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Dynamics of Fourier Multipliers on Riemannian
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Abstract

Let X be a Riemannian symmetric space of noncompact type and T be a linear
translation-invariant operator which is bounded on Lp(X). We shall show that if T is
not a constant multiple of identity then there exist complex constants z such that zT is
chaotic on Lp(X) when p is in the sharp range 2 < p < ∞. This vastly generalizes the
result that dynamics of the (perturbed) heat semigroup is chaotic on X proved in Ji and
Weber (Ergodic Theory Dynam. Systems 30 (2010), 457–468) and Pramanik and Sarkar
(J. Funct. Anal. 266 (2014), 2867–2909).
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§1. Introduction

Let T : Lp(X) → Lp(X) be an Lp-multiplier on a Riemannian symmetric space X

of noncompact type for any fixed 1 ≤ p ≤ ∞. We shall call T nontrivial if it is not

a constant multiple of identity. The aim of this note is to show that for the range

2 < p < ∞, given any nontrivial Lp-multiplier T , we can find complex constants

z ∈ C such that the operator zT is chaotic on Lp(X). This range of p will be

shown to be sharp. Our definition of chaos is consistent with [4, 13], which in turn

is an adaptation of the one introduced by Devaney [5].

To put the result in perspective, let us discuss the background. Let ∆ be

the positive Laplace–Beltrami operator on X and Tt = e−t∆, t ≥ 0 be the heat

semigroup. Ji and Weber [13] showed that its perturbation ectTt, t ≥ 0 for some

constant c is subspace chaotic on Lp(X) when 2 < p < ∞. Through [17] and [15]
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this result was improved by establishing that the same perturbation of the heat

semigroup is actually chaotic on Lp(X) with p in the same range. In this paper we

shall establish that this is a particular case of a general fact. We first note that the

operator Tt = e−t∆ is the same as the operator f 7→ f ∗ ht, where ht is the heat

kernel, i.e. the fundamental solution of the heat equation (∆ − ∂
∂t )f = 0. Thus

it is natural to consider the operator f 7→ f ∗ µ, where µ is any nonatomic K-

biinvariant Borel measure, a particular case of which is the heat operator. We show

that such an operator is always chaotic on Lp(X), 2 < p < ∞ provided it is not

a contraction (Corollary 5.0.3). Indeed, the heat operator can be substituted by

any Lp-multiplier. A corollary of the main result (Theorem 4.0.1) in this paper is

the following. Consider an autonomous discretization (see Section 2.2) of the heat

semigroup Tt0 = e−t0∆ for any fixed t0 > 0. Then there exists a constant z ∈ C,
such that T = ze−t0∆ is chaotic on Lp(X) when p is in the range 2 < p < ∞. It

is known that a C0-semigroup is hypercyclic if and only if it admits a hypercyclic

discretization. We also note that a periodic point of a discretized semigroup is also

a periodic point of the original semigroup. Thus if T = zTt0 is chaotic then so is

the semigroup (zTt)t≥0. Thus our result in the present article accommodates the

earlier results in this direction mentioned above. See Sections 2 and 5 for more

details.

The paper is organized as follows. The general preliminaries are established in

Section 2, while those about Riemannian symmetric spaces are given in Section 3.

Section 4 contains the main result and its proof. In Section 5 we deal with some

well-known multipliers and obtain some corollaries of the main results for the

particular cases. In Section 6 we show the sharpness of the range of p in the main

result. Finally, in Section 7 we state some open questions along with motivations.

§2. Preliminaries

In this section we shall establish notation and gather all the definitions and results

required for this article.

§2.1. Generalities

The letters R, Q and C denote respectively the set of real numbers, rational num-

bers and complex numbers. We use ℜz and ℑz to denote respectively the real

and imaginary parts of z ∈ C. This notation will also be used for its obvi-

ous generalization when z ∈ Cn. The notation | · | will denote the standard

Euclidean norm in Rn and in Cn: |x| =
√
x2
1 + · · ·+ x2

n for x = (x1, . . . , xn) ∈ Rn

and |z| =
√

|ℜ(z)|2 + |ℑ(z)|2 for z ∈ Cn. We shall also use | · | to represent a

norm on certain spaces related to the symmetric space X, but under appropriate
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identifications of these spaces with Rn or Cn, which will make this consistent with

the previous usage of this notation. (For more details see Section 3.) For a set

S in a topological space, S◦ denotes its interior. For a function f on X, ∥f∥p
denotes its Lp norm. We shall mention explicitly when we use the Lp-norm of

functions on spaces other than X. For any p ∈ (1,∞), p′ = p/(p − 1) and for

p = 1, p′ = ∞. When p = ∞ we use p′ to mean 1. We shall frequently use the

notation γp = γp′ = | 2p − 1| for any p ∈ (1,∞) and γ1 = γ∞ = 1. The letters C, c

will be used to denote positive constants whose values may change from one line

to another. The following results of several complex variables will be used.

2.1.1. Open mapping theorem [16, Thm. 1.21, p. 17]. If Ω ⊂ Cn is open

and f : Ω → C is a nonconstant holomorphic function then f(U) is open for every

open set U ⊂ Ω.

2.1.2. Maximum modulus principle [16, Cor. 1.22, p. 17]. Let Ω ⊂ Cn be

an open set and f : Ω → C a holomorphic function. If |f | attains a local maximum

at a point z0 ∈ Ω then f is constant in the connected component of Ω containing

z0.

2.1.3. Thin sets. Let Ω ⊂ Cn be an open set. A subset E of Ω is called thin if

for every point x0 ∈ Ω there is a ball B(x0, r) centered at x0 with radius r > 0 in

Ω and a nonconstant holomorphic function f : B(x0, r) → C such that f(z) = 0

for z ∈ E ∩ B(x0, r). We quote here some well-known results related to thin sets

([16, pp. 32–33]):

(1) If E ⊂ Ω is not thin then no nonzero holomorphic function f : Ω → C can

vanish on E.

(2) If E ⊂ Ω is thin then its closure Ē in Ω is also thin and E is nowhere dense.

(3) The 2n-dimensional Lebesgue measure of a thin set E ⊂ Ω ⊂ Cn is zero.

(4) If Ω is connected and E ⊂ Ω is thin then Ω∖ E is also connected.

§2.2. Chaos, hypercyclicity, etc.

