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The Equivalence of Pseudodifferential Operators
and Their Symbols via Čech–Dolbeault

Cohomology

by
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Abstract

In this paper we construct the sheaf morphism from the sheaf of pseudodifferential oper-
ators to its symbol class. Since it is hard to construct the morphism directly, we realize
it with two original ideas as follows. Firstly, to calculate cohomologies we use the theory
of Čech–Dolbeault cohomology introduced by Honda, Izawa and Suwa (J. Math. Soc.
Japan 75 (2023), 229–290). Secondly, we construct a new symbol class, which is called
the symbols of C∞-type. These ideas enable us to construct the sheaf morphism, which
is actually an isomorphism of sheaves.
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§1. Introduction

The theory of hyperfunctions was introduced in [12] and it enables us to conduct

research into systems of differential equations from a completely new perspec-

tive. The essential idea of pseudodifferential operators was given in [12], and later,

Kashiwara and Kawai provided the explicit definition in [8]. Some of the funda-

mental results on pseudodifferential operators are presented in [8, 9].

The class of pseudodifferential operators is a sufficiently large class of differ-

ential operators and it contains truly important differential operators such as the

differential operators of fractional order and those of infinite order. In order to

study differential operators of infinite order, Aoki and Kataoka started to study

the sheaf E R
X of pseudodifferential operators.
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Since the sheaf E R
X of pseudodifferential operators is explicitly defined by using

the sheaf cohomology, for the study of E R
X in the analytic category, Kataoka [11]

introduced symbols of pseudodifferential operators with the aid of Radon trans-

formations. Moreover, Aoki [1, 3] established the symbol theory S/N of E R
X and

developed the study of systems of differential equations of infinite order. However,

two fundamental problems are unresolved in their symbol theory:

(1) The equivalence of the sheaf E R
X of pseudodifferential operators and its symbol

class S/N as sheaves.

(2) The commutativity of the composition of pseudodifferential operators and the

product of symbols through a symbol map.

In his theory Aoki, calculated the cohomological expression of a stalk of E R
X

by using the theory of Čech cohomology. In general we have to construct the

Čech coverings which consist of Stein open sets. For a global case, however, such

coverings are hard to find when we manipulate the cohomological expression of E R
X .

In recent years the first problem has been solved by Aoki, Honda and Yama-

zaki [5]. They introduce a new space with one apparent parameter and construct

the sheaf morphism on it. However, their construction is complicated and a more

concise solution is desired as the foundation for symbol theory.

We give two aims of this paper as follows. The first aim is to construct the

map from the sheaf E R
X of pseudodifferential operators to its symbol class in the

global case. In sheaf theory it is essentially important to construct the existence of

a morphism on open sets which form the basis of the total space. The second aim is

to realize the formulation of the symbol theory in [5] in a precise and unified way.

As noted above, their method is complicated and it is not easy to even understand

the symbol map ϖ : E R
X → S/N.

To realize the symbol theory on general open sets, we apply the theory of

Čech–Dolbeault cohomology to the symbol theory introduced by Aoki. Honda,

Izawa and Suwa [6] find that the local cohomology groups with coefficients in the

sheaf O of holomorphic functions is isomorphic to the cohomology group which

is induced from double complex consisting of Čech coverings and the Dolbeault

complex. As the theory of Čech–Dolbeault cohomology is based on C∞-forms we

can use convenient techniques such as a partition of unity, controlling the support

by cutoff functions, and so on.

As mentioned above, while we can apply useful techniques to E R
X via the Čech–

Dolbeault cohomology, we have still some difficulties in constructing the morphism

from Čech–Dolbeault cohomology of E R
X to the symbol class S/N since the symbol

class S/N is based on the theory of holomorphic functions. To overcome this

difficulty we introduce a new symbol class S∞/N∞, which consists of symbols
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of C∞-type. Finally, we can obtain the morphism between E R
X and S/N with

concrete integration cycles.

The plan of this paper is as follows. Section 2 provides some notation and

definitions. In Section 3 we introduce the Čech–Dolbeault cohomology of the sheaf

E R
X of pseudodifferential operators. Thanks to the study of Kashiwara and Schapira

[10] it is known that the section E R
X(V ) on an open cone V is represented by the

inductive limit of local cohomology groups. We apply the theory of Čech–Dolbeault

cohomology to this cohomological expression. In Section 4 we define a new symbol

class and prove that the new symbol class S∞/N∞ is isomorphic to the classical

symbol classS/N which was introduced by Aoki. While the classical symbol theory

is based on holomorphic functions, the Čech–Dolbeault cohomology is based on

C∞-functions. Therefore it is hard to construct the map from Čech–Dolbeault

cohomology to the classical symbol class. We realize the map via a new symbol

class in the next section. In Section 5 we construct the morphism ς from E R
X to

S∞/N∞ by using the Čech–Dolbeault expression of E R
X . We also give the well-

definedness of ς. In the appendix we prove the commutativity of the symbol map

introduced by Aoki and the morphism constructed in Section 5. For this purpose

we introduced the Čech–Dolbeault cohomology with general coverings.

§2. Preliminaries

Through this paper we shall follow the notation and definitions introduced below.

We denote by Z, R and C the sets of integers, of real numbers and of complex

numbers, respectively.

§2.1. Notation

Let M be a real analytic manifold of dimension n and X a complexification of M .

We always assume that all the manifolds are countable at infinity. Set the diagonal

set

∆X =
{
(z, z′) ∈ X ×X

∣∣ z = z′
}
.

We write ∆ instead of ∆X if there is no risk of confusion. One denotes by p1 and

p2 the first and the second projections from X ×X to X, respectively.

One denotes by τ : TX → X the canonical projection from the tangent bundle

to X and π : T ∗X → X that from the cotangent bundle to X.

Let ω be a (p, q)-form with coefficients in C∞-functions, and ∂z and ∂̄z the

Dolbeault operators with respect to the variable z, that is, for a local coordinate

z = (z1, z2, . . . , zn), the form ω can be written as

ω =
∑

|I|=p,|J|=q

fIJ(z) dz
I ∧ dz̄J .



338 D. Komori

Moreover, the Dolbeault operators are written as

∂zω =

n∑
i=1

∑
|I|=p,|J|=q

∂

∂zi
fIJ(z)dzi ∧ dzI ∧ dz̄J ,

∂̄zω =

n∑
i=1

∑
|I|=p,|J|=q

∂

∂z̄i
fIJ(z)dz̄i ∧ dzI ∧ dz̄J .

Definition 2.1. We define several sheaves:

(1) Let O
(p)
X be the sheaf of holomorphic p-forms on X. In particular, O

(0)
X = OX

is the sheaf of holomorphic functions on X.

(2) We denote by orX and orM/X = H n
M (ZX) the orientation sheaf on X and the

relative orientation sheaf on M , respectively.

(3) Set Ω
(n)
X = O

(n)
X ⊗CX

orX and O
(0,n)
X×X = OX×X ⊗p−1

2 OX
p−1
2 Ω

(n)
X .

(4) One denotes by C
∞,(p,q)
X the sheaf of (p, q)-forms with coefficients in C∞ on X.

(5) One denotes by E R
X the sheaf of pseudodifferential operators on T ∗X.

Let (z; ζ) be a local coordinate of T ∗X. Set T̊ ∗X = T ∗X \ T ∗
XX, where T ∗

XX

is the zero section. We identify T ∗
∆(X ×X) with T ∗X by the map

(2.1) (z, z; ζ,−ζ) 7→ (z; ζ),

which is induced from the first projection p1 : X ×X → X.

Definition 2.2. Let V be a set in T̊ ∗X. The set V is called a cone, or equivalently

called a conic set in T̊ ∗X if and only if

(z; ζ) ∈ V ⇒ (z; tζ) ∈ V for any t ∈ R+.

Here, R+ = {r ∈ R | r > 0}.

Remark 2.3. Let V be a set in T ∗X. We say that V is convex (resp. conic, resp.

proper) if for any z ∈ π(V ), the set π−1(z)∩V is convex (resp. conic, resp. proper).

Recall that a cone is said to be proper if its closure contains no lines. Moreover,

similar properties are defined for a set in TX in the same way.

Let V and V ′ be subsets in T ∗X. We write V ′ ⋐ V if V ′ is a relatively compact

set in V for the usual topology.

Definition 2.4. Let V be an open cone in T̊ ∗X. A set W ⊂ V is an infinitesimal

wedge of type V at infinity if for any K ⋐ V there exists δ > 0 such that

Kδ =
{
(z; tζ)

∣∣ (z; ζ) ∈ K, t > δ
}
⊂W.

In what follows W is called the infinitesimal wedge of type V for short.
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Definition 2.5. Let Z be a closed cone in T̊ ∗X. We say that a closed set W is a

closed infinitesimal wedge of type Z if there exists an open cone V in T̊ ∗X with

Z ⊂ V such that W ◦ is an infinitesimal wedge of type V at infinity. Here, W ◦

means the interior of W .

Definition 2.6. Let V and V ′ be cones in T̊ ∗X with V ′ ⊂ V . The cone V ′ is a

relatively compact cone in V if there exists a compact set K of int(V ) such that

V ′ =
{
(z; tζ)

∣∣ t ∈ R+, (z; ζ) ∈ K
}
.

To clarify the differences, one denotes V ′ ⋐
cone

V if V ′ is a relatively compact cone

in V , and we also say that V ′ is properly contained in V .

Remark 2.7. Let V and V ′ be cones with V ′ ⋐
cone

V . Then by the above definition,

we also have π(V ′) ⋐ π(V ).

Let γ be a closed convex cone in TX. We review the γ-topology on TX.

Definition 2.8. The γ-topology on TX is the topology for which the open sets

U satisfy

(1) U is open for the usual topology.

(2) U +̊ γ = U .

Here, +̊ is defined by

U +̊ γ =
⊔

z∈τ(U)

(Uz + γz),

where Uz = U∩τ−1(z) and γz = γ∩τ−1(z). In particular if γz = ∅, set Uz+γz = Uz.

An open set V of TX is called γ-open if V is open in the sense of γ-topology.

§2.2. The property of C∞-smooth boundaries

We introduce the approximation by a set with C∞-smooth boundary. The prop-

erties introduced here are mainly used in Section 4 and in the appendix.

Let X = E be an n-dimensional real vector space with the norm | • |, and E∗

its dual vector space. Let ⟨•, •⟩ : E × E∗ → R be a non-degenerate pairing of E

and E∗. For a subset K ⊂ E we define K◦ ⊂ E∗ by

K◦ =
{
ξ ∈ E∗ ∣∣ ⟨v, ξ⟩ > 0 for all v ∈ K

}
.

For δ > 0 and a set K ⊂ X, we define

Kδ =
{
x ∈ X

∣∣ dist(x,K) < δ
}
,

where dist(x,K) is the distance of x ∈ X and K given by

dist(x,K) = inf
y∈K

|x− y|.



340 D. Komori

Remark 2.9. Note that we define “γ-topology” and “properly contained” in the

same way as in the previous subsection, which is as follows:

� For a closed cone γ ⊂ E a set U ⊂ E is γ-open if

(1) U is open for the usual topology,

(2) U + γ = U in E.

� Let V and V ′ be cones in E with V ′ ⊂ V . The cone V ′ is a relatively compact

cone in V if there exists a compact set K of int(V ) such that

V ′ \ {0} =
{
tv

∣∣ t ∈ R+, v ∈ K
}
.

We say that V ′ is properly contained in V .

Proposition 2.10. Let K be a closed convex subset in X and δ > 0. Then there

exists an open convex subset W with C∞-smooth boundary such that

K ⊂W ⊂ Kδ

holds.

Proof. Set

h(x) = dist(x,Kδ/4).

Since Kδ/4 is also a convex set, h(x) is a convex continuous function, that is, we

have

h(tx+ (1− t)y) ≤ th(x) + (1− t)h(y) (0 ≤ t ≤ 1, x, y ∈ X).

Let φ(x) be a C∞-function on X satisfying

(1) 0 ≤ φ(x) ≤ 1 and
∫
X
φ(x) dx = 1,

(2) supp(φ) ⊂ {x ∈ X | |x| ≤ 1}.

Set, for ε > 0,

hε(x) = ε−n

∫
X

h(x− y)φ(y/ε) dy.

Then we can easily confirm the following properties:

(1) K ⊂ {x ∈ X | hε(x) = 0} for 0 < ε < δ/4.

(2) hε(x) is a convex C∞-function.

(3) Since |h(x)− h(y)| ≤ |x− y| holds for any x, y ∈ X, we have

hε → h (ε→ 0 + 0)

uniformly on X.
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Due to the above property (3), we can choose δ/4 > ε0 > 0 such that

|hε0(x)− h(x)| < δ/4 (x ∈ X)

holds. Hence we get for any 0 < s < δ/4,

K ⊂
{
x ∈ X

∣∣ hε0 < s
}
⊂ Kδ/2.

By the Sard theorem, the set of critical values of hε0 : X → R is of measure zero.

Thus we can choose 0 < s < δ/4 which is not a critical value of hε0 and for such

an s we set

W =
{
x ∈ X

∣∣ hε0(x) < s
}
.

The set W satisfies all the required properties.

Corollary 2.11. Let K be a proper convex closed cone and V a conic open neigh-

borhood of K \ {0}. Then there exists a proper open cone W with C∞-smooth

boundary except for the vertex such that

K \ {0} ⊂W ⊂ V.

Proof. Take a non-zero vector v0 ∈ int(K◦). Set, for some δ > 0,

H =
{
x ∈ X

∣∣ ⟨x, v0⟩ = δ
}

and

K̂ = K ∩H, V̂ = V ∩H.
By Proposition 2.10, in H, we can find a convex open subset Ŵ ⊂ H with C∞-

smooth boundary such that

K̂ ⊂ Ŵ ⊂ V̂ .

Then

W =
{
rv

∣∣ v ∈ Ŵ , r > 0
}

satisfies the required conditions.

Corollary 2.12. Let G be a proper convex closed cone in E and S a convex

G-open subset in E. For any δ > 0 there exists a convex G-open subset W with

C∞-smooth boundary such that

S ⊂W ⊂ Sδ.

Proof. It is enough to show that W constructed in the proof of Proposition 2.10

is also G-open. Take a vector v ∈ G. Since Sδ/4 is still G-open we have

h(x+ y + v) ≤ h(x+ y).

Hence W +G ⊂W holds.
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We mention the properties of piecewise C∞-smooth boundaries. Let L be a

closed subset in X.

Definition 2.13. We say that L has piecewise C∞-smooth boundary if and only

if for any x ∈ ∂L there exist an open neighborhood U of x and C∞-functions

f1, . . . , fℓ on U satisfying the conditions below:

(1) We have

L ∩ U =
{
x ∈ U

∣∣ fk(x) ∗k 0 (k = 1, 2, . . . , ℓ)
}
,

where ∗k denotes either = or ≥ (k = 1, 2, . . . , ℓ).

(2) df1 ∧ · · · ∧ dfℓ ̸= 0 at any point in U .

Hereafter f1, . . . , fℓ are said to be defining functions of L at x.

Let L1 and L2 be closed subsets in X with piecewise C∞-smooth boundaries.

Definition 2.14. We say that L1 and L2 intersect transversally if, for any x ∈
∂L1 ∩ ∂L2, there exist the defining functions f1, . . . , fℓ (resp. g1, . . . , gm) of L1

(resp. L2) at x such that

df1 ∧ · · · ∧ dfℓ ∧ dg1 ∧ · · · ∧ dgm ̸= 0.

