the proof of the first assertion by (13). The second assertion

follows in the same way as Lemma 6.2.

Proof of Theorem 6.1. By [Ko90, Prop. 2.7], there exist a proper normal variety

B′, a finite surjective morphism g : B′ → B, and a morphism of stacks g̃ : B′ →
Md,v,u,r such that π ◦ g̃ = ι ◦ g, where ι : B →Md,v,u,r and π : Md,v,u,r →Md,v,u,r

are the natural morphisms. We set w as in Theorem 3.11. Let f : (X,A) → B′

be the pullback of the universal family (U ,A ) on Md,v,u,r via g̃ (cf. [HH25,

Rem. 6.5]) with vol(Ab′) = w for any point b′ ∈ B′. Then A is f -ample and

(Xb, Ab) is specially K-stable for any closed point b ∈ B′.

Here, we claim that the family X → B′ has maximal variation. To show this,

assume the contrary and that there exists a proper curve C ⊂ B′ such that C passes

through a very general point and for any two general closed points p1, p2 ∈ C, Xp1

and Xp2
are isomorphic. Then Ap and Aq are algebraically equivalent for any two

very general closed points p, q ∈ C. By Proposition 6.3, we see that there exists an

isomorphism φ : Xp → Xq such that Ap ∼ φ∗Aq. This means that C is contained

in a fiber of g by the definition of Md,v,u,r. This contradicts the finiteness of g.

Thus, the family X → B′ has maximal variation.

The CM line bundle λCM,f = g∗(ΛCM,w|B) on B′ is big and nef by The-

orem 1.1. Thus, we have that (ΛCM,w|B)dimB > 0. By the Nakai–Moishezon

criterion [Ko90, Thm. 3.11], ΛCM,w|B is ample and hence B is projective.
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