Let B be a separable Fréchet space and T : B → B be a linear dynamical system,

i.e. T is a linear map from B to itself. For x ∈ B we call

{x, Tx, T 2x, . . .}

the orbit of x under T . The operator T is called hypercyclic if there is an x ∈ B,
such that the orbit of x under T is dense in B. In such a case x is called a hypercyclic

vector for T . (See [7, p. 37].) A point x ∈ B is called a periodic point of T if there is

a nonzero natural number n such that Tnx = x. The operator T is called chaotic

if T is hypercyclic and the set of all its periodic points is dense in B.
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For a C0-semigroup (Tt)t≥0 on a Fréchet space B, and x ∈ B, {Ttx | t ≥ 0}
is called the orbit of x under (Tt)t≥0. If this orbit is dense in B, then x is called a

hypercyclic vector and we say that (Tt)t≥0 is hypercyclic on B. A point x ∈ B is

called a periodic point of (Tt)t≥0 if Ttx = x for some t > 0. The semigroup (Tt)t≥0

is called chaotic if it is hypercyclic and the set of all its periodic points is dense

in B.
A discretization of a C0-semigroup (Tt)t≥0 is a sequence of operators (Ttn)n

with tn → ∞. In particular, if tn = nt0 for some t0 > 0 and n ∈ N, then (Ttn)n =

(Tn
t0)n is an autonomous discretization of (Tt)t≥0. It is clear that any periodic point

(respectively hypercyclic vector) of the operator Tt0 for any fixed t0 > 0 is also a

periodic point (respectively hypercyclic vector) of the semigroup (Tt)t≥0. Thus if

for some t0 > 0, Tt0 is chaotic on a Banach space B, then (Tt)t≥0 is chaotic on B.
We also have the following result (see [7, p. 168, Thm. 6.8]).

Proposition 2.2.1. Let (Tt)t≥0 be a C0-semigroup on a Banach space B. If x ∈ B
is a hypercyclic vector for (Tt)t≥0 then it is a hypercyclic vector for each operator

Tt, t > 0.

For a detailed account on the relationship between dynamics of a C0-semi-

group and that of its discretization we refer to [7, Chap. 7]. This discussion in

particular points out that Theorem 4.0.1 in this paper accommodates the chaoticity

of the heat semigroup considered in [13, 17, 15] as a special case, which was alluded

to in the introduction.

The following result due to Kitai will be used in this article ([14], [7, p. 71]).

Theorem 2.2.2 (Kitai). Let B be a separable Banach space and T be a bounded

linear operator from B to itself. Let Y1, Y2 be two dense subsets of B and T ′ : Y1 →
Y1 be a (not necessarily linear or continuous) map. If

(i) limn→∞ Tny = 0 ∀y ∈ Y2,

(ii) limn→∞ T ′nx = 0 ∀x ∈ Y1 and

(iii) TT ′x = x ∀x ∈ Y1,

then T is hypercyclic on B, i.e. there is an x ∈ B such that the orbit {Tnx | n ∈ N}
is dense in B.

We conclude this section by noting that ([7, p. 167, Thm. 6.7]) if T is a hyper-

cyclic operator on a Fréchet space B and λ ∈ C with |λ| = 1 then T and λT have

the same set of hypercyclic vectors.
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§3. Riemannian symmetric spaces

Most of the notation and results in this section are standard and available for

instance in [6, 10]. For convenience and for the sake of keeping the current exposi-

tion self-contained, we merely collect the relevant facts without proofs but indicate

appropriate references.

§3.1. Basics

Throughout this paper, X will denote a Riemannian symmetric space of non-

compact type which can be realized as a quotient space G/K where G is a

connected noncompact semisimple Lie group with finite center, and K is a maxi-

mal compact subgroup of G. The group G acts naturally on X and on functions

on X by left translations. Functions on X are identified with the right K-invariant

functions on G and vice versa. For an element x ∈ G and a function f on X, ℓxf

is the left translation of f defined by ℓxf(y) = f(x−1y). A function (or measure)

on X is called K-invariant if it is invariant under left K-action. Such a function

(respectively measure) can be identified naturally with a K-biinvariant function

(respectively measure) on G. Frequently we shall use this identification without

mentioning it.

The group G admits an Iwasawa decomposition, namely G = KAN , inducing

a direct sum decomposition of the Lie algebra: g = k ⊕ a ⊕ n. Here, g, k, a and n

denote the Lie algebras of G, K, A and N respectively. This decomposition fixes

a system of positive roots Σ+ ⊂ a∗, where a∗ denotes the real dual of a. From the

collection of root spaces gα, parametrized by Σ+, one obtains

n =
⊕
α∈Σ+

gα.

Setting mα = dim(gα), the multiplicity of the root α ∈ Σ+, we define ρρρ as the

half-sum of the elements of Σ+ counted with multiplicities:

(3.1.1) ρρρ =
1

2

∑
α∈Σ+

mα · α ∈ a∗.

The Killing form on g restricts to a positive definite form on a, which in turn

induces a positive inner product and hence a norm | · | on a∗, so |ρρρ| is defined. The
Killing form endowsX with both a natural Riemannian metric and a corresponding

G-invariant measure (denoted by dx). The positive Laplace–Beltrami operator

corresponding to this Riemannian metric is denoted by ∆.

Let dim(a) = n, which is by definition the rank of the space X. Using the pull-

back of the Killing form, we shall henceforth identify a and a∗ with Rn, equipped
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with the standard inner product ⟨·, ·⟩:

(3.1.2) ⟨x,y⟩ =
n∑

i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,

so that ⟨x,x⟩ > 0 for all nonzero x ∈ Rn. The complexification of a∗ will be

denoted by a∗C and will be naturally identified with Cn. The real inner product

(3.1.2) extends to Cn as a C-bilinear form Cn × Cn → C defined by

(3.1.3) (z,v) =

n∑
i=1

zivi, where z = (z1, . . . , zn), v = (v1, . . . , vn) ∈ Cn.

For the action of λ ∈ a∗C on v ∈ a we shall use both the notation λ(v) and the

notation (λ, v).

Let W denote the Weyl group of the pair (g, a) and a+ and a∗+ be the positive

Weyl chambers corresponding to Σ+ in a and a∗ respectively.

For p ≥ 1, we define the set ([6, p. 328])

(3.1.4) Λp =
{
λ ∈ Cn

∣∣ |ℑ(wλ)(H)| ≤ γpρρρ(H) for all H ∈ a+, w ∈ W
}
,

where γp and ρρρ are defined in Section 2.1 and (3.1.1) respectively. We note the

following:

(a) If p = 2 then Λp reduces to a∗, which is identified with Rn.

(b) For 1 ≤ p < q ≤ 2, Λq ⊊ Λp.

(c) Λp = Λp′ for p ≥ 1.

(d) Λp is closed under the reflection λ 7→ −λ ([6, p. 329]).