Remark 2.15. We also define open subsets with piecewise C∞-smooth bound-

aries and their transversal intersection in the same way as those for closed subsets.

Proposition 2.16. Let V and W be non-empty proper convex open cones in X

with C∞-smooth boundaries except for the origin. Assume that W is properly

contained in V . Let w be a non-zero vector in W and set, for t > 0,

Vt = tw + V.

Then we have

(1) W \ Vt is relatively compact. Furthermore, for any open neighborhood U of

the origin, we have W \ Vt ⊂ U if t > 0 is sufficiently small.

(2) ∂W and ∂Vt transversally intersect.

Proof. Take a non-zero vector ζ ∈ int(V ◦). We may assume ⟨w, ζ⟩ = 1. For s > 0

we set

Hs =
{
x ∈ X

∣∣ ⟨x, ζ⟩ = s
}
.

We first show Hs ∩ V and Hs ∩W are bounded. If Hs ∩ V is unbounded, then we

can find {xk} such that xk ∈ Hs ∩ V and |xk| → ∞. Then

⟨xk/|xk|, ζ⟩ = s/|xk| → 0.
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We may assume that xk/|xk| → x0 ̸= 0 (k → ∞). Therefore we have x0 ∈ V and

⟨x0, ζ⟩ = 0,

which contradicts ζ ∈ int(V ◦). Hence both the sets are bounded.

Set

δ = dist(H1 \ (H1 ∩ V ), H1 ∩W ).

Note that we have δ > 0 because H1 ∩W ⊂ H1 ∩V . Since V and W are conic, we

have

dist(Hs \ (Hs ∩ V ), Hs ∩W ) ≥ sδ (s > 0).

By noticing that (Ht ∩W )− tw = H0 ∩ (W − tw), we set

M = sup
x∈(H0∩(W−tw))

|x|.

Then it is easy to see that if s > t+M/δ we get

Hs ∩W ⊂ Hs ∩ Vt.

Note that M → 0 if t→ 0 + 0. Hence claim (1) follows.

Next let us show claim (2). We denote by pt the vertex of Vt (i.e., pt = wt).

It is clear that the tangent space (T∂Vt)q of ∂Vt at q contains the vector q − pt.

Let (T∂W )q be the tangent space of ∂W at q. Since W is convex, W and the

tangent hypersurface q + (T∂W )q of ∂W at q do not intersect. Hence it follows

from pt ∈ W that the vector q − pt does not belong to (T∂W )q. Therefore we

have (T∂W )q ̸= (T∂Vt)q, which concludes that W and Vt transversally intersect

at q.

§3. The sheaf E R
X of pseudodifferential operators and

its Čech–Dolbeault expression

First of all we briefly recall the sheaf E R
X of pseudodifferential operators. Let X be

a complex manifold of dimension n. The sheaf E R
X of pseudodifferential operators

on T ∗X is defined by

(3.1) E R
X = Hn(µ∆(O

(0,n)
X×X)),

where µ∆(O
(0,n)
X×X) is the microlocalization of O

(0,n)
X×X along the diagonal set ∆. One

denotes by E R
X,z∗ the stalk of E R

X at a point z∗ ∈ T ∗X.

Let V be a subset of T ∗X. We denote by V ◦ the polar set of V , that is, V ◦

is defined by

V ◦ =
{
y ∈ TX

∣∣ τ(y) ∈ π(V ) and Re⟨x, y⟩ ≥ 0 for all x ∈ π−1(τ(y)) ∩ V
}
.
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Then the following theorem is essential.

Theorem 3.1 ([10, Thm. 4.3.2(ii)]). Let V be an open convex cone in T ∗X. We

have

(3.2) E R
X(V ) = lim−→

U,G

Hn
G∩U (U ;O

(0,n)
X×X),

where U ranges through the family of open subsets of X ×X such that U ∩∆ =

π(V ) and G through the family of closed subsets of X×X such that C∆(G) ⊂ V ◦.

Here, the set C∆(G) is the normal cone to G along ∆. (See [10, Def. 4.4.1].)

Next we recall the Čech–Dolbeault cohomology introduced by Suwa [6, 13].

Let M be a closed subset of X, V0 = X \M and V1 an open neighborhood of M

in X. For a covering V = {V0, V1} of X we set

(3.3) C
∞,(p,q)
X (V) = C

∞,(p,q)
X (V0)⊕ C

∞,(p,q)
X (V1)⊕ C

∞,(p,q−1)
X (V01),

where V01 = V0 ∩ V1. We also set the differential ϑ̄ : C
∞,(p,q)
X → C

∞,(p,q+1)
X as

(3.4) ϑ̄(ω0, ω1, ω01) = (∂̄ω0, ∂̄ω1, ω1 − ω0 − ∂̄ω01).

Then ϑ̄ ◦ ϑ̄ = 0 is easily shown and the pair (C
∞,(p,•)
X (V), ϑ̄) is a complex.

Definition 3.2. The Čech–Dolbeault cohomology Hp,q

ϑ̄
(V) of V of type (p, q) is

the qth cohomology of the complex (C
∞,(p,•)
X (V), ϑ̄).

Next we consider the subcomplex of (C
∞,(p,•)
X (V), ϑ̄) defined below. Let V ′ =

{V0} be a covering of X \M . We set

C
∞,(p,q)
X (V,V ′) =

{
(ω0, ω1, ω01) ∈ C

∞,(p,q)
X (V)

∣∣ ω0 = 0
}

= C
∞,(p,q)
X (V1)⊕ C

∞,(p,q)
X (V01).

Then the pair (C
∞,(p,•)
X (V,V ′), ϑ̄) is a subcomplex of (C

∞,(p,•)
X (V), ϑ̄).

Definition 3.3. The Čech–Dolbeault cohomologyHp,q

ϑ̄
(V,V ′) is the qth cohomol-

ogy of the complex (C
∞,(p,•)
X (V,V ′), ϑ̄).

We have the following proposition.

Proposition 3.4 ([6, Prop. 4.6]). The Čech–Dolbeault cohomology Hp,q

ϑ̄
(V,V ′)

is independent of the choice of V1 and determined uniquely up to isomorphism.

Therefore we can choose X as V1, and hereafter Hp,q

ϑ̄
(V,V ′) is also denoted

by Hp,q

ϑ̄
(X,X \M).
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Theorem 3.5 ([6, Thm. 4.9]). There is a canonical isomorphism

(3.5) Hp,q

ϑ̄
(X,X \ S) ≃ Hq

S(X;O
(p)
X ).

Applying Theorem 3.5 to the cohomology Hn
G∩U (U ;O

(0,n)
X×X) in (3.2) we get

the Čech–Dolbeault expression of E R
X .

Definition 3.6. The sheaf C
∞,(p,q;r)
X×X is the sheaf of (p + q, r)-forms with coeffi-

cients in C∞-functions which are holomorphic p-forms with respect to the first

variable, holomorphic q-forms with respect to the second variable and antiholo-

morphic r-forms with respect to the first and the second variables. In other words,

for a local coordinate (z1, z2) of X×X and for an open subset V of X×X, a form

f(z1, z2) ∈ C
∞,(p,q;r)
X×X (V ) is written as

f(z1, z2) =
∑

|I|=p,|J|=q,|K|=r

fIJK(z1, z2) dz
I
1 ∧ dzJ2 ∧ dz̄K ,

where each fIJK(z1, z2) is a C
∞-function on V .

Set V0 = U \G, V1 = U and V01 = V0∩V1 = U \G. For coverings V = {V0, V1}
of U and V ′ = {V0} of U \G, we define

C
∞,(p,q;r)
X×X (V,V ′) = C

∞,(p,q;r)
X×X (V1)⊕ C

∞,(p,q;r−1)
X×X (V01).

The differential ϑ̄ : C
∞,(p,q;r)
X×X (V,V ′) → C

∞,(p,q;r+1)
X×X (V,V ′) is also given as usual,

and the pair (C
∞,(p,q;•)
X×X (V,V ′), ϑ̄) is a complex.

Definition 3.7. The rth Čech–Dolbeault cohomology Hp,q,r

ϑ̄
(V,V ′) is the rth

cohomology of the complex (C
∞,(p,q;•)
X×X (V,V ′), ϑ̄).

Thanks to Proposition 3.4 and Theorem 3.5 we have the following.

Theorem 3.8. There is a canonical isomorphism

(3.6) H0,n,n

ϑ̄
(U,U \G) ≃ Hn

G∩U (U ;O
(0,n)
X×X).

Thus the section of E R
X on an open convex cone V is expressed by

E R
X(V ) = lim−→

U,G

Hn
G∩U (U ;O

(0,n)
X×X) = lim−→

U,G

H0,n,n

ϑ̄
(U,U \G),

where U and G run through the same sets as those in Theorem 3.1.
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§4. Two symbol classes

While the classical symbol theory S/N of E R
X is based on holomorphic functions,

the Čech–Dolbeault expression of E R
X is based on C∞-functions, and hence it is

difficult to construct the map from the Čech–Dolbeault expression to the classical

symbol class directly. In this section we construct a new symbol class which is of

C∞-type and show that the new symbol class is isomorphic to the classical symbol

class.

§4.1. Sheaves and conic sheaves

First we introduce the relation between conic sheaves on T ∗X and sheaves on

T̂ ∗X, which is the radial compactification of T ∗X.

Definition 4.1. One defines the radial compactification DCn of Cn by

DCn = Cn ⊔ S2n−1∞.

We show the fundamental system of neighborhoods. If z0 belongs to Cn a

family of fundamental neighborhoods of z0 consists of open sets

Bε(z0) =
{
z ∈ Cn

∣∣ |z − z0| < ε
}

for ε > 0, otherwise that of z0∞ ∈ S2n−1∞ consists of open sets

Gr(Γ) =
{
z ∈ Cn

∣∣ |z| > r, z
|z| ∈ Γ

}
⊔ Γ,

where r > 0 and Γ is an open neighborhood of z0∞ in S2n−1∞ (cf. Figure 1).

z0∞

Γ

Gr(Γ)

rO

Figure 1. Gr(Γ)

Definition 4.2. Let V be an open set in Cn. We define the set V̂ in DCn by

V̂ = DCn \ (Cn \ V ).

Here the closure •̄ is taken in DCn .
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Note that we sometimes write ̂V instead of V̂ .

Definition 4.3. The radial compactification T̂ ∗X of T ∗X is

T̂ ∗X =
⊔
z∈X

T ∗
zX.

Here, T ∗
zX ≃ Cn

ζ = Cn
ζ ⊔ S2n−1∞.

Remark 4.4. Let V be an open set in T̊ ∗X. We also define the V̂ in the same

way as that in DCn , i.e.,

V̂ = T̂ ∗X \ (T ∗X \ V ).

The topology of T̂ ∗X is induced from that of DCn . We introduce the functor

Ψ from the category of sheaves on T̂ ∗X to the one of conic sheaves on T̊ ∗X as

follows. For a sheaf F on T̂ ∗X, the conic sheaf Ψ(F ) on T̊ ∗X, for an open conic

set V , is given by

Ψ(F )(V ) = lim−→
W

F (Ŵ ),

where W ranges through the family of infinitesimal wedges of type V at infinity.

Remark 4.5. We can naturally extend the conic sheaves Ψ(F ) on T̊ ∗X to the

one on T ∗X in the following way:

For an open set V in T ∗X we set

Ψ(F )(V ) = lim−→
W

F (Ŵ ∪ π−1(V ∩ T ∗
XX)),

where W ranges through the family of infinitesimal wedges of type V at infinity.

Then we have the following lemmas.

Lemma 4.6. The functor Ψ is exact.

Proof. For p = (z; ζ) ∈ T ∗X with ζ ̸= 0 we have

Ψ(F )p = Fp∞,

where p∞ = R+p ∩ (T̂ ∗X \ T ∗X).

Let G be a conic sheaf on T̊ ∗X. We say that G is conically soft if for any

closed conic set Z, the restriction G (T̊ ∗X) → G (Z) is surjective. By the definition

of the functor Ψ we have the following lemmas.

Lemma 4.7. Let F be a soft sheaf on T̂ ∗X. Then Ψ(F ) is conically soft.
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Lemma 4.8. Let G be a conically soft sheaf on T̊ ∗X and V be an open conic set

in T̊ ∗X. Then we have

Hk(V ;G ) = 0 (k ̸= 0).

Proposition 4.9. Let F be a sheaf on T̂ ∗X and V an open conic set in T̊ ∗X.

Then we have

Hk(Ψ(F );V ) = lim−→
W

Hk(Ŵ ;F ),

where W ranges through the family of infinitesimal wedges of type V .

Proof. Take a soft resolution of F on T̂ ∗X,

0 → F → L1 → L2 → · · · .

Since Ψ is exact, we have the resolution of Ψ(F ),

0 → Ψ(F ) → Ψ(L1) → Ψ(L2) → · · · ,

and we can compute Hk(V ; Ψ(F )) using this resolution. By the definition of Ψ

we have

Γ(V ; Ψ(F )) = lim−→
W

Γ(Ŵ ;F ).

Since the inductive limit and the functorHk(•) commute, we obtain the conclusion.

§4.2. The sheaf S/N of classical symbols

Let us review the classical symbol theory, which is based on the theory of Aoki

[1, 3]. Let z∗ = (z; ζ) be a local coordinate of T ∗X. We construct two conic sheaves

S and N on T̊ ∗X.

Definition 4.10. Let V be an open cone in T̊ ∗X.

(1) A function f(z, ζ) is called a symbol on V if the following conditions hold:

(i) There exists an infinitesimal wedge W of type V such that

f(z, ζ) ∈ OT∗X(W ).

(ii) For any open cone V ′ ⋐
cone

V there exists an infinitesimal wedge W ′ ⊂ W

of type V ′ such that f(z, ζ) satisfies the following condition:

For any constant h > 0, there exists a constant C > 0 such that

(4.1) |f(z, ζ)| ≤ C · eh|ζ| on W ′.
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(2) A symbol f(z, ζ) on V is called a null symbol if for any open cone V ′ ⋐
cone

V

there exist an infinitesimal wedge W ′ ⊂ W of type V ′ and constants h > 0

and C > 0 such that

(4.2) |f(z, ζ)| ≤ C · e−h|ζ| on W ′.

(3) We denote by S(V ) and N(V ) the set of all the symbols on V and the set of

all the null symbols on V , respectively. Moreover, we set

Sz∗ = lim−→
V ∋z∗

S(V ), Nz∗ = lim−→
V ∋z∗

N(V ),

where V runs through the family of open conic neighborhoods of z∗ ∈ T̊ ∗X.

We can naturally extend the sheaves S and N to the sheaves on T ∗X. Define

the sheaves S|T∗
XX and N|T∗

XX on the zero section T ∗
XX as follows.

(1) Let U be an open set in X. The section S|T∗
XX(U) is a family of f(z, ζ) ∈

OT∗X(π−1(U)) which satisfies the condition below:

For any compact set K ⋐ U and for any constant h > 0 there exists a

constant C > 0 such that

|f(z, ζ)| ≤ C · eh|ζ| on π−1(K).

(2) Set N|T∗
XX = 0.

Then the sheaves S and N become those on T ∗X.

Next we construct the quotient sheaf S/N.

Proposition 4.11. Let V be an open cone in T̊ ∗X. The section N(V ) is an ideal

of S(V ).

Proof. Let f(z, ζ) ∈ N(V ) and g(z, ζ) ∈ S(V ). Then there exists an infinitesimal

wedge W of type V such that f(z, ζ) and g(z, ζ) are holomorphic on W . By the

definition of N for any V ′ ⋐
cone

V we can find an infinitesimal wedge W ′ of type V ′

and the constants h > 0 and C > 0 such that

|f(z, ζ)| ≤ C · e−h|ζ|.