We recall from Section 3.1 that the G-invariant measure dx on X is induced

by the Killing form. On G, we fix the Haar measure dg that satisfies∫
X

f(x) dx =

∫
G

f(g) dg

for every function f ∈ L1(X) which is identified as a right K-invariant function

on G in the right-hand side. Let M be the centralizer of A in K. On K we fix

the normalized Haar measure dk and on K/M we fix the K-invariant normalized

measure. We shall often slur the difference between the two.

§3.2. Spherical Fourier transform

Let H : G → a be the Iwasawa projection associated to the decomposition G =

KAN . The elementary spherical function φλ for λ ∈ a∗C is defined by ([10, p. 200])

φλ(x) =

∫
K

e−(iλ+ρρρ)(H(x−1k)) dk, x ∈ G.
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We record a few well-known facts about these functions. Some are easy to deduce.

For the others, see [8, pp. 419, 427, 460] and [6, Props 3.1.4 and 3.2.2, ineqs (4.6.3),

(4.6.4), (4.6.9)].

Lemma 3.2.1. The elementary spherical functions φλ have the following proper-

ties:

(a) For each λ ∈ a∗C ≡ Cn, the function φλ is a K-biinvariant function on

G (hence is naturally identified as a function on X) and
∫
K
φ(xky) dk =

φ(x)φ(y).

(b) φλ = φwλ for all w ∈ W .

(c) φ−λ(x
−1) = φλ(x) for all x ∈ G and λ ∈ a∗C.

(d) For every λ, the identity

∆φλ = ((λ, λ) + |ρρρ|2)φλ

holds pointwise.

(e) If 2 < p < ∞ and λ ∈ Λ◦
p then φλ ∈ Lp(X) and for λ ∈ a∗, φλ ∈ L2+ε(X) for

any ε > 0.

(f) If λ ∈ Λ1, then φλ ∈ L∞(X).

(g) If λ ∈ Λ◦
1, then φλ ∈ C0(X), the space of continuous functions vanishing at

infinity.

(h) For each fixed x ∈ G, λ 7→ φλ(x) is a holomorphic function on Cn.

For a measurable function f of X, we define its spherical Fourier transform

f̂ as (see [8, p. 425])

f̂(λ) =

∫
X

f(x)φ−λ(x) dx, λ ∈ a∗,

whenever the integral makes sense. Since for all w ∈ W , φλ = φwλ we have

f̂(λ) = f̂(wλ). Its inverse transform, again subject to convergence of the defining

integral, is given by (see [8, p. 454])

(3.2.1) f(x) = C

∫
a∗

f̂(λ)φλ(x)|c(λ)|−2 dλ,

where c(λ) is the Harish-Chandra c-function, dλ is the Lebesgue measure on a∗

(and thus |c(λ)|−2 dλ is the spherical Plancherel measure on a∗) and C is a nor-

malizing constant.
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§3.3. Helgason Fourier transform

(See [10, pp. 199–203] for details.) For a function f on X, its Helgason Fourier

transform is defined by

f̃(ξ, k) =

∫
X

f(x)e(iξ−ρρρ)(H(x−1k)) dx

for all ξ ∈ a∗C ≡ Cn, k ∈ K/M , for which the integral exists. The Fourier transform

f(x) → f̃(ξ, k) extends to an isometry of L2(X) onto L2(a∗+×K/M, |c(ξ)|−2 dξ dk)

where c(ξ) is the Harish-Chandra c-function and thus |c(ξ)|−2 dξ dk is the Plan-

cherel measure. We also have∫
X

f1(x)f2(x) dx =
1

|W |

∫
a∗
+×K/M

f̃1(ξ, k)f̃2(ξ, k)|c(ξ)|−2 dξ dk,

where |W | is the cardinality of the Weyl group W and dk is the normalized K-

invariant measure on K/M . We note that if g is a K-invariant function on X, then

g̃(ξ, k) = ĝ(ξ) for all k ∈ K/M and for f , g as above,

f̃ ∗ g(ξ, k) = f̃(ξ, k)ĝ(ξ)

for ξ ∈ Cn and k ∈ K/M whenever the quantities f ∗ g, f̃ ∗ g, f̃ and ĝ make sense.

We have the following Lp-version of the inversion formula (see [19, Thm. 3.3]).

Theorem 3.3.1 (Stanton–Tomas). For a function f ∈ Lp(X), 1 ≤ p < 2, if

f ∗ φλ is in L1(|c(λ)|−2 dλ), then for almost every x ∈ X,

f(x) =

∫
a∗

f ∗ φλ(x)|c(λ)|−2 dλ.

In particular, if f is a K-invariant function on X and f̂ ∈ L1(|c(λ)|−2 dλ), then

f(x) =

∫
a∗

f̂(λ)φλ(x)|c(λ)|−2 dλ.

§3.4. Herz’s majorizing principle

We have the following result due to Herz ([12]) on convolution operators.

Proposition 3.4.1. Let h be a K-biinvariant function on G, and let Th : f 7→ f∗h
be the corresponding right convolution operator on Lp(X), p ∈ [1,∞]. Then the

operator norm of Th : L
p(X) → Lp(X) obeys the following bound:

∥Th∥Lp→Lp ≤ |̂h|(−iγpρρρ),

where the equality holds if h is nonnegative.
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§3.5. Fourier multipliers

We recall that for 1 < p < ∞, γp = |2/p − 1| and γ1 = γ∞ = 1. In this paper we

are concerned about the bounded linear operators on Lp(X), 1 ≤ p < ∞ to itself

which are invariant under translations by elements of G. This class of operators are

called Lp-Fourier multipliers or simply Lp-multipliers and are denoted by COp(X).

It is known that COp(X) is a Banach algebra. We shall briefly discuss the main

points about these operators, collecting them mostly from [1]. If T ∈ CO1(X)

then Tf = f ∗ µ, where µ is a K-biinvariant finite Borel measure on G and if

T ∈ CO2(X) then for f ∈ C∞
c (X),

(3.5.1) T̃ f(λ, k) = m(λ)f̃(λ, k),

where m is a W -invariant function in L∞(a∗). By abuse of terminologies the

function m(λ) will also be called a Fourier multiplier. For 1 ≤ p1, p2 < ∞ with

γp1 ≥ γp2 , COp1(X) ⊆ COp2(X). In particular, COp(X) ⊆ CO2(X) for 1 ≤ p < ∞
and hence they are also given by (3.5.1) for f ∈ C∞

c (X). But for 1 ≤ p < ∞, p ̸= 2,

m(λ) extends to a W -invariant bounded holomorphic function on Λ◦
p. For p = 1,

m(λ) is also bounded continuous on Λ1. Henceforth we shall call a multiplier

T ∈ COp(X) nontrivial if it is not a constant multiple of the identity operator.