Similarly for V ′, W ′ and h > 0 which are the same ones as above, we can find a

constant C ′ > 0 such that

|g(z, ζ)| ≤ C ′ · e 1
2h|ζ|.

Hence we obtain

|f(z, ζ) · g(z, ζ)| ≤ C · e−h|ζ| · C ′ · e 1
2h|ζ| ≤ CC ′ · e− 1

2h|ζ|.
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One denotes by (S/N)#P the presheaf defined by the correspondence for an

open cone V in T̊ ∗X,

V 7→ S(V )/N(V ).

Let S/N be the associated sheaf to (S/N)#P . We have the following exact

sequence of sheaves

(4.3) 0 → N → S
κ1−→ S/N → 0.

Here κ1 is the composition of the canonical morphisms S → (S/N)#P → S/N,

and (4.3) induces the long exact sequence

0 → N(V ) → S(V ) → S/N(V ) → H1(V ;N) → · · · .

To treat S/N(V ) as it is a quotient group S(V )/N(V ), we claim H1(V ;N) = 0

for a suitable V .

Theorem 4.12. Assume X to be a complex vector space and let Z be a closed

cone in T̊ ∗X. Moreover, assume that Z satisfies the following conditions (C1), (C2)

and (C3).

(C1) A family of open conic neighborhoods of Z has a cofinal family which consists

of Stein open cones in T̊ ∗X.

(C2) The projection π(Z) is a compact set in X.

(C3) There exists ζ0 ∈ Cn \ {0} such that

Z ⊂
{
(z; ζ) ∈ T̊ ∗X

∣∣ z ∈ π(Z), Re⟨ζ, ζ0⟩ > 0
}
.

Then Hk(Z;N) = 0 holds for any k > 0.

The conditions (C1), (C2) and (C3) are collectively called condition C.

Example 4.13. We can construct a closed cone V satisfying the above three

conditions as follows. LetN be a natural number and f1(z), . . . , fN (z) holomorphic

functions on X. Set

B =

N⋂
i=1

{|fi(z)| ≤ 1},

and assume B to be compact, and let Γ be a closed proper convex cone. Then

V = B×Γ satisfies the second and the third conditions in Theorem 4.12. A cofinal

family of B × Γ is given in the following way. We can take a family {Bε}ε∈R+
of

open neighborhoods of B as follows:

Bε =
⋂

1≤i≤N

{|fi(z)| < 1 + ε}.



Symbols of Pseudodifferential Operators 351

Since Γ is a closed proper convex cone we can take a cofinal family {Γλ}λ∈Λ

which consists of open convex conic neighborhoods of Γ. Then the family {Bε ×
Γλ}(ε,λ)∈R+×Λ is what we want.

To prove Theorem 4.12 we apply the results in the previous subsection to N.

Definition 4.14. We introduce several sheaves which are related to the sheaf N:

(1) Let L̃2,loc be the sheaf of rapidly decreasing locally L2-functions. That is, for

an open set Ũ in T̂ ∗X, a function f(z, ζ) belongs to L̃2,loc(Ũ) if f(z, ζ) ∈
L2,loc(Ũ ∩T ∗X) and for any compact set K in Ũ there exists a constant h > 0

such that

f(z, ζ) · eh|ζ| ∈ L2(K ∩ T ∗X).

(2) Let L̃
(p,q)
2,loc be the sheaf of (p, q)-forms with coefficients in L̃2,loc.

(3) The sheaf L̃
(p,q)
2,loc is the subsheaf of L̃

(p,q)
2,loc defined below:

For an open set Ũ in T̂ ∗X a (p, q)-form f ∈ L̃
(p,q)
2,loc(Ũ) belongs to L̃

(p,q)
2,loc (Ũ)

if ∂̄f(z, ζ) ∈ L̃
(p,q+1)
2,loc (Ũ).

(4) The sheaf Ñ is the sheaf of holomorphic functions of exponential decay on

T̂ ∗X. That is, for an open set Ũ in T̂ ∗X, a function f(z, ζ) belongs to Ñ(Ũ)

if f(z, ζ) ∈ OT∗X(Ũ ∩ T ∗X) and for any compact set K in Ũ there exist

constants C > 0 and h > 0 such that

|f(z, ζ)| ≤ C · e−h|ζ| on K ∩ T ∗X.

Note that sheaves L̃2,loc, L̃
(p,q)
2,loc and L̃

(p,q)
2,loc are soft on T̂ ∗X.

Lemma 4.15. We have Ψ(Ñ) = N on T̊ ∗X.

Proof. Let V be an open cone in T̊ ∗X and f(z, ζ) ∈ Ψ(Ñ)(V ). By the defini-

tion of Ñ and Ψ, there exists an infinitesimal wedge W of type V such that

f(z, ζ) ∈ Ψ(Ñ)(V ) with exponential decay estimate. This f(z, ζ) is in N and this

correspondence gives the map Ψ(Ñ) → N. The inverse is also given in the same

way.

Lemma 4.16. Let Z be a closed cone in T̊ ∗X satisfying condition C. Then the

following sequence is exact:

0 → lim−→
W

Ñ(W ) → lim−→
W

L̃
(0,0)
2,loc (W )

∂̄−→ lim−→
W

L̃
(0,1)
2,loc (W )

∂̄−→ · · ·

∂̄−→ lim−→
W

L̃
(0,2n)
2,loc (W ) → 0,(4.4)
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where W runs through the family of closed infinitesimal wedges of type Z and the

closure W is taken in T̂ ∗X.

The following theorem is crucial in the proof of the exactness of (4.4).

Theorem 4.17 ([7, Thm. 4.4.2]). Let Ω be a pseudoconvex open set in Cn and

φ any plurisubharmonic function in Ω. For every g ∈ L
(p,q+1)
2 (Ω, φ) with ∂̄g = 0

there is a solution u ∈ L
(p,q)
2,loc(Ω) of the equation ∂̄u = g such that∫

Ω

|u|2e−φ(1 + |z|2)−2 dλ ≤
∫
Ω

|g|2e−φ dλ.

Remark 4.18. In Theorem 4.17 we adopt Hörmander’s notation. A form g ∈
L
(p,q)
2 (Ω, φ) is a (p, q)-form on Ω with coefficients in square integrable functions

with respect to the measure e−φ dλ.

Now we show the exactness of (4.4). Let V1 be a Stein open cone with Z ⋐
cone

V1
and W1 be an infinitesimal wedge of type V1. Fix ζ0 ∈ Cn \ {0} whose existence

is guaranteed by condition (C3) in Theorem 4.12. Particularly we assume |ζ0| = 1

without loss of generality. Let Hζ0(δ) be an open half-space defined by

Hζ0(δ) =
⊔
z∈X

{
(z; ζ) ∈ T ∗

zX
∣∣ Re⟨ζ − δζ̄0, ζ0⟩ > 0

}
.

Note that we can take V1 with V 1 ⊂ ̂Hζ0(0) since Z satisfies condition C. By

condition (C1), we can take a Stein open cone V2 in T̊ ∗X satisfying Z ⋐
cone

V2 ⋐
cone

V1.

Moreover, for a sufficiently large δ the set V2 ∩Hζ0(δ) is an infinitesimal wedge of

type V2 with V2∩Hζ0(δ) ⊂W1. This means that for any infinitesimal wedgeW1 we

can take an infinitesimal wedge W2 = V2 ∩Hζ0(δ) with W2 ⊂ W1 (cf. Figure 2).

Hence it suffices to consider the infinitesimal wedge V2 ∩ Hζ0(δ). Note that the

infinitesimal wedge V2 ∩Hζ0(δ) is a Stein set.

Let W2 = V2 ∩ Hζ0(δ) be an infinitesimal wedge of type V2 and f(z, ζ) ∈
L̃

(0,q+1)
2,loc (Ŵ1). AsW 2 is compact in Ŵ1 we can fix a small constant 0 < h′ < h such

that a function f(z, ζ) · eh′⟨ζ0,ζ⟩ satisfies the condition of L̃2,loc in Definition 4.14.

Set φ(z, ζ) = 1 and F (z, ζ) = f(z, ζ) · eh′⟨ζ0,ζ⟩. By Theorem 4.17 we can find

u(z, ζ) ∈ L
(0,q)
2,loc(W2) such that ∂̄u = F and

(4.5)

∫
W2

(|ζ|2 + 1)−2|u(z, ζ)|2 dλ ≤
∫
W2

|F (z, ζ)|2 dλ <∞.

Setting g(z, ζ) = e−h′⟨ζ0,ζ⟩ · u(z, ζ) we get

∂̄g = e−h′⟨ζ0,ζ⟩ · ∂̄u(z, ζ) = e−h′⟨ζ0,ζ⟩ · F (z, ζ) = f(z, ζ).



Symbols of Pseudodifferential Operators 353

ζ0

V1

W1

O ζ0

W2

V2O

Hζ0(δ)

Figure 2. W1 and W2

Let W3 be an infinitesimal wedge of type V2 with W3 ∩ T ∗X ⊂W2. By (4.5) such

a g(z, ζ) belongs to L̃
(0,q)
2,loc (W3) because of (4.5) and the exactness of (4.4) has

been proved.

Now we finish the proof of Theorem 4.12. Consider the soft resolution of Ñ:

0 → Ñ → L̃
(0,0)
2,loc

∂̄−→ L̃
(0,1)
2,loc

∂̄−→ · · · ∂̄−→ L̃
(0,2n)
2,loc → 0.

Let Z be a closed cone in T̊ ∗X satisfying condition C. Applying Proposition 4.9

to the above resolution we obtain

Hk(Z;N) = lim−→
V

Hk(V ;N) = lim−→
V

Hk(V ; Ψ(Ñ)) = lim−→
V,W

Hk(Ŵ ; Ñ) = 0,

where V is a Stein open cone in T̊ ∗X with V ⊃ Z and W is a Stein infinitesimal

wedge of type V . This completes the proof of Theorem 4.12.

As an immediate consequence of the theorem we obtain the exact sequence

0 → N(Z) → S(Z) → S/N(Z) → 0.

Corollary 4.19. Let Z be a closed cone satisfying condition C. Then an arbitrary

element f(z, ζ) ∈ S/N(Z) is represented by some symbol f ′(z, ζ) ∈ S(Z).

§4.3. The sheaf S∞/N∞ of symbols of C∞-type

In this subsection we introduce a new symbol class, which is called symbols of

C∞-type. Let V be an open cone in T̊ ∗X and z∗ = (z; ζ) a local coordinate of

T ∗X. We construct conic sheaves S∞ and N∞ on T̊ ∗X.
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Definition 4.20. One defines the sheaf C∞
z Oζ as

f(z, ζ) ∈ C∞
z Oζ(V ) ⇔ f(z, ζ) is a C∞-function on V

and a holomorphic on V in the second variable.

Remark 4.21. The sheaf C∞
z Oζ is invariant under the coordinate transformation

of X.

Definition 4.22. We introduce symbols of C∞ type as follows:

(1) A function f(z, ζ) is said to be a null symbol of C∞-type on V if it satisfies

the following conditions:

(N1) There exists an infinitesimal wedge W of type V such that

f(z, ζ) ∈ C∞
z Oζ(W ).

(N2) For any open cone V ′ ⋐
cone

V there exists an infinitesimal wedge W ′ ⊂W

of type V ′ such that the following condition holds: For any multi-indices

α = (α1, α2, . . . , αn) ∈ Zn
≥0 and β = (β1, β2, . . . , βn) ∈ Zn

≥0, there exist

constants h > 0 and C > 0 such that∣∣∣ ∂α
∂zα

∂β

∂z̄β
f(z, ζ)

∣∣∣ ≤ C · e−h|ζ| on W ′.

(2) A function f(z, ζ) is said to be a symbol of C∞-type on V if it satisfies the

following conditions:

(S1) There exists an infinitesimal wedge W of type V such that

f(z, ζ) ∈ C∞
z Oζ(W ).

(S2) For any open cone V ′ ⋐
cone

V there exists an infinitesimal wedge W ′ ⊂W

of type V ′ such that the following condition holds: For any multi-indices

α = (α1, α2, . . . , αn) ∈ Zn
≥0 and β = (β1, β2, . . . , βn) ∈ Zn

≥0, and for any

h > 0 there exists a constant C > 0 such that∣∣∣ ∂α
∂zα

∂β

∂z̄β
f(z, ζ)

∣∣∣ ≤ C · eh|ζ| on W ′.

(S3) The derivative ∂
∂z̄i
f(z, ζ) is a null symbol on V for any i = 1, 2, . . . , n.

(3) We denote by S∞(V ) and N∞(V ) the set of all the symbols of C∞-type on V

and the set of all the null symbols of C∞-type on V , respectively. Moreover,

we set

S∞
z∗ = lim−→

V ∋z∗

S∞(V ), N∞
z∗ = lim−→

V ∋z∗

N∞(V ),

where V runs through the family of open conic neighborhoods of z∗.
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In a similar way to the discussion immediately following Definition 4.10, we

can extend the sheavesS∞ andN∞ to the sheaves on T ∗X. SetS∞|T∗
XX = S|T∗

XX

and N∞|T∗
XX = 0. Then the sheaves S∞ and N∞ are well defined on T ∗X.

Proposition 4.23. Let V be an open cone in T̊ ∗X. Then N∞(V ) is an ideal of

S∞(V ).

Proof. Let f(z, ζ) ∈ S∞(V ) and g(z, ζ) ∈ N∞(V ). Then we can take an infinites-

imal wedge W of type V such that f(z, ζ) and g(z, ζ) are in C∞
z Oζ(W ). Then we

have

∂α

∂zα
∂β

∂z̄β
(f(z, ζ) · g(z, ζ)) =

∑
0≤α′≤α
0≤β′≤β

∂α
′

∂zα′

∂β
′

∂z̄β′ f(z, ζ) ·
∂α−α′

∂zα−α′

∂β−β′

∂z̄β−β′ g(z, ζ).

By condition (S2) of Definition 4.22, for any V ′ ⋐
cone

V there exists an infinitesimal

wedge W ′ ⊂ W of type V ′ such that f(z, ζ) satisfies the following condition: For

any hα′β′ > 0 there exists a positive constant Cα′β′ such that∣∣∣ ∂α′

∂zα′

∂β
′

∂z̄β′ f(z, ζ)
∣∣∣ ≤ Cα′β′ · ehα′β′ |ζ|.

Similarly, for the same V ′ ⋐
cone

V and the same W ′ ⊂ W there exist constants

h′α′β′ > 0 and C ′
α′β′ > 0 such that∣∣∣ ∂α−α′

∂zα−α′

∂β−β′

∂z̄β−β′ g(z, ζ)
∣∣∣ ≤ C ′

α′β′ · e−h′
α′β′ |ζ|.

Thus by taking hα′β′ = 1
2h

′
α′β′ we obtain∣∣∣ ∂α

∂zα
∂β

∂z̄β
(f(z, ζ) · g(z, ζ))

∣∣∣
≤

∑
0≤α′≤α
0≤β′≤β

∣∣∣ ∂α′

∂zα′

∂β
′

∂z̄β′ f(z, ζ)
∣∣∣ · ∣∣∣ ∂α−α′

∂zα−α′

∂β−β′

∂z̄β−β′ g(z, ζ)
∣∣∣

≤
∑

0≤α′≤α
0≤β′≤β

Cα′β′C ′
α′β′ · e

1
2h

′
α′β′ |ζ| · e−h′

α′β′ |ζ| ≤ mCe−
1
2h|ζ|,

where h = min0≤α′≤α,0≤β′≤β{h′α′β′}, C = min0≤α′≤α,0≤β′≤β{Cα′β′C ′
α′β′} and

m = #{(α′, β′) | 0 ≤ α′ ≤ α, 0 ≤ β′ ≤ β}. This completes the proof.

One denotes by (S∞/N∞)#P the presheaf defined by the correspondence

V 7→ S∞(V )/N∞(V ),
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where V is an open cone in T̊ ∗X, and let S∞/N∞ be an associated sheaf to

(S∞/N∞)#P . We have the following exact sequence of sheaves:

(4.6) 0 → N∞ → S∞ κ2−→ S∞/N∞ → 0.

Here κ2 is the composition of the canonical morphisms S∞ → (S∞/N∞)#P →
S∞/N∞. By the same argument as in the previous subsection we want the exact-

ness of the sequence on Z,

0 → N∞(Z) → S∞(Z) → S∞/N∞(Z) → 0,

where Z is a closed cone in T̊ ∗X satisfying condition C, and this exactness is

guaranteed by the following argument:

We have the commutative diagram

0 // N(Z) //

ι2(Z)

��

S(Z)
κ1(Z)

//

ι1(Z)

��

S/N(Z) //

ι(Z)

��

0

0 // N∞(Z) // S∞(Z)
κ2(Z)

// S∞/N∞(Z),

where ι1(Z) and ι2(Z) are canonical inclusions and horizontal sequences are exact.

Assuming ι(Z) to be an isomorphism, the surjectivity of κ2(Z) follows from the

fact that the composition ι(Z) ◦ κ1(Z) is surjective.

Corollary 4.24. Let Z be a closed cone satisfying condition C. An arbitrary

element f(z, ζ) ∈ S∞/N∞(Z) is represented by some symbol f ′(z, ζ) ∈ S∞(Z).

It will be proved in the next subsection that ι is an isomorphism between

S/N and S∞/N∞.

§4.4. The equivalence of two symbol classes

In this subsection we prove the equivalence of S/N and S∞/N∞.

By the definitions of classical symbols and symbols of C∞-type, there exist

canonical inclusions

ι1 : S ↪→ S∞, ι2 : N ↪→ N∞,

which induce the morphism

ι : S/N → S∞/N∞.

Theorem 4.25. The induced morphism

ι : S/N → S∞/N∞

is an isomorphism of sheaves.
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Obviously we have S/N|T∗
XX = S∞/N∞|T∗

XX = D∞
X . Hence Theorem 4.25

holds on the zero section T ∗
XX and it is sufficient to prove Theorem 4.25 on T̊ ∗X.

Since we have already obtained the map

ι : S/N → S∞/N∞,

one shows ιz∗ to be an isomorphism of stalks at z∗ ∈ T̊ ∗X.

For this purpose we prepare the following proposition. As the problem is

local, we may assume that T ∗X ≃ Cn
z × Cn

ζ until the end of this subsection. In

addition we can take z∗ = z∗0 = (0; 1, 0, . . . , 0) without loss of generality. Let

D = D1(r1, 0)×D2(r2, 0)× · · · ×Dn(rn, 0) be a polydisc in Cn
z where Di(ri, 0) is

an open disc in C whose radius is ri and the center is at the origin. Set

V = D × Γ,

where Γ is an open convex cone containing (1, 0, . . . , 0) ∈ Cn
ζ .

We denote by N∞,(p,q) the sheaf of (p, q)-forms with respect to the variable z

with coefficients in N∞. That is, we consider the variable ζ as just a holomorphic

parameter.

Proposition 4.26. Let V = D × Γ be an open set defined above and let f ∈
N∞,(p,q)(V ) satisfy ∂̄zf = 0. For any polydisc D′ ⋐ D we can find u ∈
N∞,(p,q−1)(V ′) with V ′ = D′ × Γ such that ∂̄zu = f on V ′.

Proof. By the induction with respect to k, we prove that the lemma is true if f

does not contain dz̄k+1, . . . , dz̄n. If k = 0, it is obvious that f = 0. Assuming that

it has been proved when k is replaced by k − 1, we write

f = dz̄k ∧ g + h,

g =
∑
|I|=p

′ ∑
|J|=q

′
gIJ dz

I ∧ dz̄J .

Here, g is a sum of (p, q− 1)-forms on V with coefficients in C∞
z Oζ and h is a sum

of (p, q)-forms on V with coefficients in C∞
z Oζ . Moreover, g and h do not contain

dz̄k, . . . , dz̄n and
∑′

means that we sum only over increasing multi-indices. Since

∂̄f = 0 holds, we have
∂gIJ
∂z̄j

= 0

for j > k such that gIJ is analytic in these variables.

We want to construct the solution GIJ of the equation

∂GIJ

∂z̄k
= gIJ .
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For this purpose we fix a C∞-function ψ on Dk(rk, 0) with compact support such

that ψ(zk) = 1 on a neighborhood D′′ ⊂ D of D′, and set

GIJ(z1, . . . , zn)

=
1

(2π
√
−1)

∫∫
1

(τ − zk)
ψ(τ)gIJ(z1, . . . , zk−1, τ, zk+1, . . . , zn) dτ ∧ dτ̄

=
−1

(2π
√
−1)

∫∫
ψ(zk − τ)

τ
gIJ(z1, . . . , zk−1, zk − τ, zk+1, . . . , zn) dτ ∧ dτ̄.

The last integral representation shows that GIJ is a C∞
z Oζ-function, and thus we

just confirm that GIJ satisfies condition (N2) in Definition 4.22.

Let α = (α1, α2, . . . , αn) ∈ Zn
≥0 and β = (β1, β2, . . . , βn) ∈ Zn

≥0 be multi-

indices. Hereafter, gIJ(z1, . . . , zk−1, zk−τ, zk+1, . . . , zn) is also denoted by gIJ(zk−
τ) for short. Then we have∣∣∣ ∂α

∂zα
∂β

∂z̄β
GIJ

∣∣∣ = 1

2π

∣∣∣∣∫∫ 1

τ
· ∂

α

∂zα
∂β

∂z̄β
(ψ(zk − τ)gIJ(zk − τ)) dτ ∧ dτ̄

∣∣∣∣
=

1

2π

∣∣∣∣∫∫ 1

τ
· ∂

α

∂τα
∂β

∂τ̄β
(ψ(zk − τ)gIJ(zk − τ)) dτ ∧ dτ̄

∣∣∣∣.
We can calculate the integrand as follows:

1

τ

∂α

∂τα
∂β

∂τ̄β
(ψ(zk − τ)gIJ(zk − τ))

=
∑

0≤α′≤α

∑
0≤β′≤β

1

τ

∂α
′

∂τα′

∂β
′

∂τ̄β′ ψ(zk − τ) · ∂
α−α′

∂τα−α′

∂β−β′

∂z̄β−β′ gIJ(zk − τ).

Since ψ(zk − τ) has a compact support and gIJ is of N∞-type,∣∣∣∣∫∫ τ−1 · ∂
α′

∂τα′

∂β
′

∂τ̄β′ ψ(zk − τ) · ∂
α−α′

∂τα−α′

∂β−β′

∂z̄β−β′ gIJ(zk − τ) dτ ∧ τ̄
∣∣∣∣

≤ Cα′β′e−hα′β′ |ζ|

holds for some Cα′β′ > 0 and hα′β′ > 0. As the sets {α ∈ Zn
≥0 | 0 ≤ α′ ≤ α} and

{β ∈ Zn
≥0 | 0 ≤ β′ ≤ β} are finite we obtain∣∣∣∣ ∂α∂zα ∂β

∂z̄β
GIJ

∣∣∣∣ ≤ Ce−h|ζ|

for some C > 0 and h > 0.

Now we construct the solution u. Set

G =
∑
I,J

′
GIJ dz

I ∧ dz̄J .
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It follows that

∂̄G =
∑
I,J

′ ∑
j

′ ∂G

∂z̄j
dz̄j ∧ dzI ∧ dz̄J = dz̄k ∧ g + h1,

where h1 is the sum when j runs from 1 to k−1 and does not involve dz̄k, . . . , dz̄n.

Thus by the hypothesis of the induction we can find v such that ∂̄v = f − ∂̄G and

u = v +G satisfies the equation ∂̄u = f . The proof has been completed.

Now let us prove Theorem 4.25.

Proof of Theorem 4.25. It is sufficient to show that the stalks of sheaves are

isomorphic to each other. One denotes by

ιz∗ : Sz∗/Nz∗ → S∞
z∗/N∞

z∗

the induced morphism from ι : S/N → S∞/N∞. Since the injectivity of ιz∗ is

obvious, we prove the surjectivity of it.

Set F ∈ Sz∗ . There exist a neighborhood V = D×Γ of z∗ and f ∈ S(V ) such

that f is a representative of F . Then f satisfies ∂̄f ∈ N∞,(0,1)(V ) and ∂̄2f = 0.

Recalling the definition of N∞, we have ∂̄2f = ∂̄2zf , where ∂̄z is the Dolbeault

operator with respect to the variable z. Hence we can identify the operator ∂̄ with

∂̄z in this situation. By Proposition 4.26 there exist D′ ⋐ D and g ∈ N∞(V ′)

with V ′ = D′ × Γ such that ∂̄g = ∂̄f holds. This implies f − g ∈ S(V ′). Set

F ′ = (f − g)z∗ . Then ι(F ′)z∗ = F holds and the surjectivity of ιz∗ has been

proved.

§5. The equivalence of E R
X and S∞/N∞

In this section X is assumed to be a complex vector space of dimension n. We

identify X ×X with TX by the map

(5.1) ϱ : X ×X ∋ (z, z′) 7→ (z, z − z′) ∈ TX,

then we can see that the following diagram commutes:

X ×X
ϱ

//

p1
##

TX

τ
}}

X.

Here, remark that p1 is the first projection. The aim of this section is to prove the

following theorem.
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Theorem 5.1. The sheaf E R
X of pseudodifferential operators is isomorphic to the

sheaf S/N of classical symbols.

§5.1. The map ς from E R
X to S∞/N∞

Let Z be a closed convex proper cone in T̊ ∗X, and let V and V ′ be open convex

proper cones in T̊ ∗X with Z ⋐
cone

V ′ ⋐
cone

V . Assume π(Z) is compact, and π(V ′)

and π(V ) are relatively compact sets with π(V ′) ⊂ π(V ). Furthermore, we assume

that V ◦ and (V ′)◦ have C∞-smooth boundaries except for the vertex. Recall that

we have the cohomological expression

E R
X(V ) = lim−→

U,G

Hn
G∩U (U ;O

(0,n)
X×X)

under the suitable conditions for U and G. If we have already obtained the map

ς̃ : Hn
G∩U (U ;O

(0,n)
X×X) → S∞/N∞(V ′),

by taking inductive limits lim−→
U,G

and lim−→
Z ⋐

cone
V ′ ⋐

cone
V

to ς̃ in this order we get

ςZ : E R
X(Z) → S∞/N∞(Z).

Hence our aim can be rephrased to construct the map ς̃ concretely.

To construct the domains of the integrations we introduce a new class of cones

called trivializable.

Definition 5.2. Let Z be a conic set in T̊ ∗X. We say that Z is trivializable if

there exist an open neighborhood Ω ⊂ X of π(Z), a conic set CZ in Cn \ {0} and

a C∞-vector bundle isomorphism φ : Ω×X T ∗X → Ω× Cn such that

φ(Z) = π(Z)× CZ .

We call φ the trivialization morphism and we say that Z is trivialized by φ. We

denote by φz : T
∗
zX → Cn the restriction of φ to the fiber of z.

Remark 5.3. Let Z be a closed convex proper cone, and Ω and φ be the ones

appearing in Definition 5.2. Then there exists a C∞-vector bundle isomorphism
tφ−1 : Ω ×X TX → Ω × Cn, which is the dual vector bundle morphism of φ.

Moreover, φ and tφ−1 preserve the inner product ⟨•, •⟩ on each fiber. Let z ∈ Ω,

v ∈ TzX and ξ ∈ T ∗
zX, and set tφ−1

z (v) = v′ and φz(ξ) = ξ′. Then we have

⟨v, ξ⟩ = ⟨ tφ−1
z (v), φz(ξ)⟩ = ⟨v′, ξ′⟩.
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Now let us construct the map

ς̃ : Hn
G∩U (U ;O

(0,n)
X×X) → S∞/N∞(V ′).

Since the family of closed convex proper trivializable cones in T̊ ∗X is a basis of sets

on which a conic sheaf can be defined, we assume Z to be trivializable throughout

this section. For such a Z we fix an open set Ω ⊂ X, a closed convex proper cone

CZ and a C∞-vector bundle isomorphism φ appearing in Definition 5.2, i.e., we

have

φ(Z) = π(Z)× CZ .

When we consider the inductive limit lim−→
Z⊂V

it suffices for V to run through the fam-

ily of open sets V which is trivializable by the common trivialization morphism φ.

Hence we assume that V and V ′ are also trivialized by the same trivialization

morphism φ. Furthermore, we always assume that U is relatively compact.

Remark 5.4. Throughout this section the closure is taken in T̊ ∗X.

Set B = π(V ′). By Corollary 2.11 we take open convex proper cones Γ1 and

Γ2 in T̊ ∗X such that the following hold (cf. Figure 3):

(1) V ′ ⋐
cone

Γ2 ⋐
cone

Γ1 ⋐
cone

V .

(2) For i = 1, 2, the cone Γi can be trivialized by φ. That is, there exists an open

convex proper cone CΓi such that

φ(Γi) = π(Γi)× CΓi
(i = 1, 2).

Furthermore, we assume that the dual cone C◦
Γi

of CΓi has C
∞-smooth bound-

ary except for its vertex. Note that we can always take such a cone due to

Corollary 2.11.

(3) G ∩ U ∩ p−1
1 (B) ⊂ int(Γ◦

1) ∪∆, where ∆ is the diagonal set in X ×X.

Remark 5.5. By taking U sufficiently small, we can guarantee the existence of

Γ1 since G is tangent to V ◦ near the edge.

We construct the domains of the integrations in the following way. Set γi = Γ◦
i

for i = 1, 2. Let D1 and D2 be open domains in X×X with piecewise C∞-smooth

boundaries such that

(D1) Di is a γi-open set for i = 1, 2.

(D2) ∆X(B) ⊂ D1, where ∆X : X → X ×X is a diagonal embedding.

(D3) D2 ∩ p−1
1 (z) ⊂ intp−1

1 (z)(ϱ
−1((V ′)◦) ∩ p−1

1 (z)) for any z ∈ B, where

intp−1
1 (z)(K) is the set of interior points of K taken in the space p−1

1 (z).
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V ′◦

V ◦

G

U

Γ◦
1Γ◦

2

Figure 3. Geometrical relations in X ×X

(D4) D ∩ p−1
1 (B) ⊂ U for D = D1 \D2.

(D5) E ∩ p−1
1 (B) ⊂ U \G for E = ∂D1 \D2.

(D6) ∂D1 and ∂D2 intersect transversally in an open neighborhood of p−1
1 (B).

Moreover, ∂D2 is smooth in an open neighborhood of ∂D2 ∩ ∂ϱ−1(γ1) ∩
p−1
1 (B).

(D7) p−1
1 (z) and ∂D1 (resp. ∂D2) intersect transversally for any z in an open

neighborhood of B.

Conditions (D1)–(D7) are collectively called condition D.