We fix a p in the range (2,∞) and take a nontrivial T ∈ COp(X). Suppose that

T is given by the function m(λ) which by definition is W -invariant and extends

to a bounded holomorphic function on Λ◦
p. We have the following result for such

p, T .

Proposition 3.5.1. Let T ∗ : Lp′
(X) → Lp′

(X) be the adjoint operator. Then

(i) for any g ∈ C∞
c (X), T̃ ∗g(λ, k) = m(λ̄)g̃(λ, k), for almost every (λ, k) ∈ Λ◦

p ×
K/M , T̂ ∗g(λ) = m(λ̄)ĝ(λ), for almost every λ ∈ Λ◦

p,

(ii) for λ ∈ Λ◦
p, Tφλ = m(λ)φλ and T ∗φλ = m(λ̄)φλ.

Proof. We take f, g ∈ C∞
c (X). Then using the definition of T ∗ and the Plancherel

theorem we have

⟨T ∗g, f⟩ = ⟨g, Tf⟩ =
∫
X

g(x)Tf(x) dx

=

∫
a∗
+×K/M

g̃(λ, k)T̃ f(λ, k) dµ(λ) dk

=

∫
a∗
+×K/M

m(λ)g̃(λ, k)f̃(λ, k) dµ(λ) dk.

Since m(λ) is bounded, m(λ)g̃(λ, k) ∈ L2(a∗+ × K/M) and hence there exists a

unique ϕ ∈ L2(X) such that ϕ̃(λ, k) = m(λ)g̃(λ, k). Therefore,
∫
X
T ∗g(x)f(x) dx =
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∫
X
ϕ(x)f(x) dx which implies T ∗g = ϕ and in particular T̃ ∗g(λ, k) = m(λ)g̃(λ, k)

for all (λ, k) ∈ a∗+ × K/M . Since T is a p − p operator, by duality T ∗ is p′ − p′.

Hence λ 7→ m(λ) defined on a∗+ extends to a holomorphic function on Λ◦
p. As m(λ)

also extends as a holomorphic function on Λ◦
p, we conclude that the extension of

m(λ) is given by m(λ̄). This proves the first part of (i). Integrating both sides of

it over K/M we get the second result of (i).

We recall that φλ ∈ Lp(X) for λ ∈ Λ◦
p and φλ(x) = φ−λ̄(x). For a function

g ∈ C∞
c (X) we have

⟨Tφλ, g⟩ = ⟨φλ, T
∗g⟩ =

∫
G

φλ(x)T ∗g(x) dx =

∫
G

φλ(x)T ∗g(x) dx

=

∫
G

φ−λ̄(x)T
∗g(x) dx.

Therefore,

⟨Tφλ, g⟩ = T̂ ∗g(λ̄) = m(λ)ĝ(λ̄) = m(λ)

∫
G

g(x)φ−λ̄ dx = m(λ)

∫
G

φλ(x)g(x) dx

= ⟨m(λ)φλ, g⟩.

It can be verified in a similar way that ⟨T ∗φλ, g⟩ = ⟨m(λ̄)ϕλ, g⟩. Thus

Tφλ = m(λ)φλ and T ∗φλ = m(λ̄)φλ.

§4. Statement and proof of the main result

The following theorem is the main result in this paper.

Theorem 4.0.1. Fix p ∈ (2,∞). Let T be a nontrivial Lp-multiplier. Then there

is a constant c > 0 such that zT for any z ∈ C with |z| = c is chaotic on Lp(X).

Suppose that T is densely defined by T̃ f(λ, k) = m(λ)f̃(λ, k) for f ∈ C∞
c (X),

λ ∈ a∗, k ∈ K/M . As T is nontrivial m(λ) is a nonconstant function. Then |m(λ)|
is also nonconstant. Indeed, if |m(λ)| = β for some β > 0 for all λ ∈ Λ◦

p then the

holomorphic function λ 7→ m(λ) maps the open domain Λ◦
p to an arc of the circle

of radius β, which is not open in C, which violates the open mapping theorem (see

Section 2).

As |m(λ)| is not constant there exist points λ1, λ2 ∈ Λ◦
p and α > 0 such that

|m(λ2)| < α < |m(λ1)|.

Let c = 1
α . We take a z ∈ C such that |z| = c and define m1(λ) = zm(λ). Then

|m1(λ2)| < 1 < |m1(λ1)|. Let T1 = zT . Then T1 is an Lp-multiplier with symbol
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m1(λ). The proof of Theorem 4.0.1 will be completed if we show that T1 is chaotic

on Lp(X). This will be done through the next two propositions.

Proposition 4.0.2. The operator T1 described above is hypercyclic on Lp(X) for

2 < p < ∞.

Proof. As λ 7→ |m1(λ)| is continuous, there exist neighborhoods N1 and N2 of

λ1, λ2 respectively in Λ◦
p such that |m1(λ)| > 1 for λ ∈ N1 and |m1(λ)| < 1 for

λ ∈ N2. Since m1(λ) is W -invariant, we can and will assume that N1 and N2 are

subsets of

(ℜΛ◦
p)+ =

{
λ ∈ Λ◦

p

∣∣ ℜλ ∈ a∗+
}
.

We define

Y1 = span
{
ℓyφλ

∣∣ λ ∈ N1, y ∈ G
}

and Y2 = span
{
ℓyφλ

∣∣ λ ∈ N2, y ∈ G
}
.

Both Y1 and Y2 are dense in Lp(X). Indeed if any f ∈ Lp′
(X) annihilates Y1, then

f ∗φ−λ ≡ 0 for λ in the open set N1. Since for every fixed x ∈ X, λ 7→ f ∗φ−λ(x)

is holomorphic on Λ◦
p we have f ∗ φλ ≡ 0 for all λ ∈ Λp. Using Theorem 3.3.1

we conclude that f = 0. A similar argument with the substitution of N1 by N2

establishes that Y2 is also dense in Lp(X).

Let

ηλ = aλ1 ℓyλ
1
φλ + · · ·+ aλnℓyλ

n
φλ ∈ Y1

be a finite linear combination of ℓyφλ with the same λ. We define an operator T ′
1

initially on such ηλ as

T ′
1(ηλ) = m1(λ)

−1ηλ.

Since elements of Y1 are finite linear combinations of these ηλ we extend T ′
1 linearly

on Y1. We need to show that T ′
1 is well defined on Y1. For future use we record

here that

ηλ(e) = aλ1φ−λ(y
λ
1 ) + · · ·+ aλnφ−λ(y

λ
n).

Let ξ =
∑n

i=1 biηλi
be a typical element of Y1, where λi, i = 1, . . . , n are distinct.