We construct the domains Dε,1 and Dε,2 satisfying condition D. Recall that

φ(Γi) = π(Γi)× CΓi
(i = 1, 2).

Since Z ⋐
cone

Γ2 ⋐
cone

Γ1 holds, we have C◦
Γ1

⋐
cone

C◦
Γ2

⋐
cone

C◦
Z . Here C◦ is the polar of C

in Cn, i.e., for a set C in Cn we define

C◦ =
{
v ∈ Cn

∣∣ Re⟨v, ξ⟩ ≥ 0 for any ξ ∈ C
}
.

Fix non-zero vectors v0 ∈ int(C◦
Γ1
) and ζ0 ∈ CV ′ . We define domains D̂ε,1 and

D̂ε,2 in Cn (cf. Figure 4) by

D̂ε,1 = (int(C◦
Γ1
)− εv0) \ {z ∈ Cn | Re⟨z + εv0, ζ0⟩ ≤ κε},

D̂ε,2 = (int(C◦
Γ2
) + εv0) \

{
z ∈ Cn | Re⟨z − εv0, ζ0⟩ ≤ κε},

where κ > 0 is taken to be sufficiently small so that

0 < κ <
1

2
Re⟨v0, ζ0⟩
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v0
C◦

Γ1

C◦
Γ2

C◦
Z

O

Dε,1

Dε,2

Figure 4. The figure of Dε,1 and Dε,2

and

(int(C◦
V ′ + v0)) ∩

{
z ∈ Cn

∣∣ Re⟨z − v0, ζ0⟩ ≤ 2κ
}
⊂ int(C◦

Γ1
).

For i = 1, 2 we define the domain Dε,i by

Dε,i = (ϱ−1 ◦ tφ)(π(Γi)× D̂ε,i) (i = 1, 2).

The following lemma follows from Proposition 2.16.

Lemma 5.6. The domain Dε,i (i = 1, 2) has piecewise C∞-smooth boundary

and the pair (Dε,1, Dε,2) satisfies condition D. Furthermore, for any pair (D1, D2)

satisfying condition D, there exists ε > 0 such that

Dε,1 ⊂ D1, Dε,1 \Dε,2 ⊂ int(D1 \D2).

We introduce the geometrical property of the pair (Dε,1, Dε,2), which is used

in the following subsections.

Lemma 5.7. Let (D1, D2) be a pair of domains satisfying condition D. Then

for a sufficiently small ε > 0, ∂Dε,1 and ∂D2 transversally intersect in an open

neighborhood of p−1
1 (B).

Proof. First we show the claim for ε = 0. It suffices to show that ∂C◦
Γ1

and

∂ tφ−1
z (ϱ(D2)) transversally intersect. Let p ∈ ∂C◦

Γ1
∩ ∂ tφ−1

z (ϱ(D2)). Since
tφ−1

z (ϱ(D2)) is C
◦
Γ2
-open and ∂ tφ−1

z (ϱ(D2)) is smooth near p by condition (D6),

(T ∗∂ tφ−1
z (ϱ(D2)))p is contained in

R(C◦
Γ2
)◦ = RCΓ2

=
{
(z, rζ)

∣∣ r ∈ R, (z, ζ) ∈ CΓ2

}
.
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On the other hand, (T ∗∂C◦
Γ1
)p is contained in

R∂CΓ1
=

{
(z, rζ)

∣∣ r ∈ R, (z, ζ) ∈ CΓ1

}
.

As R∂CΓ1
∩ RCΓ2

= {0} holds, both the hypersurfaces intersect transversally

at p. Since the claim is true for ε = 0, the claim also holds for sufficiently small

ε > 0.

Let D1 and D2 be open domains in X ×X satisfying condition D. Set D =

D1 \D2, E = ∂D1 \D2, Dz = D ∩ p−1
1 (z) and Ez = E ∩ p−1

1 (z).

Definition 5.8. Let u belong to H0,n,n

ϑ̄
(U,U \ G) and let ω = (ω1, ω01) be a

representative of u. One defines the map

(5.2) ς̃ : Hn
G∩U (U ;O

(0,n)
X×X) = H0,n,n

ϑ̄
(U,U \G) → S∞/N∞(V ′)

by

(5.3) ς̃(ω)(z, ζ) =

∫
Dz

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Ez

ω01(z, z
′) · e⟨z

′−z,ζ⟩.

In the next paragraph we shall show well-definedness of ς̃. More precisely we

shall prove that ς̃ is independent of the choices of the domains D1, D2 and a

representative ω of u.

§5.2. Well-definedness of the map ς̃

We use the same notation as given in the previous subsection.

Proposition 5.9. Let ω = (ω1, ω01) be a representative of u ∈ H0,n,n

ϑ̄
(U,U \G).

The map ς̃ has the following properties.

(1) The image ς̃(ω) belongs to S∞(V ′).

(2) The image ς̃(ω) belongs to N∞(V ′) if ω is equal to 0 as an element of the

Čech–Dolbeault cohomology.

(3) The image ς̃(ω) does not depend on the choices of D1 and D2.

To clarify the domains of the integrations, we write

ς̃(ω)(z, ζ) = ς̃[D,E](ω)(z, ζ) =

∫
Dz

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Ez

ω01(z, z
′) · e⟨z

′−z,ζ⟩.

The key to the proof of Proposition 5.9 is the transformation of the domains of the

integrations. We can freely transform the domains D1 and D2 of the integrations

as long as the difference of integral is of N∞ class.
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Definition 5.10. Let V be an open cone in T̊ ∗X, and A and B two symbols of

C∞-type on V . One writes

A ≈ B

if and only if A−B is a null symbol of C∞-type on V .

Before starting the proof of Proposition 5.9 we see some lemmas.

Let D1,ε and D2,ε be the domains of the integrations given in the previous

subsection. Set

Dε = D1,ε \D2,ε, Eε = ∂D1,ε \D2,ε.

Lemma 5.11. Let D1 and D2 be the domains of the integrations satisfying con-

dition D, and Dε,1 and Dε,2 be the domains given in the last subsection. If we

take ε > 0 sufficiently small so that Lemmas 5.6 and 5.7 hold, then there exist

constants h > 0 and C > 0 such that

|ς̃[D,E](ω)(z, ζ)− ς̃[Dε,Eε](ω)(z, ζ)| ≤ C · e−h|ζ|.

Remark 5.12. Let us mention that the important points are not only the state-

ment of Lemma 5.11 but also the process of its proof. We shall use the same

argument in the proof of Lemma 5.14.

Proof of Lemma 5.11. Recall that we identify X ×X with TX by the map ϱ, and

Dε,1 ⊂ D1, Dε,1 \Dε,2 ⊂ int(D1 \D2)

hold by Lemma 5.6. Moreover, note that (Dε,1, D2) satisfies condition D by

Lemma 5.7. First for the pairs (D1, D2) and (Dε,1, D2) we show that Lemma 5.11

holds. By the Stokes formula we have

ς̃[D,E](ω)(z, ζ)− ς̃[Dε,1\D2,∂Dε,1\D2](ω)(z, ζ)

=

∫
(D1\D2)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
(∂D1\D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

−
∫
(Dε,1\D2)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ +

∫
(∂Dε,1\D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

=

∫
(D1\Dε,1)\D2

ω1(z, z
′) · e⟨z

′−z,ζ⟩

−
∫
(∂D1\D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩ +

∫
(∂Dε,1\D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩
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=

(∫
(∂D1\D2)z

−
∫
(∂Dε,1\D2)z

+

∫
((D1\Dε,1)∩∂D2)z

)
ω01(z, z

′) · e⟨z
′−z,ζ⟩

−
∫
(∂D1\D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩ +

∫
(∂Dε,1\D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

=

∫
((D1\Dε,1)∩∂D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩.

By noticing that the domains of the integrations are bounded, we can take a

positive number C such that

|ω01(z, z
′) · e⟨z

′−z,ζ⟩| ≤ C · |e−|ζ|⟨z−z′, ζ
|ζ| ⟩| ≤ C · e−|ζ|·Re⟨z−z′, ζ

|ζ| ⟩.

Set γ = (V ′)◦. Due to condition (D3) we have, for any z ∈ B,

distz(∂γ, ∂D2 ∩ U) > 0,

where distz(K1,K2) denotes the distance of two sets K1 ∩ p−1
1 (z) and K2 ∩ p−1

1 (z)

in the space p−1
1 (z). As B = π(V ′) ⊂ π(V ), and U and B are compact, there exists

a positive constant δ such that

inf
z∈B

distz(∂γ, ∂D2 ∩ U) > δ.

Moreover, since D1 ∩ ∂D2 ⊂ U holds, we have

inf
z∈B

distz(∂γ, (D1 \Dε′,1) ∩ ∂D2) > δ.

If we take a sufficiently small ε′ > 0, we have

(D1 \Dε,1) ∩ ∂D2 ⊂ int(C(ε′, V ′)) in p−1
1 (B),

where

C(ε′, V ′) = ϱ−1 ◦ tφ(π(Ω)× (C◦
V ′ + ε′v0)).

Recall that Ω is an open set appearing in the definition of trivialization.

Let Sn−1 be the unit sphere in Cn with the center at the origin. Since 0 /∈
φz(S

n−1) holds we have

(CV ′ \ {0}) ∩ φz(S
n−1) = CV ′ ∩ φz(S

n−1),

which is compact. Furthermore, we have

Re⟨v0, η⟩ > 0 (η ∈ CV ′ \ {0})

due to v0 ∈ int(C◦
Γ1
) ⊂ int(C◦

V ′). Hence by the compactness of φz(S
n−1), we obtain

h = inf
η∈CV ′∩φz(Sn−1)

Re⟨v0, η⟩ ≥ inf
η∈CV ′∩φz(Sn−1)

Re⟨v0, η⟩ > 0.



Symbols of Pseudodifferential Operators 367

Since tφ−1
z (z − z′) belongs to C(ε′, V ′),

Re⟨z − z′, ζ/|ζ|⟩ = Re⟨tφ−1
z (z − z′), φz(ζ/|ζ|)⟩

≥ inf
{
Re⟨v + ε′v0, η⟩

∣∣ v ∈ C◦
V ′ , η ∈ CV ′ ∩ φz(S

n−1)
}

≥ inf
{
Re⟨ε′v0, η⟩

∣∣ η ∈ CV ′ ∩ φz(S
n−1)

}
= ε′h.

For such h > 0 we have

|ς̃[D,E](ω)(z, ζ)− ς̃[Dε,1\D2,∂Dε,1\D2](ω)(z, ζ)|

=

∣∣∣∣∫
((D1\Dε,1)∩∂D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣ ≤ Ce−ε′h|ζ|.

Next we show that Lemma 5.11 holds for the pairs (Dε,1, D2) and (Dε,1, Dε,2).

By the Stokes formula we obtain

ς̃[Dε,1\D2,∂Dε,1\D2](ω)(z, ζ)− ς̃[Dε,Eε](ω)(z, ζ)

=

∫
(Dε,1\D2)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
(∂Dε,1\D2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

−
∫
(Dε,1\Dε,2)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ +

∫
(∂Dε,1\Dε,2)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

=

∫
(Dε,1∩(Dε,2\D2))z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
(∂D1∩(Dε,2\D2))z

ω01(z, z
′) · e⟨z

′−z,ζ⟩.

By the same argument as above, for sufficiently small ε′ > 0, there exist C > 0

and h > 0 such that∣∣∣∣∫
(Dε,1∩(Dε,2\D2))z

ω1(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣ ≤ Ce−ε′h|ζ|

and ∣∣∣∣∫
(∂D1∩(Dε,2\D2))z

ω01(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣ ≤ Ce−ε′h|ζ|.

Finally we have

|ς̃[D,E](ω)(z, ζ)− ς̃[Dε,1,Dε,2](ω)(z, ζ)|
≤ |ς̃[D,E](ω)(z, ζ)− ς̃[Dε,1\D2,∂Dε,1\D2](ω)(z, ζ)|
+ |ς̃[Dε,1\D2,∂Dε,1\D2](ω)(z, ζ)− ς̃[Dε,Eε](ω)(z, ζ)|

≤ 3Ce−ε′h|ζ|,

which is what we want.

The next corollary immediately follows.
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Corollary 5.13. Let (D,E) and (D′, E′) be two pairs satisfying condition D.

There exists constants h > 0 and C > 0 such that

|ς̃[D,E](ω)(z, ζ)− ς̃[D′,E′](ω)(z, ζ)| ≤ C · e−h|ζ|.

Next we show that ς̃[D,E](ω)(z, ζ) and ς̃[D′,E′](ω)(z, ζ) represent the same

symbol in S∞/N∞. For this purpose we expect ς̃ and ∂
∂z (resp. ς̃ and ∂

∂z̄ ) to be

commutative. However, ς̃ and ∂
∂z (resp. ς̃ and ∂

∂z̄ ) do not commute in general since

the paths Dz and Ez of the integrations ς̃ depend on the variables z. We surmount

this difficulty.

For a fixed point z0 ∈ X and a constant ε > 0, we set

B(z0, ε) =
{
z ∈ X

∣∣ |z − z0| < ε
}
.

We define the subsets D̃1(z0, ε), D̃2(z0, ε), D̃(z0, ε) and Ẽ(z0, ε) in X ×X by

D̃1(z0, ε) = B(z0, ε)× p2(D1 ∩ p−1
1 (z0)),

D̃2(z0, ε) = B(z0, ε)× p2(D2 ∩ p−1
1 (z0)),

D̃(z0, ε) = B(z0, ε)× p2(D ∩ p−1
1 (z0)),

Ẽ(z0, ε) = B(z0, ε)× p2(E ∩ p−1
1 (z0)).

Moreover, we write D̃(z0, ε)z = D̃(z0, ε) ∩ p−1
1 (z) (resp. Ẽ(z0, ε)z = Ẽ(z0, ε) ∩

p−1
1 (z)) as usual.

Lemma 5.14. Let z0 ∈ π(V ′) and let ω = (ω1, ω01) be a representative of u ∈
H0,n,n

ϑ̄
(U,U \G). The difference of the integrations

ς̃[D̃(z0,ε),Ẽ(z0,ε)]
(ω)(z, ζ)− ς̃[D,E](ω)(z, ζ)

is a null symbol, where

ς̃[D̃(z0,ε),Ẽ(z0,ε)]
(ω)(z, ζ)

=

∫
D̃(z0,ε)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Ẽ(z0,ε)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

and

ς̃[D,E](ω)(z, ζ) =

∫
Dz

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Ez

ω01(z, z
′) · e⟨z

′−z,ζ⟩.

The key to the proof of this lemma is Lemma 5.11. It is possible to take a

sufficiently small ε > 0 for which the pair D̃(z0, ε) and Ẽ(z0, ε) locally satisfies

condition D near z0.
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Proof of Lemma 5.14. If we take sufficiently small ε > 0 and ε′ > 0, due to

Lemma 5.6 we can take the domains D̃1 and D̃2 with piecewise smooth boundaries

satisfying condition D and conditions below:

(i) (z, z) ∈ D̃.

(ii) D̃1 ⊂ D̃1(z0, ε) and D̃1 ⊂ D1.

(iii) D2 ⊂ D̃2 and D̃2(z0, ε) ⊂ D̃2.

(iv) ∂Dz\Ez ⊂ C(ε′, V ′), ∂D̃z\Ẽz ⊂ C(ε′, V ′) and ∂D̃(z0, ε)\Ẽ(z0, ε) ⊂ C(ε′, V ′).