It suffices to show that if ξ = 0 then ηλi = 0 for all i = 1, . . . , n, so that T ′
1(ξ) =∑n

i=1 biT
′
1(ηλi

) = 0.

Since N1 ⊂ (ℜΛ◦
p)+ we note that wλi ̸= λj for all nontrivial w ∈ W whenever

i ̸= j. Consequently, φλ1
, φλn

are two distinct K-invariant elements of Lp′
(X).

Therefore there is a K-invariant function f ∈ Lp(X) such that f̂(−λ1) ̸= 0 and

f̂(−λn) = 0. Starting from ξ = 0 and noting that
∫
X
f(z)ηλi(z) dz = f̂(−λi)ηλi(e),

we get by abuse of notation,

m∑
i=1

bif̂(−λi)ηλi
(e) =

m∑
i=1

ciηλi
(e) = 0
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for some m < n. Indeed, if for any i = 2, . . . , n− 1, f̂(−λi) = 0 we discard it and

for others write ci = bif̂(−λi) ̸= 0 and relabel them as i = 2, . . . ,m, keeping λ1

unchanged. The assumption ξ = 0 also implies ℓxξ = 0 for any x ∈ G. Instead of

ξ = 0, if we start from ℓx−1ξ = 0 then through the same steps as above, we get

m∑
i=1

ciηλi(x) = 0.

Thus
∑m

i=1 ciηλi
(x) = 0 for all x ∈ G. In this way we can reduce the number of

ηλ’s. A repeated application of this process finally yields ηλ1(x) = 0 which was the

target. Thus we have established that T ′
1 is a well-defined operator on Y1.

We shall now verify that operators T1 and T ′
1 satisfy the hypothesis of The-

orem 2.2.2. Clearly (T ′
1)

nϕ → 0 as n → ∞ for any ϕ ∈ Y1 because |m1(λ)| > 1

for λ ∈ N1. On the other hand, as T1(ℓyφλ) = ℓyT1(φλ) = m1(λ)ℓyφλ and on N2,

|m1(λ)| < 1, (T1)
nϕ → 0 as n → ∞ for any ϕ ∈ Y2. Lastly, T1T

′
1(ℓyφλ) = ℓyφλ by

Proposition 3.5.1 and hence T1T
′
1 is identity on Y1. Theorem 2.2.2 now shows that

T1 is hypercyclic.

Proposition 4.0.3. The set of periodic points of the operator T1 defined above is

dense in Lp(X) for 2 < p < ∞.

Proof. As there exist λ1, λ2 ∈ Λ◦
p such that |m1(λ1)| < 1 < |m1(λ2)|, it follows

from continuity of m1 that there exists λ0 ∈ Λ◦
p such that |m1(λ0)| = 1. Let

S = T ∩ m1(Λ
◦
p), where T is the unit circle in the complex plane. By the open

mapping theorem (see Section 2) m1(Λ
◦
p) is an open set. Since m1(λ0) ∈ S, S

is a nonempty open set of T. We note that m1(Λ
◦
p ∖ m−1

1 (S)) is not connected.

Indeed, it is the union of two nonempty sets, one inside T and the other outside

T containing m1(λ1) and m1(λ2) respectively. We define

I =
{
r ∈ R

∣∣ e2πir ∈ S
}

and Zr =
{
z ∈ Λ◦

p

∣∣ m1(z) = e2πir
}

for r ∈ I.

Then m−1
1 (S) =

⋃
r∈I Zr. We consider the following subset of Lp(X):

Y3 = span
{
ℓyφz

∣∣ y ∈ G, z ∈ Zν , ν ∈ Q ∩ I
}
.

The nonemptiness of Y3 follows trivially from the fact that m1(Λ
◦
p) is open in C.

If ν = a/b ∈ Q (a, b relatively prime integers), then using T1(ℓyφz) = m1(z)ℓyφz,

we have for z ∈ Zν ,

T b
1 (ℓyφz) = m1(z)

bℓyφz = e2πaiℓyφz = ℓyφz.

Thus the elements of Y3 are periodic points of T1.
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It remains to show that Y3 is dense in Lp(X). Suppose that a nonzero function

f ∈ Lp′
(X) annihilates Y3. That is, f ∗φ−z(x) = 0 for all x ∈ X and for all z ∈ Zν ,

ν ∈ Q ∩ I. For a fixed x ∈ X we define Fx(z) = f ∗ φ−z(x) for z ∈ Λ◦
p. Then Fx

is holomorphic on Λ◦
p which vanishes on

⋃
ν∈Q∩I Zν . We claim that Fx vanishes

identically on Λ◦
p. For the sake of meeting a contradiction we assume that Fx ̸≡ 0 on

Λ◦
p. Since Fx vanishes on

⋃
ν∈Q∩I Zν , Lemma 4.0.4 implies that Fx vanishes on the

set m−1
1 (S) =

⋃
r∈I Zr. But as we have assumed that Fx is a nonzero holomorphic

function on Λ◦
p, m

−1
1 (S) is a thin set in Λ◦

p. Therefore, by the properties of thin

sets (see Section 2), we conclude that the set Λ◦
p ∖m−1

1 (S) is connected. Since m1

is continuous this implies that m1(Λ
◦
p ∖m−1

1 (S)) is connected, which contradicts

our early observation in this proof. Thus Fx ≡ 0 on Λp for all x ∈ X, that is,

f ∗ φλ ≡ 0 on X for all λ ∈ Λp. From this and Theorem 3.3.1 we conclude that

f = 0, which establishes that Y3 is dense.

The following lemma will complete the proof above. We shall use the notation

I and Zr defined in the proof of the proposition above.

Lemma 4.0.4. Let I and Zr be as defined in the proof of Proposition 4.0.3. Fix

an r ∈ I. Then for any w ∈ Zr and δ > 0, there is a ν ∈ I ∩Q and a z ∈ Zν such

that |w − z| < δ.

Proof. Take the open ball Bδ′(w) ⊂ Λ◦
p where δ′ < δ. Then w ∈ Bδ′(w). By the

open mapping theorem, m1(Bδ′(w)) is an open set in m1(Λ
◦
p) containing the point

m1(w) = e2πir. So m1(Bδ′(w)) will contain an arc {e2πis | s ∈ (a, b) ⊂ I} with

r ∈ (a, b). Take a ν ∈ (a, b)∩Q. Then the point e2πiν has a pre-image z in Bδ′(w).

That is m1(z) = e2πiν , and hence z ∈ Zν . Also as z ∈ Bδ′(w), |w−z| < δ′ < δ.

§5. Examples and remarks

Well-known examples of Fourier multipliers are spectral multipliers and convolu-

tion with suitable Borel measures. In the light of the result proved in the previous

section, we shall revisit their dynamics, which will yield some interesting corollar-

ies. The first example also relates Theorem 4.0.1 with the previous works in this

direction e.g. [13, 15].