Here we write D̃ = D̃1 \D̃2, Ẽ = ∂D̃1 \D̃2, D̃z = D̃∩p−1
1 (z) and Ẽz = Ẽ∩p−1

1 (z).

Recall that the domain C(ε′, V ′) is given by

C(ε′, V ′) = ϱ−1 ◦ tφ(π(Ω)× (C◦
V ′ + ε′v0)).

To complete the proof, it suffices to show that the two differences

(a) ς̃[D̃(z0,ε),Ẽ(z0,ε)]
(ω)(z, ζ)− ς̃[D̃,Ẽ](ω)(z, ζ),

(b) ς̃[D,E](ω)(z, ζ)− ς̃[D̃,Ẽ](ω)(z, ζ)

are null symbols. Particularly since case (a) is a special case of (b), we show

case (b).

Since the pairs (D,E) and (D̃, Ẽ) are the domains of the integrations of ς(ω),

by the same argument as in Lemma 5.11, we can cancel out the domains of the

integrations which are outside of C(ε′, V ′) by using the Stokes formula. Hence we

have

ς̃[D,E](ω)(z, ζ)− ς̃[D̃,Ẽ](ω)(z, ζ)

=

(∫
Dz

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Ez

ω01(z, z
′) · e⟨z

′−z,ζ⟩
)

−
(∫

D̃z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Ẽz

ω01(z, z
′) · e⟨z

′−z,ζ⟩
)

=

(∫
(D1,z\D̃1,z)\D2,z

+

∫
D̃1,z\D2,z

)
ω1(z, z

′) · e⟨z
′−z,ζ⟩ −

∫
Ez

ω01(z, z
′) · e⟨z

′−z,ζ⟩

−
(∫

D̃1,z\D̃2,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
∂D̃1,z\D̃2,z

ω01(z, z
′) · e⟨z

′−z,ζ⟩
)

=

(∫
D̃1,z\D2,z

−
∫
D̃1,z\D̃2,z

)
ω1(z, z

′) · e⟨z
′−z,ζ⟩

+

(∫
∂((D1,z\D̃1,z)\D2,z)

−
∫
Ez

+

∫
Ẽz

)
ω01(z, z

′) · e⟨z
′−z,ζ⟩
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=

∫
(D̃2,z\D2,z)∩D̃1,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩

−
(∫

∂D2,z∩(D1,z\D̃1,z)

+

∫
∂D̃1,z∩(D̃2,z\D2,z)

)
ω01(z, z

′) · e⟨z
′−z,ζ⟩.

Here we mention that the integral domains appearing in the last line above are

all contained in C(ε′, V ′) by the properties (iv). We estimate the first integration

on the last line of the equation above. Let (D̃2,z \D2,z) ∩ D̃1,z =
⊔N

i=1Ki,z be a

partition such that each Ki,z is a bounded measurable subset in p−1
1 (z). Then we

have ∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
(D̃2,z\D2,z)∩D̃1,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣

=

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
⊔N

i=1 Ki,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣

≤
N∑
i=1

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Ki,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣.

Give the local coordinate (z, z′) = (z1, . . . , zn, z
′
1, . . . , z

′
n) for an open neighborhood

Ui of Ki,z and consider the C∞-coordinate transformation

Φi : z
′ 7→ z̃i

such that Li = Φi(Ki,z) is independent of the variables z. Then we have

∂α

∂zα
∂β

∂z̄β

∫
Ki,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ =
∂α

∂zα
∂β

∂z̄β

∫
Li

ω̃1(z, z̃
i) · e⟨Φ

−1
i (z̃i)−z,ζ⟩ · JΦi

.

Here, ω̃1(z, w̃
i) = ω1(z, w) holds under the coordinate transform Φi, and JΦi is

the Jacobian.

Remark 5.15. The existence of such a coordinate transformation Φi follows from

the fact that V ′ is trivializable by φ and the domains of the integrations are

contained in C(ε′, V ′).

Since the domain Li is independent of the variables z we obtain∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Ki,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣

=

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Li

ω̃1(z, z̃
i) · e⟨Φ

−1
i (z̃i)−z,ζ⟩ · JΦi

∣∣∣∣
≤

∫
Li

∣∣∣∣ ∂α∂zα ∂β

∂z̄β
(ω̃1(z, z̃

i) · JΦi · e⟨Φ
−1
i (z̃i)−z,ζ⟩)

∣∣∣∣.
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The absolute values of the higher derivatives of the integrand are bounded on Li

since the integrands are of C∞-class. Hence, for each i, by the same argument as

in the proof of Lemma 5.11 there exist Mi, Ci > 0 and hi > 0 such that∫
Li

∣∣∣ ∂α
∂zα

∂β

∂z̄β
(ω̃1(z, z̃

i) · JΦi
· e⟨Φ

−1(z̃i)−z,ζ⟩)
∣∣∣ ≤MiCi · e−hi|ζ|.

Finally, for M = max1≤i≤N{Mi}, C = max1≤i≤N{Ci} and h = min1≤i≤N{hi} we

have

N∑
i=1

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

∫
Ki,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩
∣∣∣∣ ≤ N∑

i=1

MiCie
−hi|ζ| ≤ CMNe−h|ζ|.

We can apply the same argument to(∫
∂D2,z∩(D1,z\D̃1,z)

+

∫
∂D̃1,z∩(D̃2,z\D2,z)

)
ω01(z, z

′) · e⟨z
′−z,ζ⟩,

and these complete the proof.

By Lemma 5.14 we finally obtain the following proposition.

Proposition 5.16. Let (D,E) and (D′, E′) be two pairs satisfying condition D.

Then the difference of the two symbols

ς̃[D,E](ω)(z, ζ)− ς̃[D′,E′](ω)(z, ζ)

is a null symbol.

Proof. Let D̃(z0, ε), Ẽ(z0, ε) and D̃′(z0, ε), Ẽ
′(z0, ε) be the domains of the inte-

grations given in the above. By Lemma 5.14 it suffices to show that the difference

ς̃[D̃(z0,ε),Ẽ(z0,ε)]
(ω)(z0, ζ)− ς̃

[D̃′(z0,ε),Ẽ′(z0,ε)]
(ω)(z0, ζ)

is a null symbol. We mention that D̃(z0, ε), Ẽ(z0, ε) and D̃
′(z0, ε), Ẽ

′(z0, ε) satisfy

condition D, and hence we can see that the difference becomes the null symbol by

the same argument as in Corollary 5.13 and Lemma 5.14.

Now we start the proof of Proposition 5.9. In the following proof the Dolbeault

operator ∂̄z + ∂̄z′ is denoted by ∂̄ without notice.

Proof. We start from (1).

(1) First of all note that all the symbols appearing in this proof are on V ′. We

recall the domains Dε,i for i = 1, 2. The domains D̂ε,1 and D̂ε,2 in Cn are given



372 D. Komori

by

D̂ε,1 = (int(C◦
Γ1
)− εv0) \ {z ∈ Cn | Re⟨z + εv0, ζ0⟩ ≤ κε},

D̂ε,2 = (int(C◦
Γ2
) + εv0) \ {z ∈ Cn | Re⟨z − εv0, ζ0⟩ ≤ κε},

where κ > 0 is taken to be sufficiently small. Then we define the domains Dε,i for

i = 1, 2 as follows:

Dε,i = (ϱ−1 ◦ tφ)(π(Γi)× D̂ε,i) (i = 1, 2).

By Proposition 5.16 it suffices to consider the case that the domains of the integra-

tions are Dε,1 and Dε,2. We show that for any multi-indices α = (α1, α2, . . . , αn) ∈
Zn
≥0 and β = (β1, β2, . . . , βn) ∈ Zn

≥0, and for any h > 0 there exist constants C > 0

and ε > 0 such that∣∣∣ ∂α
∂zα

∂β

∂z̄β
ς̃[Dε,Eε](ω)

∣∣∣
=

∣∣∣∣ ∂α∂zα ∂β

∂z̄β

(∫
Dε,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Eε,z

ω01(z, z
′) · e⟨z

′−z,ζ⟩
)∣∣∣∣ ≤ Ceh|ζ|.

We fix h′ > 0. Since Γ◦
1 ⋐

cone
Γ◦
2 holds, we can take a sufficiently small ε > 0 satisfying

Dε ⊂ (ϱ−1 ◦ tφ)
(
π(Γ1)× (int(C◦

Γ2
) ∪ {v ∈ Cn | |v| ≤ h′})

)
.

Fix z0 ∈ X and let D̃(z0, ε) and Ẽ(z0, ε) be the same subsets for Dε and Eε

appearing in the proof of Lemma 5.14. Noticing that D̃(z0, ε)z and Ẽ(z0, ε)z do

not depend on z we have

∂α

∂zα
∂β

∂z̄β

∫
Dε,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ − ∂α

∂zα
∂β

∂z̄β

∫
Eε,z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

≈ ∂α

∂zα
∂β

∂z̄β

∫
D̃(z0,ε)z

(ω1(z, z
′) · e⟨z

′−z,ζ⟩)− ∂α

∂zα
∂β

∂z̄β

∫
Ẽ(z0,ε)z

(ω01(z, z
′) · e⟨z

′−z,ζ⟩)

=

∫
D̃(z0,ε)z

∂α

∂zα
∂β

∂z̄β
(ω1(z, z

′) · e⟨z
′−z,ζ⟩)−

∫
Ẽ(z0,ε)z

∂α

∂zα
∂β

∂z̄β
(ω01(z, z

′) · e⟨z
′−z,ζ⟩).

Hence we obtain

∂α

∂zα
∂β

∂z̄β
ς̃(ω)

≈
∫
D̃(z0,ε)z

∂α

∂zα
∂β

∂z̄β
(ω1(z, z

′) · e⟨z
′−z,ζ⟩)−

∫
Ẽ(z0,ε)z

∂α

∂zα
∂β

∂z̄β
(ω01(z, z

′) · e⟨z
′−z,ζ⟩)

=

∫
D̃(z0,ε)z

∂α

∂zα
(
∂β

∂z̄β
ω1(z, z

′) · e⟨z
′−z,ζ⟩)−

∫
Ẽ(z0,ε)z

∂α

∂zα
(
∂β

∂z̄β
ω01(z, z

′) · e⟨z
′−z,ζ⟩)
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=

∫
D̃(z0,ε)z

∑
0≤α′≤α

∂α
′

∂zα′

∂β

∂z̄β
ω1(z, z

′) · ∂
α−α′

∂zα−α′ e
⟨z′−z,ζ⟩

−
∫
Ẽ(z0,ε)z

∑
0≤α′≤α

∂α
′

∂zα′

∂β

∂z̄β
ω01(z, z

′) · ∂
α−α′

∂zα−α′ e
⟨z′−z,ζ⟩.

We can estimate the former integral by∣∣∣∣∫
D̃(z0,ε)z

∑
0≤α′≤α

∂α
′

∂zα′

∂β

∂z̄β
ω1(z, z

′) · ∂
α−α′

∂zα−α′ e
⟨z′−z,ζ⟩

∣∣∣∣
≤

∑
0≤α′≤α

∫
D̃(z0,ε)z

∣∣∣ ∂α′

∂zα′

∂β

∂z̄β
ω1(z, z

′)
∣∣∣ · |Pα′(ζ)| · eRe⟨z′−z,ζ⟩,

where Pα′(ζ) is some polynomial with respect to ζ. For v ∈ C◦
Γ2

and η ∈ CV ′ ,

Re⟨v, η⟩ ≥ 0 holds. Thus we have

Re⟨z′ − z, ζ/|ζ|⟩
= Re⟨ tφ−1

z (z′ − z), φz(ζ/|ζ|)⟩
≤ sup{Re⟨−v + εv0, η⟩ | v ∈ int(C◦

Γ2
) ∪ {v ∈Cn | |v| ≤ h′}, η ∈CV ′ ∩ φz(S

n−1)}
≤ sup

{
Re⟨v, η⟩

∣∣ |v| < h′, η ∈ CV ′ ∩ φz(S
n−1)

}
+ sup

{
Re⟨εv0, η⟩

∣∣ η ∈ CV ′ ∩ φz(S
n−1)

}
.

Mentioning that CV ′ ∩ φz(S
n−1) is compact, we have

δ1 = sup
{
Re⟨v, η⟩

∣∣ |v| < 1, η ∈ CV ′ ∩ φz(S
n−1)

}
<∞,

δ2 = sup
{
Re⟨v0, η⟩

∣∣ η ∈ CV ′ ∩ φz(S
n−1)

}
<∞.

Hence we obtain

Re⟨z − z′, ζ/|ζ|⟩
≤ sup

{
Re⟨v, η⟩

∣∣ |v| < h′, η ∈ CV ′ ∩ φz(S
n−1)

}
+ sup

{
Re⟨εv0, η⟩

∣∣ η ∈ CV ′ ∩ φz(S
n−1)

}
≤ δ1h

′ + δ2ε ≤ h.

The last inequality will be justified by retaking h′ > 0 and ε > 0 sufficiently small.

(Note that the choice of ε depends on h′.) Finally we get∑
0≤α′≤α

∫
D̃(z0,ε)z

∣∣∣ ∂α′

∂zα′

∂β

∂z̄β
ω1(z, z

′)
∣∣∣ · |Pα′(ζ)| · eRe⟨z′−z,ζ⟩ ≤ Ceh|ζ|.

The latter integration satisfies the same inequality by the same argument.
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Next we check that ∂
∂z̄i
ς̃[Dε,Eε](ω) belongs to N∞(V ′) for any i = 1, 2, . . . , n. Fix

z0 ∈ X and let D̃(z0, ε) and Ẽ(z0, ε) be the same subsets as above. By the Stokes

formula and the facts that (∂̄z + ∂̄z′)ω01 = ω1 and ∂̄zω1 = −∂̄z′ω1, we obtain

∂̄z ς̃[Dε,Eε](ω) ≈
∫
D̃(z0,ε)z

∂̄zω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Ẽ(z0,ε)z

∂̄zω01(z, z
′) · e⟨z

′−z,ζ⟩

= −
∫
D̃(z0,ε)z

∂̄z′ω1(z, z
′) · e⟨z

′−z,ζ⟩

−
∫
Ẽ(z0,ε)z

(ω1(z, z
′)− ∂̄z′ω01(z, z

′)) · e⟨z
′−z,ζ⟩

=

∫
∂D̃(z0,ε)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩

+

∫
Ẽ(z0,ε)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
∂Ẽ(z0,ε)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

=

∫
∂D̃(z0,ε)z\Ẽ(z0,ε)z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ +

∫
∂Ẽ(z0,ε)z

ω01(z, z
′) · e⟨z

′−z,ζ⟩.

Since the domains of the integrations are contained in C(ε, V ′) for sufficiently

small ε > 0, the last line above is a 1-form with respect to the variable z̄ with

coefficients in the class of null symbols.

(2) In addition to the assumption in the above proof we assume that ω is equal

to 0 as an element in the relative Čech–Dolbeault cohomology. Then there exists

τ = (τ1, τ01) ∈ C
∞,(0,n,n−1)
X×X (V,V ′) with ϑ̄τ = ω. By substituting (ω1, ω01) with

(∂̄τ1, τ1 − ∂̄τ01) we have

ς̃(ω) =

∫
Dε,z

ω1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Eε,z

ω01(z, z
′) · e⟨z

′−z,ζ⟩

=

∫
Dε,z

∂̄τ1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Eε,z

(τ1(z, z
′)− ∂̄τ01(z, z

′)) · e⟨z
′−z,ζ⟩.