Example 5.0.1. The heat kernel ht on X for t > 0 is defined as a K-invariant

function in the Harish-Chandra Lp-Schwartz space Cp(X), 1 ≤ p ≤ 2, whose

spherical Fourier transform is prescribed as (see [2, eq. 3.1])

ĥt(λ) = e−t((λ,λ)+|ρρρ|2) for all λ ∈ a∗.
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For a fixed t > 0, we consider the operator Tf = f ∗ ht, i.e. T = e−t∆, where ∆

is the positive Laplace–Beltrami operator on X. Then m(λ) = ĥt(λ). It is clear

that T is not chaotic on Lp(X) for any 1 ≤ p ≤ ∞ since ∥T∥Lp−Lp = ĥt(−iγpρρρ) =

e−4t|ρρρ|2/pp′ ≤ 1. In general, for a multiplier given by the function m(λ), if we

define θ = infλ∈Λp
|m(λ)|, Θ = supλ∈Λp

|m(λ)|, then it is clear from the proof of

Theorem 4.0.1 that we can choose z from the annulus 1/Θ < |z| < 1/θ where

we take 1/θ = ∞ if θ = 0. Coming back to the case in hand, Tf = f ∗ ht,

we see that θ = 0 and Θ = e−4t|ρρρ|2/pp′ ≤ 1. So we choose z ∈ C such that

1 ≤ e4t|ρρρ|
2/pp′

< |z| < ∞. Take z0 = a + ib, where a > 4|ρρρ|2/pp′ and b ∈ R.
Then |ez0t| = eat > e4t|ρρρ|

2/pp′
. Thus we can take z = ez0t and by Theorem 4.0.1

zT = e−t(∆−z0) is chaotic on Lp(X), 2 < p < ∞. A continuous semigroup version

of this result is proved in [15].

Example 5.0.2. We continue to use the notation θ, Θ defined in the previous

example. We consider convolution by a nonatomic and nonnegative K-invariant

measure µ on X such that µ̂(−iγpρρρ) < ∞ for some 1 ≤ p ≤ ∞. By Herz’s

majorizing principle (see Section 3.4) the operator Tf = f ∗µ is an Lp-multiplier.

We note that in this case θ < 1, because on λ ∈ a∗, |µ̂(λ)| → 0 as |λ| → ∞. Indeed,

for λ ∈ a∗,

|µ̂(λ)| ≤
∫
X

|φλ(x)| dµ(x) ≤
∫
X

φ0(x) dµ(x) ≤
∫
X

φiγpρρρ(x) dµ(x) < ∞.

Since, for every fixed x ∈ X, |φλ(x)| → 0 as |λ| → ∞, the result follows from the

dominated convergence theorem.

We also note that here Θ = µ̂(−iγpρρρ) = ∥T∥Lp−Lp . Thus if µ̂(−iγpρρρ) ≤ 1,

then T is a contraction and hence not chaotic. On the other hand, if T is not a

contraction, equivalently, if µ̂(−iγpρρρ) > 1, then it is chaotic because we can choose

z = 1 as 1/Θ < 1 < 1/θ. Precisely, we have proved the following.

Corollary 5.0.3. Fix 2 < p < ∞. Let µ be a nonatomic K-invariant regular

nonnegative Borel measure on X and T : f 7→ f ∗µ. If µ̂(−iγpρρρ) < ∞ (equivalently

∥T∥Lp−Lp < ∞), then T is chaotic on Lp(X) if and only if T is not a contraction.

Corollary 5.0.4. Let µ and T be as in Corollary 5.0.3 and 2 < p2 < p1 < ∞.

Suppose that µ satisfies the condition µ̂(−iγp1
ρρρ) < ∞, so that T ∈ COp1

(X) ⊂
COp2

(X). If T is chaotic on Lp2(X), then T is chaotic on Lp1(X).

Proof. Since T is chaotic on Lp2(X), by Corollary 5.0.3, µ̂(−iγp2
ρρρ) > 1. Therefore,

by the maximum modulus principle (see Section 2), µ̂(−iγp1ρρρ) > 1 and hence again

by Corollary 5.0.3, T is chaotic on Lp1(X).
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Instead of nonnegative K-biinvariant measure we can take a K-invariant com-

plex measure, in particular a K-invariant measurable function g on X such that

1 < |ĝ(−iγpρρρ)| < |̂g|(−iγpρρρ) < ∞.

Then the convolution operator T : Lp(X) → Lp(X), 2 < p < ∞ given by f 7→ f ∗g
is bounded and is chaotic on Lp(X) by a similar argument.

Example 5.0.5. Fix a p in the range 2 < p < ∞. From the proof of Theo-

rem 4.0.1, it is clear that if an Lp-multiplier T given by the function m(λ) is such

that there exist λ1, λ2 ∈ Λ◦
p with |m(λ1)| < 1 < |m(λ2)|, then T is itself chaotic

on Lp(X). For an element z ∈ C from the complement of the Lp-spectrum of

the Laplace–Beltrami operator ∆, we consider the resolvent T = (∆ − z)−1. It

is easy to verify that if z is sufficiently close to the spectrum (so that there are

λ1, λ2 ∈ Λ◦
p with |(λ1, λ1) + |ρρρ|2 − z| < 1 and |(λ2, λ2) + |ρρρ|2 − z| > 1) then T is

chaotic. A description of the Lp-spectrum of ∆ can be found in [15, Sect. 3.4] and

the references therein.

§6. Sharpness of the range of p

The aim of this section is to show that the range of p in Theorem 4.0.1 is sharp. As

preparation we gather and prove some lemmas. The first one is from [7, Prop. 5.1].

Lemma 6.0.1. Let T be a hypercyclic operator on a Banach space B and T ∗ be

the dual operator of T acting on B∗. Then

(i) for any nonzero ϕ ∈ B∗ the orbit {(T ∗)nϕ | n ≥ 0} is unbounded,

(ii) the point spectrum of T ∗ is empty.

An easy adaptation of [9, Thm. 8.1] using the fact that φλ ∈ Lp′
(X) for

λ ∈ Λq (see Lemma 3.2.1(e)), proves the following lemma. See also [11, 18].

Lemma 6.0.2. For 1 ≤ p < q < 2 and f ∈ Lp(X), there exists a subset B ⊂ K/M

of full measure such that for each k ∈ B, f̃(λ, k) =
∫
X
f(x)e(iλ−ρρρ)H(x−1k) dx exists

for all λ ∈ Λq and is holomorphic on Λq. The set B may depend on the function

f but does not depend on λ ∈ Λq.