By noticing that the integrations∫
Dε,z

∂̄zτ1(z, z
′) · e⟨z

′−z,ζ⟩,

∫
Eε,z

∂̄zτ01(z, z
′) · e⟨z

′−z,ζ⟩

vanish, we have∫
Dε,z

∂̄τ1(z, z
′) · e⟨z

′−z,ζ⟩ −
∫
Eε,z

(τ1(z, z
′)− ∂̄τ01(z, z

′)) · e⟨z
′−z,ζ⟩

=

∫
∂Dε,z\Eε,z

τ1(z, z
′) · e⟨z

′−z,ζ⟩ +

∫
∂Eε,z

τ01(z, z
′) · e⟨z

′−z,ζ⟩.
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By the same argument as in the proof of (1), we can find constants h > 0 and

C > 0 such that∣∣∣∣ ∂α∂zα ∂β

∂z̄β

(∫
∂Dz,2(ε)\Eε,z

τ1(z, z
′) · e⟨z

′−z,ζ⟩ +

∫
∂Eε,z

τ01(z, z
′) · e⟨z

′−z,ζ⟩
)∣∣∣∣ ≤ C · e−h|ζ|.

(3) The claim follows immediately from Proposition 5.16.

Hereafter we write ς̃ instead of ς̃[D,E] since the map ς̃ does not depend on

the choice of D and E by Proposition 5.9. The corollary below also follows from

Proposition 5.9.

Corollary 5.17. The map ς̃ is well defined.

In the next subsection we prove the main theorem.

§5.3. The proof of Theorem 5.1

Now we show the proof of Theorem 5.1. As a consequence of Sections 4.1 and 4.2,

there exists a morphism

ςZ : E R
X(Z) → S∞/N∞(Z)

for any closed convex proper cone Z in T̊ ∗X with π(Z) being compact.

Let Z ′ be a closed convex proper cone contained in Z. Then it follows from

Proposition 5.9 that the diagram below commutes:

E R
X(Z)

ςZ //

��

S∞/N∞(Z)

��

E R
X(Z ′)

ςZ′
// S∞/N∞(Z ′).

Since the family of closed convex proper cones in T̊ ∗X is a basis of sets on which a

conic sheaf can be defined, the family {ςZ}Z of morphisms gives a sheaf morphism

on T̊ ∗X,

ς : E R
X → S∞/N∞.

The rest of the problem is whether the map ς is an isomorphism or not. In par-

ticular, it suffices to show the morphism ςz∗ : E R
X,z∗ → (S∞/N∞)z∗ of stalks is

isomorphic. Assume that the following diagram commutes for each point z∗ (we
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show it in Theorem A.6 in Appendix A.4 since the proof is a little complicated):

(5.4)

(S/N)z∗

ιz∗

��

E R
X,z∗

σ
77

ςz∗ ''

(S∞/N∞)z∗ .

Here, σ is the symbol mapping given by Aoki [2, Def. 4.4]. We also review the

details of σ in Definition A.5 in Appendix A.3. The following theorem is essential.

Theorem 5.18 ([2, Thms 4.3 and 4.5]). The symbol mapping σ

σ : E R
X,z∗ → (S/N)z∗

is an isomorphism of stalks.

The vertical arrow in the diagram is an isomorphism by Theorem 4.25 and

σ is also isomorphic by the result of Aoki. Therefore ςz∗ is also an isomorphism,

which completes the proof of Theorem 5.1.

Appendix A. The compatibility of two symbol maps

In the appendix we prove the commutativity of (5.4). Since the argument is local,

we assume the following identification:

T ∗X ≃ X × Cn ∋ (z; ζ) = (z1, . . . , zn; ζ1, . . . , ζn).

Moreover, assume that X ⊂ Cn is an open set with coordinate system z =

(z1, . . . , zn).

Fix the point z∗ so that we can consider the stalk of E R
X on it. Then we regard

z∗ = (0;λ, 0, . . . , 0) for some λ ∈ C\{0} without loss of generality. Recall that the

stalk of the sheaf E R
X is expressed as the inductive limit of the cohomologies with

suitable subsets U and G:

E R
X,z∗ = lim−→

U,G

Hn
G(U ;O

(0,n)
X×X).

On the other hand, in the theory of Čech–Dolbeault cohomology, the stalk of E R
X

is given in Definition 3.3 and Theorem 3.8.

To express two cohomologies in the same class we give another Čech–Dolbeault

expression. In the second step we calculate the integration of two cohomology

classes and finish the proof.
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Appendix A.1. Another Čech–Dolbeault expression of E R
X

We construct the Čech–Dolbeault cohomology of E R
X in which two cohomologies

can be embedded. (See [13].)

Let M be a closed set in X. Moreover, let W = {Wi}i∈I and W ′ = {Wi}i∈I′

be open coverings of X and X \M , respectively. Here I and I ′ are index sets with

I ′ ⊂ I. For a sheaf S we set

Cq(W;S ) =
∏

(α0,α1,...,αq)∈Iq+1

S (Wα0α1···αq
),

where Wα0α1···αq
= Wα0

∩Wα1
∩ · · · ∩Wαq

. Note that σα0···αq
∈ S (Wα0α1···αq

)

has the orientation, that is, the section σ satisfies the formula

σα0···αiαi+1···αq = −σα0···αi+1αi···αq .

This implies that we have σ = 0 if αi = αj for some i ̸= j. The complex

(C•(W;S ), δ) is called the Čech complex with coefficients in S . The coboundary

operator δ is defined by

(δσ)α0α1···αq+1 =

q+1∑
k=0

(−1)kσα0···α̂k···αq+1
.

Here we set σα0···α̂k···αq+1
= σα0···αk−1αk+1···αq+1

. We also define the relative Čech

complex (C•(W,W ′;S ), δ) as follows:

Cq(W,W ′;S ) =
{
σ ∈ Cq(W;S )

∣∣ σα0···αq
= 0 if α0, α1, . . . , αq ∈ I ′

}
.

Hereafter we denote F q = C
∞,(0,n;q)
X×X until the end of this appendix. Recall that

we have the fine resolution of O
(0,n)
X×X :

0 → O
(0,n)
X×X → F 0 ∂̄−→ F 1 ∂̄−→ · · · ∂̄−→ F 2n → 0.

This induces the following double complex:

...

δ

��

...

δ
��

· · ·
(−1)q1 ∂̄

// Cq1(W,W ′;F q2)
(−1)q1 ∂̄

//

δ
��

Cq1(W,W ′;F q2+1)

δ
��

(−1)q1 ∂̄
// · · ·

· · ·
(−1)q1+1∂̄

// Cq1+1(W,W ′;F q2)

δ
��

(−1)q1+1∂̄
// Cq1+1(W,W ′;F q2+1)

δ
��

(−1)q1+1∂̄
// · · ·

...
...
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We consider the following associated single complex (F •(W,W ′), D):

F q(W,W ′) =
⊕

q1+q2=q

Cq1(W,W ′;F q2), D = δ + (−1)q1 ∂̄.

Definition A.1. The Čech–Dolbeault cohomology Hq(W,W ′;F •) of (W,W ′)

with coefficients in F • is the qth cohomology of (F •(W,W ′), D).

We describe the differential D in a bit more detail. A cochain ξ ∈ F q(W,W ′)

may be expressed as ξ = (ξ(q1))0≤q1≤q with ξ(q1) ∈ Cq1(W,W ′;F q−q1). Then

D : F q(W,W ′) → F q+1(W,W ′) is given by

(Dξ)(q1) = δξ(q1−1) + (−1)q1 ∂̄ξq1 , 0 ≤ q1 ≤ q + 1,

where we set ξ(−1) = ξ(q+1) = 0.

Remark A.2. Assume W consists of two open sets X and X\M , andW ′ consists

of only one open set X\M . Then the Čech–Dolbeault cohomology Hq(W,W ′;F •)

corresponds to the Čech–Dolbeault cohomology defined in Section 2.

Appendix A.2. Two cohomological expressions

in the Čech–Dolbeault cohomology

The goal of this subsection is to express two cohomologies in the same cohomology

class. For more details of Čech representation, see [2] and [12].

By the discussion so far we can get three cohomological expressionsHn(O
(0,n)
X×X ;

W,W ′), H0,n,n

ϑ̄
(V,V ′) and H0,n,n

ϑ̄
(W,W ′) of E R

X,z∗ . Set Ur and Gr,ε as follows:

Ur =
{
(z, z′) ∈ X ×X

∣∣ |z| < r, |z′ − z| < r
}
,

Gr,ε = {(z, z′) ∈ Ur | |z′1 − z1| ≥ ε|z′i − zi| (2 ≤ i ≤ n),

− Re(λ(z′1 − z1)) ≥ ε|Im(λ(z′1 − z1))|}.

Thanks to the study of Kashiwara–Kawai [8] we have

(A.1) E R
X,z∗ = lim−→

r→0
ε→0

Hn
Gr,ε

(Ur;O
(0,n)
X×X).

We write U andG instead of Ur andGr,ε respectively if there is no risk of confusion.

We also set several open sets as follows:

V0 =W0 = U, V1 = U \G, V01 = V0 ∩ V1 = U \G,

W1 =
{
(z, z′) ∈ U

∣∣ −Re(λ(z′1 − z1)) > ε| Im(λ(z′1 − z1))|
}
,

Wi =
{
(z, z′) ∈ U

∣∣ |z′1 − z1| < ε|z′i − zi|
}

(2 ≤ i ≤ n).
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We can easily see that the following are open coverings of U :

V = {V0, V1}, W = {W0,W1, . . . ,Wn},

and the following are open coverings of U \G:

V ′ = {V1}, W ′ = {W1,W2, . . . ,Wn}.

Fix small r and ε. We compute the cohomology Hn
G(U ;O

(0,n)
X×X) by applying

the Čech cohomology with respect to the Čech coverings (W,W ′). Since W and

W ′ are Stein coverings, by Leray’s theorem we have the exact sequence

n⊕
i=1

Γ(Wî;O
(0,n)
X×X) → Γ(W ;O

(0,n)
X×X) → Hn

G(U ;O
(0,n)
X×X) → 0,

whereWî =
⋂

j ̸=iWj andW =
⋂n

j=1Wj . Hence P ∈ Hn
G(U ;O

(0,n)
X×X) is represented

by some holomorphic form ψ = ψ(z, z′ − z) dz′ ∈ Γ(W ;O
(0,n)
X×X) such that

P = [ψ(z, z′ − z) dz′].

We denote by Hn(O
(0,n)
X×X ;W,W ′) the Čech cohomology with respect to the cov-

erings (W,W ′).

Next we recall the Čech–Dolbeault expression of Hn
G(U ;O

(0,n)
X×X) with respect

to coverings (V,V ′). By the results in Section 2, we have

Hn
G(U ;O

(0,n)
X×X) = H0,n,n

ϑ̄
(V,V ′).

Moreover, P∈Hn
G(U ;O

(0,n)
X×X) is represented by some ω=(ω0, ω01)∈C∞,(0,n;n)

X×X (V,V ′)

such that

P = [ω] = [(ω0, ω01)].

Remark A.3. While in Section 2 we set V ′ = {V0} and the representative of

an element of Čech–Dolbeault cohomology is represented by the pair (ω1, ω01), in

this section we set V ′ = {V1}. Therefore the index of first term of ω = (ω0, ω01) is

different from the one in Section 3.

Finally, by applying (W,W ′) to the previous subsection, we have the Čech–

Dolbeault cohomologyH0,n,n

ϑ̄
(W,W ′), which is isomorphic to the local cohomology

Hn
G(U ;O

(0,n)
X×X):

[ω] ∈ H0,n,n

ϑ̄
(V,V ′)

ϕ̃2

++

P ∈ Hn
G(U ;O

(0,n)
X×X)

33

++

H0,n,n

ϑ̄
(W,W ′).

[ψ] ∈ Hn(O
(0,n)
X×X ;W,W ′)

ϕ̃1 33
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We introduce the maps ϕ̃1, ϕ̃2. Let ϕ1 be the inclusion map

ϕ1 : Γ(W ;O
(0,n)
X×X) ↪→ Cn(W,W ′;F 0) ⊂ Fn(W,W ′),

where W =
⋂n

i=1Wi, and define

ϕ2 : Fn(V,V ′) → C0(W,W ′;Fn)⊕ C1(W,W ′Fn−1) ⊂ Fn(W,W ′)

by

ϕ2(ω)α =

{
ω0|Wα

, α = 0,

0, α = 1, . . . , n,

ϕ2(ω)αβ =


ω01|Wαβ

, (α, β) = (0, 1), . . . , (0, n),

−ω01|Wαβ
, (α, β) = (1, 0), . . . , (n, 0),

0 otherwise.

Then ϕ1 induces the morphism between cohomologies

ϕ̃1 : H
n(O

(0,n)
X×X ;W,W ′) → H0,n,n

ϑ̄
(W,W ′),

and ϕ2 induces the morphism between cohomologies

ϕ̃2 : H
0,n,n

ϑ̄
(V,V ′) → H0,n,n

ϑ̄
(W,W ′).

Theorem A.4 ([13, Thm. 3.6, Prop. 4.3, Thm. 4.7]). The induced morphisms ϕ̃1
and ϕ̃2 are isomorphisms.

Now we work in H0,n,n

ϑ̄
(W,W ′). Fix P ∈ Hn

G(U ;O
(0,n)
X×X). Then we obtain two

representatives

P = [ψ] ∈ Hn(O
(0,n)
X×X ;W,W ′), P = [ω] ∈ H0,n,n

ϑ̄
(V,V ′).

These are clearly equivalent to each other in H0,n,n

ϑ̄
(W,W ′), and hence there exists

η ∈ Fn−1(W,W ′) such that

(A.2) ϕ̃2(ω)− ϕ̃1(ψ) = Dη.

Here, note that (Dη)i = δηi + (−1)i+1∂̄ηi+1 for i = 1, 2, . . . , n − 1 and η =

(η0, η1, . . . , ηn−1). That is, condition (A.2) can be described concretely as follows:

ϕ̃2(ω0) = ∂̄η0,

ϕ̃2(ω01) = δη0 − ∂̄η1,

0 = δη1 + ∂̄η2,

...

0 = δηn−2 + (−1)n−1∂̄ηn−1,

−ϕ̃1(ψ) = δηn−1.
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Appendix A.3. A brief review of the symbol map σ

We briefly review the symbol map σ introduced by Aoki. See [2] and [4] for more

details. In this subsection we adapt the notation in [4].

We use the same notation as introduced in the previous subsection. The stalk

E R
X,z∗ has the cohomological expression

Hn
Gr,ε

(Ur;O
(0,n)
X×X) ≃ Hn(O

(0,n)
X×X ;W,W ′).

Take ψ = ψ(z, z′ − z) dz′ ∈ Γ(W,O
(0,n)
X×X), which is the representative of P ∈

Hn(O
(0,n)
X×X ;W,W ′). Set w = z′ − z. In order to define the symbol map σ we set

the integral paths γi for i = 1, 2, . . . , n (cf. Figure 5). Fix r > 0 and ε > 0.

(1) Let β0, β1 be complex numbers satisfying

0 > Reλβ0 > ε Imλβ0,

0 > Reλβ1 > −ε Imλβ1.

Then we choose γ1 ⊂ C as the C∞-smooth path that goes counterclockwise

around the origin from β0 to β1. Moreover, assume γ1 to be a piecewise C∞-

smooth curve.

(2) Fix w1 ∈ γ1. For i = 2, . . . , n we take a sufficiently small δ > 0 and set

γi =
{
wi ∈ C

∣∣ |wi| = |w1|
ε + δ

}
.