We also have the following results.

Lemma 6.0.3. For f ∈ Lp(X), 1 ≤ p < 2 and λ ∈ a∗, ∥f̃(λ, ·)∥L2(K/M) ≤ C∥f∥p
for some constant C > 0.
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Proof. Temporarily using the notation eλ,k(x) = e(iλ−ρρρ)(H(x−1k)) we have∫
K/M

|f̃(λ, k)|2 dk =

∫
K/M

f̃(λ, k)f̃(λ, k) dk

=

∫
K/M

∫
X

f(x)eλ,k(x) dx f̃(λ, k) dk

=

∫
X

f(x)

∫
K/M

eλ,k(x)f̃(λ, k) dk dx

=

∫
X

f(x)f ∗ φλ(x) dx

≤ ∥f∥p∥f ∗ φλ∥p′ ,

where in the last step we have used Hölder’s inequality. We recall that for λ ∈ a∗,

φλ ∈ L2+ε(X) for any ε > 0 (see Lemma 3.2.1(e)). This implies that the operator

f 7→ f ∗ φλ is bounded from Lp(X) to Lp′
(X) for any 1 ≤ p < 2 < p′ ≤ ∞

(see [3, Thm. 2.2]). That is, ∥f ∗ φλ∥p′ ≤ C∥f∥p for λ ∈ a∗ for some constant

C > 0 and 1 ≤ p < 2. Therefore, we have
∫
K/M

|f̃(λ, k)|2 dk ≤ C∥f∥2p, which is

the assertion.

Lemma 6.0.4. For 1 ≤ p < q < 2, let T be an Lp-multiplier given by the function

m(λ) and f ∈ Lp(X). Then there exists a subset B ⊂ K/M of full measure such

that for each k ∈ B and for λ ∈ Λq, T̃ f(λ, k) = m(λ)f̃(λ, k).

Proof. Using the denseness of C∞
c (X) in Lp(X), we find a sequence fn ∈ C∞

c (X)

which converges to f in Lp(X). Then passing to a subsequence fni if necessary,

we have by Lemma 6.0.3,

f̃ni(λ, k) → f̃(λ, k)

for every fixed λ ∈ a∗ for almost every k ∈ K/M . We also have Tfni
→ Tf

in Lp and hence for a finer subsequence T̃ fnik
(λ, k) → T̃ f(λ, k) for every fixed

λ ∈ a∗ for almost every k ∈ K/M . By definition, T̃ fnik
(λ, k) = m(λ)f̃nik

(λ, k)

for those k ∈ K/M , and thus for every fixed λ ∈ a∗, T̃ fnik
(λ, k) converges to

m(λ)f̃(λ, k), for almost every k ∈ K/M . This establishes that for every fixed

λ ∈ a∗, T̃ f(λ, k) = m(λ)f̃(λ, k), for almost every k ∈ K/M . We note that we have

a set B ⊂ K/M of full measure in K/M , such that for every fixed k ∈ B, both

λ 7→ f̃(λ, k) and λ 7→ T̃ f(λ, k) are holomorphic on Λq. Therefore, the equality

T̃ f(λ, k) = m(λ)f̃(λ, k) extends to all λ ∈ Λq and k ∈ B.

We are now ready to show the sharpness of the range of p.

Proposition 6.0.5. Fix 1 ≤ p < 2. Let T : Lp(X) → Lp(X) be a nontrivial Lp-

multiplier. Then T is neither hypercyclic nor has it any periodic points.



Dynamics of Multipliers 309

Proof. We recall that every φλ with λ ∈ Λ◦
p is an eigenfunction of T ∗ : Lp′

(X) →
Lp′

(X). (See Lemma 3.2.1(e) and Proposition 3.5.1.) Therefore, by Lemma 6.0.1(ii),

T is not hypercyclic.

We suppose that the multiplier T is given by the function m(λ). We fix a

q ∈ (p, 2). If for a nonzero function g ∈ Lp(X), Tng = g for some n ∈ N, n > 0,

then by Lemmas 6.0.2 and 6.0.4, there exists a subset B ⊂ K/M of full measure

such that for each k ∈ B, (m(λ)n − 1)g̃(λ, k) = 0 for λ ∈ Λq. Since g̃(λ, k), for

k ∈ B, is holomorphic on Λq it can be zero on a thin set which has 2n-dimensional

Lebesgue measure zero. Thus m(λ)n = 1 on Λq, that is, |m(λ)| = 1. This is not

possible as m(λ) is holomorphic and hence an open map.

Proposition 6.0.6. Let T : L2(X) → L2(X) be a nontrivial L2-multiplier. Then

T is not hypercyclic and hence not chaotic.

Proof. Let m ∈ L∞(a∗+) and the operator T is given by T̃ f(λ, k) = m(λ)f̃(λ, k).

Then ∥T∥L2−L2 = ∥m∥∞. We assume for the sake of meeting a contradiction that

T is hypercyclic, equivalently there exists a hypercyclic vector ϕ ∈ L2(X) for T .

Then there exists a sequence {nk} of natural numbers such that Tnkϕ → 2ϕ in

L2(X) as nk → ∞. For convenience, by abuse of notation we write nk as n. We

have, consequently, ∥Tnϕ∥2 → 2∥ϕ∥2, that is,

lim
n→∞

∫
a∗
+×K/M

|m(λ)|2n|ϕ̃(λ, k)|2|c(λ)|−2 dλ dk = 4

∫
a∗
+×K/M

|ϕ̃(λ, k)|2|c(λ)|−2 dλ dk.

We divide the integral on the left-hand side into three parts and apply the domi-

nated convergence theorem to get

lim
n→∞

∫
{λ∈a∗

+||m(λ)|>1}×K/M

|m(λ)|2n|ϕ̃(λ, k)|2|c(λ)|−2 dλ dk

+

∫
{λ∈a∗

+||m(λ)|=1}×K/M

|ϕ̃(λ, k)|2|c(λ)|−2 dλ dk

= 4

∫
a∗
+×K/M

|ϕ̃(λ, k)|2|c(λ)|−2 dλ dk.

Thus,

lim
n→∞

∫
{λ∈a∗

+||m(λ)|>1}×K/M

|m(λ)|2n|ϕ̃(λ, k)|2|c(λ)|−2 dλ dk

≤ 4

∫
a∗
+×K/M

|ϕ̃(λ, k)|2|c(λ)|−2 dλ dk.

By the monotone convergence theorem the left-hand side goes to infinity while the

right-hand side is finite. Hence either ϕ̃ ≡ 0 on {λ ∈ a∗+ | |m(λ)| > 1} ×K/M or
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the set {λ ∈ a∗+ | |m(λ)| > 1} × K/M has measure zero in a∗+ × K/M . By the

Plancherel theorem, in the first case ∥Tϕ∥2 ≤ ∥ϕ∥2, hence ϕ is not a hypercyclic

vector and in the second T is a contraction. Both of these conclusions contradict

our assumption.

Remark 6.0.7. A few notes on L2-multipliers and L1-multipliers are given in

order.

(1) Following [15, Thm. 1.2] one can give a different proof of the fact that an

L2-multiplier cannot be hypercyclic. This is based on the observation that

T being a multiplier preserves the left-K-types of a function ϕ. Thus a mis-

match between the K-types of the possible hypercyclic vector ϕ and the target

function f , will prevent the sequence Tnϕ converging to f in L2.

(2) An L2-multiplier can have periodic points. Indeed, there are nontrivial L2-

multipliers which have a dense set of periodic points. For instance, for a rank-

one symmetric space X we define a multiplier T by the following prescription:

m(λ) = 1 for λ ∈ (0, 1) and m(λ) = −1 otherwise. Then for any f ∈ L2(X),

T 2f = f .

(3) It is easy to find nontrivial L∞-multipliers T such that no constant multiple

of T is chaotic. For instance, if f ∈ L1(X) is a K-biinvariant function, then

T : g 7→ g ∗ f cannot be hypercyclic on L∞(X). Indeed, for any ϕ ∈ L∞(X),

ϕ ∗ f is continuous, hence Tnϕ is a sequence of continuous functions. Since

its uniform limit is a continuous function, it cannot converge to an arbitrary

function in L∞(X).

§7. Open questions

The results in this article trigger some questions, which we offer to the readers.

For the sake of simplicity in this section we shall restrict to rank-one symmetric

spaces where Λp defined in (3.1.4) takes the simpler form

Λp =
{
λ ∈ C

∣∣ |ℑλ| ≤ γpρ
}
,

where ρ is interpreted as a positive number. However, the discussion here is equally

valid for arbitrary rank.

(1) We choose p1, p2 such that 2 < p2 < p1 < ∞. Then COp1
(X) ⊂ COp2

(X).

It is possible to construct a linear operator T ∈ COp1
(X) ⊂ COp2

(X) which is

chaotic on Lp1(X) but not chaotic on Lp2(X). For instance, we can take T =

e−t(∆−c), where ∆ is the positive Laplace–Beltrami operator, t > 0 and c is a
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constant satisfying
4|ρρρ|2

p1p′1
< c <

4|ρρρ|2

p2p′2
for p1, p2 as above. Then T will be chaotic on Lp1(X) but not on Lp2(X). To

see that T will be chaotic on Lp1(X) we first note that T is given by the symbol

m(λ) = e−t((λ,λ)+|ρρρ|2−c), λ ∈ Λp1
and that

4|ρρρ|2

pp′
= ((iγp)

2 + 1)|ρρρ|2.

Writing λ = u+ iv where |v| < γp1
|ρρρ|, we have |m(λ)| = e−t(|u|2−|v|2+|ρρρ|2−c). The

given condition on c implies

γp1
|ρρρ| >

√
|ρρρ|2 − c > γp2

|ρρρ|.

Taking u sufficiently large we have |m(λ)| < 1 for the corresponding λ. On the

other hand, choosing u = 0 and v in the range γp1 |ρρρ| > |v| >
√

|ρρρ|2 − c, we get

|m(λ)| > 1. The argument in the proof of Theorem 4.0.1 now shows that T is

chaotic on Lp1(X). It is clear that such a choice is not possible for Lp2(X). The

result in [15, Thm. 1.3] also shows that T is neither hypercyclic nor has it any

periodic points in Lp2(X).

The operator T = e−t(∆−c) considered here is indeed a convolution opera-

tor by the K-invariant measure ectht on X. We showed in Corollary 5.0.4 that

whenever T ∈ COp1(X) ⊂ COp2(X) is a convolution by a nonatomic K-invariant

nonnegative measure µ on X, then T is chaotic on Lp2(X) implies that it is chaotic

on Lp1(X). We are thus led to ask the following question: Let T ∈ COp1(X) ⊂
COp2

(X) where 2 < p2 < p1 < ∞. Suppose that T is chaotic (respectively hyper-

cyclic) on Lp2(X). Does it follow that T is chaotic (respectively hypercyclic) on

Lp1(X)?

(2) In Corollary 5.0.3 we showed that if T : f 7→ f ∗µ is a convolution operator

initially defined for f ∈ C∞
c (X), where µ is a nonatomic K-invariant measure on

X which satisfies µ̂(−iγpρρρ) < ∞, for some p ∈ (2,∞), then T ∈ COp(X) and it is

either a contraction (when µ̂(−iγpρρρ) ≤ 1) or it is chaotic (when µ̂(iγpρρρ) > 1). This

motivates us to ask the following question: Let T ∈ COp(X) for some 2 < p < ∞
be a nontrivial multiplier on Lp(X) which is not a contraction. Is T chaotic?

A related question motivated by the same (i.e. convolution with nonatomic

K-invariant measure on X) is the following: Let T : Lp(X) → Lp(X) for some

2 < p < ∞ be an Lp-multiplier given by the symbol m(λ). If |m(λ)| ≤ 1 on Λ◦
p,

then is it true that T is not hypercyclic?

(3) Let T ∈ COp1(X) be a nontrivial multiplier with symbol m(λ) for some

2 < p1 < ∞. Then T ∈ COp(X) for all p ∈ [2, p1]. We note that |m(λ)| is
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nonconstant on any open set of Λ◦
p1
. Therefore, for any δ > 0 such that 2+ δ < p1,

|m(λ)| is nonconstant on Λ2+δ. The argument of the proof of Theorem 4.0.1 shows

that zT is chaotic on Lp(X) for any p ∈ [2 + δ, p1] if we can choose two elements

λ1, λ2 ∈ Λ◦
2+δ such that z ∈ C satisfies |m(λ1)| < 1/|z| < |m(λ2)|. This argument

however prevents us from making a uniform choice for the whole range [2, p1],

which can be illustrated through the following example in a rank-one symmetric

space X. We define a multiplier operator T by m(λ) = ei/(4ρρρ
2+λ2) for λ ∈ Λp1

. It

can be verified that T ∈ COp1
(X) (see [1]). Since |m(λ)| = 1 on a∗ = R, we cannot

choose λ1, λ2 from R satisfying |m(λ1)| < |m(λ2)| and proceed as above. Thus the

question remains whether it is possible to find a constant c > 0 such that for all

z ∈ C with |z| = c, zT is chaotic on Lp(X) for all p ∈ [2, p1].
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