Definition A.5. For a pseudodifferential operator P = [ψ(z, z′ − z) dz′] ∈ E R
X,z∗

the symbol map σ is given by

σ(P ) =

∫
γ1

∮
γ2

· · ·
∮
γn

ψ(z, w) · e⟨w,ζ⟩ dw.

Appendix A.4. The proof of the commutativity of (5.4)

Now we show the commutativity of (5.4). Let P be a pseudodifferential opera-

tor and ω = (ω1, ω01) be its representative in the framework of Čech–Dolbeault

cohomology.

Theorem A.6. A symbol σ(P ) is the same symbol as the one ς(ω) in the C∞-

symbol class S∞/N∞.

To calculate the difference σ(P ) − ς(ω), we work in the framework of

Hn(O
(0,n)
X×X ;W,W ′) in what follows. Let (z, w) = (z1, . . . , zn, w1, . . . , wn) be a local

coordinate system of X ×X ⊂ Cn × Cn. Since the symbol mapping is defined by

integration with respect to the variable w, we consider z = (z1, . . . , zn) as the
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λ̄

β0

β1

γ1

γi

δ
ε

Figure 5. γ1 and γi

parameter until the end of this paper. Let U = Ur and G = Gr,ε be the sets given

in Section A.2. Moreover, let qi be the canonical projection given by

qi : Cn ∋ (z1, . . . , zn) 7→ zi ∈ C (i = 1, . . . , n).

For sufficiently small ε1 and ε2 with 0 < ε1 < ε2 < ε, we set

Γ◦
1 =

{
w ∈ C

∣∣ −Re(λw) ≥ ε1|Im(λw)|
}
,

Γ◦
2 =

{
w ∈ C

∣∣ −Re(λw) ≥ ε2|Im(λw)|
}
.

Moreover, assume that β0, β1 ∈ Γ◦
1 and β0, β1 /∈ Γ◦

2. Then we can construct the

closed domains D1, D2 ⊂ C satisfying the following conditions (cf. Figure 6):

(1) D1 and D2 satisfy condition D of the 1-dimensional case.

(2) The points β0 and β1 are on ∂D1 and ∂D2.

(3) ∂D1 ∩D2 ⊂ Γ◦
1.

Set B1 = D1, γ1 = ∂D1 \D2 and γ′1 = ∂D1 ∩ U .

Remark A.7. The path γ1 goes counterclockwise from β0 to β1.
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λ̄

β0

β1

D1

λ̄

β0

β1

D2

Figure 6. D1 and D2

Let γi (i = 2, . . . , n) be the same as those that appeared in the previous

subsection. For i = 2, 3, . . . , n and for w1 ∈ B1, set the domains Bi ⊂ C as follows:

Bi =
{
wi ∈ C

∣∣ |wi| ≤ |w1|
ε + δ

}
.

Note that the boundary of Bi has the same orientation with the path γi for i =

2, . . . , n.

We define the domains D and E of integrations in the framework of Čech–

Dolbeault cohomology by

D = q−1
1 (B1) ∩

( n⋂
k=2

q−1
i (Bk)

)
∩ U,

E =

( n⋃
i=1

Ni

)
∩ U,

where

Ni = q−1
i (γi) ∩

( n⋂
i=1

q−1
i (Bi)

)
.

To see the relation between the symbol mapping introduced by Aoki and the

one in the framework of Čech–Dolbeault cohomology, we introduce the honeycomb
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system of U . The family {Ri}ni=0 of closed sets defined below is the honeycomb

system of U adapted to W with respect to the variable w (for more details of the

honeycomb system, see [13, Sect. 6]):

R0 = q−1
1 (B1) ∩

( n⋂
k=2

q−1
i (Bk)

)
∩ U,

R1 = q−1
1 (Bc

1) ∩
( n⋂

k=2

q−1
i (Bk)

)
∩ U,

Ri = q−1
i (Bc

i ) ∩
( n⋂

k=i+1

q−1
k (Bk)

)
∩ U (i = 2, . . . , n− 1),

Rn = q−1
n (Bc

n) ∩ U.

Here, the set Kc means the complement of K.

We set

I =
{
1, 2, . . . , n

}
,

I(r) =
{
α(r) = (α1, . . . , αr) ∈ Ir

∣∣ α1 ≤ · · · ≤ αr

}
.

For simplicity we adopt the following notation. Let k be an integer with 0 ≤ k ≤ n

and α(r) = (α1, . . . , αr) ∈ I(r). Then (0, α1, . . . , αr) is also denoted by 0α(r) and

(α1, . . . , αr, k) is also denoted by α(r)k. Set α
(r)

ǐ
= (α1, . . . , αi−1, αi+1, . . . , αr).

For any α(r) ∈ I(r) one sets Rα(r) as

Rα(r) =
⋂
i

Ri,

where i ranges through all the components of α(r). The order of the subscript in

the honeycomb system means its orientation. That is, for any permutation ρ we

have

Rα(r) = sgn ρ ·Rρ(α(r)).

The key to the proof of Theorem A.6 is how to construct the domains of the

integrations. By the recipe of {Ri}ni=1 we have

ς(ω) =

∫
R0

ϕ2(ω1)
0 · e⟨w,ζ⟩ +

n∑
i=1

∫
R0i

ϕ2(ω01)
0i · e⟨w,ζ⟩.

Moreover, we have

R01···n =

n⋂
i=1

Ri = ∂1B1 × · · · × ∂nBn =

n∏
i=1

∂Bi = ∂B1 ×
n∏

i=2

γi,

which contains the domain γ′1 × γ2 × · · · × γn.
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Here we recall the symbol map defined by Aoki. The symbol map σ is given

by

σ(P ) =

∫
γ1

∮
γ2

· · ·
∮
γn

ψ(z, w) · e⟨w,ζ⟩ dw.

Notation A.8. Let η ∈ F r(W,W ′) =
⊕

0≤j≤r C
j(W,W ′;F r−j). For 0 ≤ j ≤ r

we write

η = (η0, . . . , ηr), ηj = {(ηj)0α
(j)

} ∈ Cj(W,W ′;F r−j),

where (ηj)
0α(j) ∈ F r−j(W0α(j)).

The following theorem is crucial for the concrete computation of ς(ω).

Theorem A.9. Let η = (η0, η1, . . . , ηn−1) be in Ker(Fn−1(W,W ′)
D−→ Fn(W,

W ′)). Then, for 1 ≤ r ≤ n− 1, we have∑
α(r)∈I(r)

∫
R

0α(r)

(∂̄ηr)
0α(r)

· e⟨w,ζ⟩ = −
∑

α(r+1)∈I(r+1)

∫
R

0α(r+1)

(∂̄ηr+1)
0α(r+1)

· e⟨w,ζ⟩,

where ∂̄ is the Dolbeault operator.

For the proof of Theorem A.9 we show the following lemma.

Lemma A.10. Let η ∈ Fn−1(W,W ′). We have∑
α(r)∈I(r)

n∑
i=1

∫
R

0α(r)i

η0α
(r)

r · e⟨w,ζ⟩

=
∑

β(r+1)∈I(r+1)

r+1∑
j=1

∫
R

0β(r+1)

(−1)r+1−j · η
0β

(r+1)

ǰ
r · e⟨w,ζ⟩.

Proof. Let {(α(r), i) | α(r) ∈ I(r), i ∈ I} and {(β(r+1), j) | β(r+1) ∈ I(r+1), 1 ≤
j ≤ r+1} be index sets. We denote by α(r)[i] the ith component of α(r). We define

the map F by

F :
{
(α(r), i)

∣∣ α(r) ∈ I(r), i ∈ I
}
−→

{
(β(r+1), j)

∣∣ β(r+1) ∈ I(r+1), j ∈ I
}

∈ ∈

(α(r), i) 7−→ (γ(r+1), k),

where γ(r+1) is α(r)i sorted into increasing order and k = #{ℓ | α(r)[ℓ] < i}.
Remark that if i ∈ α(r) we have α(r)i = 0. We also define G by

G :
{
(β(r+1), j)

∣∣ β(r+1) ∈ I(r+1), j ∈ I
}
−→

{
(α(r), i)

∣∣ α(r) ∈ I(r), i ∈ I
}

∈ ∈

(β(r+1), j) 7−→ (β
(r+1)

ǰ
, β(r+1)[j]).
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Set

p((α(r), i)) =

∫
R

0α(r)i

η0α
(r)

r · e⟨w,ζ⟩,

q((β(r+1), j)) =

∫
R

0β(r+1)

(−1)r+1−j · η
0β

(r+1)

ǰ
r · e⟨w,ζ⟩.

By the definitions of F and G we have the following properties:

(1) F ◦G = id and G ◦ F = id.

(2) q(F ((α(r), i))) = p((α(r), i)).

The second property can be shown as follows:

q
(
F ((α(r), i))

)
= q((γ(r+1), k))

=

∫
R

0γ(r+1)

(−1)r+1−k · η
0γ

(r+1)

ǩ
r · e⟨w,ζ⟩

= (−1)r+1−k

∫
R

0α(r)i

(−1)r+1−kη0α
(r)

r · e⟨w,ζ⟩

= p((α(r), i)).

Hence we have∑
α(r)∈I(r)

n∑
i=1

∫
R

0α(r)j

η0α
(r)

r · e⟨w,ζ⟩

=
∑

α(r)∈I(r)

n∑
i=1

p((α(r), i))

=
∑

α(r)∈I(r)

n∑
i=1

q(F ((α(r), i)))

=
∑

β(r+1)∈I(r+1)

r+1∑
j=1

q((β(r+1), j))

=
∑

β(r+1)∈I(r+1)

r+1∑
j=1

∫
R

0β(r+1)

(−1)r+1−j · η
0β

(r+1)

ǰ
r · e⟨w,ζ⟩.

Now we start the proof of Theorem A.9.
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Proof of Theorem A.9. By the Stokes formula we have

∑
α(r)∈I(r)

∫
R

0α(r)

(∂̄ηr)
0α(r)

· e⟨w,ζ⟩

=
∑

α(r)∈I(r)

∫
∂R

0α(r)

η0α
(r)

r · e⟨w,ζ⟩

=
∑

α(r)∈I(r)

n∑
j=1

∫
R

0α(r)j

η0α
(r)

r · e⟨w,ζ⟩.

By Lemma A.10 and the assumption δηr = (−1)r∂̄ηr+1 we obtain

∑
α(r)∈I(r)

n∑
i=1

∫
R

0α(r)i

η0α
(r)

r · e⟨w,ζ⟩

=
∑

α(r+1)∈I(r+1)

r+1∑
j=1

∫
R

0α(r+1)

(−1)r+1−j · η
0α

(r+1)

ǰ
r · e⟨w,ζ⟩

= (−1)r+1
∑

α(r+1)∈I(r+1)

∫
R

0α(r+1)

(δηr)
0α(r+1)

· e⟨w,ζ⟩

= (−1)r+1
∑

α(r+1)∈I(r+1)

∫
R

0α(r+1)

((−1)r∂̄ηr+1)
0α(r+1)

· e⟨w,ζ⟩

= −
∑

α(r+1)∈I(r+1)

∫
R

0α(r+1)

(∂̄ηr+1)
0α(r+1)

· e⟨w,ζ⟩

and this completes the proof.

In the framework of Čech–Dolbeault cohomology whose covering of total space

consists of 2 open sets, we have

ς(ω) =

∫
Dz

ω1 · e⟨w,ζ⟩ −
∫
Ez

ω01 · e⟨w,ζ⟩.

On the other hand, in the framework of Čech–Dolbeault cohomology whose cov-

ering of total space consists of n open sets, we have

ς(ω) =

∫
R0,z

ϕ2(ω1)
0 · e⟨w,ζ⟩ +

n∑
i=1

∫
R0i,z

ϕ2(ω01)
0i · e⟨w,ζ⟩.
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Thus we can calculate the image ς(ω) as follows:

ς(ω) =

∫
Dz

ω1 · e⟨w,ζ⟩ −
∫
Ez

ω01 · e⟨w,ζ⟩

=

∫
R0

ϕ2(ω1)
0 · e⟨w,ζ⟩ +

n∑
i=1

∫
R0i

ϕ2(ω01)
0i · e⟨w,ζ⟩

=

∫
R0

∂̄η00 · e⟨w,ζ⟩ +
n∑

i=1

∫
R0i

((δη0)
0i − (∂̄η1)

0i) · e⟨w,ζ⟩.

By the Stokes formula we have∫
R0

∂̄η00 · e⟨w,ζ⟩ +

n∑
i=1

∫
R0i

((δη0)
0i − (∂̄η1)

0i) · e⟨w,ζ⟩

=

n∑
i=1

∫
R0i

η00 · e⟨w,ζ⟩ +

n∑
i=1

∫
R0i

(δη0)
0i · e⟨w,ζ⟩ −

n∑
i=1

∫
R0i

(∂̄η1)
0i · e⟨w,ζ⟩

=

n∑
i=1

∫
R0i

η00 · e⟨w,ζ⟩ +

n∑
i=1

∫
R0i

(−η00) · e⟨w,ζ⟩ −
∑

α(1)∈I(1)

∫
R

0α(1)

(∂̄η1)
0α(1)

· e⟨w,ζ⟩

= −
∑

α(1)∈I(1)

∫
R

0α(1)

(∂̄η1)
0α(1)

· e⟨w,ζ⟩.

By applying Theorem A.9 to the above inductively we obtain

−
∑

α(1)∈I(1)

∫
R

0α(1),z

(∂̄η1)
0α(1)

· e⟨w,ζ⟩

=
∑

α(2)∈I(2)

∫
R

0α(2),z

(∂̄η2)
0α(r+1)

· e⟨w,ζ⟩

...

= (−1)n−1
∑

α(n−1)∈I(n−1)

∫
R

0α(n−1),z

(∂̄ηn−1)
0α(n−1)

· e⟨w,ζ⟩.

By the Stokes formula we have

(−1)n−1
∑

α(n−1)∈I(n−1)

∫
R

0α(n−1),z

(∂̄ηn−1)
0α(n−1)

· e⟨w,ζ⟩

= (−1)n−1
∑

α(n−1)∈I(n−1)

n∑
j=1

∫
R

0α(n−1)j,z

η0α
(n−1)

n−1 · e⟨w,ζ⟩

= (−1)n−1
∑

α(n)∈I(n)

n∑
j=1

∫
R

0α(n),z

(−1)n−j · η
0α

(n−1)

ǰ

n−1 · e⟨w,ζ⟩
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= −
∑

α(n)∈I(n)

∫
R

0α(n),z

(δηn−1)
0α(n)

· e⟨w,ζ⟩

= −
∑

α(n)∈I(n)

∫
R

0α(n),z

(−σ)0α
(n)

· e⟨w,ζ⟩

=

∫
R01···n,z

ψ · e⟨w,ζ⟩.

To conclude the proof of the commutativity of (5.4) we show

ς(ω) =

∫
R01···n,z

ψ · e⟨w,ζ⟩ =

∫
γ′
1×γ2×···×γn

ψ · e⟨w,ζ⟩

≈
∫
γ1×γ2×···×γn

ψ · e⟨w,ζ⟩ = σ(P ).

Since we have ∂D1∩D2 ⊂ Γ◦
1 by the same argument as the proofs of Lemmas 5.11

and 5.14, for any multi-indices α, β ∈ Zn
≥0 there exist positive constants C > 0

and h > 0 such that ∣∣∣ ∂α
∂zα

∂β

∂z̄β
(ς(ω)− σ(P ))

∣∣∣ ≤ Ce−h|ζ|,

and the proof has been completed.
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